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A COUPLED MODEL FOR THE DYNAMICS OF GAS EXCHANGES

IN THE HUMAN LUNG WITH HALDANE AND BOHR’S EFFECTS

LAURENT BOUDIN, CÉLINE GRANDMONT, BÉRÉNICE GREC, AND SÉBASTIEN MARTIN

Abstract. We propose an integrated dynamical model for oxygen and carbon dioxide transfer from
the lung into the blood, coupled with a lumped mechanical model for the ventilation process, for
healthy patients as well as in pathological cases. In particular, we focus on the Bohr and Haldane
effects, which induce a nonlinear coupling between the oxygen and the carbon dioxide. We also take
into account the dead space volume, which requires a special attention in the pathological cases.
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1. Introduction

The main function of the respiratory system is to ensure the oxygen transfer from the outside air
to the blood and the carbon dioxide transfer from the blood to the outside air. Those transfers are
achieved thanks to passive diffusion through the alveolo-capillary membrane which separates two
phases: the alveolar air on the one side, the blood on the other side. Then, the gas exchanges at
this level require air renewal, which happens during the mechanical ventilation process.

This process involves the air transport through the resistive bronchial tree, which irrigates the
elastic lung tissue called parenchyma. Driven by the diaphragm contraction, the parenchyma is
deformed, inducing a pressure drop between the alveoli and the mouth, and consequently an airflow.
There is a hierarchy of models which can describe this phenomenon.
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Models involving ODEs, possibly nonlinear and complex, may be considered, as the ones in
[27, 30, 13, 19], using for example nonlinear double-balloon models. The air transport can further
be described with unsteady one-dimensional advection-diffusion PDEs, see [19, 22, 23] for instance,
and even with either unsteady systems describing the three-dimensional air flow, e.g. [2, 24], or a
resistive tree interacting with a three-dimensional elasticity model as in [26, 6, 25].

In this paper, we choose to consider a simple mechanical model for the respiratory system similar
to the ones from [3, 5, 4, 34]: a single-compartment model, often represented under the form of a
balloon corresponding to the lungs, connected to a pipe representing the airways. There are mainly
two physiological parameters involved in that model. The lung elastance E measures the stiffness
related to stretching forces, so that the lung spontaneously comes back to rest. The pulmonary
resistance R measures the resistive forces in the whole bronchial tree (due to the friction between
the gas molecules and the airway walls) and the resistive forces to deformation inside tissues (due
to the friction between the lung tissues and the chest wall). Those critical parameters are affected
in pathological situations which can induce substantial modifications of the elastance (fibrosis,
emphysema...), or the resistance (asthma, COPD...), but also of other physiological parameters.

The lung mechanical function is to serve as a pump for the air renewing to bring oxygen inside
the lung and expel the carbon dioxide produced within the body. Thus we need to describe the
dynamics of each species concentrations at the alveolar level, mainly driven by diffusion.

The gas exchanges occur through the alveolo-capillary membrane and, thus, may be widely
affected by the so-called lung dead space, i.e. the volume of air not involved in the gas exchanges,
see, for instance, [10, 34]. This dead space is the sum of the anatomic dead space and an extra
volume depending on the patient state and on the breathing scenario. In particular, the air entering
the alveoli during inspiration is a mixture of dead-space air, assumed to be filled of gases whose
mole fractions are the current ones in the lung, and fresh air. Higher values of the dead space may
have a strong impact on the air renewing and thus the gas transfer. Hence, it is crucial to properly
model the dead space, and more precisely, in our model, the extra volume, which we call here the
pathological dead space: it is close to zero when the patient is healthy, but can become significantly
non-zero for asthmatic or emphysematous patients, for example.

The gaseous exchange involves a passive diffusion process through the alveolar membrane together
with the binding of oxygen and carbon dioxide to hemoglobin. The diffusion process of both gases
through the alveolar membrane is characterized by two constant diffusion coefficients, denoted
by Dm,O2 and Dm,CO2 , related by Dm,CO2 = 20Dm,O2 [10], and is driven by the blood-alveolar
pressure drops of each species. The affinity of hemoglobin with respect to oxygen depends on the
blood pressure of carbon dioxide, referred to as the Haldane and Bohr effects in the literature, see
[11, 28, 9, 10, 18]. Those effects induce a natural nonlinear coupling in the dynamics of the diffusion
process of each species. Roughly speaking, Haldane’s effect is due to the fact that the blood oxygen
increases the carbon dioxide removal, and Bohr’s refers to the shift of oxygen-binding affinity with
respect to both pH and carbon dioxide concentration.

Consequently, the nonlinear coupled dynamics of the blood partial pressures of oxygen and carbon
dioxide, based upon a concentration balance, may lead to substantial modifications of the gas
transfer in pathological situations (e.g. in emphysema diffusion permeability are lowered, leading
to possible kinetic limitation in the instantaneous gas transfer).

Note that very complex ODE systems modelling the whole respiratory process have also been
proposed in the literature, as in [8]. Such systems include cardiovascular phenomena and central
neural control. In this work, we aim to focus only on the ventilation-diffusion coupling with a limited
number of physiological parameters, which can moreover be calibrated and physically interpreted.
The paper is hence organised as follows. In Section 2, we present our simple ventilation-diffusion
model, which can capture the main observable quantities for a healthy patient at rest. In Section 3,
we further discuss the gas exchanges and provide a relevant model for both Bohr and Haldane
effects. We then start the numerical studies by first investigating some reference situations for a
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healthy patient in Section 4, which allows to check the relevant behaviour of our model. Next, in
Section 5, we lead a sensitivity analysis with respect to the parameters R, E and Dm to study their
influence on the gas transfer efficiency, in order to find possible global structuring or crossed effects
with respect to those parameters. Eventually, Section 6 is dedicated to exploring the behaviour of
our model in various pathological situations.

2. A 0D model for the respiratory system

2.1. Mechanical model. Let us first write the simple linear lung mechanical model we use here.
As we already emphasized, it involves two main ingredients: the resistance R of the branches
connecting alveoli to the outside air, and elastic properties of the surrounding medium measured by
the elastance E. Denoting by Tfin > 0 the experiment final time, the time-depending lung volume
V and its time derivative V̇ , which is the corresponding air flow, satisfy, for any t ∈ [0, Tfin],

(1) R V̇ (t) + E (V (t)− FRC) = −Pext(t),

supplemented with an initial condition on V . In (1), FRC is the functional residual volume (volume
at rest) for a healthy patient, Pext(t) is the muscular pressure leading to the deformation of the lung
parenchyma, which induces inspiration (and also, forced expiration) at time t. This last quantity,
often referred to as the airway opening or transpulmonary pressure [27, 5], is chosen here as a periodic
function, and we denote by T ∈ (0, Tfin] the corresponding period. Unfortunately, the pressure is
not accessible to direct measurements. It accounts for the effort of the diaphragm (Pext(t) < 0
for inspiration), and possibly of the abdomen muscles during a forced expiration (Pext(t) = 0 for
passive expiration and Pext(t) > 0 for forced expiration). Note that, for the sake of simplicity, in
all the upcoming computations, t = 0 corresponds to the beginning of a respiratory cycle, and we
set V (0) = FRC. The final time Tfin will be chosen as a multiple of T in order to deal with full
respiratory cycles.

