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A new method for short-term probabilistic forecasting of global solar irradiance from complex-valued time
series is explored. Measurement defines the real part of the time series while the estimate of the volatility is the
imaginary part. A complex autoregressive model (capable to capture quick fluctuations) is then applied with
data gathered on Corsica island (France). Results show that even if this approach is easy to implement and
requires very little resource and data, both deterministic and probabilistic forecasts generated by this model
are in agreement with experimental data (root mean square error ranging from 0.196 to 0.325 considering
all studied horizons). In addition, it exhibits sometimes a better accuracy than classical models such as the
Gaussian process, bootstrap methodology, or even more sophisticated models such as quantile regression.
Many studies and many fields of physics could benefit from this methodology and from the many models that
could result from it.
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I. INTRODUCTION

Nowadays, it is acknowledged that to limit the im-
pact of the random and variable nature of the solar
resource and thus to facilitate its integration, develop-
ments are necessary. They concern the energy storage
means, the smart grid energy management, and the fore-
casting methods for both power generation and user’s
consumption1. The topic of this paper falls within the de-
velopment of a forecasting method for Photovoltaic (PV )
power generation and concerns nowcasting. Numerous
machine learning methods benchmarks have been pub-
lished in the literature and most of them compare the
models in terms of accuracy2,3 with regard to time hori-
zons. These methods capture often the general trend
and fail to capture the quick fluctuations, while advanced
nonparametric approaches that attempt to do so may be
prone to overfitting or too complicated for practical appli-
cations (lack of data, acquisition system failures, process
execution time, etc.). Many grid managers prefer to use
the simplest and the most robust ones, sometimes at the
expense of their performance4. In agreement with the
”No Free Lunch theorem” of Wolpert and Macready 5 ,
which explains that no learning algorithm is the most
suitable in all scenarios6, we propose a new data min-
ing based non-parametric probabilistic method, easy to
implement, with good accuracy and based on a new the-
oretical basis integrating trend but also rapid fluctua-
tions predictions. A univariate methodology based on a
complex number generation is applied to predict simul-
taneously the hourly solar global horizontal irradiance
(GHI) and an estimate of its volatility from previous
ground measurements.

a)Electronic mail: voyant c@univ-corse.fr

II. DATA

As detailed by Yang 7 , an adequate analysis and mod-
eling are essential to issue good forecasts when a time
series exhibits seasonal or cyclic behavior as it is the
case for GHI with its two seasonal periods (yearly and
diurnal cycles). Since 1961 and the first works about
stationary processes with a finite second-moment8 and
periodic correlation (or covariance)9, the scientists know
that it is important to pay attention to trends when time
series is used. Box and Jenkins’ first formalism10 clari-
fied this aspect by proposing a decomposition, especially
when seasonality is easily quantifiable. Usually, a multi-
plicative scheme is chosen, and a classical ratio between
GHI in clear sky condition (denoted GHICS) and GHI
is operated. This parameter (considered “sufficiently”
stationary or at least locally stationary as demonstrated
by Yang et al7) results in a normalized quantity (theo-
retically comprised between 0 and 1 as long as the over-
irradiance phenomenon is neglected) known as κ(t) the
clear-sky index11,

κ(t) = GHI(t)/GHICS(t) ∈ [0, 1] (1)

Thus, most solar forecasters build their forecasting
models on κ, rather than on GHI itself. As a part of
this study, several rules and explanations must be given
to improve the objectivity of conclusions:

# GHI time series is measured in Ajaccio (Corsica,
France, 41.92N-8.74E, 5m above sea level) endowed
with a warm Mediterranean climate (Csa Köppen
climate classified) and yearly solar irradiation of
1642 kWh.m−2,

# Models are evaluated during only daytime irradi-
ance values, filtering the checked data (less than
1% are left according to quality control12) on solar
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zenith angle (GHI = ∅ if θZ > 85◦),

# GHICS is computed with the Solis model which
proposes an atmospheric scheme based on radia-
tive transfer calculations and the Lambert-Beer
relation13.

