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Abstract

We consider the Euler-Poisson equations describing the motion of a heavy rigid body about a
fixed point with all six parameters in a complex domain. These equations always admit three
functionally independent first integrals H1, H2, H3, that is respectively the area(1), geometrical
and conservation of energy first integrals. In four cases (Euler, Lagrange, Kovalevskaya and
kinetic symmetry case) a fourth functionally independent first integral appears. In all these four
cases this fourth integral can be found among polynomials that do not depend on all variables.

We produce a careful study when, apart from the four cases above, the Euler-Poisson equa-
tions, restricted to the level manifolds of H1, H2 and H3 as well as of all their mutual intersec-
tions, admit a new first integral which does not depend on all the variables involved. In this way
we cover the well known Goryachev-Chaplygin case of partial integrability and discover in the
complex domain a new partially integrable case on level manifold {H1 = 0, H2 = 0}.

We provide a general method to find all these cases of partial integrability and corresponding
partial first integrals. By meticulous and detailed analysis, we show that these two cases are
unique when such an additional partial first integral exists. The use of computer algebra is
unavoidable to carry out our investigations.

As a further application of the method we used, we also cover the Sretenskii case of partial
integrability of the gyrostat equations and describe their new integrable case in the complex
domain.

The method we used is of general interest and is probably the most interesting point of this
paper. It can also be applied in many other circumstances.

Acknowledgements. We warmly thank Islam Boussaada, Daniel Bennequin, Piotr Biler and Alain
Chenciner for interesting discussions and Marie-Claude Werquin for her help in checking our
English.
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(1) In [59] ”the area first integral” is by inadvertance called ”kinetic moment first integral”.

[5]



Hâtez-vous lentement, et sans perdre courage,

Vingt fois sur le métier remettez votre ouvrage,

Polissez-le sans cesse, et le repolissez,

Ajoutez quelquefois, et souvent effacez.

Nicolas Boileau, Art poétique (1674) (2)

In memory of our dear friend Andrzej Nowicki

who passed away while we were finishing our work.

1. Introduction

This paper is one more contribution to the study of classical problem of Euler-Poisson

equations describing the motion of a heavy rigid body about a fixed point. It can be

considered as a natural continuation of paper [59] but it can be read completely indepen-

dently.

1.1. The problem. Let us briefly describe the content of [59] which is devoted to the

search of the so called fourth integral of Euler-Poisson equations (see below), but only

when this integral does not depend on all the variables. Let us recall some basic facts

about the Euler-Poisson equations.

The Euler-Poisson equations are given by the following system

I1
dω1

dt
= (I2 − I3)ω2ω3 +Mg(c3γ2 − c2γ3),

I2
dω2

dt
= (I3 − I1)ω1ω3 +Mg(c1γ3 − c3γ1),

I3
dω3

dt
= (I1 − I2)ω1ω2 +Mg(c2γ1 − c1γ2),

dγ1
dt

= ω3γ2 − ω2γ3,

dγ2
dt

= ω1γ3 − ω3γ1,

dγ3
dt

= ω2γ1 − ω1γ2.

(1.1)

(2) In classical English translation of John Dryden (1683):

Gently make haste, of Labour not afraid;
A hundred times consider what you’ve said:
Polish, repolish, every Colour lay,
And sometimes add; but oft’ner take away.

[6]
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Studying the Euler-Poisson equations (1.1) from a mechanical point of view, one

considers only the real case with H2 = γ2
1 + γ2

2 + γ2
3 = 1, as well as with the inequalities

I1 > 0, I2 > 0, I3 > 0, I1 + I2 ≥ I3, I2 + I3 ≥ I1 and I3 + I1 ≥ I2.

Let us note that the Euler-Poisson equations with non-zero real parameters I1, I2 and I3
of different signs appear in the theory of equilibria of elastic rods [33, 39].

Equations (1.1) describe the motion of a heavy rigid body of mass M about a fixed

point O. We consider a body fixed frame Oxyz with origin in point O and axes coinciding

with the principal axes of inertia through O. Here I1, I2, I3 are the principal moments

of inertia about point O, c1, c2, c3 the coordinates of the body mass center, g is the

acceleration of gravity, g ̸= 0, ω = (ω1, ω2, ω3) is the angular velocity of the body and

γ = (γ1, γ2, γ3) is the unit vector directed upwards.

It is well known that without any loss of generality one can suppose that Mg = 1

and further on we admit that it is so. Indeed, instead of system (1.1) with principal

moments of inertia I1, I2, I3, it suffices to consider such a system but with I1/(Mg),

I2/(Mg), I3/(Mg) as new principal moments of inertia. As we study the totality of the

Euler-Poisson equations (1.1), such a rescaling does not change anything. For shortness

we introduce the notation Ic = (I1, I2, I3, c1, c2, c3).

Like in [59], in the present paper we study these equations as a purely mathematical

problem considering the general complex case Ic ∈ C6, without any restrictions on the

parameters except I1 ̸= 0, I2 ̸= 0, I3 ̸= 0 which will always be assumed.

Equations (1.1) always have three functionally independent first integrals:

H1 = I1ω1γ1 + I2ω2γ2 + I3ω3γ3,

H2 = γ2
1 + γ2

2 + γ2
3 ,

H3 = I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + 2(c1γ1 + c2γ2 + c3γ3).

(1.2)

In the real case these are the area, geometrical and conservation of energy first integrals

of system (1.1).

In real case to be integrable [5, Sec. 28], system (1.1) needs a supplementary fourth first

integral H4, functionally independent of H1, H2, H3, called shortly a fourth integral. The

only known cases when such fourth integral exists as well in the real case as in complex

case are the following four cases: Euler case, defined by the condition

c1 = c2 = c3 = 0, (1.3)

as well as the following two cases, that up to appropriate numeration of principal moments

of inertia are: Lagrange case, defined by the conditions

I1 = I2, c1 = c2 = 0, c3 ̸= 0 (1.4)

and Kovalevskaya case, defined by the conditions

I1 = I2 = 2I3, (c1, c2) ̸= (0, 0), c3 = 0. (1.5)

Let us note that in the real case, in the Kovalevskaya case we can always take c2 = 0

which is reached by an appropriate rotation of the frame of principal axes of inertia

around the axis z. In this case we suppose c1 ̸= 0. Let us stress that in the complex case
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the reduction to c2 = 0 by a linear change of variables is not always possible. The fourth

case is the kinetic symmetry case, defined by

I1 = I2 = I3. (1.6)

We denote sets of parameters satisfying cases (1.3) by E and (1.4) and (1.5) (up to

appropriate numeration of principal moments of inertia) by L and K, respectively.

The fourth integral in cases (1.3)–(1.6) is given as follows:

H4 = I21ω
2
1 + I22ω

2
2 + I23ω

2
3 - when Ic ∈ E ,

H4 = ω3 - when Ic ∈ L,

H4 =

(
ω2
1 − ω2

2 −
c1γ1 − c2γ2

I3

)2

+

(
2ω1ω2 −

c2γ1 + c1γ2
I3

)2

- when Ic ∈ K,

H4 = c1ω1 + c2ω2 + c3ω3 - in kinetic symmetry case.

(1.7)

For Ic ∈ K, when c2 = 0, we recover

H4 =

(
ω2
1 − ω2

2 −
c1
I3

γ1

)2

+

(
2ω1ω2 −

c1
I3

γ2

)2

that is the standard form of fourth integral in the real Kovalevskaya case where c2 = 0

([3, 6, 10, 12, 20, 22, 24, 36, 37, 54]).

These four cases are called classical cases of integrability of the Euler-Poisson equa-

tions.

One sees that for the above four cases the fourth integral does not depend on all

variables. So that the question whether there is another case when the fourth integral

does not depend on all variables is natural. In [59] for Ic ∈ C6, I1 ̸= 0, I2 ̸= 0, I3 ̸= 0,

we answered this question negatively.

Usually one cites also the so called Goryachev-Chaplygin case that up to appropriate

enumeration of principal moments of inertia is the following one. Let I1 = I2 = 4I3,

(c1, c2) ̸= (0, 0), c3 = 0. In this case the restriction of the Euler-Poisson equations to the

five-dimensional level manifold {H1 = 0}, admits a supplementary first integral function-

ally independent of first integrals H2 and H3. It is given by the formula:

H4 = I3ω3(ω
2
1 + ω2

2)− (c1ω1 + c2ω2)γ3. (1.8)

Like in the above four cases, first integral (1.8) depends on number of variables strictly

smaller than the dimension of manifold {H1 = 0}.
The first integral like H4 in Goryachev-Chaplygin case is an example of the so called

partial first integral. More precisely, when a smooth dynamical system defined on manifold

M , restricted to an invariant submanifold N ⊊M , admits a first integral φ that is not the

restriction to N of some first integral defined on M and φ is functionally independent of

restriction to N of all first integrals defined on M , then φ is called a partial first integral.

Thus the following problems become natural. Let us consider the complex manifolds

of complex dimension five:

{H1 = U1}, {H2 = U2}, {H3 = U3},
where U1, U2, U3 are arbitrary complex numbers. These level manifolds are always in-

variant manifolds for the Euler-Poisson equations.
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Let 1 ≤ i, j, k ≤ 3.

a) When on the complex five-dimensional level manifold {Hi = Ui} there exists a

partial first integral of the Euler-Poisson equations restricted to this manifold, that

depends on at most four variables and that is functionally independent of Hj and

Hk, j ̸= i, k ̸= i, j ̸= k.

b) When on the complex four-dimensional level manifold {Hi = Ui, Hj = Uj}, i ̸=
j, there exists a partial first integral of the Euler-Poisson equations restricted to

this manifold, that depends on at most three variables and that is functionally

independent of Hk, k ̸= i, j.

c) When on the complex three-dimensional level manifold {H1 = U1, H2 = U2, H3 =

U3}, there exists a partial first integral of the Euler-Poisson equations restricted to

this manifold, that depends on at most two variables.

In this paper, we give a complete answer to all these questions, apart from four

classical cases of integrability.

Indeed, in (a) we recover the Goryachev-Chaplygin case and in (b) we find a supple-

mentary partial first integral on level manifold {H1 = 0, H2 = 0}. By a meticulous and

detailed analysis, we show that these two cases are unique for (a), (b) and (c), when an

additional partial first integral which does not depend on all variables exists.

Let us underline that in the paper [25] by D. N. Goryachev from 1900 where the

case of Goryachev-Chaplygin appears for the first time, as well as in the paper by S.

A. Chaplygin [14] from 1901, there is no explanation how this case was found. To the

best of our knowledge no such explanation was published until 1983, when S. L. Ziglin in

[79] published it for the first time. See also 2005 paper [43] where A. J. Maciejewski and

M. Przybylska present such a deduction in a very clever and clear manner. Nevertheless

these deductions are trying and in no way can be considered as simple or elementary.

On the contrary, the deduction of the Goryachev-Chaplygin case from the general

principles that we present in Sec. 5.2 is short and simple. It only uses facts that were

already well known in 1900. Once tedious computations are now easy through the use of

elementary computer algebra.

The Euler-Poisson equations have many modifications which describe the different

mathematical models related to the movements of rigid bodies with a fixed point [9, 11,

27, 30, 31, 45, 46]. One of the simplest of these is the system of the equations describing

the motion of the so-called gyrostat, the equations of which, in the simplest case, are only

slightly modified Euler-Poisson equations (1.1). Indeed, the gyrostat equations differ from

Euler-Poisson equations only in first three equations, where linear terms b3ω2 − b2ω3,

b1ω3 − b3ω1, b2ω1 − b1ω2, b1, b2, b3 ∈ C, are respectively added to the first three Euler-

Poisson equations (1.1). When b1 = b2 = b3 = 0 we recover the Euler-Poisson equations

(1.1). The gyrostat equations are explicitly written in [21, 24] and in [62, 63] (see also

Sec. 2.7 in [12] and for more details [36, 37, 38, 44, 72]). The four classical integrable

cases of Euler-Poisson equations admit their natural extensions to gyrostat equations. As

proved by L. N. Sretenskii in [62, 63], the same concerns the Goryachev-Chaplygin case of

partial integrability. Its gyrostatic analogue is named the Sretenskii case. By applying the

method of Sec. 5.2 which leads to the Goryachev-Chaplygin case, in Sec. 6.2 we recover
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the Sretenskii case. We also find a new case of integrability of gyrostat equations in the

complex domain.

As it will be proved in Sec. 6.3, in complex domain the gyrostat equations can have

a fourth integral outside four classical cases.

Let us note that this kind of deduction of Goryachev-Chaplygin and Sretenskii cases

appeared for the first time in [16], but our approach is more general.

In summary, our problem is to know, having a multiparameter family of ordinary

differential equations, how to find the values of the parameters for which the supplemen-

tary first integral (i.e. non-obvious or not yet known), that does not depend on all the

variables, exists.

Below, when we speak about smooth functions, we always mean class C1 functions

in the real case and analytic functions in the complex case. Indeed, in complex case any

function having a complex derivative at any point of some open subset of Cn is analytic

on it (see [51]).

Let us stress that we only require the C1 differentiability of the first integral we are

looking for. Although in complex domain C1 differentiability implies analyticity, we shall

never explicitly use this fact. Moreover, all the considerations are local. We never use the

fact that such first integral is globally defined. We only require that it be defined on an

open subset of phase space and not constant on any open subset of it. But the obtained

results in all known examples are global because the explicit formulas that we obtain

for them, are globally defined. Let us note that in complex case multivalued analytic

functions can appear.

The important open question is whether, in the studied examples, there are cases

with supplementary partial first integral depending on all the variables while there is no

supplementary local partial first integral that does not depend on all variables.

It should be emphasized that there is a substantial difference between [42, 59] and

the present paper. In both of the cited papers, the use of the computer algebra could in

principle be avoided by tedious hand calculations. This is not the case here, where the

huge systems of polynomial equations in several variables that appear, cannot even be

written and solved without the use of computer algebra.

1.2. The method. Following [59], let us explain the approach used which is general and

can be applied to many frequently encountered systems of ordinary differential equations.

We describe it in the real case but it also works in the complex case.

Let
dx

dt
= G(x) (1.9)

be an autonomous system of ordinary differential equations defined on Rn (or on its open

connected subset), x = (x1, . . . , xn), G = (G1, . . . , Gn), G is of class C∞. Let us note

that G =
∑n

i=1 Gi
∂

∂xi
is the vector field that defines the system (1.9) and for a smooth

function f = f(x), G(f) =
∑n

i=1 Gi
∂f
∂xi

.

Function F ∈ C1(U), where U ⊂ Rn is an open subset, is a first integral of system

(1.9) if F is constant along the orbits of system (1.9), that is G(F ) = 0, and F is not
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constant on any open subset of U .

We are interested here by the first integrals that do not depend on all variables.

1.2.1. Part one. Let us search a first integral F of system (1.9) that does not depend

on x1, that means F = F (x̂), where x̂ = (x2, . . . , xn), or equivalently
∂F
∂x1

= 0 identically.

Here we have privileged x1, but similar conditions can be written for every index r,

1 ≤ r ≤ n. Then for every x:

G(F (x)) =
n∑

i=2

Gi(x)
∂F

∂xi
(x̂) = 0.

As F does not depend on x1, then for every k ≥ 1 one has
n∑

i=2

∂kGi

∂xk
1

(x)
∂F

∂xi
(x̂) = 0.

In other words, if one notes by Yk the vector fields

Yk =

n∑
i=2

∂kGi

∂xk
1

(x)
∂

∂xi
, (1.10)

then for every k ≥ 0 one has Yk(F ) = 0, where Y0 = G, that is F is a first integral of all

these vector fields. All these vector fields are defined on n-dimensional space Rn(x).

If among the vector fields {Yk}k≥0 one can find (n−1) of them that are linearly inde-

pendent at some point a ∈ Rn(x), then by continuity they are also linearly independent

on some open neighborhood of a. As Yk(F ) = 0 for all k ≥ 0, one deduces that gradF

vanishes identically on U and consequently F |U = const. Then F is not a first integral

of system (1.9) because by definition a first integral is non constant on any open subset

of its domain of definition. The same argument works also when arbitrary n − 1 vector

fields {Zi}1≤i≤n−1 such that Zi(F ) = 0, 1 ≤ i ≤ n− 1, are given. Such a criterion of non

existence of the first integral will be frequently used in future.

Let us suppose now that the vector field G is of the form

G(x) =

p∑
i=0

xi
1Ỹp−i(x̂) = xp

1Ỹ0(x̂) + . . .+ x1Ỹp−1(x̂) + Ỹp(x̂) (1.11)

for some smooth vector fields {Ỹi}0≤i≤p defined on Rn−1(x̂) (or on some open subset of

Rn−1(x̂)). Then as F does not depend on x1, one has

0 = G(F )(x) = xp
1Ỹ0(F )(x̂) + . . .+ x1Ỹp−1(F )(x̂) + Ỹp(F )(x̂).

As Ỹp(x̂) does not depend on x1, one deduces that Ỹp(F ) = 0. Thus G(x) = x1G1(x)

where the smooth vector field G1 is

G1(x) = xp−1
1 Ỹ0(x̂) + . . .+ x1Ỹp−2(x̂) + Ỹp−1(x̂).

As above, one deduces that Ỹp−1(F ) = 0, etc. Finally one deduces that Ỹi(F ) = 0 for all

0 ≤ i ≤ p. Thus all vector fields Ỹi defined on Rn−1(x̂) have a common first integral F

that does not depend on x1.

What follows is completely independent of condition (1.11). Like in [59] the main

tools used to decide if two smooth vector fields could have a common first integral are
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the simplest facts from linear algebra and the following well known fact. If F is a first

integral common for two vector fields X and Y defined on some open subset U of Rp,

p ≥ 2, then F is also a first integral of their Lie bracket (also known as Jacobi-Lie bracket)

or the commutator of vector fields) [X,Y ], defined by [X,Y ](f) = X(Y (f)) − Y (X(f))

for all twice differentiable functions f . Indeed, if X(F ) = Y (F ) = 0, then evidently

[X,Y ](F ) = X(Y (F ))− Y (X(F )) = 0.

For vector fields X =
∑p

i=1 Xi
∂

∂xi
and Y =

∑p
i=1 Yi

∂
∂xi

, simple computations give

[X,Y ] =

p∑
i=1

 p∑
j=1

(
Xj

∂Yi

∂xj
− Yj

∂Xi

∂xj

) ∂

∂xi
.

Consequently if X and Y are C∞, then [X,Y ] is also C∞.

For x ∈ U , let us denote by D(x) the two-dimensional vector subspace of Rp spanned

by vectors X(x) and Y (x). Let us note D0 = {D(x), x ∈ U}. Let us note D1 = D0 +

[D0,D0] = D0+{[A,B];A,B ∈ D0}, where [A,B] = AB−BA is the Lie bracket of vector

fields A and B. Let us note D2 = D1 + [D1,D1] = D1 + {[A,B];A,B ∈ D1}, etc, where
A + B = {a + b; a ∈ A; b ∈ B}. Thus D0 ⊂ D1 ⊂ D2 ⊂ . . .. For some k, necessarily

[Dk,Dk] = Dk. Dk is nothing but the smallest Lie algebra generated by vector fields X

and Y .

Let now a ∈ U , X(a) ̸= 0 and Y (a) ̸= 0. The Frobenius Integrability Theorem [34, 51]

implies that in some neighborhood of point a ∈ U there exists a function Φ such that

X(Φ) = Y (Φ) = 0, if an only if dimDk(a) < p, where D(x) is the vector space of the

vector bundle Dk over x. The number of functionally independent solutions of equations

X(F ) = Y (F ) = 0 defined in some neighborhood of a is equal to p− dimDk(a).

The equation X(F )(x) = 0, x ∈ U , can be considered as a linear homogeneous

equations with unknowns
{

∂F
∂xi

(x)
}
1≤i≤p

. The same is true for equations Y (F )(x) = 0

and [X,Y ](F )(x) = 0. More generally this is true for all vector fields from Dk. Then

if dimDk(a) = p, by continuity dimDk(x) = p for x belonging to some neighborhood

V ⊂ U of a. Choosing an arbitrary basis v1, . . . , vp of vector bundle Dk(V ) =
⋃

x∈V Dk(x)

and writing the corresponding linear homogeneous equations with in general variable

coefficients and unknowns
{

∂F
∂xi

(x)
}
1≤i≤p

, as dimDk(x) = p for x ∈ V , one deduces that

∂F
∂xi

(x) = 0 for x ∈ V , and finally that F |V = const. This contradicts the assumption

that F is a first integral.

Thus the condition dimDk(a) < p is necessary for the existence of first integral. In this

case the corresponding system of linear equations has infinitely many non-zero solutions.

From Frobenius Integrability Theorem we know that now first integrals exist in some

neighborhood of point a. But we do not know if these first integrals are the restrictions

of first integrals defined on whole phase space: Rn for system (1.9).

Let us return to system (1.9) and let us suppose that dimDk(a) = n − 2 for some

a ∈ Rn and thus dimDk(x) = n− 2 for x from some neighborhood W of a.

In this case, for x ∈ W ,
{

∂F
∂xi

(x)
}
2≤i≤n

satisfy some system of n−2 linearly indepen-

dent linear homogeneous equations. Let {φi(x)}2≤i≤n be a fixed solution of this system.
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Any other solution is of the form {µ(x)φi(x)}2≤i≤n for some smooth function µ.

If F is a first integral, then for some smooth function µ, ∂F
∂xi

(x) = µ(x)φi(x), which

means that µ is an integrating factor of differential form
∑n

i=1 φi(x)dxi. From Frobenius

Integrability Theorem we know that such an integrating factor exists because a first

integral exists. Surprisingly, in this work in all cases when this situation arises, that is

when dimDk = n−2 and n ≤ 6, Maple is able to compute explicitly the first integral F ,

globally defined. This is precisely in this way we compute all the unknown first integrals.

1.2.2. Part two. Let us consider now the systems of ordinary differential equations like

(1.9) but depending on parameters λ = (λ1, . . . , λk)

dx

dt
= G(x, λ), (1.12)

where G ∈ C∞(Rn+k,Rk) and for smooth function f = f(x),

G(f, λ)(x) =

n∑
i=1

Gi(x, λ)
∂f

∂xi
(x).

All the content of Sec. 1.2.1 without parameters remains valid also with parameters.

So, like (1.10) we have the vector fields Yk(x, λ), k ≥ 0, etc.

As an example, let us consider the simple case when all functions Gi = Gi(x, λ),

1 ≤ i ≤ n, are of the form

Gi(x, λ) = x1gi(x̂, λ) + hi(x̂, λ), 1 ≤ i ≤ n.

Let us search a first integral F (x, λ) of system (1.12) that does not depend on x1. We

repeat the whole Sec. 1.2.1 but for now the new data depending on λ appear.

This leads us to the identity

0 = G(F (x̂, λ), λ) = x1Ỹ1(F (x̂, λ), λ) + Ỹ2(F (x̂, λ), λ),

where

Ỹ1(x̂, λ) =

n∑
i=2

gi(x̂, λ)
∂

∂xi
, Ỹ2(x̂, λ) =

n∑
i=2

hi(x̂, λ)
∂

∂xi
,

etc.

In particular for every λ = (λ1, . . . , λk) and x ∈ Rn, starting from vector fields Ỹ1(x̂, λ)

and Ỹ2(x̂, λ), computing their commutator and commutators of higher orders we define

Lie algebra Dk(λ)(x̂, λ) like Lie algebra Dk(x̂) in Sec. 1.2.1.

We search the smooth function F (x, λ) such that for any fixed λ, F is a first integral

of system (1.12). This leads to the necessary condition

dimDk(λ)(x̂, λ) ≤ n− 2 (1.13)

for the existence of such first integral.

As in all examples treated below, n ≤ 6, without difficulty we compute explicitly a

base of vector space Dk(λ)(x̂, λ). Let M(x̂, λ) be a matrix whose rows are coordinates of

vectors of above base. The condition (1.13) is nothing other but

rankM(x̂, λ) ≤ n− 2 (1.14)
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for all x̂ ∈ Rn−1. Using Maple and the method described in Sec. 3, in all our examples we

manage to determine all parameters λ such that (1.14) holds, and thus also that (1.13),

is satisfied for all x̂ ∈ Rn−1.