For the air renewing process, we need to describe the dynamics of both oxygen and carbon dioxide
at the alveolar level. In order to do so, we introduce their mole fractions in the alveoli, respectively
denoted by χO2 and χCO2 . Hence, the proportion of, for instance, oxygen at time t in the alveoli is
given by χO2(t)[V (t)− VD], where VD is the lung dead space, i.e. the volume of air not involved in
the gas exchanges. This dead volume is assumed to be constant during each respiratory cycle, as
the sum of the anatomic dead space V A

D and the extra volume V P
D depending on the patient state:

(2) VD = V A
D + V P

D .

The usual value of V A
D is 0.15 L [34]. We choose to compute the extra pathological dead space for

each respiratory cycle [kT, (k + 1)T ], k ≥ 0, according to the following formula:

(3) V P
D = max (V (kT )− FRC, 0) .

This volume measures the discrepancy between a non-pathological functional residual volume FRC
and the computed volume at the end of each expiration. This quantity V P

D is nonnegative, and
close to 0 in healthy situations.

The variations of the oxygen and carbon dioxide amounts follow by mass balances, which depend
on two fluxes, a transport and a diffusion one.

The first flux describes the transport of each species. At inspiration (V̇ (t) ≥ 0), the alveoli are
supplied with fresh air through the bronchial tree. The fluxes are thus expressed as the product
of V̇ (t) and the corresponding mole fractions entering the alveoli at time t, denoted by χ0

O2
(t) and

χ0
CO2

(t). At expiration (V̇ (t) ≤ 0), the gases are exhaled. Consequently, the fluxes are obtained as

the product of V̇ (t) and the corresponding mole fractions at time t in the alveoli. During a whole

respiratory cycle, the supplied flux of each gas takes the form V̇ (t) [1R+(V̇ (t))χ0(t)+1R−(V̇ (t))χ(t)].
The second flux takes into account the diffusion phenomena into the blood through the alveolar

membrane. We denote by qO2 and qCO2 the corresponding fluxes. They are accurately described in
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the next subsection. In particular, the strong coupling between oxygen and carbon dioxide will be
further discussed.

To summarize, at each respiratory cycle, the mole fractions of both species in the alveoli satisfy,
for any t ∈ [kT, (k + 1)T ], k ≥ 0,

˙χO2(t) =
1

V (t)− VD

(
V̇ (t) (χ0

O2
(t)− χO2(t))1R+(V̇ (t))− qO2(t)

)
,(4)

˙χCO2(t) =
1

V (t)− VD

(
V̇ (t) (χ0

CO2
(t)− χCO2(t))1R+(V̇ (t))− qCO2(t)

)
.(5)

The mole fractions χ0
O2

(t) and χ0
CO2

(t) describe what enters the alveoli during inspiration. It is a
mixture of dead-space air, assumed to be filled of gases whose mole fractions are the current ones
in the lung, and fresh air, for which χatm

O2
= 21% and χatm

CO2
= 0.04%. The inspired air volume is

given by V (t)− V (kT ).We can thus write, for any t ∈ [kT, (k + 1)T ],

(6) χ0
O2

(t) = (1− φ(t))χatm
O2

+ φ(t)χO2(t), χ0
CO2

(t) = (1− φ(t))χatm
CO2

+ φ(t)χCO2(t),

where we set

(7) φ(t) = VD/(V (t)− V (kT ) + VD) > 0.

Using (7), (4)–(5) then become

˙χO2(t) =
1

V (t)− VD

(
(1− φ(t)) V̇ (t) (χatm

O2
− χO2(t))1R+(V̇ (t))− qO2(t)

)
,(8)

˙χCO2(t) =
1

V (t)− VD

(
(1− φ(t)) V̇ (t) (χatm

CO2
− χCO2(t))1R+(V̇ (t))− qCO2(t)

)
.(9)

We emphasize that, in order for (6) to make sense, we need the quantity 1 − φ(t) to remain non-

negative when V̇ (t) ≥ 0 only, and that is the case: during inspiration, V grows and consequently,
V (t) ≥ V (kT ). Besides, note that (8)–(9) differ from their oxygen-only counterpart in [19] since
we take the dead space into account: choosing VD = 0 in (8) allows to recover the corresponding
equation from [19]. Nevertheless, even for healthy patients, for whom V P

D is close to zero, taking
into account the anatomic dead space, when considering both gases, is crucial to obtain the right
order of magnitude of the carbon dioxide quantities, whereas it is not so crucial when considering
oxygen alone, as in [19].

Remark 1. Note that, when the applied external pressure is periodic, there exists a unique periodic
solution to (1). This solution is moreover asymptotically stable [20]. It implies that, in the periodic
regime limit, V P

D (and thus φ) takes the very same value V P
Dper

at each respiratory cycle, which can

be exactly computed as

V P
Dper

= max

(
− 1

R(1− e−T/τ )

∫ T

0
e−(T−s)/τ Pext(s) ds, 0

)
.

It depends on the parameters of the mechanical model, and in particular on the relaxation time
τ = R/E, as well as on the applied external pressure. For instance, it cannot be neglected when the
lung resistance R increases or its elastance E decreases.

We now need to properly define the diffusive fluxes qO2 and qCO2 .
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2.2. Modelling of gas exchange and hemoglobin captation. We assume that the diffusive
properties of the blood-gas barrier are constant and uniform along the capillaries. The diffusion
process of both gases through the alveolar membrane is a passive diffusion which is thus characterized
by two constant diffusion coefficients denoted by Dm,O2 and Dm,CO2 . It is moreover driven by the
difference between the oxygen (resp. carbon dioxide) alveolar pressure χO2Patm (resp. χCO2Patm)
and the blood gaseous partial pressure which is denoted by PO2 (resp. PCO2), where Patm stands for
the atmospheric pressure. Recall that the carbon dioxide diffusive capacity is twenty times higher
than the oxygen one, see [10, Chapter 39, pp. 493 & 499] for instance.

Next we have to describe the dynamics of binding with hemoglobin. The chemical reaction of
each species with hemoglobin is assumed to be instantaneous [10, Chapter 39, p. 499]. As already
mentioned, there exists a nonlinear coupling between both gases. In the Haldane effect, the blood
oxygenation displaces carbon dioxide from hemoglobin, which increases the removal of carbon diox-
ide. Consequently, oxygenated blood has a reduced affinity for carbon dioxide and the Haldane
effect describes the ability of hemoglobin to carry increased amounts of carbon dioxide in the de-
oxygenated state as opposed to the oxygenated state. In the Bohr effect, oxygen-binding affinity
of hemoglobin is inversely related to both acidity and carbon dioxide concentration. It thus refers
to the shift, caused by changes in the carbon dioxide concentration or the environment pH, in the
oxygen dissociation curve describing the saturation of hemoglobin with respect to the oxygen partial
pressure.

Consequently, the dynamic of the blood partial pressures of oxygen and carbon dioxide can be
described through functions representing the concentrations CO2 = CO2(PO2 , PCO2) and CCO2 =
CCO2(PO2 , PCO2) of O2 and CO2 in the blood, which are assumed to be uniform at any time in
the whole pulmonary capillary blood volume Vc. The expressions of functions CO2 and CCO2 are
provided later, in Subsections 3.1–3.2.