This paper is dedicated to volatility prediction which is
used to generate GHI prediction intervals with respect to
the prediction horizon from 1h to 6h with 1h time gran-
ularity (training during the years 2008-2017 and testing
during the year 2018). Several methods such as autore-
gressive conditional heteroskedasticity (ARCH) models
are devoted to this task (volatility modeling) and were
extensively studied in econometrics. However, concern-
ing the GHI prediction and its applications in energy
management for PV systems, this kind of method has
never been used, probably due to its complexity14, the re-
strictive assumptions15 or the quality of its results which
seemed even so promising16. An important conclusion
of Dimson and Marsh 14 concerning the ARCH family
predictors is another form of the Occam’s razor principle
and implies “that for those who are interested in forecasts
with reasonable predictive accuracy, the best forecasting
models might well be the simplest ones”.

III. METHODOLOGY

The method exposed in this paper concerns a new for-
malism for:

# The prediction of the conditional volatility using
parameters like the return and its standard devia-
tion (see definition in Eq.2),

# The generation of GHI prediction intervals.

From the computed κ time series (Eq.1), another series
reporting on its intrinsic variability (or volatility στ (t))
and highlighting the concept of predictive risk is built.
To this end, we suggest to use the standard deviation of
the κ return (r(t) = κ(t) − κ(t − 1)) computed over the
τ -sliding windows (τ ∈ N>1) (Eq.2),

στ (t) =

√√√√1

τ

τ−1∑
i=0

(
r(t− i)− 1

τ

τ−1∑
n=0

r(t− n)

)2

(2)

where τ = 30, because for Ajaccio a 30h window pro-
vides the best results. In the literature, other definitions
can be found for the volatility17,18 using in particular the
logarithm or the absolute-value norm. However, here, the
given definition yields the best results and constitutes the
simplest way to establish the volatility. Fig.1 shows that
the trend of the centered στ (i.e. volatility minus its
mean) distribution for Ajaccio can be considered as nor-
mal shape with a slight platykurtic tendency (confirmed
with the Jarques-Bera test at the 10% significance level).
Rather than working separately on κ and στ , we propose

FIG. 1. Graphical method for comparing the centered στ
probability distribution in comparison with a normal distri-
bution (probability density function (PDF ) and probability
plot).

to build z = {κ(t) + jστ (t), t ∈ Z, j2 = −1}, a scalar
complex-valued time series and to model this discrete
stochastic process with an autoregressive process of or-
der p (AR(p)10). This model involves random variables
defined on the same sample and event spaces and with
the same probability measure (that makes it possible to
define distribution function F ). This method is to be
compared to that exposed by Ivan Svetunkov concerning
the logic of Brown’s exponential smoothing methods and
the complex-valued time series used to forecast two-time
series simultaneously19, with the difference that there is
no volatility issue. From now on, only mean-centered
variables will be considered, but will not be introduced
in the following equations for readability reasons.

The complex-valued transform replaces a system of
equations related to the prediction of κ and its volatil-

ity στ (Eq.3a with (̂.) for predicted values) by a single
regression equation (Eq.3b, the proof is obvious setting
ω = ξ + jζ, ω ∈ C and ξ, ζ ∈ R).

κ̂(t+ 1) =

p−1∑
i=0

κ(t− i)ξi −
p−1∑
i=0

στ (t− i)ζi

σ̂τ (t+ 1) =

p−1∑
i=0

κ(t− i)ζi +

p−1∑
i=0

στ (t− i)ξi

(3a)

ẑ(t+ 1) =

p−1∑
i=0

z(t− i)ωi (3b)

Before using an autoregressive (AR) model, it is im-
portant to deal with the model identification (the choice
of the parameter or order p in Eq.3b); a classical tool
widely studied in regression analysis is employed. It han-
dles with the interpretation of the partial autocorrelation
factor (β10) according to real and imaginary parts of z
(respectively <(z) and =(z)) as described in,

∃ p | β(t, t−p) 6= 0 and β(t, t−p−1) = 0 ∀{t > p} ∈ Z20,21

(4)
where p<, p= and p denote AR orders having connections
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with <(z), =(z) and z. We are setting p = max(p<, p=)
to make the problem easier. It is better to benefit from
an excess than from a lack of information while refer-
ring to the bias-variance trade-off and being aware that
the number of inputs should not be too large (p ∈ [2, 6]
for all the horizons concerning the studied site). By set-
ting this rule, we have neglected the particular algebra
imposed by the use of complex numbers, but there is,
to our knowledge, no other way of doing it that would
be as simple. Note that dealing with deseasonalized se-
ries κ, p does not have to be greater than 24h to cap-
ture the daily seasonal cycle. There are other identifi-
cation methods, as for example the complex autocorre-
lation factor22, however, it seems that this method has
a worse ratio complexity-efficiency. The next step is the
model estimation (ω) by transposing what has been done
for many years in the real-valued case (least square op-
timization) to the complex-valued case. Considering an
input matrix I ∈ CD×p (Eq.5) and an output column
vector o ∈ CD×1 (Eq.6), the solution of the AR(p) least
squares problem consists in determining unknown param-
eters (ω ∈ Cp×1 in Eq.6). By the way, the problem, al-
ready raised and well detailed in the paper of Adrian et
al.23 for spatial data-based model is resumed as in the
classical real-valued case by Iω = o and can be solved
from the formulation of the mean square error estimation
E[e