Having a concrete example to examine, we compute the associated vector fields and

their commutators. After, using computer algebra, we determine the parameters λ that

answer the problem posed; existence or nonexistence of supplementary first integral. For

details, see Sec. 5 and 8-9.

All that, with evident changes, remains valid in complex case with G = (G1, . . . , Gn)

analytic in some open, connected subset of Cn, because Frobenius integrability theorem

can be also formulated in complex framework ([34, 51]).

1.3. History. Today, the standard approach for the detection of integrable versus non-

integrable cases of ordinary differential equations of quite general nature follows mainly

the ideas that begun with S. V. Kovalevskaya (1889) and A. M. Lyapunov (1894) from

one side and those of J. Liouville (around 1840), E. Picard (1883-1896) and E. Vessiot

(1892) from the other and culminate in the so-called Morales-Ramis theory. The history

of this subject, as well as some of its applications, can be found in [47, 48, 49, 23, 2]. See

also [66, 67, 70, 71, 69, 40, 7].

The method of compatible vector fields that is used in this paper was initiated inde-

pendently by three persons: Anatolij Dokshevich [16], Vladimir Bogaevskii [8] and Stefan

Rauch-Wojciechowski (in the past Wojciechowski) [75].

Let us make a digression on the problem of priority between A. Dokshevich and V.

Bogaevskii. The book where A. Dokshevich paper is published was sent to the print June

30, 1964. The paper of V. Bogaevskii was received by the editor October 20, 1964. In

footnote of page 93 of [8] he says that the paper was submitted to the editor before the

publication of [16]. Let us stress also that [8] was published in largely known mathe-

matical journal published in Moscow and that [16] was published in proceedings of some

conference in Tashkent, at the time the capital of Soviet Uzbekistan. There is no doubt

that the two authors independently each other have discovered and applied the method

of compatible vector fields.

Let us give a very short review of these papers. Both papers are devoted to the study

of real Euler-Poisson equations having supplementary first integral that does not depend

on all variables. In both papers the condition γ2
1 + γ2

2 + γ2
3 = 1 is assumed.

In Dokshevich paper [16], using method of compatible vector fields one proves that if

the supplementary first integral is of the form F = F (ω1, ω2, γ1, γ2) then this occurs only

in Kovalevskaya case and when c2 = 0, the explicit formula for Kovalevskaya first integral

is deduced. The other cases studied in [16] concern the supplementary first integrals of

the form F = F (ω3), F = F (ω1, ω2), F = F (ω1, ω2, γ1, γ2), F = F (ω1, ω2, ω3, γ3) which

lead to the cases of integrability of Lagrange and Euler, to the invariant relation of Hess

(if I1(I2− I3)c
2
1 = I2(I1− I3)c

2
2, c3 = 0 then I1c1ω1+ I2c2ω2 = 0 is an invariant manifold

for the Euler-Poisson equations) and the Goryachev-Chaplygin partial integrability case

respectively. The author notes also that Sretenskii case of partial integrability of gyrostat

equations can be found among the same lines as Goryachev-Chaplygin case.
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Let us quote the last paragraph of [16], where the principle of the method of compatible

vector fields is clearly stated.

“From a more general point of view, the idea of the presented technique is as follows.

It is required to solve some first order partial differential equation
n∑

i=1

∂F

∂xi
Xi(x1, . . . , xn) = 0.

We add to it also partial differential equations of the simplest form, for example

∂F

∂xk
= 0, 1 ≤ k ≤ s, s < n.

Then it will be required that the built system is compatible. If the compatibility conditions

are satisfied, then the solution of the system will be at the same time some solution of

the original equation.”

In Bogaevskii paper [8] one considers the supplementary first integral of the form

F = F (ω1, ω2, γ1, γ2, γ3) for the Euler-Poisson equations of motion of a rigid body with

a fixed point in the potential force field U = U(γ1, γ2, γ3). When U = c1γ1 + c2γ2 +

c3γ3, we recover the standard Euler-Poisson equations (1.1). Applying the method of

compatible vector fields one identifies the classical cases of integrability: Euler, Lagrange

and Kovalevskaya.

Afterwards, one considers the problem of finding the general form of the potential U =

U(γ1, γ2, γ3) when there exists a supplementary first integral F = F (ω1, ω2, γ1, γ2, γ3). A

new generalization of the Kovalevskaya case appears.

Unlike [59] and the present paper, where we sweep up all possible cases of first integrals

that do not depend on all variables, in [16] and [8] they only focus on a few concrete cases

that enable them to catch integrable cases.

This line of research was pursued by Yu. A. Arkhangelskii [3, 4] directly inspired by

[16] and [8] and also by S. I. Popov [55, 56, 57]. For further development see [58, 42, 59]

and the present paper.

Around twenty years later, around 1986, Stefan Rauch-Wojciechowski motivated by

[73, 74], where implicitly the Euler equations on the dual of Lie algebras appear [52, Ch.

6] and also [10, 12, 19, 36, 65, 53], discovered independently the method of compatible

vector fields (the name coined by him) advocating their application to three-dimensional

systems [64, 75, 76, 26, 77]. For further development see [50, 28, 35].

The method of compatible vector fields uses exclusively notions and facts already

well known by Jacobi even if their formal settings were not perfect. Jacobi and some of

his contemporaries already knew and understood vector fields, Jacobi-Lie bracket and

the link between compatible vector fields and existence of the common first integrals for

them, i.e. Frobenius theorem ([13, Ch. Groupes de Lie et algèbres de Lie, p. 310], [29,

Sec. 2.5], [70, 71]). We cannot therefore exclude that the method of compatible vector

fields appeared in certain works now forgotten, in the period going from the second half

of the nineteen century, or even before, until the publication of [16, 8].

The paper is organized as follows. In Sec. 2 an important technical tool, the so called

permutational symmetries are shortly described. Sec. 3 is devoted to the use of Gröbner
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basis to obtain by Maple the solutions of the enormous systems of polynomial equations

which appear in this article. The direct approach used in [59] is totally inappropriate

here. This is one of the pivots of the paper.

Sec. 5 is devoted to the study of five-dimensional invariant manifolds {Hi = Ui},
1 ≤ i ≤ 3, that is the problem (a) formulated before. This leads us to recover in a natural

way the Goryachev-Chaplygin case. This is the content of Sec. 5.2. In Sec. 6 we sketch

the study of gyrostat equations and of derivation of Sretenskii case. In Secs. 5.4 and 5.3

without giving the tedious and long proofs, we shortly report what happens on manifolds

{H3 = U3} and {H2 = 0}, respectively. The case of manifolds {H2 = U2 ̸= 0} was

completely elucidated in Sec. 5 of [59]. In Sec. 7 we determine the so called domain of the

Goryachev-Chaplygin partial first integral. In Secs. 8 and 9 we study what happens on

four and three-dimensional invariant manifolds {Hi = Ui, Hj = Uj}, 1 ≤ i, j ≤ 3, i ̸= j,

and {H1 = U1, H2 = U2, H3 = U3}, respectively.
We refer to [59] for some supplementary details.

The method we used is of general interest and is probably the most interesting point

of this paper. It can also be applied in many other circumstances (see for example [10] -

[12]).

2. Permutational symmetries

The Euler-Poisson equations (1.1) possess invariant property which we called permuta-

tional symmetry. The permutational symmetries can be described in a general frame-

work as follows. Let x = (x1, . . . , xn) ∈ Cn, λ = (λ1, . . . , λn) ∈ Cn, and let V (x, λ) =

(V1(x, λ), . . . , Vn(x, λ)) depend smoothly on x. Let us consider the following system of

differential equations
dx

dt
= V (x, λ). (2.1)

Let σ be an element of the symmetric group Sn, i.e., the group of all permutations of

{1, . . . , n}. For a = (a1, . . . , an) ∈ Cn we will note σ(a) = (aσ(1), . . . , aσ(n)).

The permutation σ ∈ Sn will be called a permutational symmetry of system (2.1) if

for all x ∈ Cn, λ ∈ Cn, one has

Vk(σ(x), σ(λ)) = εVσ(k)(x, λ), 1 ≤ k ≤ n, (2.2)

where ε = ±1 is a constant depending on k but independent of x and λ. It is obvious

that all permutational symmetries of given equation form a group.

Let us recall that the subset M ⊂ Cn is an invariant subset of system (2.1) if M is

formed by the entire orbits of it. That means that if for some t0 ∈ C, x(t0) ∈ M , then

x(t) ∈ M for all t ∈ C such that x(t) is well defined.

Let us formulate the following theorem, already proved in [42] and [59] respectively.

We formulated it in the complex setting, but it remains valid also in the real framework

as well. For the sake of completeness, we also report its proof.
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Theorem 2.1. The permutational symmetries of the Euler-Poisson equations (1.1) are

the following:

σ1 = {(1, 2, 3), (1, 2, 3)}, ε = 1,

σ2 = {(1, 3, 2), (1, 3, 2)}, ε = −1,

σ3 = {(2, 3, 1), (2, 3, 1)}, ε = 1,

σ4 = {(2, 1, 3), (2, 1, 3)}, ε = −1,

σ5 = {(3, 1, 2), (3, 1, 2)}, ε = 1,

σ6 = {(3, 2, 1), (3, 2, 1)}, ε = −1,

(2.3)

where σ{(i1, i2, i3), (j1, j2, j3)}, 1 ≤ ir, jr ≤ 3, 1 ≤ r ≤ 3, is the permutation

σ(s1, s2, s3, t1, t2, t3) = (si1 , si2 , si3 , tj1 , tj2 , tj3).

Proof. The permutation σ1 with ε = 1 is evidently a permutational symmetry for the

Euler-Poisson equations. One can see from these equations that σ2 with ε = −1 is a

permutational symmetry too. The same is true for σ3 with ε = 1.

Taking into account the equalities

σ4 = σ2 ◦ σ3, σ5 = σ2
3 , σ6 = σ3 ◦ σ2

we deduce that σ4 with ε = −1, σ5 with ε = 1 and σ6 with ε = −1 are permutational

symmetries for the Euler-Poisson equations.

To complete the proof of the theorem it remains only to note that if the permutation

σ(1, 2, 3, 4, 5, 6) = (l1, l2, l3, l4, l5, l6)

is a permutational symmetry for the Euler-Poisson equations then l1, l2, l3 ∈ {1, 2, 3} and

l4, l5, l6 ∈ {4, 5, 6}. Thus σ = {(li1 , li2 , li3), (lj1 , lj2 , lj3)}. Now, from the Euler-Poisson

equations one deduces easily that ik = jk, 1 ≤ k ≤ 3.

It is interesting to observe that the three sets E , L and K are invariant with respect

to the permutational symmetries. The same concerns the kinetic symmetry case.

In other words, all permutational symmetries of Euler-Poisson equations (1.1) coincide

with symmetric group S3, where the same permutation is simultaneously applied to

variables {ω1, ω2, ω3} and {γ1, γ2, γ3} and to parameters {I1, I2, I3} and {c1, c2, c3}.
It is also important to note that the first integrals H1, H2 and H3 are invariant with

respect to all permutational symmetries of Euler-Poisson equations. This means that for

any such permutational symmetry σ one has:

Hi(I, c, ω, γ) = Hi(σ(I), σ(c), σ(ω), σ(γ)), 1 ≤ i ≤ 3,

where for permutation σ ∈ S3, σ(a1, a2, a3) = (aσ(1), aσ(2), aσ(3)).

This leads to the following general statement that will be frequently used in the future.

Let us define the function Φ0, Φ0(x, λ) = 1 for all x ∈ Cn and λ ∈ Cn. Let U0 = 1

and let us note M(U0, λ) = {x ∈ Cn; Φ0(x, λ) = 1} = Cn.

Let λ ∈ Cn be fixed. Let Φi = Φi(x, λ), 1 ≤ i ≤ k < n, be a finite number of

first integrals of system (2.1), that are all invariant with respect to all permutational
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symmetries σ of the system (2.1), that is

Φi(x, λ) = Φi(σ(x), σ(λ)), 1 ≤ i ≤ k. (2.4)

For U1, . . . , Uk ∈ Cn and k ≥ 0 let us note:

M(U0, . . . , Uk, λ) = {x ∈ Cn; Φi(x, λ) = Ui, 0 ≤ i ≤ k}. (2.5)

In the future, without repeating it each time, we will only consider the cases where

M(U0, . . . , Uk, λ) is either Cn (when k = 0) or a non-empty submanifold (perhaps with

singularities) of Cn (when k ≥ 1).

All these submanifolds of Cn are invariant manifolds of the system (2.1) and from

(2.4) it follows that they are all invariant with respect to all permutational symmetries

of system (2.1).

Theorem 2.2. Let k ≥ 0. Let σ be some permutational symmetry of system (2.1). Let

us consider the system (2.1) restricted to the invariant manifold M(U0, . . . , Uk, λ) and

its local first integral F = F (x) defined on some open subset WF ⊂ M(U0, . . . , Uk, λ).

Then the function G = F ◦ σ−1, i.e. G(x) = F (σ−1(x)), defined on the open subset

σ(WF ) = {x ∈ M(U0, . . . , Uk, λ); σ−1(x) ∈ WF } of M(U0, . . . , Uk, λ) is a local first

integral of the system
dx

dt
= V (x, σ(λ)). (2.6)

restricted to M(U0, . . . , Uk, λ).

Proof. As F is a first integral of system (2.1), restricted to WF then for every x ∈ WF

n∑
k=1

Vk(x, λ)

(
∂F

∂xk

)
(x) = 0.

As σ is a permutation of {1, . . . , n}, the last equality is equivalent to

n∑
k=1

Vσ(k)(x, λ)

(
∂F

∂xσ(k)

)
(x) = 0.

Taking into account (2.2), we can write this as:

n∑
k=1

Vk(σ(x), σ(λ))

(
∂F

∂xσ(k)

)
(x) = 0.

The last equality is satisfied for every x ∈ WF . Then putting instead of x, σ−1(x) we

obtain that for every x ∈ σ(WF )

n∑
k=1

Vk(x, σ(λ))

(
∂F

∂xσ(k)

)
(σ−1(x)) = 0.

On the other hand a function G = G(x) is a first integral of system (2.6) if

n∑
k=1

Vk(x, σ(λ))

(
∂G

∂xk

)
(x) = 0.
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Thus to finish the proof it remains to prove that for G = F ◦ σ−1 and 1 ≤ k ≤ n one has(
∂F

∂xσ(k)

)
(σ−1(x)) =

(
∂G

∂xk

)
(x),

but this is obvious.

For k = 0, Theorem 2.2 coincides with Theorem 2.1 from [42] and also from [59].

Theorem 2.2 shows that from the point of view of integrability/non-integrability the

systems (2.1) and (2.6), both restricted to M(U0, . . . , Uk, λ) are exactly of the same

nature.

In the future, when considering the local first integrals, the word “local” will frequently

be omitted.

Thereafter, we will always have Φi = Hi, 1 ≤ i ≤ 3.

3. Solving some systems of polynomial equations

The method applied to solve all systems of polynomial equations encountered in this

paper uses the theory of Gröbner bases of polynomial rings ([15, 18, 60]).

Let us recall some basic facts concerning them and their Maple implementations.

For all computations we use exclusively the monomial order

tdeg(U1, U2, U3, I1, I2, I3, c1, c2, c3)

with ordering U1 > U2 > U3 > I1 > I2 > I3 > c1 > c2 > c3.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/MonomialOrders

For a fixed monomial order a Gröbner basis of an ideal of polynomial ring Q[U, I, c]
is characterized by the property that the leading monomial of every polynomial in the

ideal is divisible by the leading monomial of some polynomial in the Gröbner basis.

A Maple reduced Gröbner basis is such a Gröbner basis that if we remove a poly-

nomial from it, the remaining polynomials no longer form a Gröbner basis and it has

the additional property that no monomial of any polynomial in the basis is divisible by

any of the leading monomials (other than itself). If all polynomials in a Maple reduced

Gröbner basis have leading coefficient 1, then this basis is unique up to permutation of

its elements and is called reduced Gröbner basis. Let us stress that the reduced Gröbner

basis always exists.

As proved by the following simple example, in general, Maple reduced Gröbner basis

is not the reduced Gröbner basis.

The Maple command Groebner[Basis]

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/Basis

computes Maple reduced Gröbner bases for ideals of polynomial rings.

Let us consider the polynomial ring C[x, y, z] where x > y > z and its ideal L

generated by polynomials

{3y2 − 8z3, xy2 + yz3, x2 − 2xz + 5}.

https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/MonomialOrders
https://www.maplesoft.com/support/help/Maple/view.aspx?path=Groebner/Basis
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With monomial order tdeg(x, y, z), the command Groebner[Basis] gives the follow-

ing Maple reduced Gröbner basis of L:

[x2 − 2xz + 5, 8z3 − 3y2, 8xy2 + 3y3, 9y4 + 48y3z + 320y2]

with leading coefficients [1, 8, 8, 9]. With monomial order plex(x, y, z) we obtain the Maple

reduced basis

[1600z3 − 96z8 + 240z6 + 9z9,−40z5 + 32z7 − 3z8 + 80yz3,

3y2 − 8z3, 120z5 − 96z7 + 9z8 + 640xz3, x2 − 2xz + 5]

with leading coefficients [9, 80, 3, 640, 1].

We observe that the obtained Maple reduced Gröbner bases consist of polynomials,

each with integer coprime coefficients and positive leading coefficient.

The reason that Maple in its definition of the reduced Gröbner bases does not require

that the leading coefficients are 1 is due to avoidance of use of rational non-integer

numbers.

All factorizations are over Q, that is in the polynomial ring

Q[U, I, c] = Q[U1, U2, U3, I1, I2, I3, c1, c2, c3].

Let us consider polynomials Pi = Pi(U, I, c) = Pi(U1, U2, U3, I1, I2, I3, c1, c2, c3) ∈
Q[U, I, c], 1 ≤ i ≤ n. We want to find all complex solutions of the system Pi(U, I, c) =

0, 1 ≤ i ≤ n, such that Ij ̸= 0, 1 ≤ j ≤ 3. Such solutions will be called good solutions. To

find them we proceed as follows (steps A.1–A.3) and in all cases encountered we achieve

a success.

Let us note C9
g = {(U, I, c) ∈ C9; Ii ̸= 0, 1 ≤ i ≤ 3}. The good solutions are in C9

g.

A.1. With Maple command factor, we factorize over Q all polynomials Pi(U, I, c),

1 ≤ i ≤ n,

Pi = Iαi1
1 Iαi2

2 Iαi3
3

ri∏
k=1

Dβik

ik ,

where βik ∈ N = {1, 2, . . .}, αi1, αi2, αi3 ∈ N∪{0}, Dik ∈ Q[U, I, c]. Moreover, for k ̸= l,

polynomials Dik and Dil are relatively prime and irreducible in Q[U, I, c], 1 ≤ k, l ≤ ri,

1 ≤ i ≤ n.

Then

{(U, I, c) ∈ C9
g; Pi(U, I, c) = 0, 1 ≤ i ≤ n} =

{(U, I, c) ∈ C9
g; P̂i(U, I, c) = 0, 1 ≤ i ≤ n},

(3.1)

where P̂i =
∏ri

k=1 Dik is a square-free factorization of
∏ri

k=1 D
βik

ik . Let us stress that in

(3.1) we have identity of zeros but perhaps not of their multiplicities.

It is clear that the following inclusion of ideals in the ring Q[U, I, c] takes place:

{P1, . . . , Pn} ⊂ {P̂1, . . . , P̂n}, (3.2)

where {R1, . . . , Rq} denotes the ideal in Q[U, I, c] generated by the polynomials

R1, . . . , Rq ∈ Q[U, I, c].
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A.2. Using Maple command Groebner[Basis] we compute in the ring Q[U, I, c]
a Maple reduced Gröbner basis {Q1, . . . , Qm} of ideal {P̂1, . . . , P̂n} ⊂ Q[U, I, c]. The
polynomials Q1, . . . , Qm can have multiple factors in Q[U, I, c].

Formulas (3.1) and (3.2) imply respectively that

{(U, I, c) ∈ C9
g; Pi(U, I, c) = 0, 1 ≤ i ≤ n} =

{(U, I, c) ∈ C9
g; Qj(U, I, c) = 0, 1 ≤ j ≤ m}

and

{P1, . . . , Pn} ⊂ {Q1, . . . , Qm}.

As {R1, . . . , Ru} ⊂ {R̂1, . . . , R̂u} we have

{P1, . . . , Pn} ⊂ {Q̂1, . . . , Q̂m}. (3.3)

and

{(U, I, c) ∈ C9
g; Pi(U, I, c) = 0, 1 ≤ i ≤ n} =

{(U, I, c) ∈ C9
g; Q̂j(U, I, c) = 0, 1 ≤ j ≤ m}

(3.4)

The passage from the system P1 = 0, . . . , Pn = 0 to the system Q̂1 = 0, . . . , Q̂m = 0

will be called a simplification.

According to (3.4) the system obtained by simplification has the same good solutions

as the source system and in all encountered cases the obtained system of equations is

simpler than the source one.

As the ring Q[U, I, c] is Noetherian, then after a finite number of consecutive simpli-

fications, we will arrive (see (3.3)) to the system S1 = 0, . . . , St = 0, that will not be

modified by another simplification, that is, every polynomial Si, 1 ≤ i ≤ t, is square-free,

without factors of the form Iαi1
1 Iαi2

2 Iαi3
3 and the polynomials {Si}1≤i≤t form a Maple

reduced Gröbner basis of the ideal {S1, . . . , St}.
We call the system of equations S1 = 0, . . . , St = 0 reduced system or reduction of

the source system P1 = 0, . . . , Pn = 0. The reduced system {Sj = 0} has the same set

of good solutions as the source system {Pi = 0}. The simplest Maple computational

criterion that the system S1 = 0, . . . , St = 0 is a reduction of the source system is that

its simplification coincides with it. This criterion will be constantly used by us.

A.3. The final step is then to describe the set of all complex solutions of the reduced

system {Sj = 0}, 1 ≤ j ≤ t.

It is clear that when t = 1 and S1 = 1, then the source system does not admit any

good solution.

Fortunately, in an unexplained and unexpected way, in all other cases encountered

below, the reduced systems are simple, of low degrees and all {Sj}1≤j≤t are factorized in

product of factors that depend on only one kind of unknowns {U1, U2, U3}, {c1, c2, c3} or

{I1, I2, I3}. Moreover every factor belong to the following short list of possibilities:

U1, U2, U3, a1I1 + a2I2 + a3I3, c1, c2, c3 and b1c
2
1 + b2c

2
2 + b3c

2
3, (3.5)

where ai and bi, 1 ≤ i ≤ 3, are some integers. There is only one exception in Sec.

8.2.1 where in one of the equations of the reduced system a factor appears that depends

simultaneously on Ii and ci, 1 ≤ i ≤ 3, and it is (I2 − I3)c
2
1 + (I1 − I3)c

2
2 + (I2 − I1)c

2
3.
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In many cases the situation is even simpler because some of polynomials Sj , 1 ≤ j ≤ t,

merely coincide with some of the possibilities from list (3.5). For example, in Sec. 7 (see

formula (7.8)) polynomial S1 = c3.

Thus, without any difficulty, all the good solutions can be found either by hand or by

applications of elementary computer algebra, Maple for example.

4. Some algebra

The following two simple Propositions will be used repeatedly until the end of the article.

The first one is well known and follows from the well known elementary properties of

resultant ([15, Chap. 3, §6] and [18]).

Let K be a field of characteristic 0 and K[x] be as usual the ring of polynomials of

one variable x with coefficients in K.

Proposition 4.1. Let g ∈ K[x] be a polynomial and h(x) = dg
dx . Let ρ be the resultant of

g and h and ρ ̸= 0. Let x be some root of g, g(x) = 0. Then

(i) h(x) ̸= 0,

(ii) g has no multiple roots.

Proof. (i) It follows immediately from the well known fact. If f, g ∈ K[x] then f and

g have a common factor in K[x] if and only if their resultant is 0 or equivalently if f

and g have a common root (perhaps in algebraic closure of the field K if this field is not

algebraically closed).