To define the instantaneous average fluxes qO2(t) and qCO2(t), let us describe the transfer dy-
namics, as in [31]: a volume Vc of capillary blood is instantaneously brought in the neighborhood
of the alveoli, then remains there during a transient time τb, allowing exchanges to take place, and
is finally carried away and replaced by the same amount of blood. This phenomenon is periodically
reproduced each time period τb. Consequently, at every time t, we solve

(10)


Vc

d

dθ
(CO2(PO2(t, θ), PCO2(t, θ))) = Dm,O2 (χO2(t)Patm − PO2(t, θ)) ,

Vc
d

dθ
(CCO2(PO2(t, θ), PCO2(t, θ))) = Dm,CO2 (χCO2(t)Patm − PCO2(t, θ)) ,

θ ∈ (0, τb).

This system has to be supplemented with initial conditions. Every τb, a new quantity of blood
arrives, so that it seems fair to choose, at every time t,

(11) PO2(t, 0) = P vO2
, PCO2(t, 0) = P vCO2

,

where P vO2
, P vCO2

are the deoxygenated blood pressures of oxygen and carbon dioxide (blood poor in
oxygen and rich in carbon dioxide) entering the lung before the gaseous exchanges. We emphasize
that t here acts as a parameter, and, at every time t, the above system (10)–(11) must be solved
for θ ∈ (0, τb).

We are now in a position to properly define the instantaneous average fluxes qO2 and qCO2 . They
are determined by the difference between the final blood partial pressure at τb and the initial one
(which corresponds to the deoxygenated blood) over the transient time τb. They are thus written,
for any t, as

qO2(t) =
Vc
τb

(
CO2(PO2(t, τb), PCO2(t, τb))− CO2(P vO2

, P vCO2
)
)
,(12)

qCO2(t) =
Vc
τb

(
CCO2(PO2(t, τb), PCO2(t, τb))− CCO2(P vO2

, P vCO2
)
)
.(13)
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Note that, in this model, PO2(t, τb) and PCO2(t, τb) represent the instantaneous oxygenated blood
pressures at time t and thus are the surrogates of the arterial blood pressures. They hence will be
denoted, from now on, by P aO2

(t) and P aCO2
(t), respectively.

The exchange dynamics at the alveolar-capillary interface leads to the following situations:

• P aO2
(t) ' χO2(t)Patm, P aCO2

(t) ' χCO2(t)Patm in healthy situations (for which equilibrium
between the alveolar partial pressures and the blood partial pressures is reached for both
gases during the transient time);
• if kinetic limitation occurs, P aO2

(t) < χO2(t)Patm (same for CO2), and the equilibrium is not
reached during the transient time, which can happen for several pathologies.

Yet, in both cases, the corresponding O2 and CO2 transfer rates are given by (12)–(13).

2.3. Full 0D model. As a consequence, the mechanical and gas exchange model describing the
evolution of the lung is written as a nonlinear first-order differential system governing the behaviour
of three observable quantities (t 7→ V (t), t 7→ χO2(t) and t 7→ χCO2(t)), which also requires to
compute qO2 , qCO2 and auxiliary quantities P aO2

, P aCO2
, at each time t. Let us rewrite the whole

dynamical system which we consider, i.e. Eqns. (1)–(3) and (7)–(13),∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Mechanical model

V̇ (t) = −1

τ
(V (t)− FRC) +

1

R
Pext(t), where τ =

R

E

Balance of gases in the lung volume during each respiratory cycle [kT, (k + 1)T ]

˙χO2(t) =
1

V (t)− VD

[
(1− φ(t)) V̇ (χatm

O2
(t)− χO2(t))1R+(V̇ (t))− qO2(t)

]
˙χCO2(t) =

1

V (t)− VD

[
(1− φ(t)) V̇ (χatm

CO2
(t)− χCO2(t))1R+(V̇ (t))− qCO2(t)

]
where VD = V A

D + max(V (kT )− FRC, 0) and φ(t) = VD/ (V (t)− V (kT ) + VD)

Instantaneous gas fluxes through the alveolo-capillary membrane

qO2(t) =
Vc
τb

(
CO2(P aO2

(t), P aCO2
(t))− CO2(P vO2

, P vCO2
)
)

qCO2(t) =
Vc
τb

(
CCO2(P aO2

(t), P aCO2
(t))− CCO2(P vO2

, P vCO2
)
)

Instantaneous partial pressures in arterial blood
(P aO2

(t), P aCO2
(t)) = (PO2(t, τb), PCO2(t, τb)), where θ 7→ (PO2(t, θ), PCO2(t, θ)) solves

Vc
d

dθ
(CO2(PO2(t, θ), PCO2(t, θ))) = Dm,O2 (χO2(t)Patm − PO2(t, θ)) , θ ∈ (0, τb)

Vc
d

dθ
(CCO2(PO2(t, θ), PCO2(t, θ))) = Dm,CO2 (χCO2(t)Patm − PCO2(t, θ)) , θ ∈ (0, τb)

PO2(t, 0) = P vO2
,

PCO2(t, 0) = P vCO2
.

This system has to be supplemented with initial conditions on V , χO2 and χCO2 , and the func-
tions CO2 and CCO2 are defined below, see (18) and (21). As already stated, the determination of
instantaneous partial pressures in arterial blood requires to solve the last system at each time step.

Furthermore, the system is completely driven by the muscle command t 7→ Pext(t). The parame-
ters, which could be fitted to model pathologies, are the resistance of the bronchial tree (that may
be increased, for instance, to model asthma), the elastance of the lung parenchyma (that could be
changed in fibrosis or emphysema modelling), the diffusion parameters (that could be decreased in
infectious diseases). The parameters R and E have a direct impact on the ventilation process (and
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thus on the dynamic of lung volume and available fresh air) whereas the parameters Dm play a
crucial role in the gas diffusion. Note that Vc and τb are two other constants which can be fitted to
take into account some haemodynamic changes.

Remark 2. From the numerical viewpoint, it is useful to notice that System (10) can be formally
written as 

d

dt
(F (u, v)) = f(u),

d

dt
(G(u, v)) = g(v),

with initial data for u and v. Thus we get{
∂uF (u, v)u̇+ ∂vF (u, v)v̇ = f(u),
∂uG(u, v)u̇+ ∂vG(u, v)v̇ = g(v),

so that 
u̇ =

∂vG(u, v)f(u)− ∂vF (u, v)g(u)

∂uF (u, v)∂vG(u, v)− ∂vF (u, v)∂uG(u, v)
,

v̇ = − ∂uG(u, v)f(u)− ∂uF (u, v)g(u)

∂uF (u, v)∂vG(u, v)− ∂vF (u, v)∂uG(u, v)
,

if the denominator is non-zero. It will be the case for the parameter ranges and the functions F and
G which we shall deal with.

3. Gas exchange model for oxygen and carbon dioxide

In this section, we focus on the coupled diffusion process involving oxygen and carbon dioxide
through the so-called Bohr and Haldane effects, in order to define the functions CO2 , CCO2 .

3.1. Balance of oxygen including the Bohr effect. In order to describe the oxygen concen-
tration in the blood and take into account the Bohr effect, we adapt the model developped in [19,
Sn. 2] by including the dependency of the O2 saturation with respect to CO2.