2
] = ‖Iω − o‖224. Note that the authors of this pa-

per do not venture to state that the least squares method
provides the best solution to the problem. To be able to
assert it, one has to prove that there is equivalence with
the maximum likelihood and have to formulate hypothe-
ses on the complex residual distribution.

I =


z(t− 1) z(t− 2) · · · z(t− p)
z(t− 2) z(t− 3) · · · z(t− p− 1)

...
...

...
z(t−D) z(t−D − 1) · · · z(t−D − p+ 1)


D×p

(5)

ω =
(
ω1, . . . , ωp

)′
p×1

,o =
(
z(t), . . . , z(t−D + 1)

)′
D×1

(6)

The complex-valued case differs from the real-valued
one, replacing the L2-norm by the Frobenius norm intro-
ducing the Frobenius inner product25 on CD (E[e

2
] =<

(Iω − o), (Iω − o) >F ). Classically, the minimum of

the squared expected value (argmin(E[e
2
]) := {ω ∈

Cp|∀ω∗ ∈ Cp : E[e
2
(ω∗)] ≥ E[e

2
(ω)]) is carried

out computing its differentiating (Eq.7) and by letting
∂E[e2]/∂(ωH) = 0 where (.)H defines conjugate trans-
pose.

∂E[e
2
]

∂(ωH)
=
∂(Iω − o)H(Iω − o)

∂(ωH)

=
∂(ωHIH − oH)(Iω − o)

∂(ωH)

(7)

It must be emphasised that ∂E[e
2
]/∂(ωH) is the complex

conjugate transpose of ∂E[e
2
]/∂ω, thus, setting one to

zero also sets the other to zero. The normal equation, in
this complex-valued case, becomes,

IH(Iω − o) = 0 (8)

Furthermore, the solution of this matrix equation corre-
sponds to a regression coefficients26 estimated by ω̃ =
(IHI)−1IHo . Therefore, differentiating by a complex-
valued vector is an abstract concept, but it yields the
same set of equations as differentiating separately each
scalar component (real and imaginary) and is a more
concise form27. On top of that, to improve the condi-
tion number of the problem, one can introduce a con-
strained minimization with ‖ω‖2 < r(λ) where r is a
bijective function and λ is the Lagrange multiplier of
the constraint (IHI + λHλ) defined positive and so in-
vertible. This approach denoted Ridge approach28 can
also be used in the complex-value case, in the form
ω̃λ = (IHI + λ1)−1IHo. A machine learning-like ap-
proach consists in performing cross-validation and select-
ing the λ value that minimizes the out-sample sum of
squared residuals; in our experimental setup, λ = 3.74
is the best choice (i.e. inducing the lowest prediction
errors). Now the identification and optimization prob-
lems have been analyzed (the outcome of the experiment
is detailed in Fig.2), it is required to theoretically val-
idate the use of predictions of both the GHI and its
volatility in the case of the probabilistic forecasting29,30.
The goal is to show that the volatility detailed previ-
ously could be used to capture the idea of unpredictable
and quick fluctuations. Thereby, considering the `-step
head prediction, it would be possible given a well-chosen
µt+` parameter, to bound the prediction considering that
GHI(t+`) measurement is included in the interval Λ sat-
isfying the Eq.9. The following is dedicated to answering
the question: can we theoretically explain µt+`?