(ii) It follows from the evident fact that if g has a multiple root, then h(x) = dg
dx has

the same root and thus g and h has a common factor.

The second Proposition is completely evident but for convenience it is called Propo-

sition.

Let K be a field of characteristic 0. Let f, g ∈ K[x] are polynomials of one variable x

and g ̸= 0. By Euclidean division we know that for some polynomials q, r ∈ K[x] one has

f(x) = q(x)g(x) + r(x), deg r < deg g or r = 0.

Proposition 4.2. Let

(i) all roots of g are simple and are in K,
(ii) all roots of g are also roots of f .

Then g divides f in K[x], that means that the remainder r (which is in K[x]) vanishes

identically.

In the following, for fixed n ≥ 1, let Kn = Alg(s1, . . . , sn) be the field of algebraic

functions of complex variables (s1, . . . , sn) ∈ Cn ([1], [61], [68]). The field Kn is of char-

acteristic 0.

Let us explain this more in details. Following [1], let P0, . . . , Pk ∈ C[x1, . . . , xn] be

complex polynomials of variables x1, . . . , xn, and with Pk(x1, . . . , xn) ̸≡ 0. A function
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y = y(x1, . . . , xn) of the variables x1, . . . , xn is called complex algebraic function if

Pk(x1, . . . , xn)y
k + Pk−1(x1, . . . , xn)y

k−1 + · · ·+ P0(x1, . . . , xn) = 0 (4.1)

for all (x1, . . . , xn) ∈ Cn and if the above polynomial of y is irreducible in C[x1, . . . , xn].

The number k is called degree of algebraic function y. If k = 1, an algebraic function

is a rational function y = −P0(x1, . . . , xn)/P1(x1, . . . , xn). For k = 2, 3, 4, an algebraic

function can be expressed by square and cube roots of rational functions in the variables

x1, . . . , xn. If k ≥ 5, this is impossible in general ([18]).

If k ≥ 2 an algebraic function is multivalued (like for example y =
√
x) and in an

open dense subset of Cn, it locally admits holomorphic (analytic) determinations called

also branches. This follows from complex implicit function theorem ([34], [51]).

Let us also note that any non-zero complex polynomial (4.1) can be factorized in

irreducible factors ([18]). Thus, the equation (4.1) defines algebraic functions even if the

polynomial (4.1) is not irreducible.

Let us note for short x = (x1, . . . , xn). Let us compute the partial derivatives ∂y
∂xi

(x),

1 ≤ i ≤ n, for an algebraic function of degree k. By deriving the formula (4.1) with

respect to xi, 1 ≤ i ≤ n, one easily deduces that

∂y

∂xi
(x) = −

∂Pk

∂xi
(x)yk + ∂Pk−1

∂xi
(x)yk−1 + · · ·+ ∂P0

∂xi
(x)

kPk(x)yk−1 + (k − 1)Pk−1(x)yk−2 + · · ·+ P1(x)
. (4.2)

The partial derivatives of higher order of the algebraic function y = y(x) can be

computed by consecutive derivations of the formula (4.2).

As the degree of algebraic function y = y(x) is k, the denominator of (4.2) which

is a non-vanishing algebraic function is non-zero on open dense subset of Cn, where

the formula (4.2) gives the searched derivative, that is also an algebraic function of

x = (x1, . . . , xn).

Now, let us consider on some open subset U of Cn, some holomorphic determination

of multivalued algebraic function y = y(x), that we shall note f = f(x). Then, if in

formula (4.2) instead of y one takes the function f , the formula remains valid.

Consequently, instead of analyzing separately all holomorphic determinations of an

algebraic function y = y(x), it suffices to consider the multivalued algebraic function

y = y(x) as a whole, the derivatives of which are given by the formula (4.2).

We shall also apply the following well known and easy to prove Proposition.

Proposition 4.3. Let n ≥ 2 and let V ∈ C[x1, . . . , xn] be a polynomial that is not a

square of another polynomial. Then
√
V /∈ C(x1, . . . , xn) that means that

√
V is not a

rational function of x1, . . . , xn.

5. Five-dimensional invariant manifolds {Hi=Ui}, 1 ≤ i ≤ 3.
Goryachev-Chaplygin and Sretenskii cases

5.1. Extraction procedure. In this section we study the existence of a local partial

first integral of the Euler-Poisson equations (1.1) restricted to the invariant complex five-
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dimensional manifolds {H1 = U1} and {H3 = U3}. We study when on each of them there

exists a local partial first integral that depends on at most four variables and such that

on {H1 = U1} it is functionally independent of H2 and H3 and on {H3 = U3} of H1 and

H2 respectively. The same problem can be stated also for manifold {H2 = U2} where

the functional independence of H1 and H3 is required. For U2 = 1 this case has been

considered in Sec. 5 of [59] and the general case of U2 ̸= 0 can easily be reduced to the

case U2 = 1. Thus it remains to study only the case {H2 = 0}.
Let us fix i, 1 ≤ i ≤ 3. According to (2.5)

M(U0, Ui, Ic) = {x ∈ C6; Hi((ω, γ), Ic) = Ui},

where (ω, γ) = (ω1, ω2, ω3, γ1, γ2, γ3) and dimM(U0, Ui, Ic) = 5.

We search all functions F of four variables F = F (s1, s2, s3, s4) where (s1, s2, s3, s4) ∈
(ω, γ), of class C1, such that gradF does not vanish identically on each open subset of

M(U0, Ui, Ic), which are local partial first integrals of the Euler-Poisson equations (1.1)

restricted to M(U0, Ui, Ic).
Let i = 1. The unique intrinsic property of C1 function F that is a local first integral is

that gradF does not vanish identically on any open subset of its domain of definition, that

in this case is equal to M(U0, U1, Ic). This implies that some of the partial derivatives of

F may be identically zero. Thus the results of Sec. 5.2 also remain valid for the functions

of at most four variables.

As ∂F
∂s1

ds1
dt + ∂F

∂s2
ds2
dt + ∂F

∂s3
ds3
dt + ∂F

∂s4
ds4
dt = 0, where dsi

dt , 1 ≤ i ≤ 4, are given by the

right hand sides of the equations of Euler-Poisson (1.1), then the order of variables si,

1 ≤ i ≤ 4, in F (s1, s2, s3, s4) is irrelevant for F to be a first integral.

We have exactly 15 different four elements subsets of (ω, γ) and thus 15 cases of

functions of four elements to examine. We will describe now an extraction procedure

based on permutational symmetries which reduces the above 15 cases to only four.

These 15 functions of four variables (up to the order of variables) are shown in the

table below.

Table 5.1

Functions Case

F (ω1, ω2, ω3, γi), 1 ≤ i ≤ 3 (i)

F (ω1, ω3, γ1, γ3), F (ω1, ω2, γ1, γ2), F (ω2, ω3, γ2, γ3) (ii)

F (ω1, ω2, γ1, γ3), F (ω1, ω3, γ1, γ2), F (ω2, ω3, γ1, γ2),

F (ω1, ω2, γ2, γ3), F (ω1, ω3, γ2, γ3), F (ω2, ω3, γ1, γ3)
(iii)

F (ωi, γ1, γ2, γ3), 1 ≤ i ≤ 3 (iv)

It is easy to see that under the group of permutational symmetries (2.3) of the Euler-

Poisson equations for every case (i)–(iv) from Table 5.1 each function from the case is

consequently transformed into all remaining functions from the same case.

Thus in virtue of Theorem 2.2 we can restrict ourselves to the study of only four

functions where every one belongs to a different case from Table 5.1 and is chosen arbitrary
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from the functions of this case.

We will call such four functions Fi, 1 ≤ i ≤ 4, (up to the order of variables) a basis.

As Table 5.1 shows, the functions

F (ω1, ω2, ω3, γ3), F (ω1, ω3, γ1, γ3), F (ω1, ω2, γ1, γ3), F (ω1, γ1, γ2, γ3) (5.1)

form a basis.

To be a local first integral of some vector field, first integral defined in some open

subset of some manifold, is an intrinsic property, that is independent of the system

of coordinates used. Thus in M(U0, Ui, Ic) instead of coordinates (ω1, ω2, ω3, γ1, γ2, γ3)

inherited from the Euler-Poisson equations, we can consider for example the system

of coordinates (ω1, ω2, ω3, γ1, γ3), where the coordinate (variable) γ2 can be eliminated

thanks to identity H1 = U1. The same concerns all remaining coordinates.

Using coordinates (ω1, ω2, ω3, γ1, γ3) on M(U0, Ui, Ic) we can verify if the first three

functions of the basis (5.1) are partial first integrals or not. For the last function of basis

(5.1) we will use the coordinates (ω1, ω3, γ1, γ2, γ3).

The following general remark concerns also Sec. 8 and Sec. 9. If we are interested in

partial first integrals that depend on at most three variables, for instance F (ω2, ω3, γ3),

we can consider it as a particular case of F (ω1, ω2, ω3, γ3) (case (i)), of F (ω2, ω3, γ2, γ3)

(case (ii)) and of F (ω2, ω3, γ1, γ3) (case (iii)). From the study of each of these functions,

we can conclude about the existence of the sought partial first integral F (ω2, ω3, γ3).

5.2. Invariant manifold {H1=U1}. Determination of the Goryachev-Chaplygin

case. Here we show the method we use on the example {H1 = U1}. This invariant

manifold gives not only results for non-existing of the sought partial first integrals at

U1 ̸= 0 but when U1 = 0 it also gives a nice derivation of the Goryachev-Chaplygin case.

5.2.1. Elimination of γ2. Let us express γ2 from the equation H1 = U1. We have

γ2 =
U1 − I1ω1γ1 − I3ω3γ3

I2ω2
. (5.2)

We put the expression for γ2 from (5.2) in the Euler-Poisson equations (1.1) and remove

the fifth equation. In this way we obtain

dω1

dt
=

c3U1 + I2 (I2 − I3)ω
2
2ω3 − I1c3ω1γ1 − I2c2ω2γ3 − I3c3ω3γ3

I1I2ω2
,

dω2

dt
=

(I3 − I1)ω1ω3 + c1γ3 − c3γ1
I2

,

dω3

dt
=

−c1U1 + I2 (I1 − I2)ω1ω
2
2 + I1c1ω1γ1 + I2c2ω2γ1 + I3c1ω3γ3

I2I3ω2
,

dγ1
dt

=
−I1ω1ω3γ1 − I2ω

2
2γ3 − I3ω

2
3γ3 + ω3U1

I2ω2
,

dγ3
dt

=
I1ω

2
1γ1 + I2ω

2
2γ1 + I3ω1ω3γ3 − ω1U1

I2ω2
.

(5.3)
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Looking for a partial first integral of system (5.3) which depends on four variables

indicated in brackets, we come to the following five possible cases:

1. F (ω1, ω2, ω3, γ1), (case (i))

2. F (ω1, ω2, ω3, γ3), (case (i))

3. F (ω1, ω2, γ1, γ3), (case (iii))

4. F (ω1, ω3, γ1, γ3), (case (ii))

5. F (ω2, ω3, γ1, γ3), (case (iii))

where “case(*)” indicates in which case of Table 5.1 the corresponding partial first integral

appears.

The functions of types 2, 3 and 4 belong to the basis (5.1). We should study all of

them. We start with a partial first integral of type 2.

Type 2. Let us look for a partial first integral of system (5.3) that does not depend

on γ1, i.e. of type 2. Moreover we want this integral to be functionally independent of H2

and H3. Let us suppose that the function

F (ω1, ω2, ω3, γ3) (5.4)

is such a partial first integral of (5.3). It satisfies the following identity

dF

dt
=

c3U1 + I2 (I2 − I3)ω
2
2ω3 − I1c3ω1γ1 − I2c2ω2γ3 − I3c3ω3γ3

I1I2ω2

∂F

∂ω1

+
(I3 − I1)ω1ω3 + c1γ3 − c3γ1

I2

∂F

∂ω2

+
−c1U1 + I2 (I1 − I2)ω1ω

2
2 + I1c1ω1γ1 + I2c2ω2γ1 + I3c1ω3γ3

I2I3ω2

∂F

∂ω3

+
I1ω

2
1γ1 + I2ω

2
2γ1 + I3ω1ω3γ3 − ω1U1

I2ω2

∂F

∂γ3
= 0,

or equivalently

I1I2I3ω2
dF

dt
= I1γ1Y1(F ) + Y2(F ) = 0, (5.5)

where Y1 and Y2 are the following vector fields defined in C4 = C4(ω1, ω2, ω3, γ3)

Y1 = −I3c3ω1
∂

∂ω1
− I3c3ω2

∂

∂ω2
+ (I1c1ω1 + I2c2ω2)

∂

∂ω3
+ I3(I1ω

2
1 + I2ω

2
2)

∂

∂γ3
,

Y2 = I3
[
I2(I2 − I3)ω

2
2ω3 − I2c2ω2γ3 − I3c3ω3γ3 + c3U1

] ∂

∂ω1

− I1I3ω2

[
(I1 − I3)ω1ω3 − c1γ3

] ∂

∂ω2

− I1
[
I2(I2 − I1)ω1ω

2
2 − I3c1ω3γ3 + c1U1

] ∂

∂ω3
+ I1I3ω1 (I3ω3γ3 − U1)

∂

∂γ3
.

As (5.5) is an identity with respect to all the variables and as Y1(F ) and Y2(F ) do not

depend on γ1 we have

Y1(F ) = Y2(F ) = 0. (5.6)
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We compute the Lie brackets Y3 = [Y1, Y2]/I3 and Y4 = [Y1, Y3] and obtain

Y3 = m31
∂

∂ω1
+m32

∂

∂ω2
+m33

∂

∂ω3
+m34

∂

∂γ3
,

Y4 = m41
∂

∂ω1
+m42

∂

∂ω2
+m43

∂

∂ω3
+m44

∂

∂γ3
,

where

m31 = −I1I2I3c2ω
2
1ω2 − I1I

2
3c3ω

2
1ω3 − I22I3c3ω

2
2ω3 + I1I2(I2 − I3)c1ω1ω

2
2

− I1I3c1c3ω1γ3 + I22 (I2 − 2I3)c2ω
3
2 − I2I3c2c3ω2γ3 − I23c

2
3ω3γ3 + I3c

2
3U1,

m32 = I1ω2

[
I2I3c1ω

2
2 − I1(I1 − 2I3)c1ω

2
1 − I2(I1 − I3)c2ω1ω2 + I3(I1 − I3)c3ω1ω3

]
m33 = I1

[
I1I3c1ω

2
1ω3 + I1c

2
1ω1γ3 + I2c1c2ω2γ3 − I2(I2 − 2I3)c1ω

2
2ω3

+ I2(I1 − I3)c2ω1ω2ω3 − 3I2(I1 − I2)c3ω1ω
2
2 + I3c1c3ω3γ3 − c1c3U1

]
,

m34 = I1I3
[
I1I3ω

3
1ω3 + I1c1ω

2
1γ3 − 2I2c1ω

2
2γ3 + 3I2c2ω1ω2γ3

+ I2(2I1 − 2I2 + I3)ω1ω
2
2ω3 + I3c3ω1ω3γ3 − c3U1ω1

]
,

m41 = I3c2
[
− 2I21I3c1ω

3
1 − I1I2(3I2 − I3)c1ω1ω

2
2 − I1I3c1c2ω1γ3 − 3I22 (I2 − I3)c2ω

3
2

− I2I3c2c2ω2γ3 + I2I3(I2 − I3)c2ω
2
2ω3 − I23c

2
2ω3γ3 + U1I3c

2
2

]
,

m42 = I1ω2I3c3
[
− 2I2I3c1ω

2
2 + (3I1 − 5I3)I1c1ω

2
1

+ 3(I1 − I3)I2c2ω1ω2 − (I1 − I3)I3c3ω1ω3

]
,

m43 = I1
[
2I21I2c1c2ω

2
1ω2 + 2I21I3c

2
1ω

3
1 + I1I3c

2
1c3ω1γ3 − 2I22 (I2 − 2I3)c1c2ω

3
2

+ I2I3c1c2c3ω2γ3 + 3I2I3(I2 − I3)c1c3ω
2
2ω3 − 3I2I3(I1 − I3)c2c3ω1ω2ω3

+ I23c1c
2
3ω3γ3 − I2ω1ω

2
2(2I1I2c

2
1 − 2I1I2c

2
2 − 4I1I3c

2
1 − 9I1I3c

2
3 + 2I2I3c

2
2

+ 9I2I3c
2
3)− I3c1c

2
3U1

]
,

m44 = I1I3
[
2I21I3c1ω

4
1 + 6I1I2I3c2ω

3
1ω2 − 4I22I3c1ω

4
2 + 2I1I2(2I1 − 2I2 − I3)c1ω

2
1ω

2
2

+ I1I3c1c3ω
2
1γ3 + 2I22 (2I1 − 2I2 + 3I3)c2ω1ω

3
2 + 4I2I3c1c3ω

2
2γ3

− 3I2I3c2c3ω1ω2γ3 − 8I2I3(I1 − I2)c3ω1ω
2
2ω3 + I23c

2
3ω1ω3γ3 − I3c

2
3U1ω1

]
.

Equations (5.6) imply that

Y3(F ) = Y4(F ) = 0. (5.7)

Equations (5.6) and (5.7) can be considered as a system of four homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ3

)
, which do not vanish

identically on any open subset of domain of definition of F , because F is non-constant

on any such open subset.

If a new integral F exists, system (5.6)–(5.7) has at least one non-zero solution. Let

us consider the 4× 4 matrix A whose rows are the coefficients of vector fields Y1, Y2, Y3

and Y4. The condition under which system (5.6)–(5.7) has at least one non-zero solution

is

rankA ≤ 3.

We equate to zero the determinant D of the 4 × 4 matrix A of the coefficients of
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system (5.6)–(5.7) and study when identity

D = det(A) ≡ 0 (5.8)

is fulfilled. We compute D and obtain

D = I21I
2
2I

2
3ω

3
2D̂,

where the expression for D̂ is a polynomial in variables ω1, ω2, ω3 and γ3 having 72

monomials and thus with 72 coefficients depending on Ic and U1. It is clear that to solve

(5.8) is equivalent of finding all values of the parameters Ic and U1 for which the 72

coefficients of D̂ are zero. The expression for D̂ is too long and that is why we do not

write it here. To solve this system of 72 equations we proceed as described in Sec. 3.

After four consecutive simplifications of the source system of 72 equations we obtain

the reduced system having only nine equations:

(I2 − I3)c2c3 = 0, (I1 − I3)c2c3 = 0,

(I2 − I3)c1c3 = 0, (I1 − I3)c1c3 = 0, (I1 − I2)c1c2 = 0,

(I2 − 4I3)(I1 − I3)c2 = 0, (I1 − I3)(I1 − 4I3)c2 = 0,

(I2 − I3)(I2 − 4I3)c1 = 0, (I2 − I3)(I1 − 4I3)c1 = 0.

We solve these nine equations by the Maple command solve and obtain five solu-

tions. Two of them lead to the Lagrange case and one - to the kinetic symmetry case. In

this way we come to the following two cases that should be studied separately:

1. I1 = I2 = 4I3, c3 = 0, (c1, c2) ̸= (0, 0) and U1 are arbitrary,

2. c1 = c2 = 0, c3 ̸= 0, I1 ̸= 0, I2 ̸= 0, I3 ̸= 0 and U1 are arbitrary.

Let us study these cases.

Case 1. I1 = I2 = 4I3, c3 = 0, (c1, c2) ̸= (0, 0) and U1 are arbitrary. At this condition

we have D̂ = 0 and therefore the vector fields Yi, 1 ≤ i ≤ 4, are linearly dependent.

Let us note by Dab the determinant of 3 × 3 matrix obtained from 4 × 4 matrix

A by canceling row a and column b. Elementary Maple computations show that the

determinant D43:

D43 = 768I73ω
2
2(ω

2
1 + ω2

2)(−c2ω1 + c1ω2)(I3ω
2
1ω3 + I3ω

2
2ω3 − c1ω1γ3 − c2ω2γ3)

never vanishes identically unless c1 = c2 = 0, i.e. the Euler case. Thus the vector fields Yi,

1 ≤ i ≤ 3, are linearly independent on open dense subset of the space C4(ω1, ω2, ω3, γ3)

for every U1 ∈ C, in particular for U1 = 0.

We compute the Lie bracket Y5 = [Y2, Y3] and obtain

Y5 = m51
∂

∂ω1
+m52

∂

∂ω2
+m53

∂

∂ω3
+m54

∂

∂γ3
,

where

m51 = I3ω2

[
9I3c1ω

2
1ω2ω3 − 9I3c1ω

3
2ω3 − 4I3c2ω

3
1ω3 + 14I3c2ω1ω

2
2ω3

+ 2c1c2ω
2
1γ3 + c1c2ω

2
2γ3 − (3c21 + 2c22)ω1ω2γ3

]
,

m52 = I3ω2

[
− 2I3c1ω

3
1ω3 + 16I3c1ω1ω

2
2ω3 − 15I3c2ω

2
1ω2ω3 + 3I3c2ω

3
2ω3

− 2c21ω
2
1γ3 − c1c2ω1ω2γ3 + (−4c21 − 3c22)ω

2
2γ3
]
,
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m53 = I23c1ω
3
1ω

2
3 − 17I23c1ω1ω

2
2ω

2
3 + 9I23c2ω

2
1ω2ω

2
3 − 9I23c2ω

3
2ω

2
3

+ 4I3c1c2ω1ω2ω3γ3 + c31ω1γ
2
3 + c21c2ω2γ

2
3 − (c21 − 3c22)I3ω

2
2ω3γ3

+ 2c21U1ω
2
1 − 2c21U1ω

2
2 + 4c1c2U1ω1ω2,

m54 = I3
[
I23ω

4
1ω

2
3 − 2I23ω

2
1ω

2
2ω

2
3 − 3I23ω

4
2ω

2
3 − 20I3c1ω1ω

2
2ω3γ3

+ 14I3c2ω
2
1ω2ω3γ3 − 6I3c2ω

3
2ω3γ3 + c21ω

2
1γ

2
3 + 2c1U1ω

3
1

− 4c1U1ω1ω
2
2 + 4c2U1ω

2
1ω2 − 2c2U1ω

3
2 + (4c21 + 3c22)ω

2
2γ

2
3

]
.

Equations (5.6)–(5.7) imply that Y5(F ) = 0. In this way we obtain the following four

equations

Y1(F ) = Y2(F ) = Y3(F ) = Y5(F ) = 0. (5.9)

If a supplementary partial first integral F exists, system (5.9) has at least one non-

zero solution. We consider the 4× 4 matrix B of the coefficients of this system and look

for such values of the parameters for which

rankB ≤ 3. (5.10)

We have

det(B) = −3840I73ω
4
2U1(c2ω1 − c1ω2)

3(I3ω
2
1ω3 − c1ω1γ3 + I3ω

2
2ω3 − c2ω2γ3).

Thus (5.10) will be fulfilled if and only if U1 = 0, because (c1, c2) ̸= (0, 0).

Let U1 = 0. Thus (5.10) is fulfilled. As Y1, Y2, Y3 are linearly independent, then Y5 is

linearly dependent on them. Moreover, as we have already mentioned, Y4 is also linearly

dependent on Yi, 1 ≤ i ≤ 3 (see (5.8)). Thus equations

Yi(F ) = 0, 1 ≤ i ≤ 3, (5.11)

are in involution. They give a system of three first order linear homogeneous partial dif-

ferential equations for determining the function F . We note here that the local solvability

of system (5.11) around any point (ω1, ω2, ω3, γ3) where vector fields Y1, Y2 and Y3 are

linearly independent, follows from the Frobenius Integrability Theorem (see [51, 52]).

Hence equations (5.11) have, at least locally, a non-trivial solution. We shall now present

two ways, (a) and (b), to identify F .

(a) We solve system (5.11) by the Maple command pdsolve. In this way we obtain

the solution

F = G
[
I3ω3(ω

2
1 + ω2

2)− (c1ω1 + c2ω2)γ3
]
, (5.12)

where G is an arbitrary smooth function. By direct computations one can verify that

function I3ω3(ω
2
1 + ω2

2) − (c1ω1 + c2ω2)γ3 that corresponds to G(x) = x is really a first

integral of system (5.3) at the conditions I1 = I2 = 4I3, c3 = 0, U1 = 0, which is

functionally independent of first integrals H2 and H3 both restricted to {H1 = 0}. In
this way, by our approach we recover the Goryachev–Chaplygin partially integrable case

(1.8).