Classically, the oxygen concentration in blood plasma can be expressed in terms of the oxygen
partial pressure, as σPO2 , where σ = 1.4·10−6 mol·L−1 ·mmHg−1 denotes the oxygen solubility in the
plasma. To this oxygen concentration in plasma, one must add a significant contribution due to the
capture of some O2 by hemoglobin (Hb). This latter contribution is written as 4CHbH0(PO2), where
CHb is the total concentration of hemoglobin (in both native and combined forms), H0 : R+ → [0, 1]
allows to quantify the hemoglobin saturation, and 4 is the maximal number of oxygen molecules
that a hemoglobin molecule may carry. This saturation function H0 [14, 34] is often referred to as
Hill’s or oxygen dissociation curve, and can be expressed as

(14) H0(PO2) =
PO2

2.5

P0
2.5 + PO2

2.5 ,

where P0 = 26 mmHg, see [14] and Figure 1. The oxygen concentration in the blood in both forms
(free and captured by hemoglobin) is then written as

(15) CO2(PO2) = σPO2 + 4CHbH0(PO2).

That simple model allows to recover, without tuning up any parameter, the order of magnitude of
the oxygen transfer rate at rest [10, 32, 33] for healthy situations, namely qO2 = 250 mL · min−1,
see [19].

Nevertheless, the Bohr effect is still not taken into account in (15), since the expression of CO2

does not depend on PCO2 . In fact, the oxygen dissociation curve, and hence the total concentration
of oxygen in the blood, depend on several factors, such as pH, PCO2 , temperature, etc. Here, we
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Figure 1. Oxygen dissociation curve: in standard conditions, venous blood is poor
in oxygen (P vO2

= 40 mmHg, corresponding to Hb saturation at 75%) whereas arterial
blood has been enriched in O2, through the diffusion process during the travel in the
capillary (P aO2

= 100 mmHg, corresponding to Hb saturation at 97.5%).

choose to include in our model not only the influence of PCO2 , but also the one of pH, and to neglect
the temperature influence: we replace the classical Hill curve H0 by

PO2 7→ H(PO2 , PCO2 ,pH).

The expression ofH(PO2 , PCO2 ,pH) can be built by considering the following modification, proposed
in [15]:

H(PO2 , PCO2 , pH) = H0 (P(PO2 , PCO2 ,pH))(16)

P(PO2 , PCO2 ,pH) = PO2 · 100.40·(pH−7.4)+0.06·(log10(40)−log10(PCO2
)).(17)

Here, (17) includes a correction factor which accounts for the variations of pH and PCO2 and their
distances to their reference values in healthy situations, namely 7.4 for the average blood pH, and
40 mmHg for the standard average carbon dioxide arterial blood partial pressure. Hence, the new
expression of CO2 is given by

CO2(PO2 , PCO2 ,pH) = σPO2 + 4CHb H(PO2 , PCO2 , pH)

= σPO2 + 4CHb H0

(
PO2 · 100.40·(pH−7.4)+0.06·(log10(40)−log10(PCO2

))
)
,(18)

where H0 is the standard Hill curve defined by (14).

Remark 3. One can also eliminate pH as a given parameter and take into account the acid-base
equilibrium. The study of the acid-base CO2/HCO−

3 is described in [34, Chap. 6, pp. 96–101] and
leads to

(19) pH = pKA + log10

CHCO−
3

0.03 · PCO2

,

where pKA = 6.1 is the dissociation constant of carbonic acid and CHCO−
3

denotes the bicarbonate

concentration in the blood, expressed in mmol · L−1. This concentration is mainly regulated by the
kidney and its normal value lies between 22 mmol · L−1 and 26 mmol · L−1. The normal bicarbonate
concentration in the arterial blood is around 24 mmol · L−1, whereas it is 26 mmol · L−1 for venous
blood. It means in particular that, first, the default value of pH in the arterial blood is 7.4 as expected
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and, second, as long as the ratio between CHCO−
3

and 0.03 ·PCO2 equals 20, the value of pH remains

at 7.4.
In this case, the expression of the oxygen concentration with respect to the partial pressures of

oxygen and carbon dioxide would be given by

(20) C̃O2(PO2 , PCO2 , CHCO−
3

) = σPO2 + 4CHbH

(
PO2 , PCO2 , 6.10 + log10

CHCO−
3

0.03 · PCO2

)
,

where H is defined by (16).

In the next paragraphs, we study the influence of pH and PCO2 on the oxygen dissociation curves.

Influence of pH for a fixed value of PCO2. On Figure 2a, the function PO2 7→ H(PO2 , PCO2 , pH) is
plotted for PCO2 = 40 mmHg (arterial blood pressure in a healthy regime) and different values of
pH (including extremal ones which do not correspond to standard physiological regimes). Note that
the profile of PO2 7→ H(PO2 , PCO2 ,pH) for PCO2 = 46 mmHg (venous blood pressure in a healthy
regime) is roughly identical. Actually, only little difference is observed when PCO2 is set in the
whole interval (5, 80). Consequently, for a fixed value of PCO2 , the chosen oxygen dissociation curve
is not very sensitive to pH.

Figure 2. Oxygen dissociation curves PO2 7→ H(PO2 , PCO2 ,pH) for (a) PCO2 =
40 mmHg and various pH, and (b) pH = 7.4 and various values of PCO2 .

Influence of PCO2 for a fixed value of pH. The function PO2 7→ H(PO2 , PCO2 ,pH) is described for
pH = 7.4 on Figure 2b. We observe that the oxygen dissociation curve is not deeply impacted by
the variations of PCO2 . The sensitivity of the curve with respect to PCO2 is really low.

3.2. Balance of carbon dioxide including the Haldane effect. The carbon dioxide concen-
tration in the blood is determined by its different forms, as CO2 is carried in the blood in three
forms: dissolved, after a chemical reaction, that implies hemoglobin, as bicarbonate, and in combi-
nation with proteins as carbamino compounds. The major quantity of carbon dioxide reacts with
hemoglobin which fixes H+ ions and leads to the bicarbonate creation. This binding gives rise to the
Haldane effect, where blood deoxygenation increases its ability to carry H+, see [34]: the presence
of reduced hemoglobin in the peripheral blood helps with the CO2 loading, whereas the oxygenation
occurring in the pulmonary capillary supports the unloading. The relationship between the partial
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pressure of CO2 and the total CO2 concentration in the blood (in all forms) is often referred to as
the carbon dioxide dissociation curve, and it is much more linear than is the oxygen dissociation
curve, at least in standard regimes.

Actually, as pointed out e.g. in [34], because of the Haldane effect, the exchange dynamics of CO2

is strongly influenced by the dynamics of O2, as oxygenated blood carries less carbon dioxide for the
same oxygen partial pressure. In terms of mathematical modelling, it means that the function CCO2 ,
which models the concentration of CO2 in the blood in all forms, highly depends on the partial
pressure of O2. Several phenomenological formulas have been proposed in the literature to account
for this phenomenon, see [17, 18] for instance. We choose to use here, for the sake of simplicity, the
Meade formula [21], giving the concentration in mol · L−1

(21) CCO2(PO2 , PCO2) =
10−3

Vm

(
463 e0.00415PCO2 − 340 e−0.0445PCO2 + 62(0.975−H0(PO2))

)
,

where H0 is the oxygen Hill function defined by (14) and Vm the molar volume of an ideal gas at
standard temperature and pressure, namely Vm = 22.4 L ·mol−1. The dependence with respect to
pH is not taken into account. Note that this fitted formula may not be the most accurate but it
illustrates the Haldane effect and the strong coupling between O2 and CO2.

Figure 3 represents the function PCO2 7→ CCO2(PO2 , PCO2) for two values of PO2 , namely 40 and
100 mmHg, corresponding to venous and arterial oxygen partial pressures in healthy situations.