Λ = [ĜHI(t+ `)− µt+`GHICS(t+ `)σ̂τ (t+ `),

ĜHI(t+ `) + µt+`GHICS(t+ `)σ̂τ (t+ `)]
(9)

First of all, it is important to consider this study within
non-standard analysis framework with S-integrable time
series (additive decomposition31) and by referring to the
Cartier-Perrin theorem32, as suggested in many papers
from Fliess33,34. In this context, we can explore the fact
that our prediction method (and more generally all the
machine learning approaches) only predicts the trend of
the GHI but certainly not fast fluctuations. From Eq.2,
it is conceivable to interpret the volatility thanks to the
Backshift operator B; it holds,

σ2
τ (t) = E[r2]− E[r]2 ' E[r2] = E[(κ−B1κ)2]

=
1

τ

τ−1∑
i=0

(
κ(t− i)− κ(t− i− 1)

)2 (10)
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FIG. 2. Conceptual diagram of the experiment.

where over a sufficiently large interval, κ(t) oscillates
around a constant mean value, making the average of the
return close to 0 (E[r]2 −→

τ→+∞
0) and B`κ(t) = κ(t− `).

This equation is not unlike the classical formulation of
the variance in which the mean of κ is replaced by the
κ(t − i − 1). Of course, it sounds appealing to pro-
pose probabilistic prediction using the variance of resid-
ual; but in GHI prediction, the Gaussian hypothesis is
never verified35,36. It is also known that the prediction
intervals are too wide and become quickly unusable with
the hypothesis of the persistence of the variance33. Fur-
thermore, the option of proposing increasingly complex
non-parametric methods is satisfactory from a theoretical
point of view but it is not very advantageous in practice.
There are a lot of interpretations of Eq.10 and the at-
tentive reader will recognize the formulation of the mean
square error with respect to a persistence model or the

fact that σ2
τ (t) = E[

(
∂κ
∂t

)2
]. With this equation, it is

tempting to believe that we have stumbled upon a deep
difficulty, but a κ breakdown into a trend (T ) and fast
fluctuations terms (ε) transforms Eq.10 into,

σ2
τ (t) =

1

τ

τ−1∑
i=0

(
(T (t− i)− E[T ])− (B1T (t− i)− E[T ])

+ (ε(t− i)− E[ε])− (B1ε(t− i)− E[ε])

)2

(11)
considering that κ(t) = T (t) + ε(t). To go further, we

shall consider the co-variance σε(t, t− 1) and the partial
autocorrelation functions which is identical to the auto-
correlation function for the lag 1 βε(t, t − 1) for depen-
dency between ε and himself 1 lag delayed. By contrast
with the standard analysis, here the high-frequency term
(ε) has no mean and co-variance functions tending to 0
(βT is a function close to 1 and σ2

T << σ2
ε ) which means

that Eq.11 can be replaced by,

σ2
τ (t) = 2σ2

ε (t)− 2σε(t, t− 1) + 2σ2
T (t)− 2σT (t, t− 1)

= 2σ2
ε (t)

(
1− βε(t, t− 1)

)
+ 2σ2

T (t)
(
1− βT (t, t− 1)

)
(12)

Bearing in mind the above, this equation shows that
there is a link between the volatility as described in Eq.2
and the variance of the high-frequency component (ε).
By means of the König-Huygens’ theorem and character-
istics of linear correlation coefficient of Bravais-Pearson
with the fact that the covariances between T and ε are
close to 0 (considering T ⊥ ε with E[ε] = 0), we may
show that Eq.12 could be replaced by the more practical
expression σ2

τ (t) ' 2σ2
ε (t)

(
1− βε(t, t− 1)

)
. It is possible

to settle T with a classical moving average defined by a
(2n+1)-point mean values: T (t) = E[κ(t − n : t + n)]
and ε with ε(t) = κ(t) − T (t). With the daytime fil-
tering process (Section II) n = 5 provides a daily av-
erage. It will be needful to introduce the transform
Γ : στ ∈ [0, 1] → Γ(στ ) ∈ R+ in order to handle with

σ2
ε (Eq.13 with β < 1,

√
(2)σε = Γ(στ )).

Γ(στ ) =
στ√

1− βε(t, t− 1)
(13)

Once the prediction ẑ(t + 1) is obtained, it is easy
to compute next value of the κ̂(t + 1) = < [ẑ(t+ 1)]
and the associated volatility σ̂τ (t + 1) = = [ẑ(t+ 1)].
From here, we propose to build an estimate of the prob-
abilistic GHI prediction based on the point prediction

(ĜHI(t + 1) = κ̂(t + 1)GHICS(t + 1)) and the cumula-
tive distribution function (Fκ) computed from the con-
ditional volatility: Fκ(x) = P(κ < x)37. This last term
corresponds to the probability that the random κ variable
takes on a value less than or equal to x. The probability
that κ lies in the semi-closed interval (a, b], is therefore
P(a < κ ≤ b) = Fκ(b) − Fκ(a). In the Gaussian case
assumed here (the quantities mean, expectation, median
and mode of the distribution are identical38), Fκ and his
inverse F−1