(b) Although the use of the Maple command pdsolve immediately gives a solution

of system (5.11), it is not difficult to solve it by hand starting from the following simple

remark.
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Let us consider the following linear partial differential equation with constant coeffi-

cients

p
∂f

∂x
+ q

∂f

∂y
= 0, (5.13)

where p ̸= 0, q are constants and f = f(x, y) is a smooth function defined on some open

subset of C2.

A linear change of variables u = qx − py, v = x transforms equation (5.13) into
∂φ(u,v)

∂v = 0, where f(x, y) = f(v, qv−u
p ) = φ(u, v). Equation (5.13) is then transformed

into ∂φ(u,v)
∂v = 0. The general solution of this equation is φ(u, v) = Φ(u), where Φ is an

arbitrary smooth function. Consequently, the general solution of (5.13) is

f(x, y) = Φ(qx− py). (5.14)

Let us return to system (5.11). When I1 = I2 = 4I3, c3 = 0 and U1 = 0, one has

I3ω2Y1 = Z, where

Z = (c1ω1 + c2ω2)
∂

∂ω3
+ I3(ω

2
1 + ω2

2)
∂

∂γ3
.

Y1(F ) = 0 if and only if Z(F ) = 0. The equation Z(F ) = 0 is of type (5.13), with x = ω3,

y = γ3, p = c1ω1 + c2ω2 and q = I3(ω
2
1 + ω2

2). Thus by (5.14) the general solution of

equation Z(F ) = 0 is given by formula (5.12). Now, all the rest is exactly the same as in

(a).

Let us stress that in fact we never used the Frobenius theorem. Indeed, the desired

partial first integral was obtained by direct computation.

Case 2. c1 = c2 = 0, c3 ̸= 0, I1 ̸= 0, I2 ̸= 0, I3 ̸= 0 and U1 are arbitrary. Now the

first integral H3 is of type (5.4). If a new integral F of this type exists, system (5.6)–(5.7)

has at least two non-zero solutions. The condition under which system (5.6)–(5.7) has at

least two linearly independent solutions is

rankA ≤ 2. (5.15)

We compute the determinant D44 of the matrix obtained from A by crossing out its

last row and last column and obtain

D44 = −I1I2I
2
3 (I1 − I2)c

2
3ω1ω

3
2ω3

[
I1(2I1 − 3I3)ω

2
1 + I2(2I2 − 3I3)ω

2
2 − 4I3c3γ3)

]
.

Condition (5.15) implies that D44 is identically equal to zero. One easily sees that

as c3 ̸= 0, the last is possible only when I1 = I2, i.e. Ic ∈ L. Thus a new partial first

integral of the studied type does not exist for system (5.3).

Type 3. Here we look for a first integral of system (5.3) of type 3 F (ω1, ω2, γ1, γ3), i.e.

a first integral that does not depend on ω3 requiring that it is functionally independent

of H2 and H3. It satisfies the following identity

dF

dt
=

c3U1 + I2 (I2 − I3)ω
2
2ω3 − I1c3ω1γ1 − I2c2ω2γ3 − I3c3ω3γ3

I1I2ω2

∂F

∂ω1

+
(I3 − I1)ω1ω3 + c1γ3 − c3γ1

I2

∂F

∂ω2
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+
−I1ω1ω3γ1 − I2ω

2
2γ3 − I3ω

2
3γ3 + U1ω3

I2ω2

∂F

∂γ1

+
I1ω

2
1γ1 + I2ω

2
2γ1 + I3ω1ω3γ3 − ω1U1

I2ω2

∂F

∂γ3
= 0,

or equivalently

I1I2ω2
dF

dt
= ω2

3Y1(F ) + ω3Y2(F ) + Y3(F ) = 0, (5.16)

where Y1, Y2 and Y3 are the following vector fields defined in C4 = C4(ω1, ω2, γ1, γ3)

Y1 = −I1I3γ3
∂

∂γ1
,

Y2 = (ω2
2I

2
2 − I2ω

2
2I3 − c3I3γ3)

∂

∂ω1
− I1ω1ω2(−I3 + I1)

∂

∂ω2

+ (U1 − I1ω1γ1)I1
∂

∂γ1
+ ω1I3γ3I1

∂

∂γ3

Y3 = (c3U1 − c3I1ω1γ1 − c2I2ω2γ3)
∂

∂ω1
+ I1ω2(c1γ3 − c3γ1)

∂

∂ω2

− I1ω
2
2γ3I2

∂

∂γ1
+ (I2ω

2
2γ1 − U1ω1 + I1ω

2
1γ1)I1

∂

∂γ3
.

As (5.16) is an identity with respect to all the variables and as Y1(F ), Y2(F ) and Y3(F )

do not depend on ω3 we have

Y1(F ) = Y2(F ) = Y3(F ) = 0. (5.17)

We compute the Lie brackets Y4 = [Y2, Y3]/I1 and obtain

Y4 =
[
I22c3ω

2
2γ1 + I1(I1 + I3)c3ω

2
1γ1 − 2I2(I2 − I3)c1ω

2
2γ3

+I2(I1 − 2I3)c2ω1ω2γ3 + I3c
2
3γ1γ3 − (I1 + I3)U1c3ω1

] ∂

∂ω1

+
[
I1I3c1ω1ω2γ3 + I1I3c3ω1ω2γ1 + I2(I3 − I1)c2ω

2
2γ3 − I3c3U1ω2

] ∂

∂ω2

+
[
−I21c3ω1γ

2
1 − I1I2c2ω2γ1γ3 + I1I2(I1 − 3I3)ω1ω

2
2γ3 + I1c3U1γ1

] ∂

∂γ1

−
[
(I1 + I3)I

2
1ω

3
1γ1 + (3I1 − 2I2 + I3)I1I2ω1ω

2
2γ1 + I1I3c3ω1γ1γ3

−I2I3c2ω2γ
2
3 − I1(I1 + I3)U1ω

2
1 − I2(I1 − I2 + I3)U1ω

2
2

] ∂

∂γ3
.

Equations (5.17) imply that

Y4(F ) = 0. (5.18)

Equations (5.17) and (5.18) can be considered as a system of four homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂γ1

, ∂F
∂γ3

)
, which do not vanish

identically on any open subset of domain of definition of F , because F is non-constant

on any such open subset.

If a new integral F exists then system (5.17)–(5.18) has at least one non-zero solution.

Let us consider the 4× 4 matrix A whose rows are the coefficients of vector fields Y1, Y2,
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Y3 and Y4. We know that the condition under which system (5.17)–(5.18) has at least

one non-zero solution is

D = det(A) ≡ 0. (5.19)

We compute D and obtain

D = I21I
2
2I3ω

2
2γ3D̂.

The expression for D̂ is long and we do not show it here. This expression is a poly-

nomial in variables ω1, ω2, γ1 and γ3 having 26 monomials and thus with 26 coefficients

depending on Ic and U1. It is clear that solving (5.19) is equivalent to finding all values

of the parameters Ic and U1 for which the 26 coefficients of D̂ are zero. To solve this

system of 26 equations we proceed as described in Sec. 3.

After three consecutive simplifications of the source system we obtain the reduced

system consisting of the following five equations:

c2c3 = 0, c1c3 = 0, (I1 − I2)c3 = 0, (I1 − I3)c2 = 0, (I2 − I3)c1 = 0.

We solve these five equations by theMaple command solve and obtain five solutions.

Three of them give the Lagrange case, one - the Euler case and one - the kinetic symmetry

case.

Thus a new partial first integral of type 3 does not exist.

Type 4. Now let us study the existence of a first integral of system (5.3) of type 4,

i.e. F (ω1, ω3, γ1, γ3) requiring that it is functionally independent of H2 and H3. We have

the following identity

dF

dt
=

c3U1 + I2 (I2 − I3)ω
2
2ω3 − I1c3ω1γ1 − I2c2ω2γ3 − I3c3ω3γ3

I1I2ω2

∂F

∂ω1

+
I2(I1 − I2)ω1ω

2
2 + I1c1ω1γ1 + I2c2ω2γ1 + I3c1ω3γ3 − c1U1

I2I3ω2

∂F

∂ω3

+
−I1ω1ω3γ1 − I2ω

2
2γ3 − I3ω

2
3γ3 + U1ω3

I2ω2

∂F

∂γ1

+
I1ω

2
1γ1 + I2ω

2
2γ1 + I3ω1ω3γ3 − ω1U1

I2ω2

∂F

∂γ3
= 0,

or equivalently

I1I2I3ω2
dF

dt
= I2ω

2
2Y1(F ) + I2ω2Y2(F ) + (U1 − I1ω1γ1 − I3ω3γ3)Y3(F ) = 0, (5.20)

where Y1, Y2 and Y3 are the following vector fields defined in C4 = C4(ω1, ω3, γ1, γ3):

Y1 = ω3I3(I2 − I3)
∂

∂ω1
+ I1ω1(I1 − I2)

∂

∂ω3
− γ3I1I3

∂

∂γ1
+ γ1I1I3

∂

∂γ3
,

Y2 = c2

(
−I3γ3

∂

∂ω1
+ I1γ1

∂

∂ω3

)
Y3 = I3c3

∂

∂ω1
− I1c1

∂

∂ω3
+ I1I3ω3

∂

∂γ1
− I1I3ω1

∂

∂γ3
.
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As (5.20) is an identity with respect to all the variables and as Y1(F ), Y2(F ) and

Y3(F ) do not depend on ω2 we have

Y1(F ) = Y2(F ) = Y3(F ) = 0. (5.21)

We compute the Lie brackets Y4 = [Y1, Y2]/I1I2I3 and obtain

Y4 = −c2

(
γ1

∂

∂ω1
+ γ3

∂

∂ω3

)
.

Equations (5.21) imply that

Y4(F ) = 0. (5.22)

Equations (5.21) and (5.22) can be considered as a system of four homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω3

, ∂F
∂γ1

, ∂F
∂γ3

)
, which do not vanish

identically on any open subset of domain of definition of F , because F is non-constant

on any such open subset.

If a new integral F exists then system (5.21)–(5.22) has at least one non-zero solution.

Let us consider the 4× 4 matrix A whose rows are the coefficients of vector fields Y1, Y2,

Y3 and Y4. We know that the condition under which system (5.21)–(5.22) has at least

one non-zero solution is

D = det(A) ≡ 0.

We compute D and obtain

D = −I21I
2
3c

2
2γ3ω1(I1γ

2
1 + I3γ

2
3).

This determinant is not zero if c2 ̸= 0. Thus in this case a new partial first integral

cannot exist. We should consider the case c2 = 0.

Therefore let c2 = 0. We compute the Lie brackets Y5 = [Y1, Y3]/(I1I3) and Y6 =

[Y1, Y5]. We have

Y5 = (I2 − I3)c1
∂

∂ω1
− (I1 − I2)c3

∂

∂ω3

+ I1(I1 − I2 − I3)ω1
∂

∂γ1
− I3(I1 + I2 − I3)ω3

∂

∂γ3
,

Y6 = I3(I2 − I3)(I1 − I2)c3
∂

∂ω1
− I1(I1 − I2)(I2 − I3)c1

∂

∂ω3

− I1I3(I
2
2 − I1I2 + 2I1I3 + I2I3 − 2I23 )ω3

∂

∂γ1

− I1I3(2I
2
1 − I1I2 − 2I1I3 − I22 + I2I3)ω1

∂

∂γ3
.

We consider the system

Y1(F ) = 0, Y3(F ) = 0, Y5(F ) = 0, Y6(F ) = 0.

As we know its determinant δ should be zero. We compute δ and obtain

δ = I21I
2
3 δ̂,

where

δ̂ = I21 (I1 − I2)(I1 − I2 − I3)(2I1 − 2I2 − I3)c3ω
3
1
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− I1I3(I2 − I3)(3I
2
1 − I1I2 − 3I1I3 − 2I22 + 2I2I3)c1ω

2
1ω3

− I1I3(I1 − I2)(2I1I2 − 3I1I3 − 2I22 − I2I3 + 3I23 )c3ω1ω
2
3

+ I1(2I1 − 2I2 − I3)(I1I2c
2
1 − I1I3c

2
1 − I1I3c

2
3 + I2I3c

2
3)ω1γ3

+ I23 (I2 − I3)(I1 + I2 − I3)(I1 + 2I2 − 2I3)c1ω
3
3

+ I3(I1 + 2I2 − 2I3)(I1I2c
2
1 − I1I3c

2
1 − I1I3c

2
3 + I2I3c

2
3)ω3γ1.

It is clear that the equation δ = 0 is equivalent to δ̂ = 0. As it is seen from the

expression for δ̂ it is a polynomial in variables ω1, ω3, γ1 and γ3 having six monomials and

thus with six coefficients depending on Ic. Thus we should solve a system of six equations

with respect to the parameters Ic. To solve this system we apply a simplification. After

four consecutive simplifications we obtain the reduced system consisting of the following

five equations:

(I1 − I3)c1c3 = 0, (I1 − I2)(2I2 − I3)c3 = 0, (2I1 + 2I2 − 3I3)(I1 − I2)c3 = 0,

(I2 − I3)(2I2 − I3)c1 = 0, (I1 − I3)(I2 − I3)c1 = 0.

We solve these five equations by the Maple command solve and obtain the following

six solutions:

{I1 = I1, I2 = I2, I3 = I3, c1 = 0, c3 = 0}
{I1 = I2, I2 = I2, I3 = I3, c1 = 0, c3 = c3}
{I1 = 2I2, I2 = I2, I3 = 2I2, c1 = 0, c3 = c3}
{I1 = I1, I2 = I3, I3 = I3, c1 = c1, c3 = 0}
{I1 = 2I2, I2 = I2, I3 = 2I2, c1 = c1, c3 = c3}
{I1 = I3, I2 = I3, I3 = I3, c1 = c1, c3 = c3}.

Taking into account that we consider now the case c2 = 0 we see that the first solution

leads to the Euler case, the second and fourth ones - to the Lagrange case. The third and

fifth solutions give the Kovalevskaya case and the last one - the kinetic symmetry case.

Thus a new partial first integral of type 4 does not exist.

5.2.2. Elimination of ω2. Let us express ω2 from the equation H1 = U1. We have

ω2 =
U1 − I1ω1γ1 − I3ω3γ3

I2γ2
. (5.23)
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We put the expression for ω2 from (5.23) in the Euler-Poisson equations (1.1) and remove

the secon equation. In this way we obtain

dω1

dt
=

(I2 − I3)ω3

[
− I1ω1γ1 − I3ω3γ3 + U1

]
+ c3I2γ

2
2 − c2I2γ2γ3

I1I2γ2
,

dω3

dt
=

(I1 − I2)ω1

[
− I1ω1γ1 − I3ω3γ3 + U1

]
+ c2I2γ1γ2 − c1I2γ

2
2

I2I3γ2
,

dγ1
dt

=
I1ω1γ1γ3 + I2ω3γ

2
2 + I3ω3γ

2
3 − U1γ3

I2γ2
,

dγ2
dt

= ω1γ3 − ω3γ1,

dγ3
dt

=
−I1ω1γ

2
1 − I2ω1γ

2
2 − I3ω3γ1γ3 + U1γ1
I2γ2

.

(5.24)

Looking for a first integral of system (5.24) which depends on four variables indicated

in brackets, we come to the following five possible cases:

1. F (ω1, ω3, γ1, γ2]), (case (iii))

2. F (ω1, ω3, γ1, γ3), (case (ii))

3. F (ω1, ω3, γ2, γ3), (case (iii))

4. F (ω1, γ1, γ2, γ3), (case (iv))

5. F (ω3, γ1, γ2, γ3). (case (iv))

In Sec. 5.2.1 we have already studied cases (i), (ii) and (iii) from Table 5.1. It remains

only case (iv). The functions of types 4 and 5 belong to this not yet studied case. We

should examine one of these two partial first integrals, it does not matter which. We

choose type 4, because their study is exactly of the same nature.

Type 4. Let us study the existence of a first integral of system (5.24) of type 4, i.e.

F (ω1, γ1, γ2, γ3) requiring that it is functionally independent of H2 and H3. We have

dF

dt
=

(I2 − I3)ω3

[
− I1ω1γ1 − I3ω3γ3 + U1

]
+ c3I2γ

2
2 − c2I2γ2γ3

I1I2γ2

∂F

∂ω1

+
I1ω1γ1γ3 + I2ω3γ

2
2 + I3ω3γ

2
3 − U1γ3

I2γ2

∂F

∂γ1
+ (ω1γ3 − ω3γ1)

∂F

∂γ2

+
−I1ω1γ

2
1 − I2ω1γ

2
2 − I3ω3γ1γ3 + U1γ1
I2γ2

∂F

∂γ3
= 0,

or equivalently

I1I2γ2
dF

dt
= ω2

3Y1(F ) + ω3Y2(F ) + Y3(F ) = 0, (5.25)

where Y1, Y2 and Y3 are the following vector fields defined in C4 = C4(ω1, γ1, γ2, γ3):

Y1 = −I3(I2 − I3)γ3
∂

∂ω1
,

Y2 = (I2U1 − I2I1ω1γ1 + I3I1ω1γ1 − I3U1)
∂

∂ω1
+ I1(I2γ

2
2 + I3γ

2
3)

∂

∂γ1

− γ1I2γ2I1
∂

∂γ2
− I3γ1γ3I1

∂

∂γ3
,
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Y3 = −I2γ2(−c3γ2 + c2γ3)
∂

∂ω1
− γ3I1(−I1ω1γ1 + U1)

∂

∂γ1

+ I2γ2I1ω1γ3
∂

∂γ2
+ (−I1ω1γ

2
1 − I2ω1γ

2
2 + U1γ1)I1

∂

∂γ3

As (5.25) is an identity with respect to all the variables and as Y1(F ), Y2(F ) and

Y3(F ) do not depend on ω3 we have

Y1(F ) = Y2(F ) = Y3(F ) = 0. (5.26)

Equations (5.26) can be considered as a system of three homogeneous linear algebraic

equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂γ1

, ∂F
∂γ2

, ∂F
∂γ3

)
, which do not vanish identically

on any open subset of domain of definition of F , because F is non-constant on any such

open subset.

It is clear that the first integral H2 is of type 4 and therefore gradH2 is a solution

of system (5.26). If a new integral F exists then system (5.26) has at least two non-zero

solutions. This is possible if and only if

rankA ≤ 2, (5.27)

where A is the 3× 4 matrix whose rows are the coefficients of vector fields Y1, Y2 and Y3.

Let us consider the 3× 3 matrix A123 obtained from A by crossing out it last column.

A necessary condition for the fulfillment of (5.27) is

D123 = det(A123) = 0.

We compute D123 and obtain

D123 = I21I2I3(I2 − I3)γ2γ
2
3(−I1ω1γ

2
1 − I2ω1γ

2
2 − I3ω1γ

2
3 + U1γ1).

It is easily seen that D123 = 0 is possible if and only if I2 = I3. At this last condition

we compute the Lie bracket Y4 = [Y2, Y3]/(I1I3) and obtain

Y4 = 2I3(−c3γ2 + c2γ3)γ1γ2
∂

∂ω1
+ I1γ3

[
I1ω1(γ

2
1 + γ2

2 + γ2
3)− U1γ1

] ∂

∂γ1

+ I1γ2γ3

[
ω1γ1(I1 − I3)− U1

] ∂

∂γ2

+ I1

[
(I3 − 2I1)ω1γ1γ

2
2 − I1ω1γ1(γ

2
1 + γ2

3) + U1(γ
2
1 + γ2

2)
] ∂

∂γ3
.

Now Y1 = 0 and we consider the following system:

Y2(F ) = Y3(F ) = Y4(F ) = 0.

By the same reason as above we should require that

rankB ≤ 2, (5.28)

where B is the 3× 4 matrix whose rows are the coefficients of vector fields Y2, Y3 and Y4.

We consider the 3 × 3 matrix B123 obtained from B by crossing out it last column.

Condition (5.28) implies

D̂123 = det(B123) = 0. (5.29)
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Computing D̂123 we obtain

D̂123 = I21I
2
3 (c3γ2− c2γ3)γ

2
2γ3
[
− 3I1ω1γ

3
1 − (2I1+ I3)ω1γ1(γ

2
2 + γ2

3)+U1(3γ
2
1 + γ2

2 + γ2
3)
]
.

One immediately sees that the condition (5.29) leads to c2 = c3 = 0 which together

with I2 = I3 leads to the Lagrange case. Thus a new partial first integral of type 4 does

not exist.

The results from Secs. 5.2.1 and 5.2.2 show that we have completely studied all the

four cases of the basis (5.1). Now from Theorem 2.2 we conclude that outside of the four

integrable cases of the Euler-Poisson equations (1.1), outside of the Goryachev-Chaplygin

case (I1 = I2 = 4I3, (c1, c2) ̸= (0, 0), c3 = 0 or I1 = I3 = 4I2, (c1, c3) ̸= (0, 0), c2 = 0

or I2 = I3 = 4I1, (c2, c3) ̸= (0, 0), c1 = 0), the Euler-Poisson equations restricted to the

invariant manifold {H1 = U1} never have a local partial first integral depending on at

most four variables and functionally independent of H2 and H3.

5.3. Invariant manifold {H2=0}. We will now study what happens on submanifold

{H2 = 0}. Here we proceed as in Sec. 5.2. We should stress the following easily seen but

important fact that now a first integral belonging to case (iv) from Table 5.1 does not

exist because all possible eliminations from the equation H2 = 0 are eliminations of some

γi, 1 ≤ i ≤ 3. We consider here the elimination of γ3. The completely analogous results

concerning the elimination of γ1 or γ2 follows from Theorem 2.2. But they can also be

obtained by exactly the same way as the elimination of γ3 that we describe below.

Let us express γ3 from the equation H2 = 0. We obtain

γ3 =
√
−γ2

1 − γ2
2 . (5.30)

γ3 is now considered as an algebraic function (see Sec. 4) of variables (γ1, γ2).

Putting the expression for γ3 from (5.30) in the Euler-Poisson equations (1.1) and

removing the sixth equation we have

dω1

dt
=

(I2 − I3)ω2ω3 + c3γ2 − c2
√
−γ2

1 − γ2
2

I1
,

dω2

dt
=

(I3 − I1)ω1ω3 + c1
√

−γ2
1 − γ2

2 − c3γ1
I2

,

dω3

dt
=

(I1 − I2)ω1ω2 + c2γ1 − c1γ2
I3

,

dγ1
dt

= ω3γ2 − ω2

√
−γ2

1 − γ2
2 ,

dγ2
dt

= ω1

√
−γ2

1 − γ2
2 − ω3γ1.

(5.31)

Looking for a first integral of system (5.31) which depends on at most four variables

we come to the following five possible cases:

1. F (ω1, ω2, ω3, γ1), (case (i))

2. F (ω1, ω2, ω3, γ2), (case (i))

3. F (ω1, ω2, γ1, γ2), (case (ii))

4. F (ω1, ω3, γ1, γ2), (case (iii))
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5. F (ω2, ω3, γ1, γ2). (case (iii))

Then it suffices to examine here the functions of types 1, 3 and 5.

Type 1. Here we use the idea from [59] applied there for the proof of Theorem 1.1.B.

Let us look for a first integral of system (5.31) that is of type 1, F (ω1, ω2, ω3, γ1), i.e.

which does not depend on γ2 and which is functionally independent of H1 and H3. Thus

F satisfies the following identity

dF

dt
=

(I2 − I3)ω2ω3 + c3γ2 − c2
√
−γ2

1 − γ2
2

I1

∂F

∂ω1

+
(I3 − I1)ω1ω3 + c1

√
−γ2

1 − γ2
2 − c3γ1

I2

∂F

∂ω2

+
(I1 − I2)ω1ω2 + c2γ1 − c1γ2

I3

∂F

∂ω3
+

(
ω3γ2 − ω2

√
−γ2

1 − γ2
2

)
∂F

∂γ1
= 0,

or equivalently

dF

dt
= γ2Y1(F ) +

√
−γ2

1 − γ2
2 Y2(F ) + Y3(F ) = 0, (5.32)

where Y1, Y2 and Y3 are the following vector fields defined in C4 = C4(ω1, ω2, ω3, γ1)

Y1 =
c3
I1

∂

∂ω1
− c1

I3

∂

∂ω3
+ ω3

∂

∂γ1
,

Y2 = −c2
I1

∂

∂ω1
+

c1
I2

∂

∂ω2
− ω2

∂

∂γ1
,

Y3 =
(I2 − I3)ω2ω3

I1

∂

∂ω1
+

(I3 − I1)ω1ω3 − c3γ1
I2

∂

∂ω2
+

(I1 − I2)ω1ω2 + c2γ1
I3

∂

∂ω3
.