Figure 3. Carbon dioxide dissociation curve PCO2 7→ CCO2(PO2 , PCO2).

3.3. Quantitative study of the coupled diffusion process. Thanks to (18) for the oxygen
concentration with Bohr’s effect, and (21) for the carbon dioxide concentration with Haldane’s, we
can estimate the neat transfer rate for both O2 and CO2. We consider the following standard values
for the venous and arterial pressures

(22)
P vO2

= 40 mmHg, P vCO2
= 46 mmHg,

P aO2
= 100 mmHg, P aCO2

= 40 mmHg.

Based on (18) and Table 16 from Appendix A, the oxygen transfer rate can be estimated by

qO2 =
Vc
τb

(
CO2(P aO2

, P aCO2
, 7.4)− CO2(P vO2

, P vCO2
, 7.4)

)
= 1.92 · 10−4 mol · s−1,

or, involving the molar volume Vm of an ideal gas, we get

qO2 = 258 mL ·min−1.
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We can also estimate the transfer rate of CO2, based on (21), as

qCO2 =
Vc
τb

(
CCO2(P aO2

, P aCO2
)− CCO2(P vO2

, P vCO2
)
)

= −1.70 · 10−4 mol · s−1,

or, using again Vm,
qCO2 = −228 mL ·min−1.

The standard values of the fluxes are respectively around 250 mL ·min−1 for the oxygen, and around
−200 mL ·min−1 for the carbon dioxide. We observe that, compared to those standard values, the
computations from (18) and (21) give the same order of magnitude. Moreover, note that if we
compute the associated respiratory quotient, denoted by RQ and defined as |qCO2/qO2 |, we obtain
RQ = 0.884, which also lies in the standard range for this ratio.

Remark 4. At rest, the Bohr and Haldane effects do not seem to have the same importance in
healthy regimes (with (P vO2

, P vCO2
) = (40, 46) and (P aO2

, P aCO2
) = (100, 40), all values given in

mmHg), see [11, 9, 10, 18]. In the static regime, neglecting the Haldane effect produces a sharp
reduction of the carbon dioxide flux (−37%), whereas the Bohr effect seems totally negligible, since
it has no effect of the oxygen flux.

Remark 5. When taking into account the bicarbonate concentration instead of pH, based on (20),
remembering that CHCO−

3
= 24 mmol · L−1, we obtain

qO2 =
Vc
τb

(
C̃O2(P aO2

, P aCO2
, 24)− C̃O2(P vO2

, P vCO2
, 24)

)
= 2.15 · 10−4 mol · s−1,

or, using Vm,
qO2 = 289 mL ·min−1.

The associated respiratory quotient is then RQ = 0.789, which remains in the standard range.

Let us now investigate the possible diffusion limitation by solving a dynamical system, similar
to (10), satisfied by the oxygen and carbon dioxide blood pressures, for different values of the
diffusion coefficients. This system is written as

(23)



Vc
d

dθ
(CO2(PO2 , PCO2 ,pH)) = Dm,O2

(
P alv

O2
− PO2

)
, θ ∈ (0, τb),

Vc
d

dθ
(CCO2(PO2 , PCO2)) = Dm,CO2

(
P alv

CO2
− PCO2

)
, θ ∈ (0, τb),

PO2(0) = P vO2
,

PCO2(0) = P vCO2
,

where P alv
O2

and P alv
CO2

are the gas partial pressures in the alveolar compartment, and pH is set at
7.4. We define the following reference situation:

• the gas partial pressures in the venous blood are chosen as in (22);
• the gas partial pressures in the alveolar compartment are chosen equal to the arterial refer-

ence values given in (22);
• the membrane is healthy, e.g.

Dh
m,O2

= 21 mL ·min−1 ·mmHg−1,

Dh
m,CO2

= 20Dh
m,O2

= 420 mL ·min−1 ·mmHg−1.

We then investigate three different values of the diffusion coefficients: Dm = Dh
m, Dm = Dh

m/2 and
Dm = Dh

m/4, Dm,CO2 remaining equal to 20Dm,O2 . The other parameters are set to their reference
values, see Table 16.

The time evolution of the partial pressures of both gases on Figure 4 illustrates the kinetic
limitation phenomenon. It allows to highlight several observations.
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Figure 4. Dynamics of the gas exchange through the alveolo-capillary membrane:
θ 7→ PO2(θ) and θ 7→ PCO2(θ).

First, in the reference healthy regime, partial pressures evolve from the venous (or deoxygenated)
value to the alveolar one. Equilibrium is reached within the available time τb = 0.75 s and it has
some robustness since the time needed to obtain this balance is about the third of τb.
Second, in a moderately impaired regime, e.g. Dm = Dh

m/2 for both species, we observe that the
equilibrium between partial pressures is reached around time τb, i.e.

P aO2
' P alv

O2
, P aCO2

' P alv
CO2

,

even if the gas exchange dynamics has been slowed down by the membrane impairment. This
impairment is not sufficient to deteriorate the gas transfer: qO2 and qCO2 have the same values as
in the healthy case.
Eventually, in a severely impaired regime, e.g. Dm = Dh

m/4 for both gases, we observe that the
equilibrium between partial pressures is not reached. As a consequence, we have

P aO2
< P alv

O2
, P aCO2

> P alv
CO2

,

and the neat transfer of gases, for both O2 and CO2, is lowered, compared to the healthy situation.
In the above example, possible kinetic limitation has been illustrated by considering different

values of the diffusing membrane. Note that the kinetic limitation may also occur in other situations:
if τb is significantly reduced and Vc is increased (e.g. during exercise), it may drop below the time
necessary to achieve equilibrium between the partial pressures.

In the following sections, we present various numerical studies. We start by illustrating our model
behaviour for a healthy patient in two cases: standard respiration and hyperventilation. Starting
from this reference situation, we investigate the model sensitivity, with respect to the physical
parameters of resistance, elastance and diffusion coefficients of the alveolo-capillary membrane, of
two types of characteristic ouputs, the alveolo-capillary fluxes and the oxygenated blood partial
pressures. More precisely, we explore whether there exist global structures in the input parameters
and study their crossed sensitivity. Eventually, we try to recover known qualitative behaviours by
varying the various physical parameters to mimick pathological situations such as asthma, emphy-
sema...
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4. Healthy reference respiration scenarios

We first investigate a healthy situation within a normal respiration framework. The mechanical
parameters are set as

(24) Rh = 2 cmH2O · L−1 · s, Eh = 3.5 cmH2O · L−1,

so that the relaxation time τh = Rh/Eh associated to the mechanical model (1) equals 0.57 s.
For the dead space volume in (2), we recall the standard value of the anatomical dead space for a
healthy man V A

D = 0.15 L. For the diffusive model (10), we choose the same healthy values as in
the previous section, which are

Dh
m,O2

= 21 mL ·min−1 ·mmHg−1 = 1.6 · 10−5 mol · s−1 ·mmHg−1,(25)

Dh
m,CO2

= 20Dh
m,O2

= 420 mL ·min−1 ·mmHg−1 = 3.2 · 10−4 mol · s−1 ·mmHg−1.(26)

We impose a periodic breathing scenario where the period T equals 5 s. The applied pressure Pext

is chosen piecewise constant, namely, in mmHg, such that

(27) Pext(t) = −2, 0 ≤ t < ifracT, Pext(t) = 0, ifracT ≤ t < T,

where the inspiration proportion ifrac is set to 0.35. In all the following tables, we listed averaged
quantities over a time period, denoted by 〈 · 〉, while making sure periodic behaviour is approximately
reached (more precisely, average over the last period for a final time Tfin = 50 s). First, in this
healthy situation, one can check that the values from Table 1 are standardly acknowledged.