κ are defined from the error function (erf) as
described respectively in,

F̂κ(x) =
1

2
+

1

2
erf

(
x− κ̂
Γ(σ̂τ )

)
(14)

where x ∈ R and,

F̂−1
κ (q) = κ̂+ Γ(σ̂τ ) erf−1(2q − 1) (15)

where 0 < q < 1. Probabilistic forecasting is more pow-
erful than the deterministic one and allows us to bound
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the prediction proposing that is called prediction interval
from quantiles estimation at probability level q ∈ [0, 1]

Q̂(q) = inf{x ∈ R : F̂κ(x) ≥ q}. Consider that, if

the the function F̂ is continuous and strictly monotoni-
cally increasing, we have the quantile function defined by

Q̂(q) = F̂−1(q) (denoted probit function in the Gaussian
case)39. In that instance of a central prediction interval
(the most common way is to center the prediction interval
on the median considering there is the same probability
of risk below and above the median40). with a nominal
coverage rate of (1 − α)100%, the lower bound (GHI)
is estimated by using the α/2 quantile and the upper
bound (GHI) using the 1− α/2 quantile as described in
Eq.16 with an example quantile function estimation in
the normal distribution case (erf−1 is an odd function).{
GHI = Q̂(α/2) = ĜHI − erf−1(1− α)GHICSΓ(σ̂τ )

GHI = Q̂(1− α/2) = ĜHI + erf−1(1− α)GHICSΓ(σ̂τ )
(16)

Point out that as this is very frequently done in solar
irradiance prediction, these interval limits can in turn be
limited by considering that the upper limit is necessar-
ily lower than GHICS and that the lower limit shall be
higher than the diffuse component of the GHICS (this
quantity is easily obtained with the Solis modeling)34.
We previously treated the t + 1 case, nevertheless the
reasoning for µt+` is rather similar replacing (in Eq.3b)
ẑ(t + 1) by ẑ(t + `). Assuming all the approximations
made so far (normal assumption of στ in Eqs.14 and 15,
the arbitrary choice of τ in Eq.2 and the hypothesis on
E[r]2 in Eq.10), it is doable and advisable to calibrate
the µt+` value in Eq.9 according to nominal coverage rate
(1 − α)100% by performing simulations on the training
space (link between (1− α)100% and µt+` values). Fur-
thermore, in Table I, it is shown that the two approaches
lead to quite different results and that Eq.16 shall only be
considered as a first approximation requiring data-driven
corrections (see Annex for details).

TABLE I. αt+1 estimations from Eq.16 and data guided ap-
proach performing simulations on the training space (data
driven correction for 1h horizon and a 11-point mean values
corresponding to n = 5 and βε(t, t− 1) = 0.38).

α = 0.2 α = 0.4 α = 0.6 α = 0.8
αt+1 (Eq.16)a 1.15 0.76 0.47 0.23
Data drivenb 1.04 0.57 0.31 0.17

a coupling Eqs13 and 16 αt+1 can be found like equal to
(1 − βε(t, t− 1))−1/2 erf−1(1 − α)

b these data can be fitted with an exponential decay
(R2 = 0.999) according to αt+1 = 1.916e−3.034α

IV. RESULTS

Despite the fact that the purpose of this paper is
to elaborate a new way to propose GHI probabilistic
forecast (complex-valued method denoted Compl), it is
important to compare results with some classical tools,
like a Gaussian parametric process (denoted Gauss and
based on the variance of the residual36), a non-parametric
bootstrapped process (denoted Boot41) and a Ridge
quantile regression model (denoted Quant42–44). The
used error metrics for the comparison in the deterministic
case is normalized root mean square error (nRMSE 45)
while in the probabilistic case, we choose normalized
mean interval length (MIL sometime denoted PINAW
for prediction interval normalized average width), per-
centage interval coverage probability (PICP ), continu-
ous rank probability score (CRPS) and mean scaled in-
terval score (MSIS). All these metrics are described
in van der Meer, Widén, and Munkhammar 43 , Lauret,
David, and Pinson 46 , Hyndman and Koehler 47 and ref-
erences therein. In Table II is shown the comparison
between all the prediction interval methodologies and is
proved that the complex approach is equivalent in terms
of deterministic prediction (nRMSE nearly identical for
all five methods) but grants, considering a nominal cov-
erage rate of 80%, a significant MIL decrease that is
worthwhile for a grid operator who seeks a predictive
methodology offers the lowest conceivable MIL for a
given PICP . Another interesting element is the fact that
for both Quant and Compl methods, α = 0.2 (nominal
covering rate of 100%(1 − 0.2) = 80%) effectively cor-
responds to a PICP close to 80% unlike the two other
cases.