(5.33)

Let us write (5.32) in the following way

γ2Y1(F ) + Y3(F ) = −
√

−γ2
1 − γ2

2 Y2(F ).

Raising the last equation to the second degree we obtain

γ2
2

[
Y1(F )2 + Y2(F )2

]
+ 2γ2Y1(F )Y3(F ) + γ2

1Y2(F )2 + Y3(F )2 = 0, (5.34)

where Y1(F ), Y2(F ) and Y3(F ) depend only on (ω1, ω2, ω3, γ1).

As (5.32) is an identity with respect to all the variables ω1, ω2, ω3, γ1 and γ2 the

same concerns (5.34). Moreover (5.34) is a polynomial with respect to γ2 because the

coefficients of the powers of γ2 do not depend on γ2.

Let us fix ω1, ω2, ω3 and γ1 ̸= 0. We prove that

Y1(F ) = Y2(F ) = Y3(F ) = 0. (5.35)

For this purpose, we examine the polynomial (5.34) studying separately two cases.

A) The first two coefficients of (5.34) vanish. That means that

Y1(F )2 + Y2(F )2 = 0, Y1(F )Y3(F ) = 0. (5.36)

Thus either Y1(F ) = 0 or Y3(F ) = 0. If Y1(F ) = 0, then from first equation of (5.36) one

obtains Y2(F ) = 0 and thus from (5.34), Y3(F ) = 0. If Y3(F ) = 0, then from (5.34) one
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has γ2
1Y2(F )2 = 0. As γ2

1 ̸= 0, Y2(F ) = 0 and thus also Y1(F ) = 0. Thus in case(A) (5.35)

holds.

B) At least one of the first two coefficients of (5.34) is non-vanishing. In this case (5.34)

is a first or second order non-zero polynomial in γ2. For fixed (ω, γ1) such a polynomial

admits at most two roots. But this contradicts the fact that for these (ω, γ1), (5.34) is

identically satisfied for all γ2.

This proves that case (B) cannot occur and consequently that (5.34) implies (5.35).

Let us compute the Lie bracket Y4 = [Y2, Y3]. We obtain

Y4 =
(I2 − I3)c1ω3

I1I2

∂

∂ω1
+

(I1 − I3)c2ω3 + I1c3ω2

I1I2

∂

∂ω2

+
I1(I1 − I2)c1ω1 + I2(I2 − 2I1)c2ω2

I1I2I3

∂

∂ω3
+

(I3 − I1)ω1ω3 − c3γ1
I2

∂

∂γ1
.

Equations (5.35) imply that Y4(F ) = 0 so that we have the following system

Y1(F ) = Y2(F ) = Y3(F ) = Y4(F ) = 0. (5.37)

Equations (5.37) can be considered as a system of four homogeneous linear algebraic

equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ1

)
, which do not vanish identically.

As in Sec. 5.2, we should equate to zero the determinant D of the 4× 4 matrix A of

the coefficients of system (5.37). We compute D and obtain

D =
1

I21I
2
2I3

[
I1I2 (I1 − I2) c

2
3ω1ω

3
2 − I1I2 (2I1 − I2 − I3) c2c3ω1ω

2
2ω3

+ I1I2 (I1 − I3) c
2
2ω1ω2ω

2
3 + I1I2 (I2 − I3) c1c3ω

3
2ω3

+ I1 (I1 − I3) (I2 − I3) c1c2ω
2
1ω

2
3 + I1 (I2 − I3) c1c2c3ω1ω3γ1

− I2 (I2 − I3) (I1 − I2 + I3) c1c2ω
2
2ω

2
3 − I2 (I1 − I2) c2c

2
3ω

2
2γ1

+ I2 (2I1 − I2 − I3) c
2
2c3ω2ω3γ1 −

(
I1I2c

2
1 + I1I2c

2
2 − I1I3c

2
1 − I2I3c

2
2

)
c2ω

2
3γ1 ] .

It is identically equal to zero and therefore all of its coefficients should be zeros. D is

a polynomial in variables ω1, ω2, ω3 and γ1 having ten monomials and thus with ten

coefficients depending on Ic. It is clear that to solve equation D = 0 is equivalent to

finding all values of the parameters Ic for which the ten coefficients of D are zero. To

solve this system of ten equations we proceed as in Sec. 5.2.

After three consecutive simplifications of the source system we obtain the reduced

system having five equations:

(I1 − I2)c3 = 0, (I1 − I3)c2 = 0, (I2 − I3)c2c3 = 0,

(I2 − I3)c1c3 = 0, (I2 − I3)c1c2 = 0.

We solve these five equations by the Maple command solve and obtain the following

four solutions:

1. I1 = I2, c1 = c2 = 0,

2. I1 = I3, c1 = c3 = 0,

3. I1 = I2 = I3,

4. c2 = c3 = 0.
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The first three of them lead to the Lagrange and kinetic symmetry cases. We should

study only the fourth solution.

Let c2 = c3 = 0. In this case Y4 is dependent on Y1, Y2 and Y3 and system (5.35)

has a solution gradH3. However, H3 is not a fourth integral. Thus, if a fourth integral

F exists, system (5.35) has at least two linearly independent solutions. We consider the

3×4 matrix A of the coefficients of this system. It is clear that our problem has a solution

if and only if

rankA ≤ 2. (5.38)

Now we are going to study when (5.38) is fulfilled. For this purpose we calculate all

possible determinants of order three which can be obtained from the matrix A. For

1 ≤ i ≤ 4, by Di, we denote the determinant obtained from matrix A by crossing out its

i-th column. We have

D1 = − (I2 − I3) c1
I2I3

ω1ω2ω3, D2 =
(I2 − I3) c1

I1I3
ω2
2ω3,

D3 = − (I2 − I3) c1
I1I2

ω2ω
2
3 , D4 =

(I2 − I3) c
2
1

I1I2I3
ω2ω3.

It is easy to see that the equations Di = 0, 1 ≤ i ≤ 4, are satisfied only if either c1 = 0

which with the condition c2 = c3 = 0 leads to the Euler case or I2 = I3 which leads to

the Lagrange case.

Thus a new partial first integral of type 1, i.e. F (ω1, ω2, ω3, γ1) does not exist.

Type 3. Let us look for a first integral of the system (5.31) that is of type 3,

F (ω1, ω2, γ1, γ2), i.e. which does not depend on ω3 and which is functionally indepen-

dent of H1 and H3. Thus F satisfies the following identity

dF

dt
=

(I2 − I3)ω2ω3 − c2
√
−γ2

1 − γ2
2 + c3γ2

I1

∂F

∂ω1

+
(I3 − I1)ω1ω3 + c1

√
−γ2

1 − γ2
2 − c3γ1

I2

∂F

∂ω3

+

(
ω3γ2 − ω2

√
−γ2

1 − γ2
2

)
∂F

∂γ1
+

(
ω1

√
−γ2

1 − γ2
2 − ω3γ1

)
∂F

∂γ2
= 0,

which can be presented in the following way

dF

dt
= ω3Y1(F ) + Y2(F ) = 0, (5.39)

where Y1 and Y2 are the following vector fields defined in C4 = C4(ω1, ω2, γ1, γ2)

Y1 =
(I2 − I3)ω2

I1

∂

∂ω1
+

(I3 − I1)ω1

I2

∂

∂ω2
+ γ2

∂

∂γ1
− γ1

∂

∂γ2
,

Y2 = −c2
√
−γ2

1 − γ2
2 − c3γ2

I1

∂

∂ω1
+

c1
√
−γ2

1 − γ2
2 − c3γ1

I2

∂

∂ω2

− ω2

√
−γ2

1 − γ2
2

∂

∂γ1
+ ω1

√
−γ2

1 − γ2
2

∂

∂γ2
.
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As (5.39) is an identity with respect to all the variables and as Y1(F ) and Y2(F ) do

not depend on ω3 we have

Y1(F ) = Y2(F ) = 0. (5.40)

We compute the Lie brackets Y3 = [Y1, Y2] and Y4 = [Y1, Y3] and obtain

Y3 =
(I3 − I2)c1

√
−γ2

1 − γ2
2 − I3c3γ1

I1I2

∂

∂ω1
− (I1 − I3)c2

√
−γ2

1 − γ2
2 + I3c3γ2

I1I2

∂

∂ω2

+
(I1 − I2 − I3)ω1

√
−γ2

1 − γ2
2

I2

∂

∂γ1
− (I1 − I2 + I3)ω2

√
−γ2

1 − γ2
2

I1

∂

∂γ2
,

Y4 =
I3c3 (I2 − I1 − I3) γ2 + (I1 − I3) (I2 − I3) c2

√
−γ2

1 − γ2
2

I21I2

∂

∂ω1

+
I3c3 (I2 − I1 + I3) γ1 − (I1 − I3) (I2 − I3) c1

√
−γ2

1 − γ2
2

I1I22

∂

∂ω2

+

(
2I1I2 + I2I3 − 2I22 + I23 − I1I3

)
ω2

√
−γ2

1 − γ2
2

I1I2

∂

∂γ1

+

(
2I21 − 2I1I2 − I23 − I1I3 + I2I3

)
ω1

√
−γ2

1 − γ2
2

I1I2

∂

∂γ2
.

Equations (5.40) imply that

Y3(F ) = Y4(F ) = 0. (5.41)

Equations (5.40) and (5.41) can be considered as a system of four homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂γ1

, ∂F
∂γ2

)
, which do not vanish

identically, because F is non-constant on any open subset of its domain of definition.

If a new integral F exists, system (5.40)–(5.41) has at least one non-zero solution. As

in Sec. 5.2 we consider the 4×4 matrix A of the coefficients of this system. The condition

under which system (5.40)–(5.41) has at least one non-zero solution is rankA ≤ 3.

Therefore we equate to zero the determinant D = det(A) and study when identity

D ≡ 0 (5.42)

is fulfilled. We compute D and obtain

D =
γ2
1 + γ2

2

I32I
3
3

D̂,

where

D̂ = D1

√
−γ2

1 − γ2
2 +D2.

The expressions for D1 and D2 are polynomials in variables ω1, ω2, γ1 and γ2.

It is clear that (5.42) is equivalent to D̂ = 0, that is D1

√
−γ2

1 − γ2
2 + D2 = 0. If

D1 = 0 identically, D2 = 0 identically too. Let us suppose that D1 ̸= 0. Then we have√
−γ2

1 − γ2
2 = −D2

D1
. (5.43)

Applying Proposition 4.3 to V = −γ2
1−γ2

2 one sees that (5.43) can never occur because√
V /∈ C(γ1, γ2). Consequently D1 = D2 = 0. Thus we require that all the coefficients of

D1 and D2 be zero. First we consider polynomial D1. It has six monomials and thus six
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coefficients depending on Ic. We want to find all values of the parameters Ic for which

the six coefficients of D1 are zero, i.e.

I21 (I1 − I3)(2I1 − I2 − 2I3)(I1 − I2 − I3)c2 = 0,

I1I2(I2 − I3)(3I
2
1 − 3I1I2 − I1I3 + 2I2I3 − 2I23 )c1 = 0

I1I2(I1 − I3)(3I1I2 − 2I1I3 − 3I22 + I2I3 + 2I23 )c2 = 0

− I1(2I
2
1I2c

2
1 + 2I21I2c

2
2 − 2I21I3c

2
1 − I1I

2
2c

2
1 − I1I

2
2c

2
2 − I1I2I3c

2
1

− 4I1I2I3c
2
2 + 2I1I2I3c

2
3 + 2I1I

2
3c

2
1 + I22I3c

2
2 − 2I22I3c

2
3 + 2I2I

2
3c

2
2) = 0,

− I22 (I2 − I3)(I1 − I2 + I3)(I1 − 2I2 + 2I3)c1 = 0,

− I2(I
2
1I2c

2
1 + I21I2c

2
2 − I21I3c

2
1 + 2I21I3c

2
3 − 2I1I

2
2c

2
1 − 2I1I

2
2c

2
2

+ I1I2I3c
2
2 − 2I1I2I3c

2
3 + 4I1I2I3c

2
1 − 2I1I

2
3c

2
1 + 2I22I3c

2
2 − 2I2I

2
3c

2
2) = 0.

After five consecutive simplifications we obtain the reduced system that consists of

seven equations, that is

(I1 − I2)c3 = 0, (I1 − I2)c1c2 = 0, (I1 − I3)(I2 − 2I3)c2 = 0,

(I1 − I3)(I1 − 2I3)c2 = 0, (I2 − I3)(I2 − 2I3)c1 = 0, (I2 − I3)(I1 − 2I3)c1 = 0,

(I2 − I3)(I2 − 2I3)c2c3 = 0.

Solving this system by the Maple command solve we obtain six solutions. Removing

the solutions that lead to the Euler, Lagrange, Kovalevskaya and kinetic symmetry cases

it remains only one solution

I1 = 2I3, I2 = 2I3, I3, c1, c2, c3 are arbitrary.

Thus we should consider only the case

I1 = I2 = 2I3. (5.44)

At the condition (5.44) we have also D2 = 0 and therefore vector fields Yi, 1 ≤ i ≤ 4,

are linearly dependent (they satisfy equation 4Y4+Y2 = 0). That is why we compute the

Lie bracket Y5 = [Y2, Y3] and obtain

Y5 =
ω1 (c2γ1 + c1γ2) + 2c3ω2

√
−γ2

1 − γ2
2 + ω2 (c2γ2 − c1γ1)

4I3

∂

∂ω1

− ω1 (c1γ1 − c2γ2) + 2c3ω1

√
−γ2

1 − γ2
2 + ω2 (c2γ1 + c1γ2)

4I3

∂

∂ω2

+
I3ω

2
1 + I3ω

2
2 − c3

√
−γ2

1 − γ2
2

2I3

(
γ2

∂

∂γ1
− γ1

∂

∂γ2

)
and consider the following four equations:

Yi(F ) = 0, 1 ≤ i ≤ 3, Y5(F ) = 0. (5.45)

As above we equate to zero the determinant ∆ = det(B), where B is the matrix of

the coefficients of system (5.45) and study when the identity

∆ ≡ 0
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is fulfilled. We compute ∆ and obtain

∆ = −
√

−γ2
1 − γ2

2

8I23
∆̂,

where

∆̂ = c3
(
c2ω

2
1γ

3
1 + c1ω

2
1γ

2
1γ2 + c2ω

2
1γ1γ

2
2 + c1ω

2
1γ

3
2 − 2c1ω1ω2γ

3
1 + 2c2ω1ω2γ

2
1γ2

− 2c1ω1ω2γ1γ
2
2 + 2c2ω1ω2γ

3
2 − c2ω

2
2γ

3
1 − c1ω

2
2γ

2
1γ2 − c2ω

2
2γ1γ

2
2 − c1ω

2
2γ

3
2

)
.

It is clear that the equation ∆ = 0 is equivalent to ∆̂ = 0. It is easily seen from the

expression for ∆̂ that ∆̂ vanishes identically only if c3 = 0 or if c1 = c2 = 0. Taking into

account the condition (5.44) we see that if c3 = 0 we come to the Kovalevskaya case and

if c1 = c2 = 0 - to the Lagrange case.

Thus a new partial first integral of type 3, i.e. F (ω1, ω2, γ1, γ2) can only exist in the

two cases known above.

Type 5. Let us look for a first integral of the system (5.31) that is of type 5,

F (ω2, ω3, γ1, γ2), i.e. which does not depend on ω1 and which is functionally indepen-

dent of H1 and H3. Thus F satisfies the following identity

dF

dt
=

(I3 − I1)ω1ω3 + c1
√
−γ2

1 − γ2
2 − c3γ1

I2

∂F

∂ω2

+
(I1 − I2)ω1ω2 + c2γ1 − c1γ2

I3

∂F

∂ω3

+

(
ω3γ2 − ω2

√
−γ2

1 − γ2
2

)
∂F

∂γ1
+

(
ω1

√
−γ2

1 − γ2
2 − ω3γ1

)
∂F

∂γ2
= 0,

which can be presented in the following way

dF

dt
= ω1Y1(F ) + Y2(F ) = 0, (5.46)

where Y1 and Y2 are the following vector fields defined in C4 = C4(ω2, ω3, γ1, γ2)

Y1 =
(I3 − I1)ω3

I2

∂

∂ω2
+

(I1 − I2)ω2

I3

∂

∂ω3
+
√
−γ2

1 − γ2
2

∂

∂γ2
,

Y2 =
c1
√
−γ2

1 − γ2
2 − c3γ1

I2

∂

∂ω2
+

c2γ1 − c1γ2
I3

∂

∂ω3

+

(
ω3γ2 − ω2

√
−γ2

1 − γ2
2

)
∂

∂γ1
− ω3γ1

∂

∂γ2
.

As (5.46) is an identity with respect to all the variables and as Y1(F ) and Y2(F ) do

not depend on ω1 we have

Y1(F ) = Y2(F ) = 0. (5.47)

We compute the Lie brackets Y3 = [Y1, Y2] and Y4 = [Y1, Y3] and obtain

Y3 =
(I1 − I3) c2γ1 − I1c1γ2

I2I3

∂

∂ω2
+

(I1 − I2) c3γ1 − I1c1
√
−γ2

1 − γ2
2

I2I3

∂

∂ω3

+
I2 (I1 − I2 + I3)ω2γ2 + I3 (I1 + I2 − I3)ω3

√
−γ2

1 − γ2
2

I2I3

∂

∂γ1
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− (I1 − I2 + I3)ω2γ1
I3

∂

∂γ2
,

Y4 =
(I1 − I2) (I1 − I3) c3γ1 − I1 (I1 + I2 − I3) c1

√
−γ2

1 − γ2
2

I22I3

∂

∂ω2

− (I1 − I2) (I1 − I3) c2γ1 − I1 (I1 − I2 + I3) c1γ2
I2I23

∂

∂ω3

−
[
I1 (I1 − I2 + I3) + 2I3 (I2 − I3)

I2I3
ω3γ2

− I1 (I1 + I2 − I3)− 2I2 (I2 − I3)

I2I3
ω2

√
−γ2

1 − γ2
2

]
∂

∂γ1

+
I1 (I1 − I2 + I3) + 2I3 (I2 − I3)

I2I3
ω3γ1

∂

∂γ2
.

Equations (5.47) imply that

Y3(F ) = Y4(F ) = 0. (5.48)

Equations (5.47) and (5.48) can be considered as a system of four homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ1

, ∂F
∂γ2

)
, which do not vanish

identically, because F is non-constant on any open subset of its domain of definition.

If a new integral F exists, system (5.47)–(5.48) has at least one non-zero solution. As

in Sec. 5.2 we consider the 4×4 matrix A of the coefficients of this system. The condition

under which system (5.47)–(5.48) has at least one non-zero solution is rankA ≤ 3.

Therefore we equate to zero the determinant D = det(A) and study when identity

D ≡ 0 (5.49)

is fulfilled. We compute D and obtain

D =
γ1
√
−γ2

1 − γ2
2

I32I
3
3

D̂,

where

D̂ = D1

√
−γ2

1 − γ2
2 +D2.

The expressions for D1 and D2 are polynomials in variables ω2, ω3, γ1 and γ2.

It is clear that (5.49) is equivalent to D̂ = 0, that is D1

√
−γ2

1 − γ2
2 + D2 = 0. If

D1 = 0 identically, D2 = 0 identically too. Let us suppose that D1 ̸= 0. Then we have√
−γ2

1 − γ2
2 = −D2

D1
. (5.50)

Applying Proposition 4.3 to V = −γ2
1−γ2

2 one sees that (5.50) can never occur because√
V /∈ C(γ1, γ2). Consequently D1 = D2 = 0. Thus we require that all the coefficients of

D1 and D2 be zero. First we consider polynomial D2. It has 11 monomials and thus 11

coefficients depending on Ic. We want to find all values of the parameters Ic for which

the 11 coefficients of D2 are zero, i.e.

I22 (I1 − I2)(2I1 − 2I2 + I3)(I1 − I2 + I3)c3 = 0,

2I2I3(I2 − I3)(I1 − I2)(I1 + I2 − I3)c1 = 0,
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2I23 (I2 − I3)(I1 − I3)(I1 + I2 − I3)c1 = 0, I2I3(I2 − I3)(I1 − I3)c1c2 = 0,

I2I3(I2 − I3)(I1 − I2)c1c3 = 0, I23 (I1 − I3)(I1 + I2 − I3)(2I1 + I2 − 2I3)c2 = 0,

I2I3(2I
2
1 − 4I1I2 + 3I1I3 + 2I22 − 2I2I3)c1c3 = 0,

I3(2I
2
1I2c

2
2 − 4I1I2I3c

2
2 − 2I1I

2
3c

2
3 + 2I1I2I3c

2
1 + 2I21I3c

2
3 + 2I2I

2
3c

2
3−

2I1I
2
2c

2
1 + I1I

2
2c

2
2 − I22I3c

2
2 − I22I3c

2
3 + 2I2I

2
3c

2
2 − I1I2I3c

2
3) = 0,

I2I3(2I1 − I3)(I1 + I2 − I3)c1c2 = 0,

I2I3(I1 − I2)(2I
2
1 − 2I1I2 + I1I3 + 3I2I3 − 3I23 )c3 = 0,

I2I3(I1 − I3)(2I
2
1 + I1I2 − 2I1I3 − 3I22 + 3I2I3)c2 = 0.

After six consecutive simplifications we obtain the reduced system that consists of

eight equations, that is

(I2 − I3)c1 = 0, (I2 − I3)c3c2 = 0, (2I1 − I3)c3c1 = 0,

(I2 − I3)(I1 − I2)c3 = 0, (I1 − I2)(2I1 + 2I2 − 3I3)c3 = 0, (2I1 − I3)c1c2 = 0,

(I2 − I3)(I1 − I3)c2 = 0, (2I1 − I3)(I1 − I3)c2 = 0.

Solving this system by theMaple command solve we obtain seven solutions. Remov-

ing the solutions that lead to the Euler, Lagrange, Kovalevskaya and kinetic symmetry

cases we obtain only one solution

I2 = 2I1, I3 = 2I1, I1, c1, c2, c3 are arbitrary.

Thus we should consider only the case

I2 = I3 = 2I1. (5.51)

Under condition (5.51) we also have D1 = 0 and therefore vector fields Yi, 1 ≤ i ≤ 4,

are linearly dependent (they satisfy equation 4Y4+Y2 = 0). That is why we compose the

Lie bracket Y5 = [Y2, Y3] and obtain

Y5 =
c3ω2γ2 + ω3 (2c1γ1 − c2γ2) + (c2ω2 + c3ω3)

√
−γ2

1 − γ2
2

4I1

∂

∂ω2

− ω2 (2c1γ1 + c2γ2) + c3ω3γ2 − (c3ω2 − c2ω3)
√
−γ2

1 − γ2
2

4I1

∂

∂ω3

+
I1ω

2
2 + I1ω

2
3 − c1γ1

2I1

√
−γ2

1 − γ2
2

∂

∂γ2

and consider the following four equations:

Yi(F ) = 0, 1 ≤ i ≤ 3, Y5(F ) = 0. (5.52)

As above we equate to zero the determinant ∆ = det(B), where B is the matrix of

the coefficients of system (5.52) and study when identity

∆ ≡ 0

is fulfilled. We compute ∆ and obtain

∆ = − γ2
1

8I21
∆̂,



46 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

where

∆̂ = ∆1

√
−γ2

1 − γ2
2 +∆2.

The expressions for ∆1 and ∆2 are the following polynomials in variables ω2, ω3, γ1 and

γ2.