Table 1. Averaged quantities in the healthy case with standard breathing parameters.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

256 −203 0.793 97.6 41 13.7% 5.74% 0.152 2.50 3.05

Moreover, our quantities of interest evolve with respect to time as shown in Figures 5–7.

Figure 5. Plots w.r.t. time of (a) the total volume V and (b) the air flow V̇ .
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Figure 6. Plot w.r.t. time of the gaseous fluxes qO2 and qCO2 .

Figure 7. Plots w.r.t. time of (a) the arterial (or oxygenated) blood pressures P aO2
,

P aCO2
, and (b) the alveolar mole fractions χO2 , χCO2 .

Remark 6. Note that, in this healthy situation, the extra pathological dead space V P
D is negligible

and the volume at the end of expiration almost equals FRC. Moreover, taking the anatomical dead
space into account appears as crucial to recover the correct orders of magnitude of the physiological
quantities. Indeed, when imposing VD = 0, and subsequently φ = 0 instead of (7), we obtain the gas
exchange values given in Table 2, the dynamics of the lung respiratory volume remaining unchanged.
In particular, compared to Table 1, the impact of the dead space volume is especially clear for the
carbon dioxide flux and arterial pressure.

We can also consider a hyperventilation scenario for a healthy patient, by choosing T = 2 s
(instead of 5) and ifrac = 0.5 (instead of 0.35).

We can then observe changes for carbon dioxide quantities in Table 3, compared to Table 1: the
absolute value of the carbon dioxide flux significantly increases, whereas the oxygen one remains
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Table 2. Averaged gas quantities in the healthy case with VD = 0.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

273 −326 1.19 116 36.7 16.3% 5.15% 0 2.50 3.05

Table 3. Averaged quantities for a healthy hyperventilating patient.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

267 −268 1 108 38.6 15.2% 5.42% 0.233 2.58 2.99

quite similar, and 〈P aCO2
〉 and 〈χCO2〉 are not significantly impacted. We also note that VD in that

situation is higher than in the normal breathing. The evolution of the lung volume with respect to
time is given in Figure 8.

Figure 8. Plot w.r.t. time of the total volume V for a healthy hyperventilating patient.

Remark 7. Compared to the static regime (see Remark 4), in the dynamic one, neglecting the
Haldane effect implies a carbon dioxide flux reduction of approximately 6% with our model. Note
that it may lead to the observation of two adjunct phenomena: a decrease of the carbon dioxide
flux which is exhaled, and a decrease of the arterial carbon dioxide pressure (hence an increase
between the arterial and venous carbon dioxide pressures). It is related to the fact that the Haldane
effect indeed allows greater carbon dioxide exchanges for a given difference between arterial/venous
pressures. Even when decreasing this pressure drop, we observe the persistance of the carbon dioxide
exchanges, thanks to the influence of oxygen (which binds with hemoglobin, leading to carbon dioxide
release).

5. Parameter sensitivity

In order to investigate the behaviour of the model in different cases, we lead a sensitivity analysis
with respect to the parameters R, E and Dm. Those parameters can take the following values:

R = 2iRh, −1 ≤ i ≤ 4, E = 2jEh, −4 ≤ j ≤ 4, Dm = 2−kDh
m, 0 ≤ k ≤ 6,
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remembering that, in any case, we have Dm,CO2 = 20Dm,O2 . We choose to focus only on these
parameters since they respectively drive the ventilation and diffusion processes.

5.1. Global structuration. To perform this study, 378 numerical simulations of our model were
run. For each set of parameters, we plotted colored dots whose coordinates are either (〈qO2〉, 〈qCO2〉)
on Figures 9–11a or (〈P aO2

〉, 〈P aCO2
〉) on Figures 9–11b. The red color is associated to R, the green

one to E and the blue one to Dm.

Figure 9. Plots with averaged (a) fluxes of O2 and CO2, (b) arterial pressures of
O2 and CO2, with blue-scaled values of the diffusion coefficients Dm.

In Figure 9, light (respectively dark) blue corresponds to the smaller (respectively higher) values
of Dm. On the contrary, in Figure 10, light (respectively dark) green corresponds to the higher
(respectively smaller) values of E, and the same goes for Figure 11 with the red color.

In each figure, the intersection of the two vertical and horizontal lines provides the healthy
reference situation defined in Section 4.

Figure 10. Plots with averaged (a) fluxes of O2 and CO2, (b) arterial pressures of
O2 and CO2, with green-scaled values of E.
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Figure 11. Plots with averaged (a) fluxes of O2 and CO2, (b) arterial pressures of
O2 and CO2, with red-scaled values of R.

In all Figures 9–11, with respect to the healthy reference values, there is a quadrant where there
is no plotted dot. It seems hypercapnea and hyperoxia cannot simultaneously happen in our model
with the chosen range of parameters. We can observe branched patterns with respect to Dm, see
Figure 9, whereas there is no clear structure appearing in Figures 10–11 with respect to E or R.
In Figure 9, the coefficients Dm seem to drive the behaviour of 〈P aO2

〉: 〈P aO2
〉 decreases when Dm

decrease too.
Moreover, the upper left quadrant of Figures 9–11b corresponds to high values of 〈P aCO2

〉 and low
values of 〈P aO2

〉. They can be obtained in several pathological cases: for large E (fibrosis), or normal
E and large R (asthma). For small values of E, which can model emphysema, 〈P aO2

〉 is larger than
in the normal case and 〈P aCO2

〉 is lower: dots are in the lower right quadrant. In this situation,
when increasing R, the dots are shifted towards the upper left quadrant. Moreover, decreasing Dm

first impacts the oxygen transfer, so that dots are shifted to the left (lower left quadrant) before
impacting the carbon dioxide transfer. We also checked that there is no particular structure rising
with respect to τ = R/E. To further investigate possible patterns, we separate in Figure 12 the
cases when E ≤ Eh and E ≥ Eh for the dots plotted in Figure 11b. More structures with respect
to the resistance value R are observed in particular in the emphysema case: 〈P aCO2

〉 increases when
R increases too, see Figure 12b.

5.2. Crossed sensitivity structuring. In this subsection, we investigate the crossed sensitivity
with respect to the parameters (R,E,Dm), by setting one of them at its healthy value and letting
the two other vary. We choose the oxygen and carbon dioxide arterial pressures as outputs. Again,
remember that Dm,CO2 and Dm,O2 are always related by Dm,CO2 = 20Dm,O2 .

Healthy resistance. We first plot 〈P aO2
〉 and 〈P aCO2

〉 with respect to E, for the considered values of

Dm and R = Rh in Figure 13.

When E is close to Eh, there is no variation of 〈P aCO2
〉 with respect to Dm, which is not the

case for 〈P aO2
〉. Note moreover that the variations of 〈P aCO2

〉 with respect to Dm for each value
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Figure 12. Plots with averaged arterial pressures of O2 and CO2 for (a) E ≤ Eh

and (b) E ≥ Eh, with red-scaled values of R.