TABLE II. Models comparison for a nominal coverage prob-
ability of 80% (α = 0.2)

Horizons Metrics Gauss Boot Quant Compl
1h nRMSE 0.197 0.203 0.201 0.196

PICP(%) 83.81 75.21 79.65 80.01
MIL(%) 51.24 40.36 42.24 41.24

2h nRMSE 0.251 0.267 0.258 0.252
PICP(%) 81.39 76.67 79.90 80.74
MIL(%) 64.57 55.47 58.72 56.72

3h nRMSE 0.282 0.304 0.289 0.282
PICP(%) 80.68 73.27 80.07 80.06
MIL(%) 70.97 58.22 67.32 63.09

4h nRMSE 0.302 0.327 0.312 0.303
PICP(%) 80.42 81.69 80.64 80.02
MIL(%) 75.39 76.82 74.47 67.10

5h nRMSE 0.316 0.362 0.328 0.317
PICP(%) 80.99 74.44 80.81 79.49
MIL(%) 78.73 64.45 79.08 69.32

6h nRMSE 0.324 0.358 0.339 0.325
PICP(%) 81.40 78.69 81.43 79.66
MIL(%) 81.41 73.79 82.73 70.05
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In Fig.3, one can observe how Compl forecast intervals
are distributed considering 1h horizon. The main attrac-
tion of the method lies in the fact that the interval band
is conditioned by the variability observed in the previous
hours. Thus, for the days close to the 5150th the predic-
tion band (very small) is completely different from what
is observed close to the 5350th hours (very large). The
probabilistic counterpart of the mean absolute error is
the CRPS, making it possible to quantify the total error
made with the predicted distributions as it is shown in
Fig.4. Thence, it is a robust score that is designed in such
a way that it measures both reliability and sharpness. An
advantage of the CRPS is that it reduces the absolute
error if the forecast is deterministic, and allows the com-
parison between probabilistic and point forecasts43. We
may note that even if the quantile regression is the best
tool considering this metric, the errors observed by the
complex-valued methodology are not prohibitive. This
phenomenon is also visible by comparing the MSIS (re-
lated to α = 0.2) which has the enormous advantage of
considering all the forecast horizons within a single met-
ric. If for Boot and Gauss, MSIS are respectively 1.05
and 1.03, for Quant and Compl, MSIS are lower and so
better (0.89 and 0.95).

V. CONCLUSIONS

The objective of this paper is to present a new method
for predicting GHI that is able to take into account
fast fluctuations. Often the literature boasts some so-
phisticated approaches, but when focusing on the exist-
ing installations, one remarks that the highly-developed
models yield way to simpler methods. Although less ef-
fective, they are more robust and easier to use. From
a practical point of view, a “good” method concerns a
tool that would be easily usable in a stand-alone applica-
tion (problems of some toolboxes), and which doesn’t in-
volve a lot of different concepts or data. The procedures
used for smart management shall be self-sufficient and
consistent with continuous learning and with some even-
tual detectors failure. It is in this perspective we tested
a new univariate methodology based on the complex-
valued time series generated from GHI measurements.
With only a few parameters (6 complex numbers in the
studied case) and some basic mathematical operations,
this approach makes it possible to predict GHI with ac-
curacy compared with classical probabilistic and deter-
ministic predictions. This method proposes the lowest
MIL considering a fixed nominal coverage rate (80%).
Once the parameters have been estimated and provided
that real-time GHI measurements are available, a simple
spreadsheet can become a tool of choice in the manage-
ment of PV installations. The validation of this approach
will require many more tests by varying time steps, hori-
zons, and forecastability48 or predictability49. However,
this new forecast methodology is simple to implement
and may facilitate the integration of renewable energies

and improve the management of installations using solar
radiation as energy sources (smart grid, building, dis-
trict, etc.). Interesting perspectives will be to apply it
to other kinds of time series (not necessarily in connec-
tion with renewable energies), to construct the imaginary
part concerning other variables than volatility (residuals,
exogenous or ordinal data, etc.), and perhaps adapt the
method to others predictors kinds (artificial neural net-
work, support vector regression, etc.).