∆1 = c1γ2(−c3ω
2
2 + 2c2ω2ω3 + c3ω

2
3), ∆2 = c1(γ

2
1 + γ2

2)(c2ω
2
2 + 2c3ω2ω3 − c2ω

2
3).

As ∆̂ = 0, by Proposition 4.3 we have ∆1 = ∆2 = 0. As it is easily seen the last

equations can be satisfied only in two cases: when c1 = 0 which together with condition

(5.51) leads to the Kovalevskaya case and when c2 = c3 = 0 that leads to the Lagrange

case. The conclusion is that a partial first integral of type 5 does not exist.

5.4. Invariant manifold {H3=U3}. Here we proceed as in Sec. 5.2. We first eliminate

ω3 from the equation

H3 = U3. (5.53)

Then we study the elimination of γ3 from (5.53). The results of these investigations are

presented in the next two subsections.

5.4.1. Elimination of ω3. We express ω3 from (5.53) and obtain

ω3 =

√
U3 − I1ω2

1 − I2ω2
2 − 2c1γ1 − 2c2γ2 − 2c3γ3

I3
. (5.54)

ω3 is now considered as an algebraic function of all its variables.

To shorten the formulas, we denote the square root of (5.54) by Ω3 so that we have

ω3 = Ω3. (5.55)

Now we insert this form of ω3 in the Euler-Poisson equations (1.1) and remove the

third equation. In this way we obtain the following system of five differential equations:

dω1

dt
=

(I2 − I3)ω2Ω3 + c3γ2 − c2γ3
I1

,

dω2

dt
=

(I3 − I1)ω1Ω3 + c1γ3 − c3γ1
I2

,

dγ1
dt

= Ω3γ2 − ω2γ3,

dγ2
dt

= ω1γ3 − Ω3γ1,

dγ3
dt

= ω2γ1 − ω1γ2.

(5.56)

There are five possible types of first integrals of this system which depend on at most

four variables. They are:

1. F (ω1, ω2, γ1, γ2), (case (ii))

2. F (ω1, ω2, γ1, γ3), (case (iii))

3. F (ω1, ω2, γ2, γ3), (case (iii))

4. F (ω1, γ1, γ2, γ3), (case (iv))

5. F (ω2, γ1, γ2, γ3). (case (iv))
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It is then sufficient to examine here the functions of type 1, 2 and 4. Afterwards,

eliminating γ3, we will be able to study the functions belonging to case (i), the function

F (ω1, ω2, ω3, γ1) in this circumstance.

Type 1. Let us look for a first integral of system (5.56) that does not depend on

γ3, i.e. of type 1. Moreover we want this integral to be functionally independent of H1

and H2 restricted to the invariant manifold {H3 = U3}. Let us suppose that the function
F (ω1, ω2, γ1, γ2) is such a first integral. Then we have

I1I2
dF

dt
= I2 [(I2 − I3)ω2Ω3 + c3γ2 − c2γ3]

∂F

∂ω1

+ I1 [(I3 − I1)ω1Ω3 + c1γ3 − c3γ1]
∂F

∂ω2

+ I1I2 (Ω3γ2 − ω2γ3)
∂F

∂γ1
+ I1I2 (ω1γ3 − Ω3γ1)

∂F

∂γ2
= Y1(F ) = 0, (5.57)

where Y1 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

Equation (5.57) is an identity with respect to all the five variables. F does not depend

on γ3. Thus if we differentiate this identity with respect to γ3 we again obtain a linear

partial differential equation for F . Let us note that from (5.54) and (5.55) it follows that

∂Ω3

∂γ3
= − c3

I3Ω3
.

In this way we obtain from (5.57)

I3Ω3
∂Y1(F )

∂γ3
= −I2(I3c2Ω3 + I2c3ω2 − I3c3ω2)

∂F

∂ω1

+ I1(I1c3ω1 − I3c3ω1 + I3c1Ω3)
∂F

∂ω2
− I1I2(c3γ2 + I3ω2Ω3)

∂F

∂γ1

+ I1I2(I3ω1Ω3 + c3γ1)
∂F

∂γ2
= Y2(F ) = 0, (5.58)

where Y2 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

We differentiate (5.58) and obtain

Ω3
∂Y2(F )

∂γ3
= c3

(
I2c2

∂F

∂ω1
− I1c1

∂F

∂ω2
+ I1I2ω2

∂F

∂γ1
− I1I2ω1

∂F

∂γ2

)
= Y3(F ) = 0, (5.59)

where Y3 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

When c3 = 0, Y3 vanishes identically. That is why we consider separately two cases:

c3 ̸= 0 and c3 = 0.

First let c3 ̸= 0. Then we compute the Lie bracket Y4 = [Y2, Y3]/(I1I2c
2
3) and obtain

Y4(F ) = −c1(I2 − I3)
∂F

∂ω1
− c2(I1 − I3)

∂F

∂ω2

+ I1ω1(I1 − I2 − I3)
∂F

∂γ1
− I2ω2(I1 − I2 + I3) = 0. (5.60)

Equations (5.57)–(5.60) can be considered as a system of three homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂γ1

, ∂F
∂γ2

)
, which do not vanish

identically, because F is non-constant on any open subset of its domain of definition.
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Thus, if a new first integral F exists, system (5.57)–(5.60) has a non-zero solution

gradF . This is possible if and only if the determinant D of the coefficients of equations

(5.57)–(5.60) is identically equal to zero. We compute this determinant and obtain

D = I21I
2
2c

3
3D̂,

where

D̂ = I1(I1 − I3)(I1 − I2 − I3)ω
3
1γ2 − I1(I2 − I3)(I1 − I2 − I3)ω

2
1ω2γ1

− I2(I1 − I3)(I1 − I2 + I3)ω1ω
2
2γ2 + I1c2(I1 − I2 − I3)ω1γ

2
1

− I1c1(I1 − 2I3)ω1γ1γ2 − I2c2(I1 − I3)ω1γ
2
2 + I2(I2 − I3)(I1 − I2 + I3)ω

3
2γ1

+ I1c1(I2 − I3)ω2γ
2
1 + I2c2(I2 − 2I3)ω2γ1γ2 + I2c1(I1 − I2 + I3)ω2γ

2
2 .

It is clear that the equation D = 0 is equivalent to D̂ = 0. D̂ = 0 has ten coefficients.

The annulation of D̂ = 0 means that all of its coefficients should be zeros. In this way we

obtain a system of ten equations for the parameters Ic.
After three consecutive simplifications we come to the reduced system:

c1 = 0, c2 = 0, I2 − I3 = 0, I1 − I3 = 0,

which obviously leads to a particular case of the kinetic symmetry case. Thus a new

partial first integral of type 1 does not exist when c3 ̸= 0.

Let c3 = 0. Now Ω3 does not depend on γ3 and Y1(F ) is of the form (see (5.57))

Y1(F ) = Z1(F )γ3 + Z2(F )Ω3, (5.61)

where the vector fields Z1 and Z2, defined on C4(ω1, ω2, γ1, γ2), are given as follows:

Z1 = −I2c2
∂

∂ω1
+ I1c1

∂

∂ω2
− I1I2ω2

∂

∂γ1
+ I1I2ω1

∂

∂γ2
,

Z2 = I2(I2 − I3)ω2
∂

∂ω1
+ I1(I3 − I1)ω1

∂

∂ω2
+ I1I2γ2

∂

∂γ1
− I1I2γ1

∂

∂γ2
.

Equation (5.61) implies that

Z1(F ) = Z2(F ) = 0. (5.62)

We compute the Lie brackets Z3 = [Z1, Z2]/(I1I2) and Z4 = [Z2, Z3] and obtain

Z3 = (I2 − I3)c1
∂

∂ω1
+ (I1 − I3)c2

∂

∂ω2

− I1(I1 − I2 − I3)ω1
∂

∂γ1
+ I2(I1 − I2 + I3)ω2

∂

∂γ2
,

Z4 = −I2c2(I2 − I3)(I1 − I3)
∂

∂ω1
+ I1c1(I2 − I3)(I1 − I3)

∂

∂ω2

− I1I2(2I1I2 − I1I3 − 2I22 + I2I3 + I23 )ω2
∂

∂γ1

− I1I2(2I
2
1 − 2I1I2 − I1I3 + I2I3 − I23 )ω1

∂

∂γ2
.

Equations (5.62) imply that

Z3(F ) = Z4(F ) = 0. (5.63)
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As in the case c3 ̸= 0, the system of equations (5.62) and (5.63) is a linear homogeneous

system that has a non-zero solution. Thus the determinant δ of its coefficients should

vanish identically. We compute δ and obtain

δ = I21I
2
2 δ̂,

where

δ̂ = I21 (I1 − I3)(2I1 − I2 − 2I3)(I1 − I2 − I3)c2ω
3
1

+ I1I2(I2 − I3)(2I3I2 − 3I1I2 + 3I21 − I3I1 − 2I23 )c1ω
2
1ω2

+ I1I2(I1 − I3)(3I1I2 − 2I1I3 + I2I3 − 3I22 + 2I23 )c2ω1ω
2
2

− I1(2I1 − I2 − 2I3)(I1I2c
2
1 + I1I2c

2
2 − I1I3c

2
1 − I2I3c

2
2)ω1γ2

− I22 (I2 − I3)(I1 − 2I2 + 2I3)(I1 − I2 + I3)c1ω
3
2

− I2(I1 − 2I2 + 2I3)(I1I2c
2
1 + I1I2c

2
2 − I1I3c

2
1 − I2I3c

2
2)ω2γ1.

Equation δ = 0 is equivalent to the equation δ̂ = 0. Thus the six coefficients of δ̂

which should be zeros. In this way we have obtained a system of six equations for the

parameters Ic. We subject it to simplification and after five consecutive simplifications

we come to the reduced system consisting of the following five equations:

(I1 − I2)c1c2 = 0, (I1 − I3)(I2 − 2I3)c2 = 0, (I1 − I3)(I1 − 2I3)c2 = 0,

(I2 − I3)(I2 − 2I3)c1 = 0, (I2 − I3)(I1 − 2I3)c1 = 0.

We solve them by the Maple command solve and obtain five solutions:

{I1 = I1, I2 = I2, I3 = I3, c1 = 0, c2 = 0}
{I1 = I3, I2 = I2, I3 = I3, c1 = 0, c2 = c2}
{I1 = I1, I2 = I3, I3 = I3, c1 = c1, c2 = 0}
{I1 = 2I3, I2 = 2I3, I3 = I3, c1 = c1, c2 = c2}
{I1 = I3, I2 = I3, I3 = I3, c1 = c1, c2 = c2}.

Taking into account that now c3 = 0 we see that the first of these solutions leads to

the Euler case, the second and third ones - to the Lagrange case, the fourth solution leads

to the Kovalevskaya case and the last one - to the kinetic symmetry case.

Thus a new partial first integral of type 1 does not exist also when c3 = 0.

Type 2. Let us study now a first integral of type 2, i.e. F (ω1, ω2, γ1, γ3). We have

I1I2
dF

dt
= I2 [(I2 − I3)ω2Ω3 + c3γ2 − c2γ3]

∂F

∂ω1

+ I1 [(I3 − I1)ω1Ω3 + c1γ3 − c3γ1]
∂F

∂ω2

+ I1I2 (Ω3γ2 − ω2γ3)
∂F

∂γ1
+ I1I2 (ω2γ1 − ω1γ2)

∂F

∂γ3
= Y1(F ) = 0, (5.64)

where Y1 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

Equation (5.64) is an identity with respect to all the five variables. F does not depend

on γ2. Thus if we differentiate this identity with respect to γ2 we again obtain a linear
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partial differential equation for F . Let us note that

∂Ω3

∂γ2
= − c2

I3Ω3
.

In this way we have

I3Ω3
∂Y1(F )

∂γ2
= I2(I3c3Ω3 − I2c2ω2 + I3c2ω2)

∂F

∂ω1
+ I1(I1 − I3)c2ω1

∂F

∂ω2

+ I1I2(−c2γ2 + I3Ω
2
3)

∂F

∂γ1
− I1I2I3ω1Ω3

∂F

∂γ3
= Y2(F ) = 0, (5.65)

where Y2 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

We differentiate (5.65) with respect to γ2 and obtain

Ω3

I2

∂Y2(F )

∂γ2
= −c2

(
c3

∂F

∂ω1
+ 3I1Ω3

∂F

∂γ1
− I1ω1

∂F

∂γ3

)
= Y3(F ) = 0, (5.66)

where Y3 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

When c2 = 0, Y3 vanishes identically. That is why we consider separately two cases:

c2 ̸= 0 and c2 = 0.

Let first c2 ̸= 0. Then we differentiate (5.66) with respect to γ2 and obtain

I3Ω3

3I1c22

∂Y3(F )

∂γ2
=

∂F

∂γ1
= Y4(F ) = 0. (5.67)

Equations (5.64)–(5.67) can be considered as a system of four homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂γ1

, ∂F
∂γ3

)
, which do not vanish

identically, because F is non-constant on any open subset of its domain of definition.

Thus, if a fourth integral F exists, system (5.64)–(5.67) has a non-zero solution gradF .

This is possible if and only if the determinant D of the coefficients of equations (5.64)–

(5.67) is identically equal to zero. We compute this determinant and obtain

D = I21I2c
2
2ω1D̂,

where

D̂ = c2(I1 − I3)ω1γ3 − c3(I1 − I2)ω2γ1 − c1(I2 − I3)ω2γ3.

The equation D = 0 is equivalent to D̂ = 0. Thus, as c2 ̸= 0, the first coefficient

of D̂ vanishes identically if and only if I1 = I3. At this condition the two remaining

terms vanish either if I2 = I3 or if c1 = c3 = 0. The first possibility leads to the kinetic

symmetry case and the second one - to the Lagrange case.

Thus a new partial first integral of type 2 does not exist when c2 ̸= 0.

Let c2 = 0. Now Ω3 does not depend on γ2 and Y1(F ) is of the form (see (5.64))

Y1(F ) = Z1(F )γ2 + Z2(F )Ω3, (5.68)

where the vector fields Z1 and Z2, defined on C4(ω1, ω2, γ1, γ3), are given as follows:

Z1 = I2c3
∂

∂ω1
+ I1I2Ω3

∂

∂γ1
− I1I2ω1

∂

∂γ3
,

Z2 = I2(I2 − I3)ω2Ω3
∂

∂ω1
+ I1 [(I3 − I1)ω1Ω3 + c1γ3 − c3γ1]

∂

∂ω2
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− I1I2ω2γ3
∂

∂γ1
+ I1I2ω2γ1

∂

∂γ3
.

Equation (5.68) implies that

Z1(F ) = Z2(F ) = 0. (5.69)

We compute the Lie brackets Z3 = [Z1, Z2]/(I1I2) and Z4 = [Z2, Z3]/I2 and obtain

Z3 = −I2(I2 − I3)c1ω2
∂

∂ω1
+ [I3c3Ω3(I3 − 2I1) + I1c1ω1(I1 − 2I3)]

∂

∂ω2

− I1I2(I1 − I2 − I3)ω1ω2
∂

∂γ1
+ I2I3(I1 + I2 − I3)ω2Ω3

∂

∂γ3
,

Z4 = a1
∂

∂ω1
+ a2

∂

∂ω2
− a3

∂

∂γ1
− a4

∂

∂γ2
,

where

a1 = (I2 − I3)[−I1(2I1 − I3)c3ω
2
1 + I1I3c1ω1Ω3 − I2(3I1 − I2 − I3)c3ω

2
2

− (3I1 − 2I3)c1c3γ1 − (I1c
2
1 + 4I1c

2
3 − 2I3c

2
3)γ3 + (2I1 − I3)c3U3],

a2 = −I1ω2[I1(2I1 − 2I2 − I3)c3ω1 + I3(I1 + 2I2 − 2I3)c1Ω3],

a3 = I1[I1(I1 − I3)(I1 − I2 − I3)ω
2
1Ω3 + I1(I1 − I2 − I3)c3ω1γ1 + I1(I2 − I3)c1ω1γ3

− I2(I1I2 − 2I1I3 − I22 − I2I3 + 2I23 )ω
2
2Ω3 − I3(2I1 − I3)c3γ3Ω3],

a4 = I1[I1(I1 − I3)(I1 + I2 − I3)ω
3
1 + I2(3I

2
1 − 4I1I3 − I22 + I23 )ω1ω

2
2

+ (I21 + 2I1I2 − 2I1I3 − 2I2I3 + 2I23 )c1ω1γ1 + 2(I1 − I3)(I1 + I2 − I3)c3ω1γ3

− (I1 − I3)(I1 + I2 − I3)U3ω1 + I3(I1 − I2)c3γ1Ω3 + I3(I1 + I2 − I3)c1γ3Ω3].

Equations (5.69) imply that

Z3(F ) = Z4(F ) = 0. (5.70)

As in the case c2 ̸= 0, the system of equations (5.69) and (5.70) is a linear homogeneous

system that has a non-zero solution. Thus the determinant δ of its coefficients should

vanish identically. We compute δ and obtain

δ = I21I
3
2ω

3
2Ω3δ̂,

where the expression for δ̂ has the following form:

δ̂ = I3Ω3b1 + I1ω1b2.

b1 and b2 are polynomials of the variables ω1, ω2, γ1 and γ3 with coefficients that depend

on the parameters Ic and U3. They are given by the following formulas:

b1 = −2I1c1(I2 − I3)(I1 − I3)(2I1 + I2 − I3)ω
2
1

− I2(I2 − I3)(I1 + I2 − I3)(I1 + 2I2 − 2I3)c1ω
2
2

− (I1 + 2I2 − 2I3)(I1I2c
2
1 − I1I3c

2
1 + I1I3c

2
3 + 2I22c

2
1 − 4I2I3c

2
1 − I2I3c

2
3 + 2I23c

2
1)γ1

− 2c3c1(I2 − I3)(I1 + I2 − I3)(I1 + 2I2 − 2I3)γ3

+ (I2 − I3)(I1 + I2 − I3)(I1 + 2I2 − 2I3)c1U3,

b2 = 2I1(I1 − I3)(I1 − I2)(I1 − I2 − 2I3)c3ω
2
1

+ I2(I1 − I2)(2I1I2 − 3I1I3 − 2I22 − I2I3 + 3I23 )c3ω
2
2
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+ 2(I1 − I2)(−3I1I3 + 2I1I2 + 3I23 − I2I3 − 2I22 )c1c3γ1

+ [(2I21I2(c
2
1 + 2c23)− 2I21I3(c

2
1 + 4c23)− 2I1I

2
2 (c

2
1 + 4c23) + I1I2I3(c

2
1 + 8c23)

+ I1I
2
3 (c

2
1 + 7c23) + 4I32c

2
3 − 7I2I

2
3c

2
3)]γ3

− (I1 − I2)(2I1I2 − 3I1I3 − 2I22 − I2I3 + 3I23 )c3U3.

The equation δ = 0 is equivalent to δ̂ = 0. δ̂ depends on function Ω3 and it is easy

to see that Ω3 /∈ C(ω1, ω2, γ1, γ3). Then according to Proposition 4.3, the coefficients b1
and b2 of δ̂ should be zeros. In this way we obtain a system of ten equations for the

parameters Ic and U3. After four consecutive simplifications we come to the reduced

system consisting of the following five equations:

(I1 − I3)c1c3 = 0, (2I2 − I3)(I1 − I2)c3 = 0, (I1 − I2)(2I1 − 3I3 + 2I2)c3 = 0,

(2I2 − I3)(I2 − I3)c1 = 0, (I2 − I3)(I1 − I3)c1 = 0.

We solve them by the Maple command solve and obtain six solutions:

{I1 = I1, I2 = I2, I3 = I3, c1 = 0, c3 = 0}
{I1 = I2, I2 = I2, I3 = I3, c1 = 0, c3 = c3}
{I1 = I1, I2 = I3, I3 = I3, c1 = c1, c3 = 0}
{I1 = 2I2, I2 = I2, I3 = 2I2, c1 = 0, c3 = c3}

{I1 = I3, I2 =
I3
2
, I3 = I3, c1 = c1, c3 = c3}

{I1 = I3, I2 = I3, I3 = I3, c1 = c1, c3 = c3}.

Taking into account that now c2 = 0 we see that the first solution leads to the Euler

case, the second and third solutions lead to the Lagrange case, the fourth and fifth ones

- to the Kovalevskaya case and the last one - to the kinetic symmetry case.

Thus a new partial first integral of type 2 does not exist also when c2 = 0.

Type 4. Let F (ω1, γ1, γ2, γ3) be a new first integral of type 4. Thus we have

I1
dF

dt
= [(I2 − I3)ω2Ω3 + c3γ2 − c2γ3]

∂F

∂ω1
+ I1 (Ω3γ2 − ω2γ3)

∂F

∂γ1

− I1 (Ω3γ1 − ω1γ3)
∂F

∂γ2
+ I1 (ω2γ1 − ω1γ2)

∂F

∂γ3
= Y1(F ) = 0, (5.71)

where Y1 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

Equation (5.71) is an identity with respect to all the five variables. F does not depend

on ω2. Thus if we differentiate this identity with respect to ω2 we again obtain a linear

partial differential equation for F . Let us note that

∂Ω3

∂ω2
= − I2ω2

I3Ω3
.

In this way we have

I3Ω3
∂Y1(F )

∂ω2
= (I2 − I3)(I3Ω

2
3 − I2ω

2
2)

∂F

∂ω1
− I1(I2ω2γ2 + I3γ3Ω3)

∂F

∂γ1

+ I1I2ω2γ1
∂F

∂γ2
+ I1I3γ1Ω3

∂F

∂γ3
= Y2(F ) = 0, (5.72)
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where Y2 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

We differentiate (5.72) with respect to ω2 and obtain

Ω3
∂Y2(F )

∂ω2
= −4I2(I2 − I3)ω2Ω3

∂F

∂ω1
− I1I2(γ2Ω3 − ω2γ3)

∂F

∂γ1

+ I1I2γ1Ω3
∂F

∂γ2
− I1I2ω2γ1

∂F

∂γ3
= Y3(F ) = 0, (5.73)

where Y3 is the corresponding vector field, defined on C5(ω1, ω2, γ1, γ2, γ3).

Let us note that the first integral H2 is of type 4, i.e. it satisfies system (5.71)–

(5.73). Thus if a new first integral exists, then this system will have two non-zero linearly

independent solutions gradH2 and gradF . This is possible if and only if the 3×4 matrix

M of the coefficients of system (5.71)–(5.73) satisfies the condition

rankM ≤ 2. (5.74)

We compute the determinant M124 obtained from matrix M by crossing out its third

column and obtain

M124 = I21I2γ2M̂124,

where

M̂124 = Ω3b1 + b2.

Here the coefficients b1 and b2 are polynomials given by the formulas:

b1 = (I2 − I3)(−I1ω
3
1γ2 + 3I1ω

2
1ω2γ1 + 2I2ω1ω

2
2γ2 − 2c1ω1γ1γ2 − 2c2ω1γ

2
2 − 2c3ω1γ2γ3

+ U3ω1γ2 + 6c1ω2γ
2
1 + 6c2ω2γ1γ2 + 6c3ω2γ1γ3 − 3U3ω2γ1),

b2 = −3I1(I2 − I3)ω
3
1ω2γ3 − I1c3ω

2
1γ1γ2 + I1c2ω

2
1γ1γ3 − 2I2(I2 − I3)ω1ω

3
2γ3

− 6(I2 − I3)c1ω1ω2γ1γ3 − 6(I2 − I3)c2ω1ω2γ2γ3 − 6(I2 − I3)c3ω1ω2γ
2
3

+ 3(I2 − I3)U3ω1ω2γ3 − 2c1c3γ
2
1γ2 + 2c1c2γ

2
1γ3 − 2c2c3γ1γ

2
2 + 2(c22 − c23)γ1γ2γ3

+ c3U3γ1γ2 + 2c2c3γ1γ
2
3 − c2U3γ1γ3.

Taking into account (5.74) M̂124 should vanish identically. According to Proposition

4.3 the coefficients b1 and b2 should be zeros because Ω3 /∈ C(ω1, ω2, γ1, γ2, γ3). Polynomial

b1 has 11 coefficients and b2 - 15. We only use b2 = 0. In this way we obtain a system

of 15 equations for the parameters Ic and U3. After two consecutive simplifications we

come to the reduced system

c2 = 0, c3 = 0, I2 − I3 = 0.