Figure 13. Plots of (a) 〈P aO2
〉 and (b) 〈P aCO2

〉 w.r.t. E, for various diffusion coeffi-
cients (with Dm,CO2 = 20Dm,O2).

of E are small. This is not the case for 〈P aO2
〉, which is sensitive to Dm, in particular when E is

smaller than Eh. For small degradations of Dm and E ≤ Eh, we observe moreover a non-monotonic
behaviour of 〈P aO2

〉 with respect to E: when E decreases, 〈P aO2
〉 first increases before decreasing.

This phenomenon is due to the fact that the model takes into account the increase of the dead space
in pathological situations. Indeed, by considering V P

D = 0, we obtain Figure 14.

Not taking into account the dead space volume increase in emphysema situations implies that
the values of arterial pressures for low E are mostly determined by the values of the diffusivities.
In particular, a seemingly non-physiological phenomenon rises: 〈P aO2

〉 stays at a really high level,

when Dm equals Dh
m/2 and Dh

m/4, even for degraded elastance.

In Figure 15, 〈P aO2
〉 and 〈P aCO2

〉 are plotted with respect to the Dm parameters, for the various
considered values of E. We emphasize again on the fact that we have Dm,CO2 = 20Dm,O2 in any
situation. We can observe that there is no significant effect of Dm on the variation of 〈P aCO2

〉,
whereas the jump on 〈P aO2

〉 is significant between Dh
m/4 and Dh

m/8, except for higher values of E,
for which 〈P aO2

〉 is already very low. More precisely, 〈P aCO2
〉 remains close to a constant value for
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Figure 14. Plots of (a) 〈P aO2
〉 and (b) 〈P aCO2

〉 w.r.t. E, for various diffusion coeffi-

cients (with Dm,CO2 = 20Dm,O2), when choosing V P
D = 0.

Figure 15. Plots of (a) 〈P aO2
〉 and (b) 〈P aCO2

〉 w.r.t. the Dm parameters, for various E.

each E (excepting larger values of E and degraded values of Dm), so that 〈P aCO2
〉 can be seen as a

good indicator of lung stiffness. Yet, due to the non-monotonic behaviour with respect to E, the
values of 〈P aCO2

〉 are nearly the same for E = Eh and E = Eh/8.

Healthy diffusion parameters. We now set the Dm coefficients at their healthy values Dh
m. In

Figure 16, we consider the variations of 〈P aO2
〉 and 〈P aCO2

〉 with respect to E, for various R. We
observe that, for each value of E, the arterial pressures are monotonic with respect to R: 〈P aO2

〉
decreases as R increases, whereas 〈P aCO2

〉 increases. When E is large there is almost no variation in

the partial pressures with respect to R. When E is lower than Eh, the same nonlinear behaviour
as before appears, once again due to the increase of the dead space volume.

In Figure 17, we plot the arterial partial pressures with respect to R. We observe that, for each
value of E, they are monotonic in R and they fastly reach a limit value when R increases. There is
no monotonicity for a given value of R with respect to E.

Healthy elastance. Finally, we set E at its healthy value Eh, and consider the variations with respect
to R and Dm. Figure 18 shows that 〈P aO2

〉 and 〈P aCO2
〉 are monotonic in R, but not in Dm. Moreover,
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Figure 16. Plots of (a) 〈P aO2
〉 and (b) 〈P aCO2

〉 w.r.t. E, for various R.

Figure 17. Plots of (a) 〈P aO2
〉 and (b) 〈P aCO2

〉 w.r.t. R, for various E.

〈P aO2
〉 is really sensitive to Dm for values of R close the healthy reference value, and 〈P aCO2

〉 has
almost a constant value for each R.

Figure 18. Plots of (a) 〈P aO2
〉 and (b) 〈P aCO2

〉 w.r.t. the Dm parameters, for various R.
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To conclude, as expected, the oxygen arterial pressure is more sensitive to the variations of Dm

than the carbon dioxide one. Furthermore, taking into account the dead space volume induces
some nonlinear effects and non-monotonic behaviour of the arterial pressures. We also observe that
highly pathological situations can lead to similar output values, yet the path to those critical values
in the parameter space seems to depend on the considered pathologies. Note, however, that, so far,
we have used only one breathing scenario. In the next section, we thus further investigate different
pathological situations and the effects of different breathing scenarios.

6. Characteristic cases, tendencies

In this section, we exhibit several pathological situations, by varying one or several parameters,
illustrating the model ability to recover known qualitative behaviours.

6.1. Happy hypoxia. Degrading the Dm parameters, while always keeping Dm,CO2 = 20Dm,O2 ,
translates damaging of the membrane where the gaseous exchanges happen. This deterioration
numerically induces, in our model, a so-called happy hypoxia effect. Indeed, as we can see in
Tables 4–5, compared to Table 1, the oxygen flux drastically drops, and more oxygen is stored
in the lung, since the membrane is damaged. The effect on carbon dioxide exchanges is not as
significant.

Table 4. Averaged quantities with Dm = Dh
m/4.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

233 −200 0.858 82 40.8 14.2% 5.65% 0.152 2.50 3.05

Table 5. Averaged quantities with Dm = Dh
m/8.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

167 −192 1.15 60 40.4 15.5% 5.43% 0.152 2.50 3.05

6.2. Asthma. Asthma can be roughly modelled by increasing the resistance of the bronchial tree,
since, in particular, it is characterized by some bronchi constriction. In Tables 6–7, we observe that
the carbon dioxide flux drastically goes down, whereas the effect on the oxygen flux appears as less
significant. Besides, the carbon dioxide exchanges are lowered, leading to rising CO2 concentrations
in both the lung and the blood, and consequently to acidosis (P aCO2

≥ 45 mmHg). Moreover, we
clearly see the decreasing of the total volume amplitude over a breathing period with respect to a
healthy patient and thus the increase of the dead space volume.
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Table 6. Averaged quantities with R = 2Rh.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

240 −146. 0.607 86.2 43 12.1% 6.03% 0.176 2.53 2.96

Table 7. Averaged quantities with R = 4Rh.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

193 −62.1 0.321 67 45.8 9.40% 6.43% 0.234 2.58 2.85

For strong asthma (R = 4Rh in the cases we study below), the patient can try to adapt his
respiration to balance the asthma effect. We investigate two different scenarios.
In the first one, the breathing period is reduced at T = 2 s, and the inspiration proportion is
increased at ifrac = 0.5: we consider again a hyperventilating patient as in Table 3. Table 8
confirms that hyperventilation is not at all a proper response to asthma.
In the second one, we trigger an active expiration, i.e. we involve a positive pressure at expiration,
namely Pext(t) = 2.00 when ifracT ≤ t < T , with ifrac = 0.35 and T = 5 s again. The respiration
improvement is then observed in Table 9, where we recover values very close to the healthy ones in
Table 1, in particular because the dead space volume becomes again equal to the anatomical one
because of the active expiration process.

Table 8. Averaged quantities with R = 4Rh and hyperventilation.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

152 −27 0.178 57.6 46.8 8.20% 6.60% 0.374 2.72 2.85

Table 9. Averaged quantities with R = 4Rh and active expiration.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

253 −197 0.778 95.5 41.2 13.4% 5.77% 0.150 2.10 2.62

6.3. Pathologies affecting tissue elasticity.

6.3.1. Fibrosis. Increasing elastance E is characteristic of lung fibrosis. In both Tables 10–11, E is
chosen as E = 2Eh, whereas the Dm parameters are set to their healthy values in Table 10, and to
Dh
m/4 in Table 11. Indeed, the tissue damage can also have an effect on the diffusivities. The lung

volume remains the same in both situations.