Conflict of Interest. The authors have no conflicts
to disclose.
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ings of this study are available from the corresponding
author upon reasonable request.

Appendix: Data Driven Correction

The data-driven method proposed here allows for im-
proving probabilistic forecasting. From Eq.9, it would
be useful to determine experimentally (and not theoret-
ically with Eq:16) µt+` such as P(GHI ∈ Λ) → (1 − α)
when the number of observations is large enough. All
along the training step, curves fitting to inverse cumula-
tive distribution functions are fixed (µt+` as a function
of α). Its use requires a few assumptions (less than in
the theoretical case presented above in this paper). The
fine advantage lies in the fact that the Gaussian hypoth-
esis no longer has any reason to exist (non-parametric
method). Nonetheless, two new much less restrictive hy-
potheses must be formulated. The first one is that there
is the same probability of the risk below and above the
median (common postulation40) and the second one is
that the στ distribution is symmetric (the mean and the
median are identical). The sample skewness is worth 0.1,
hence it is regular to consider the second assumption as
verified (since comprised between −1 and 150). In Table
III are shown the f1 and f2 parameters values concerning
the fit µt+` = f1e

f2α. This data-driven method may be

used to estimate the quantiles (Q̂) and so the cumulative

TABLE III. µt+` adjustment for each horizon ` (f1 and f2 the
constants of the exponential decay fit)

` f1(CB95%)a f2(CB95%)a R2b

1 1.916(1.745,2.087) -3.034(-3.322,-2.747) 0.999
2 2.739(2.705,2.773) -3.163(-3.218,-3.109) 0.994
3 2.828(2.797,2.860) -2.811(-2.853,-2.769) 0.995
4 2.869(2.834,2.904) -2.605(-2.647,-2.563) 0.994
5 2.821(2.787,2.855) -2.393(-2.432,-2.354) 0.993
6 2.707(2.673,2.741) -2.175(-2.214,-2.136) 0.992

a estimates with 95% confidence bounds
b coefficient of determination
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FIG. 3. 80% prediction interval with complex-valued approach versus measures (blue line)

FIG. 4. CRPS for the probabilistic comparison

distribution function. Indeed, considering ∆q ∈ [0, 0.5],
we assume,

Q̂(0.5 + ∆q) = Q̂(0.5) + f1e
f2(1−2∆q)σ̂τ

Q̂(0.5−∆q) = Q̂(0.5)− f1e
f2(1−2∆q)σ̂τ

Q̂(0.5) = ĜHI

(A.1)

verified if and only if, Q̂ is a continuous function, which
implies Eq.A.2 and thereby f1e

f2 → 0.

lim
∆q→0+

∆q→0−

Q̂(0.5±∆q) = Q̂(0.5) (A.2)

Taking a concrete example, quantiles Q̂(0.1) and

Q̂(0.9) could be respectively estimated from a nominal
80% prediction interval (α = 0.2 and ∆q = 0.4) with

Q̂(0.5)− f1e
f20.2στ and Q̂(0.5) + f1e

f20.2στ . To slightly
improve the results, and to position oneself in a totally
non-parametric approach, it is doable to use lookup ta-
bles rather than curve fitting.
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Moustris, K. K. Kavadias, D. Zafirakis, G. Tzanes, E. Zafeiraki,
G. Spyropoulos, J. K. Kaldellis, G. Notton, J.-L. Duchaud, M.-L.
Nivet, A. Fouilloy, and S. Lespinats, “An Advanced Forecast-
ing System for the Optimum Energy Management of Island Mi-
crogrids,” Energy Procedia Renewable Energy Integration with
Mini/Microgrid, 159, 111–116 (2019).

5D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation
1, 67–82 (1997).

6V. Cerqueira, L. Torgo, and C. Soares, “Machine learning vs
statistical methods for time series forecasting: Size matters,”
(2019), arXiv:1909.13316 [stat.ML].

7D. Yang, “Choice of clear-sky model in solar forecasting,” Journal
of Renewable and Sustainable Energy 12, 026101 (2020).

8M. Pagano, “On periodic and multiple autoregressions,” Annals
of Statistics 6, 1310–1317 (1978).
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