It leads to the Lagrange case, and therefore a new partial first integral of type 4 does

not exist.

5.4.2. Elimination of γ3. We now study the elimination of γ3 from the equation (5.53).

In this section we suppose that c3 ̸= 0 because otherwise the elimination under consider-

ation is not possible. We obtain:

γ3 =
U3 − I1ω

2
1 − I2ω

2
2 − I3ω

2
3 − 2c1γ1 − 2c2γ2

2c3
. (5.75)

To shorten the formulas, we denote the right-side of (5.75) by Γ3 so that we have γ3 = Γ3.
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Now we put this value of γ3 in the Euler-Poisson equations (1.1) and remove the sixth

equation. In this way we obtain the following system of five differential equations:

dω1

dt
=

(I2 − I3)ω2ω3 + c3γ2 − c2Γ3

I1
,

dω2

dt
=

(I3 − I1)ω1ω3 + c1Γ3 − c3γ1
I2

,

dω3

dt
=

(I1 − I2)ω1ω3 + c2γ1 − c1γ2
I3

,

dγ1
dt

= ω3γ2 − ω2Γ3,

dγ2
dt

= ω1Γ3 − ω3γ1.

(5.76)

There are five possible types of first integrals of this system which depend on at most

four variables. They are:

1. F (ω1, ω2, ω3, γ1), (case (i))

2. F (ω1, ω2, ω3, γ2), (case (i))

3. F (ω1, ω2, γ1, γ2), (case (ii))

4. F (ω1, ω3, γ1, γ2), (case (iii))

5. F (ω2, ω3, γ1, γ2). (case (iii))

Considering the fact that the functions belonging to cases (ii) and (iii) have already

been examined, it only remains to study a function belonging to case (i).

Type 1. Let us look for a first integral of system (5.76) of type 1, i.e. F (ω1, ω2, ω3, γ1).

Moreover we want this integral to be functionally independent of H1 and H2 restricted

to the invariant manifold {H3 = U3}, but this condition will play no role here. Then we

have

I1I2I3
dF

dt
= I2I3 [(I2 − I3)ω2ω3 + c3γ2 − c2Γ3]

∂F

∂ω1

+ I1I3 [(I3 − I1)ω1ω3 + c1Γ3 − c3γ1]
∂F

∂ω2

+ I1I2 [(I1 − I2)ω1ω2 + c2γ1 − c1γ2]
∂F

∂ω3

+ I1I2I3 (ω3γ2 − ω2Γ3)
∂F

∂γ1
= Z(F ) = 0, (5.77)

where Z is the corresponding vector field, defined on C5(ω1, ω2, ω3, γ1, γ2).

Vector field Z is of the form Z = 2Y1γ2 + Y2, where the polynomial vector fields Y1

and Y2 are defined on C4(ω1, ω2, ω3, γ1) as follows:

Y1 = I2I3(c
2
2 + c23)

∂

∂ω1
− I1I3c1c2

∂

∂ω2
− I1I2c1c3

∂

∂ω3
+ I1I2I3(c2ω2 + c3ω3)

∂

∂γ1
,

Y2 = I2I3[c2(I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3) + 2(I2 − I3)c3ω2ω3]

∂

∂ω1

− I1I3[c1(I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3) + 2(I1 − I3)c3ω1ω3 + 2c23γ1]

∂

∂ω2
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+ 2I1I2c3[(I1 − I2)ω1ω2 + c2γ1]
∂

∂ω3

+ I1I2I3(I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3)ω2

∂

∂γ1
.

Taking into account that (5.77) should be an identity with respect to all the variables

and that F does not depend on γ2, we conclude that

Y1(F ) = Y2(F ) = 0. (5.78)

We compute the Lie bracket Y3 = [Y1, Y2]/(2I1I2I3) and obtain

Y3 = [I2I3c2(c
2
2 + c23)ω1 − I2(I2 − I3)c1c

2
3ω2 − I3(I2 − I3)c1c2c3ω3]

∂

∂ω1

+ [I1c1(I1c
2
3 − I3c

2
2 − 2I3c

2
3)ω1 − I1I3c2c

2
3ω2

− I3(I1c
2
2 + 2I1c

2
3 − I3c

2
2 − I3c

2
3)c3ω3]

∂

∂ω2

− c3[I1(I1 − I2)c1c2ω1 − I2(2I1c
2
2 + I1c

2
3 − I2c

2
2 − I2c

2
3)ω2 − I1I2c3c2ω3]

∂

∂ω3

− I1[I2(I1c
2
3 − I2c

2
3 − I3c

2
2 − I3c

2
3)ω1ω2

− I3(I1 − I3)c2c3ω1ω3 + (I2 − I3)c2c
2
3γ1]

∂

∂γ1
.

Then we compute Y4 = [Y2, Y3]. Unfortunately the expression for Y4 is too long to be

shown here.

Equations (5.78) imply that

Y3(F ) = Y4(F ) = 0. (5.79)

System (5.78)–(5.79) can be considered as a homogeneous linear algebraic system with

unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ1

)
, which do not vanish identically, because F is

non-constant on any open subset of its domain of definition.

Thus, if a fourth integral F exists, system (5.78)–(5.79) has a non-zero solution gradF .

This is possible if and only if the determinant D of the coefficients of this system is

identically equal to zero. We compute this determinant and obtain

D = I21I
2
2I

2
3c

3
3D̂,

where D̂ is a very long expression that we cannot show here. This expression is a poly-

nomial of the variables ω1, ω2, ω3 and γ1 with 79 coefficients, which are polynomials of

the parameters Ic and U3. As c3 ̸= 0 the equation D = 0 is equivalent to D̂ = 0. Thus

all the coefficients of D̂ should be zeros and we have to solve the corresponding system

of 79 equations.

After three consecutive simplifications we come to the reduced system consisting of

the following six equations:

(I2 − I3)c2 = 0, (I1 − I3)c2 = 0, (I1 − I3)c1 = 0, (2I2 − I3)(I1 − I2) = 0,

(I1 − I2)(2I1 + 2I2 − 3I3) = 0, (2I2 − I3)(I2 − I3)c1 = 0.
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Solving these equations by the Maple command solve we obtain four solutions

{U3 = U3, I1 = I2, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = c3},
{U3 = U3, I1 = I3, I2 = I3, I3 = I3, c1 = c1, c2 = c2, c3 = c3},
{U3 = U3, I1 = 2I2, I2 = I2, I3 = 2I2, c1 = 0, c2 = 0, c3 = c3},

{U3 = U3, I1 = I3, I2 =
I3
2
, I3 = I3, c1 = c1, c2 = 0, c3 = c3}.

The first solution leads to the Lagrange case, the second one - to the kinetic symmetry

case and the remaining two solutions - to the Kovalevskaya case.

Thus a new partial first integral of type 1 does not exist.

6. The gyrostat

6.1. The gyrostat equations. These equations (6.1) are only slightly modified Euler-

Poisson equations (1.1)

I1
dω1

dt
= (I2 − I3)ω2ω3 + b3ω2 − b2ω3 +Mg(c3γ2 − c2γ3),

I2
dω2

dt
= (I3 − I1)ω1ω3 + b1ω3 − b3ω1 +Mg(c1γ3 − c3γ1),

I3
dω3

dt
= (I1 − I2)ω1ω2 + b2ω1 − b1ω2 +Mg(c2γ1 − c1γ2),

dγ1
dt

= ω3γ2 − ω2γ3,

dγ2
dt

= ω1γ3 − ω3γ1,

dγ3
dt

= ω2γ1 − ω1γ2.

(6.1)

As for the Euler-Poisson equations, we study them in complex domain and without any

restriction of generality, we admit that Mg = 1.

Like for the Euler-Poisson equations, H2 and H3 defined by (1.2) continue to be first

integrals of equations of gyrostat (6.1). This is no more true for H1 defined by (1.2). The

area first integral for gyrostat is

H1 = I1ω1γ1 + I2ω2γ2 + I3ω3γ3 − b1γ1 − b2γ2 − b3γ3. (6.2)

Up to the end of Sec. 6, H1 is defined by (6.2) and such H1 is a first integral of gyrostat

equations (6.1). The first integrals H1, H2 and H3 are always functionally independent.

Formally the definition of permutational symmetries cannot be applied to the gyrostat

equations because the number of variables and of parameters does not coincide. But in

fact it is easy to see that all permutational symmetries of gyrostat equations, like for

Euler-Poisson equations, coincide with symmetric group S3, where the same permutation

is simultaneously applied to variables {ω1, ω2, ω3} and {γ1, γ2, γ3} and to parameters

{I1, I2, I3}, {b1, b2, b3} and {c1, c2, c3}. It is easy to verify that property (2.2) remains
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true. That is:

Vk(σ(ω), σ(γ), σ(I), σ(b), σ(c)) = εVσ(k)(ω, γ, I, b, c),

Wk(σ(ω), σ(γ)) = εWσ(k)(ω, γ), 1 ≤ k ≤ 3.

Here {Vk}1≤k≤3 are the right sides of the first three gyrostat equations (6.1), {Wk}1≤k≤3

are the remaining three equations (6.1) and ε = ±1 only depends on the choice of

permutation σ ∈ S3. The same concerns the analogue of the Theorem 2.2. We leave

the details to the reader.

The known integrable cases for the real gyrostat equations (6.1) are the same as for

the Euler-Poisson equations (1.1) but with some additional restrictions on the constants

bi, 1 ≤ i ≤ 3. Up to permutational symmetry they are the following ones. These cases

remains valid also for complex gyrostat equations.

The Zhukovskii case which is an extension of the Euler case [21, 24]. It is defined by

the condition (1.3) without additional restrictions on bi, 1 ≤ i ≤ 3. The fourth integral is

H4 = I21ω
2
1 + I22ω

2
2 + I23ω

2
3 − 2(I1b1ω1 + I2b2ω2 + I3b3ω3).

When b1 = b2 = b3 = 0 we recover the fourth integral of Euler case.

The Lagrange case for gyrostat [21, 24] is defined by the conditions (1.4) and b1 =

b2 = 0. The fourth integral in this case is the same as for the Euler-Poisson equations,

i.e.

H4 = ω3.

The Yehia case [21, 78] which is an extension of the Kovalevskaya case is defined by

the conditions (1.5) and b1 = b2 = 0. The fourth integral in this case is

H4 =
[
I3(ω

2
1 − ω2

2)− c1γ1 + c2γ2
]2

+ (2I3ω1ω2 − c1γ2 − c2γ1)
2

+ 4b3γ3(c1ω1 + c2ω2)− 2b3(ω
2
1 + ω2

2)(I3ω3 + b3). (6.3)

When b3 = 0 we recover Kovalevskaya fourth integral (1.7).

The kinetic symmetry case for gyrostat is defined by the conditions (1.6) together

with condition that the vectors (c1, c2, c3) and (b1, b2, b3) are proportional, i.e.:

b1c3 = b3c1, b2c3 = b3c2, b2c1 = b1c2,

and the fourth integral is the same as for the Euler-Poisson equations, i.e.

H4 = c1ω1 + c2ω2 + c3ω3.

Let us note that except the Yehia case, in all remaining three cases, the fourth integral

can be found along the same lines as in [59], where fourth integrals are computed for

integrable cases of the Euler-Poisson equations.

This is not so for the Yehia fourth integral because even if c2 = 0, it depends on all

variables. When c2 = 0, this fourth integral can be found in [21] and in [78]. Comparing

formula (1.7) of fourth integral in Kovalevskaya case when c2 ̸= 0 and when c2 = 0 with

formula (6.3) when c2 = 0, it is natural to conjecture that formula (6.3) with an arbitrary

c2 defines a fourth integral in the general Yehia case. SimpleMaple computation confirms

this.
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Like for the Euler-Poisson equations, we will call these four cases classical integrable

cases.

6.2. The Sretenskii case. In 1963 L. N. Sretenskii discovered an extension of the

Goryachev-Chaplygin partial first integral (1.8) of the Euler-Poisson equations to the

gyrostat case [62, 63].

Now we apply the method used in Sec. 5.2 that led to the successful derivation of

the Goryachev-Chaplygin case for the Euler-Poisson equations to the gyrostat equations

(6.1). The computations are almost the same, bigger but not so much. That is why we

do not give details here.

We express γ2 from equation H1 = U1, where H1 is the function given by (6.2) and

obtain

γ2 = − (I1ω1 − b1)γ1 + (I3ω3 − b3)γ3 + U1

I2ω2 − b2
.

We put this expression for γ2 in the gyrostat equations (6.1) and remove the fifth

equation. We study the obtained system of five equations for the existence of a new first

integral F (ω1, ω2, ω3, γ3), i.e. which does not depend on γ1. For this purpose we compute
dF
dt and take only its numerator. It is easily seen that the obtained expression can be

represented in the following way:

dF

dt
= γ1Y1(F ) + Y2(F ) = 0, (6.4)

where Y1 and Y2 are vector fields defined in C4 = C4(ω1, ω2, ω3, γ3). As (6.4) is an identity

with respect to all the variables and as Y1(F ) and Y2(F ) do not depend on γ1 we have

Y1(F ) = Y2(F ) = 0. (6.5)

We compute the Lie brackets Y3 = [Y1, Y2] and Y4 = [Y1, Y3]. Taking into account equa-

tions (6.5) we have that

Y3(F ) = Y4(F ) = 0. (6.6)

Equations (6.5) and (6.6) can be considered as a system of four homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ3

)
, which do not vanish

identically on any open subset of domain of definition of F , because F is non-constant

on any such open subset.

If a new integral F exists, system (6.5)–(6.6) has at least one non-zero solution. Let

us consider the 4 × 4 matrix A whose columns are the coefficients of vector fields Y1,

Y2, Y3 and Y4. The condition under which system (6.5)–(6.6) has at least one non-zero

solution is

rankA ≤ 3.

We equate to zero the determinant D of matrix A and study when it is identically

equal to zero.

D is a polynomial of the variables ω1, ω2, ω3 and γ3. We consider the system consisting

of the coefficients of polynomial D equated to zero. This system has 226 equations in

unknowns U1, Ii, bi, ci, 1 ≤ i ≤ 3. After four consecutive simplifications we obtain the

reduced system of 28 equations. Solving these equations by the Maple command solve



The Euler-Poisson equations; partial integrability 59

we obtain nine solutions. Two of them contain zero values of the moments of inertia, two

lead to the Lagrange case and three lead to the kinetic symmetry case. Thus only two

essential solutions remain. They are:

1. I1 = 4I3, I2 = 4I3, b1 = 0, b2 = 0, c3 = 0;

2. c1 = c2 = 0.

Studying them exactly as in Sec. 5.2 we find that the first solution leads to a partial

first integral at additional restriction U1 = 0, that is

H4 = (I3ω3 + b3)(ω
2
1 + ω2

2)− (c1ω1 + c2ω2)γ3,

which is the Sretenskii partial first integral of the equations of gyrostat (6.1). When

b3 = 0 we recover the Goryachev-Chaplygin partial first integral. As noted in Sec. 1.3

this result was announced already in [16].

The second solution, during the investigations, imposes additional restrictions I1 = I2
and b1 = b2 = 0, i.e. leads to the Lagrange case.

6.3. The new complex integrable cases. If we restrict ourselves to the real case, then

1906 E. Husson theorem [32] asserts that for the Euler-Poisson equations only in four

classical cases the fourth integral is an algebraic function [3, 17, 20, 54]. The completely

analogous assertion for real gyrostat equations was proved in 1992 by L. Gavrilov [21].

The main result of [59] can be formulated as follows. For complex Euler-Poisson

equations, the fourth integral that does not depend on all variables, exists only in the

four classical cases.

The theorem below proves that for complex gyrostat equations (6.1) the analog of

main result of [59] is not true. As consequence, it proves that in complex setting the

analog of Gavrilov theorem fails. Indeed, in the proof of this theorem we find two new

cases of integrability with not only algebraic but polynomial fourth integrals.

Theorem 6.1. Up to permutational symmetry the complex gyrostat equations (6.1) admit

exactly two new (non-classical) integrable cases with a fourth integral which does not

depend on all variables. These cases are

I1 = I2 = 2I3, b1 = −iεb2, b3 = 0, c1 = iεc2, c3 = 0, (6.7)

where ε = ±1. In both cases, the fourth integral can be found as a quadratic polynomial.

Proof. Let us look for example for a fourth integral F of the gyrostat equations (6.1)

that does not depend on ω3, i.e. F = F (ω1, ω2, γ1, γ2, γ3).

We compute the derivative of F with respect to the gyrostat equations and obtain

I1I2
dF

dt
= I2

[
(I2 − I3)ω2ω3 + b3ω2 − b2ω3 + c3γ2 − c2γ3

] ∂F
∂ω1

+ I1

[
(I3 − I1)ω1ω3 + b1ω3 − b3ω1 + c1γ3 − c3γ1

] ∂F
∂ω2

+ I1I2

[
(ω3γ2 − ω2γ3)

∂F

∂γ1
+ (ω1γ3 − ω3γ1)

∂F

∂γ2
+ (ω2γ1 − ω1γ2)

∂F

∂γ3

]
= 0.
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It is easily seen that

I1I2
dF

dt
= ω3Y1(F ) + Y2(F ) = 0, (6.8)

where Y1 and Y2 are the following not depending on ω3 vector fields, defined on C5 =

C5(ω1, ω2, γ1, γ2, γ3):

Y1 = I2

[
(I2 − I3)ω2 − b2

] ∂

∂ω1
+ I1

[
(I3 − I1)ω1 + b1

] ∂

∂ω2
+ I1I2γ2

∂

∂γ1
− I1I2γ1

∂

∂γ2
,

Y2 = I2

(
b3ω2 + c3γ2 − c2γ3

) ∂

∂ω1
+ I1

(
− b3ω1 + c1γ3 − c3γ1

) ∂

∂ω2

+ I1I2

[
−ω2γ3

∂

∂γ1
+ ω1γ3

∂

∂γ2
+ (ω2γ1 − ω1γ2)

∂

∂γ3

]
.

As Y1(F ) and Y2(F ) do not depend on ω3 then identity (6.8) implies that

Y1(F ) = Y2(F ) = 0. (6.9)

We consider the Lie brackets Y3 = [Y1, Y2]/(I1I2) and Y4 = [Y1, Y3] and obtain

Y3 =
[
(I2 − I1)b3ω1 − I3c3γ1 + (I3 − I2)c1γ3 + b1b3)

] ∂

∂ω1

+
[
(I1 − I2)b3ω2 − I3c3γ2 + (I3 − I1)c2γ3 + b2b3)

] ∂

∂ω2

+ I1γ3

[
(I1 − I2 − I3)ω1 − b1

] ∂

∂γ1
+ I2γ3

[
(I2 − I1 − I3)ω2 − b2

] ∂

∂γ2

+
[
− I1(I1 − I2 − I3)ω1γ1 − I2(I2 − I1 − I3)ω2γ2 + I1b1γ1 + I2b2γ2

] ∂

∂γ3
,

Y4 = −I2

[
2(I2 − I3)(I1 − I2)b3ω2 + I3(−I2 + I1 + I3)c3γ2

− (I2 − I3)(I1 − I3)c2γ3 − (I1 − 2I2 + I3)b2b3

] ∂

∂ω1

− I1

[
2(I1 − I3)(I1 − I2)b3ω1 + I3(I1 − I2 − I3)c3γ1

+ (I2 − I3)(I1 − I3)c1γ3 − (2I1 − I2 − I3)b1b3

] ∂

∂ω2

+ I1I2

{
γ3

[
(2I2I1 + I2I3 − 2I22 + I23 − I1I3)ω2 − (I1 − 2I2 − I3)b2

] ∂

∂γ1

+ γ3

[
(I2I3 + 2I21 − 2I2I1 − I23 − I1I3)ω1 − (2I1 − I2 + I3)b1

] ∂

∂γ2

−
[
(I2I3 + 2I21 − 2I1I2 − I23 − I1I3)ω1γ2 + (2I1I2 + I2I3 − 2I22 + I23 − I1I3)ω2γ1

−(I1 − 2I2 − I3)b2γ1 − (2I1 − I2 + I3)b1γ2

] ∂

∂γ3

}
.

Equations (6.9) imply that

Y3(F ) = Y4(F ) = 0. (6.10)

The system (6.9)–(6.10) is a linear homogeneous system in unknowns gradF =
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∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂γ1

, ∂F
∂γ2

, ∂F
∂γ3

)
, which do not vanish identically on any open subset of domain

of definition of F , because F is non-constant on any such open subset.

As H2 is a first integral of the sought type, i.e. it does not depend on ω3, then if a new

integral F exists, system (6.9)–(6.10) should have at least two non-zero solutions. Let us

consider the 4× 5 matrix A whose rows are the coefficients of vector fields Y1, Y2, Y3 and

Y4. The condition under which system (6.9)–(6.10) has at least two non-zero solutions is

rankA ≤ 3.

We compute all the five 4× 4 minors of matrix A and require that they be identically

equal to zero. Denoting them by Dijkl, where the index contains the numbers of the

included columns of matrix A, we see that D1345 = D2345 = 0. Thus it remains to study

when minors D1234, D1235 and D1245 vanish identically. These three minors are polyno-

mials of ω1, ω2, γ1, γ2 and γ3 with coefficients that are polynomials of the parameters Ii,

bi and ci, 1 ≤ i ≤ 3. We cannot write here the expressions for D1234, D1235 and D1245

because they are too long. They have non-zero factors which we remove by setting

d1234 =
D1234

I21I
2
2γ3

, d1235 =
D1235

I21I
2
2γ2

, d1245 =
D1245

I21I
2
2γ1

.

After this cancellation of the non-zero factors it turns out that

d1234 = −d1235 = d1245.

We can therefore restrict ourselves to considering only the identity d1234 = 0.

The polynomial d1234 has 83 monomials and therefore 83 coefficients which should

vanish. We consider the system consisting of the coefficients of d1234 equated to zero, i.e.

the system of 83 equations in unknowns Ii, bi and ci, 1 ≤ i ≤ 3. After six consecutive

simplifications we obtain the reduced system consisting of 29 equations. Solving that

system by the Maple command solve we obtain the following ten solutions:

1.{I1 = I3, I2 = I2, I3 = I3, b1 = 0, b2 = b2, b3 = 0, c1 = 0, c2 = c2, c3 = 0}
2.{I1 = I1, I2 = I2, I3 = I3, b1 = b1, b2 = b2, b3 = 0, c1 = 0, c2 = 0, c3 = 0}
3.{I1 = I1, I2 = I3, I3 = I3, b1 = b1, b2 = 0, b3 = 0, c1 = c1, c2 = 0, c3 = 0}
4.{I1 = 0, I2 = 0, I3 = 0, b1 = b1, b2 = b2, b3 = 0, c1 = c1, c2 = c2, c3 = 0}

5.{I1 = I3, I2 = I3, I3 = I3, b1 =
c1b2
c2

, b2 = b2, b3 = 0, c1 = c1, c2 = c2, c3 = 0}

6.{I1 = 2I3, I2 = 2I3, I3 = I3, b1 = −iεb2, b2 = b2, b3 = 0, c1 = iεc2, c2 = c2, c3 = 0}
7.{I1 = I3, I2 = I3, I3 = I3, b1 = 0, b2 = 0, b3 = b3, c1 = c1, c2 = c2, c3 = 0}
8.{I1 = −I3, I2 = −I3, I3 = I3, b1 = b1, b2 = b2, b3 = 0, c1 = 0, c2 = 0, c3 = c3}
9.{I1 = 2I3, I2 = 2I3, I3 = I3, b1 = 0, b2 = 0, b3 = 0, c1 = c1, c2 = c2, c3 = c3}
10.{I1 = I2, I2 = I2, I3 = I3, b1 = 0, b2 = 0, b3 = b3, c1 = 0, c2 = 0, c3 = c3},

where ε = ±1.