GAS EXCHANGES IN THE LUNG WITH THE BOHR-HALDANE EFFECTS 23

Table 10. Averaged quantities with E = 2Eh.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

212 −90.3 0.426 73.2 44.9 10.3% 6.30% 0.150 2.50 2.79

Table 11. Averaged quantities with E = 2Eh and Dm = Dh
m/4.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

170 −89.1 0.525 60.9 44.4 11.4% 6.18% 0.150 2.50 2.79

In any case, the elastance increasing leads to drastically low values of carbon dioxide flux, whereas
the diffusivity decreasing reduces the oxygen flux. Consequently, in the acini and in the blood, the
concentration and partial pressure of carbon dioxide are too high, and the oxygen one is far too
low.

6.3.2. Emphysema. When we model emphysema and the subsequent tissue deterioration through
elastance decreasing only, we obtain the results from Table 12 for E = Eh/4. Note that, if the
modification of the dead space volume is not taken into account (namely, by setting V P

D = 0), we
obtain non-physiological results with a too high carbon dioxide flux.

Table 12. Averaged quantities with E = Eh/4.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

269. −287. 1.06 112. 38.0 0.157 0.0533 0.484 2.83 3.88

Emphysema destroys the alveolar tissues and leads to air trapping, implying increasing the dead
space volume. Adding a degradation of Dm as Dm = Dh

m/4, we obtain the results presented in
Table 13, where the values are close to normal ones, confirming that emphysema can be really tricky
to detect.

Table 13. Averaged quantities with E = Eh/4, and Dm = Dh
m/4.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

259 −283 1.08 100 38.1 15.8% 5.25% 0.484 2.83 3.88
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Next, further degrading the diffusion coefficients with Dm = Dh
m/8 and still considering E =

Eh/4, we get the results from Table 14. We see there a serious drop of the oxygen pressure whereas
the carbon dioxide pressure is still low. To be able to have an impact on the carbon dioxide pressure,
one may increase the resistance and consider for instance R = 4Rh. In this case, in Table 15, the
effects become very clear, in the same way as in the asthma case, leading to respiratory acidosis.

Table 14. Averaged quantities with E = Eh/4, and Dm = Dh
m/8.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

189 −269 1.42 65.2 37.8 16.9% 4.99% 0.484 2.83 3.84

Table 15. Averaged quantities with E = Eh/4, Dm,O2 = Dh
m,O2

/4 and R = 4Rh.

〈qO2〉 〈qCO2〉 RQ 〈P aO2
〉 〈P aCO2

〉 〈χO2〉 〈χCO2〉 VD Vmin Vmax

(mL/min) (mL/min) – (mmHg) (mmHg) – – (L) (L) (L)

131 −290 0.221 53.9 46.4 9.98% 6.47% 0.814 3.16 3.45

7. Conclusion

We propose a nonlinear coupled dynamical model of ventilation-perfusion for oxygen and carbon
dioxide, taking into account the Bohr and Haldane effects. We quantitatively recover acknowledged
observable values for a healthy patient, and exhibit realistic qualitative behaviours in pathological
situations. We also point out that similar output values can be reached from very different sets of
input parameters. Those outputs may not allow to discriminate straightforwardly between patients
or pathologies. However, since the patient final state results from various successive parameter
degradations, our model may help to understand the patient history. Alternatively, it can be used
to define other relevant biomarkers as well as breathing scenarios to classify pathological states or
histories. We emphasize that it is crucial to accurately model the dead space volume, in particular
for asthma and emphysema-like situations, to recover the expected qualitative behaviours.

This first gas exchange model, accounting for both Bohr and Haldane effects, may further be
used as a part of more complex ODE or PDE systems, for instance by coupling it to cardiovascular
models (through the connection to parameters such as the transit time of a red blood cell in the
acinar region τb and the capillary volume Vc), or by considering it in a one-dimensional transport-
diffusion model of air in the airways. In this case, it would generalize previous works, which only
considered oxygen in [19] or without coupling between the two species in [22, 23]. In particular, it is
crucial to take into account the transport phenomena to accurately describe the delay that occurs
in the gas exchanges, allowing for instance optimisation strategies for breathing scenarios.

Appendix A. Parameters

We shall consider the following set of parameters corresponding to the standard situation of a
healthy person at rest, see Table 16.
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Table 16. Standard values of some physiological parameters.

Mechanical parameters Ref.

Elastance E 3.5 – 5 cmH2O · L−1 [10, 4, 5]
Resistance R 2 cmH2O · s · L−1 [10, 5]
Functional residual capacity FRC 3 L [10, 29, 16]
Anatomical dead space V A

D 0.15 L [34]

Gas exchange parameters Ref.

Reduced atmospheric pressure Patm 713 mmHg [10, 5]
Membrane diffusing capacity (O2) Dm,O2 21 mL ·min−1 ·mmHg−1 [10, 5]
Membrane diffusing capacity (CO2) Dm,CO2 420 mL ·min−1 ·mmHg−1 [10]
Capillary volume Vc 70 mL [5, 10, 34]
Transient time of the RBC τb 0.75 s [34, 14, 5]
Pressure of O2 in venous blood P vO2

40 mmHg [34, 10]
Pressure of CO2 in venous blood P vCO2

46 mmHg [34, 10]
Concentration of hemoglobin CHb 2.2 · 10−3 mol · L−1 [12, 5]
Solubility of O2 in plasma σ 1.4 · 10−6 mol · L−1 ·mmHg−1 [14, 5]
Dissociation const. of carbonic acid pKA 6.1 – [34]
Concentration of bicarbonate CHCO−

3
24 · 10−3 mol · L−1 [34]

Observable quantities Ref.

Tidal volume VT 0.50 L [34, 29]

Air flow V̇ ±0.50 L · s−1 [34]
Mean alveolar pressure of O2

〈
P aO2

〉
100 mmHg [34, 10, 5, 16]

Mean alveolar pressure of CO2

〈
P aO2

〉
40 mmHg [34, 10]

Mean alveolar mole fraction of O2 〈χO2〉 15% – [34, 10, 5, 16]
Mean alveolar mole fraction of CO2 〈χCO2〉 4% – [34, 10]
Mean O2 transfer rate qO2 0.25 L ·min−1 [34, 10, 33]
Mean CO2 transfer rate qCO2 0.20 L ·min−1 [34, 10]
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Email address: berenice.grec@u-paris.fr, sebastien.martin@u-paris.fr


	1. Introduction
	2. A 0D model for the respiratory system
	2.1. Mechanical model
	2.2. Modelling of gas exchange and hemoglobin captation
	2.3. Full 0D model

	3. Gas exchange model for oxygen and carbon dioxide
	3.1. Balance of oxygen including the Bohr effect
	3.2. Balance of carbon dioxide including the Haldane effect
	3.3. Quantitative study of the coupled diffusion process

	4. Healthy reference respiration scenarios
	5. Parameter sensitivity
	5.1. Global structuration
	5.2. Crossed sensitivity structuring

	6. Characteristic cases, tendencies
	6.1. Happy hypoxia
	6.2. Asthma
	6.3. Pathologies affecting tissue elasticity

	7. Conclusion
	Appendix A. Parameters
	References