A careful study of this list shows that only three solutions are essential. They are

the sixth, seventh and eighth solutions. All other solutions lead to some of the classical

cases of integrability of gyrostat equations. Let us stress that the ninth solution implies
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b1 = b2 = b3 = 0 and therefore the gyrostat equations become the Euler-Poisson equations

whose fourth integrals not depending on all variables have been studied in [59]. Note that

the sixth solution leads to the condition (6.7). Below we examine these three essential

solutions.

Solution 6+: I1 = I2 = 2I3, b1 = −iεb2, b3 = 0, c1 = iεc2, c3 = 0, ε = 1.

At these conditions Yi, 1 ≤ i ≤ 4, are linearly dependent as d1234 = 0. More precisely

we have

(I3ω1 − iI3ω2 − ib2)Y4 + I23 (I3ω1 − iI3ω2 − 4ib2)Y2 + 6I23b2Y3 = 0.

We compute Y5 = [Y2, Y3]/[4I
2
3 (I3ω1 − iI3ω2 − ib2)] and obtain

Y5 = −c2(γ1 + iγ2)

(
∂

∂ω1
− i

∂

∂ω2

)
− 2I3(ω1 + iω2)

(
γ2

∂

∂γ1
− γ1

∂

∂γ2

)
.

Like Y4, Y5 is also linearly dependent on Y2 and Y3. Indeed, we have

2I3(I3ω1 − iI3ω2 − ib2)γ3Y5 − (I3ω1γ1 + I3ω2γ2 − ib2γ1 + b2γ2)Y2

+2I3(ω1γ2 − ω2γ1)Y3 = 0.

Moreover, easy computations show that vector fields Yi, 1 ≤ i ≤ 3, are linearly indepen-

dent. Thus system Yi(F ) = 0, 1 ≤ i ≤ 3, is in involution and according to the Frobenius

Integrability Theorem should have two functionally independent solutions. The first one

is function H2. Finding another one, functionally independent of H2 is not feasible with

crude use of the Maple command pdsolve. To overcome this difficulty we add the fourth

equation Y0(F ) = 0, where Y0 = ∂
∂γ3

. We choose such Y0 because Y0(H2) ̸= 0. TheMaple

command pdsolve applied to the system of four equations Yi(F ) = 0, 0 ≤ i ≤ 3, gives

as an answer the solution:

F = G

[
− (I3ω

2
1 + 2iI3ω1ω2 − I3ω

2
2 − 2ic2γ1 + 2c2γ2)(I3ω1 − iI3ω2 + 2ib2)

2

2c2

]
,

where G is an arbitrary smooth function. As a second solution of system Yi(F ) = 0,

1 ≤ i ≤ 3, we take the function

H4+ = (I3ω
2
1 + 2iI3ω1ω2 − I3ω

2
2 − 2ic2γ1 + 2c2γ2)(I3ω1 − iI3ω2 + 2ib2)

2,

that corresponds to G(x) = −2c2x.

Solution 6-: I1 = I2 = 2I3, b1 = −iεb2, b3 = 0, c1 = iεc2, c3 = 0, ε = −1.

In this case in a completely analogous way we find

H4− = (I3ω
2
1 − 2iI3ω1ω2 − I3ω

2
2 + 2ic2γ1 + 2c2γ2)(I3ω1 + iI3ω2 − 2ib2)

2.

It is easy to verify at the hand that H4+ and H4− are functionally independent of the

first integrals H1 (see (6.2)), H2 and H3 (see (1.2)) and thus they are fourth integrals of

gyrostat equations (6.1), for ε = 1 and ε = −1 respectively.

Solution 7: I1 = I2 = I3, b1 = b2 = 0, c3 = 0.

As in the previous case, due to the equality d1234 = 0, the Yi, 1 ≤ i ≤ 4, are linearly

dependent. Indeed, we have

(ω1γ1 + ω2γ2)Y4 − I33 (ω
2
1 + ω2

2)γ3Y1 − I33 (ω1γ2 − ω2γ1)Y3 = 0.
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We compute Y5 = [Y2, Y3]/I
3
3 and obtain

Y5 = (ω1γ1 + ω2γ2)

(
c2

∂

∂ω1
− c1

∂

∂ω2

)
+
[
I3(ω

2
2 + ω2

1)γ2 − (b3ω2 − c2γ3)γ3
] ∂

∂γ1

−
[
I3(ω

2
1 + ω2

2)γ1 − (b3ω1 − c1γ3)γ3
] ∂

∂γ2

−
[
(b3ω1 − c1γ3)γ2 − (b3ω2 − c2γ3)γ1

] ∂

∂γ3
.

As H2 is a first integral of the sought type then the existence of a fourth integral of

the gyrostat equations requires that the vector fields Yi, 1 ≤ i ≤ 3, and Y5 be linearly

dependent. We compute the determinant V1234 consisting of the first four columns of the

matrix of the coefficients of these vector fields and obtain

V1234 = I53b3γ3(ω1γ1 + ω2γ2)
2(c2ω1 − c1ω2).

If the vector fields Yi, 1 ≤ i ≤ 3, and Y5 are linearly dependent then V1234 should be

identically zero. It is clear that this happens either if b3 = 0 which leads to the Euler-

Poisson equations or if c1 = c2 = 0 which leads to the Zhukovskii case. Thus a new

integral for Solution 7 does not exists.

Solution 8: I1 = I2 = −I3, b3 = 0, c1 = c2 = 0.

In this case Y4 = −Y2. We compute Y5 = [Y2, Y3]/I
2
3 and obtain

Y5 = c3γ3(2I3ω2 + b2)
∂

∂ω1
− c3γ3(2I3ω1 + b1)

∂

∂ω2

− I3(I3ω
2
1 + I3ω

2
2 + b1ω1 + b2ω2 + 2c3γ3)

(
γ2

∂

∂γ1
− γ1

∂

∂γ2

)
.

As in Solution 7, we compute the determinant W1234 consisting of the first four

columns of the matrix of the coefficients of vector fields Yi, 1 ≤ i ≤ 3, and Y5 and

we obtain

W1234 = I43c3(I3ω
2
2 + I3ω

2
1 + b1ω1 + 3c3γ3 + b2ω2)γ3w,

where

w = I3(b2ω1γ
2
1 − 2b1ω1γ1γ2 − b2ω1γ

2
2 + b1ω2γ

2
1 + 2b2ω2γ1γ2 − b1ω2γ

2
2)

+ b2b1γ
2
1 − (b21 − b22)γ1γ2 − b1b2γ

2
2 .

If a new first integral exists thenW1234 = 0 should be fulfilled. To avoid the Zhukovskii

case we consider that c3 ̸= 0. In such a case it is clear that W1234 = 0 is equivalent to

w = 0. The last is possible if and only if b1 = b2 = 0 which leads to the Euler-Poisson

equations. Thus a new first integral of the sought type does not exist for Solution 8 too.

All the above considerations lead to the conclusion that the gyrostat equations (6.1)

admit a local fourth integral which does not depend on ω3 either in certain classical cases

or else only when the conditions (6.7) are fulfilled.

Now let us look for a fourth integral F of the gyrostat equations (6.1) that does not

depend on γ3, i.e. F = F (ω1, ω2, ω3, γ1, γ2).

We compute the derivative of F with respect to the gyrostat equations and obtain

I1I2I3
dF

dt
= I2I3

[
(I2 − I3)ω2ω3 + b3ω2 − b2ω3 + c3γ2 − c2γ3

] ∂F
∂ω1
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+ I1I3

[
(I3 − I1)ω1ω3 + b1ω3 − b3ω1 + c1γ3 − c3γ1

] ∂F
∂ω2

+ I1I2

[
(I1 − I2)ω1ω2 + b2ω1 − b1ω2 + (c2γ1 − c1γ2)

] ∂F
∂ω3

+ I1I2I3

[
(ω3γ2 − ω2γ3)

∂F

∂γ1
+ (ω1γ3 − ω3γ1)

∂F

∂γ2

]
= 0.

It is easily seen that

I1I2I3
dF

dt
= I3γ3Z1(F ) + Z2(F ) = 0, (6.11)

where Z1 and Z2 are the following not depending on γ3 vector fields, defined on C5 =

C5(ω1, ω2, ω3, γ1, γ2):

Z1 = −I2c2
∂

∂ω1
+ I1c1

∂

∂ω2
− I1I2

(
ω2

∂

∂γ1
− ω1

∂

∂γ2

)
,

Z2 = I2I3

[
(I2 − I3)ω2ω3 + b3ω2 − b2ω3 + c3γ2

] ∂

∂ω1

+ I1I3

[
(I3 − I1)ω1ω3 + b1ω3 − b3ω1 − c3γ1

] ∂

∂ω2

+ I1I2

[
(I1 − I2)ω1ω2 + b2ω1 − b1ω2 + c2γ1 − c1γ2

] ∂

∂ω3

+ I1I2I3ω3

(
γ2

∂

∂γ1
− γ1

∂

∂γ2

)
.

As Z1(F ) and Z2(F ) do not depend on γ3 then identity (6.11) implies that

Z1(F ) = Z2(F ) = 0. (6.12)

We consider the Lie brackets Z3 = [Z1, Z2]/(I1I2), Z4 = [Z1, Z3] and Z5 = [Z2, Z3]/I3
and obtain

Z3 = I3

[
(I2 − I3)c1ω3 + I2c3ω1 + c1b3

] ∂

∂ω1
+ I3

[
(I1 − I3)c2ω3 + I1c3ω2 + c2b3

] ∂

∂ω2

+
[
I1(I1 − 2I2)c1ω1 + (I2 − 2I1)I2c2ω2 − I2b2c2 − I1b1c1

] ∂

∂ω3

− I1I3

[
(I1 − I2 − I3)ω1ω3 + b3ω1 − b1ω3 + c3γ1

] ∂

∂γ1

+ I3I2

[
(I1 − I2 + I3)ω2ω3 − b3ω2 + b2ω3 − c3γ2

] ∂

∂γ2
,

Z4 = −I22I3c2c3
∂

∂ω1
+ I21I3c1c3

∂

∂ω2
− 3I1I2(I1 − I2)c2c1

∂

∂ω3

+ I1I2I3

[
(2I1 − I2 − 2I3)c2ω3 + 2I1c3ω2 + 2b3c2

] ∂

∂γ1

+ I1I2I3

[
(I1 − 2I2 + 2I3)c1ω3 − 2I2c3ω1 − 2b3c1

] ∂

∂γ2
,

Z5 = a1
∂

∂ω1
+ a2

∂

∂ω2
+ a3

∂

∂ω3
+ a4

∂

∂γ1
+ a5

∂

∂γ2
,
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where

a1 = I2
[
I1I2(I2 − I3)c1ω1ω2 + I1(I1 − I2 − I3)b2c1ω1 + I2(I2 − I3)(2I1 − I2)c2ω

2
2

− I3(2I2I3 − I1I3 − 2I22 + 2I1I2)c3ω2ω3

− (2I1I2b2c2I2I3b2c2 + I1I3b3c3 − 2I2I3b3c3 − 2I22b2c2)ω2

− I3(I2 − I3)(I1 − I3)c2ω
2
3 − I3(I1b3c2 − 2I3b3c2 + 2I2b2c3 + I2b3c2)ω3

+ I1(I2 − I3)c1c2γ1 + (2I2I3c
2
3 − I1I2c

2
1 + I1I3c

2
1)γ2 − b2I1c1b1 − I3b

2
3c2 − I2c2b

2
2

]
,

a2 = I1
[
I1(I1 − I3)(I1 − 2I2)c1ω

2
1 − I1I2(I1 − I3)c2ω1ω2

− I3(2I
2
1 − 2I1I2 − 2I1I3 + I2I3)c3ω1ω3

− (2I21b1c1 − 2I1I2b1c1 − I1I3b1c1 + 2I1I3b3c3 − I2I3b3c3)ω1

+ I2(I1 − I2 + I3)b1c2ω2 + I3(I2 − I3)(I1 − I3)c1ω
2
3

+ I3(2I1b1c3 + I1b3c1 + I2b3c1 − 2I3b3c1)ω3 + (I1I2c
2
2 − 2I1I3c

2
3 − I2I3c

2
2)γ1

− I2(I1 − I3)c1c2γ2 + I1b
2
1c1 + I2b2b1c2 + I3b

2
3c1
]
,

a3 = I1I2
[
− (I1 − I2)(I1 + I2)c3ω1ω2 + I1(2I1 − I2 − 2I3)c2ω1ω3 + (2I1b3c2 − I2b2c3)ω1

+ I2(I1 − 2I2 + 2I3)c1ω2ω3 + (I1b1c3 − 2I2b3c1)ω2

+ (I3b2c1 − 2I1b1c2 + I2b1c2 − I1b2c1 − I3b1c2 + 2I2b2c1)ω3 + c3(3I1 − I2)c2γ1

+ (I1 − 3I2)c1c3γ2 + b3(b1c2 − b2c1)
]
,

a4 = −I1I2
[
I1(I1 − I2)(I1 − I2 − I3)ω

2
1ω2 + I1(I1 − I2 − I3)b2ω

2
1

− I1(2I1 − I3 − 2I2)b1ω1ω2 + I1(I1 − I2 − I3)c2ω1γ1 − I1(I2 − I3)c1ω1γ2

− I1b2b1ω1 + I3(I
2
3 + I2I3 − I1I3 + 2I1I2 − 2I22 )ω2ω

2
3 + I3(I1 − I2 − 2I3)b3ω2ω3

− I2(2I1 − I2)c2ω2γ2 + (I1b
2
1 + I3b

2
3)ω2 − I3(I1 − 2I2 − I3)b2ω

2
3

+ I3(2I1 − 2I2 − I3)c3ω3γ2 − I3b2b3ω3 − I1b1c2γ1 + (I3b3c3 − I2b2c2)γ2
]
,

a5 = I1I2
[
I2(I1 − I2)(I1 − I2 + I3)ω1ω

2
2 + I2(2I1 − 2I2 + I3)b2ω1ω2

− I3(2I
2
1 − 2I1I2 − I1I3 + I2I3 − I23 )ω1ω

2
3 − I3(I1 − I2 + 2I3)b3ω1ω3

+ I1(I1 − 2I2)c1ω1γ1 + (I2b
2
2 + I3b

2
3)ω1 − I2(I1 − I2 + I3)b1ω

2
2 − c2I2(I1 − I3)ω2γ1

− I2(I1 − I2 + I3)c1ω2γ2 − I2b1b2ω2 + I3(2I1 +−I2I3)b1ω
2
3

− I3(2I1 − 2I2 + I3)c3ω3γ1 − I3b1b3ω3 − (I1b1c1 − I3b3c3)γ1 − I2c1b2γ2
]
.

Equations (6.12) imply that

Z3(F ) = Z4(F ) = Z5(F ) = 0. (6.13)

If a first integral F = F (ω1, ω2, ω3, γ1, γ2) exists then the system of five equations

(6.12) and (6.13) should have a non-zero solution gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ1

, ∂F
∂γ2

)
.

This is possible if and only if the determinant D of the coefficients of that system vanishes

identically.

We compute D and obtain a very long polynomial whose presentation here is im-

possible. But D has a factor I31I
3
2I

2
3c3. Thus we should consider two cases: c3 ̸= 0 and

c3 = 0.
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Let us start with c3 ̸= 0. We remove the non-zero factor of D and note

D̂ =
D

I31I
3
2I

2
3c3

.

The equation D = 0 is equivalent to D̂ = 0. Polynomial D̂ has 253 coefficients

depending on the parameters Ii, bi and ci, 1 ≤ i ≤ 3. To satisfy the equation D̂ = 0

we should consider the system consisting of the coefficients of D̂ equated to zero, i.e.

the system of 253 equations for the parameters. After three consecutive simplifications

we obtain the reduced system consisting of seven equations. Solving that system by the

Maple command solve we obtain the following two solutions:

{I1 = I2, I2 = I2, I3 = I3, b1 = b1, b2 = b2, b3 = b3, c1 = 0, c2 = 0, c3 = c3}

{I1 = I3, I2 = I3, I3 = I3, b1 = b1, b2 = b2, b3 = b3, c1 =
b1c2
b2

, c2 = c2, c3 =
b3c2
b2

}.

The second solution leads to the kinetic symmetry case. Thus only the first solution

should be studied. For this, let I1 = I2, c1 = c2 = 0. Under these conditions we have

Z4 + 2I2I3c3Z1 = 0. We compute Z6 = [Z3, Z5]/(I
3
2I3c3) and the determinant M of the

coefficients of the vector fields Zi, 1 ≤ i ≤ 3, Z5 and Z6. We know that if the sought first

integral exists then M = 0. We have

M = −I82I
2
3c

2
3(b2ω1 − b1ω2)

2M̂,

where

M̂ = −3I3(I2 − 3I3)ω
4
1ω3 − 9I3b3ω

4
1 − 2(I2 − 11I3)b1ω

3
1ω3 − 15I3c3ω

3
1γ1 − 7b1b3ω

3
1

− 6I3(I2 − 3I3)ω
2
1ω

2
2ω3 − 18I3b3ω

2
1ω

2
2 − 2(I2 − 11I3)b2ω

2
1ω2ω3 − 15I3c3ω

2
1ω2γ2

− 7b2b3ω
2
1ω2 + 12b21ω

2
1ω3 − 12b1c3ω

2
1γ1 − 2(I2 − 11I3)b1ω1ω

2
2ω3 − 15I3c3ω1ω

2
2γ1

− 7b1b3ω1ω
2
2 + 24b1b2ω1ω2ω3 − 12b2c3ω1ω2γ1 − 12b1c3ω1ω2γ2 − 3I3(I2 − 3I3)ω

4
2ω3

− 9I3b3ω
4
2 − 2(I2 − 11I3)b2ω

3
2ω3 − 15I3c3ω

3
2γ2 − 7b2b3ω

3
2 + 12b22ω

2
2ω3 − 12b2c3ω

2
2γ2.

Let us consider, for example, the coefficient of M̂ in front of ω3
1γ1, that is −15I3c3.

However −15I3c3 ̸= 0, therefore M̂ never vanishes either. Thus the only possibility to sat-

isfy the equation M = 0 is to put b1 = b2 = 0. Taking into account that now I1 = I2, c1 =

c2 = 0 we come to the Lagrange case. Thus a new first integral F = F (ω1, ω2, ω3, γ1, γ2)

does not exist when c3 ̸= 0.

We now study the case c3 = 0. Under this condition, the first integral H3 does not

depend on γ3, i.e. it is of the type sought. If a fourth integral F = F (ω1, ω2, ω3, γ1, γ2)

exists then system (6.12)–(6.13) should have at least two non-zero solutions. This is

possible if and only if the matrix B of its coefficients satisfies the condition rankB ≤ 3.

This condition means that all four equations of system (6.12)–(6.13) should be linearly

dependent. We chose to consider the system

Zi(F ) = 0, 1 ≤ i ≤ 3, Z5(F ) = 0. (6.14)

This choice is appropriate because if we choose, for example, Zi(F ) = 0, 1 ≤ i ≤ 4, then

we come to a great number of cases which should be studied.
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We compute all the five 4× 4 minors of the 4× 5 matrix consisting of the coefficients

of system (6.14) and require that they be identically equal to zero. These five minors

are polynomials of ω1, ω2, γ1, γ2 and γ3 with coefficients that are polynomials of the

parameters Ii, bi, 1 ≤ i ≤ 3, c1 and c2. Like before we note them by ∆ijkl and see

that they have some non-zero factors. To remove these factors we introduce the following

notations:

δ1234 =
∆1234

I21I
2
2I3

, δ1235 =
∆1235

I21I
2
2I3

, δ1245 =
∆1245

I21I
2
2I

2
3ω2

,

δ1345 =
∆1345

I21I
3
2I3ω2

, δ2345 =
∆2345

I31I
2
2I3ω1

.

Let us note that δ1234 has a factor c2 and δ1235 has a factor c1. We have left them

intentionally at the above cancellation because we do not know whether c1 or c2 is zero.

But, as we consider now the case c3 = 0, we know that (c1, c2) ̸= (0, 0) because otherwise

we come to the Zhukovskii case.

It turns out that

δ1245 = −δ1345 = δ2345. (6.15)

Moreover if c1 ̸= 0
δ1235
c1

= −δ1245, (6.16)

independently of the value of c2. If c2 ̸= 0

δ1234
c2

= δ1245, (6.17)

independently of the value of c1. If c1 ̸= 0 and c2 ̸= 0 we have

δ1234
c2

= −δ1235
c1

. (6.18)

Thus if the identity δ1245 = 0 is satisfied equations (6.14) will be linearly dependent.

Indeed, from (6.15) it follows that δ1345 = δ2345 = 0 independently of the values of c1
and c2.

Let c1 ̸= 0 and c2 = 0. Then δ1234 = 0 because it has a factor c2 and δ1235 = 0 follows

from (6.16).

Let c1 ̸= 0 and c2 ̸= 0. Then δ1235 = 0 follows from (6.16) and δ1234 = 0 - from (6.18).

Let c1 = 0 and c2 ̸= 0. Then δ1235 = 0 because it has a factor c1 and δ1234 = 0 follows

from (6.17).

The polynomial δ1245 has 84 monomials and therefore 84 coefficients which should

vanish. We consider the system consisting of the coefficients of δ1245 equated to zero, i.e.

the system of 84 equations in unknowns Ii, bi, 1 ≤ i ≤ 3, c1 and c2. After eight consecutive

simplifications we obtain the reduced system consisting of 15 equations. Solving that

system by the Maple command solve we obtain the following seven solutions:

{I1 = 2I3, I2 = 2I3, I3 = I3, b1 = 0, b2 = 0, b3 = 0, c1 = c1, c2 = c2}
{I1 = I3, I2 = I2, I3 = I3, b1 = 0, b2 = b2, b3 = 0, c1 = 0, c2 = c2}
{I1 = I1, I2 = I2, I3 = I3, b1 = b1, b2 = b2, b3 = 0, c1 = 0, c2 = 0}
{I1 = I1, I2 = I3, I3 = I3, b1 = b1, b2 = 0, b3 = 0, c1 = c1, c2 = 0}
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{I1 = 0, I2 = 0, I3 = 0, b1 = b1, b2 = b2, b3 = 0, c1 = c1, c2 = c2}

{I1 = I3, I2 = I3, I3 = I3, b1 =
c1b2
c2

, b2 = b2, b3 = 0, c1 = c1, c2 = c2}

{I1 = 2I3, I2 = 2I3, I3 = I3, b1 = −iεb2, b2 = b2, b3 = 0, c1 = iεc2, c2 = c2},

where ε = ±1.

Examining this list we see that only the last solution is essential. All the other solutions

lead either to the classical cases of gyrostat equations, or to the Euler-Poisson equations

or to the excluded cases with values zero of the moments of inertia.

Taking into account that now c3 = 0 we see that this last solution determines the

conditions (6.7).

At these conditions the vector field Z4 vanishes identically and Z5 is linearly dependent

on Zi, 1 ≤ i ≤ 3. Moreover the vector fields Zi, 1 ≤ i ≤ 3, are linearly independent. Thus

system Zi(F ) = 0, 1 ≤ i ≤ 3, is in involution and according to the Frobenius Integrability

Theorem it has two functionally independent solutions. The first one is H3 and the second

one is the fourth integral we look for. But it is not necessary to look for this fourth integral.

We should only notice that the fourth integrals H4+ from Case 6+ and H4− from Case

6- not only do not depend of ω3, they do not depend on γ3 too.

Thus the problem of characterization of all cases when complex gyrostat equations

have a fourth integral that does not depend on all variables is solved.

7. Domain of the Sretenskii partial first integral

7.1. Definition of the domain. Given that the gyrostat equations (6.1) are polynomial

with polynomial first integrals, in this section we will restrict ourselves exclusively to

polynomial systems of ordinary differential equations and their polynomial first integrals,

although this is not necessary.

Let us consider a polynomial system of ordinary differential equations

dxi

dt
= fi(x), 1 ≤ i ≤ n, (7.1)

x = (x1, . . . , xn) ∈ Cn, f1, . . . , fn ∈ C[x]. To consider system (7.1) and its solutions is

equivalent to consider the associate polynomial vector field V (x) = (f1, . . . , fn) and its

orbits.

A subset of Cn is V -invariant if it is filled with whole orbits of vector field V .

A differentiable function Φ such that the set {x; Φ(x) = 0} is filled by the whole

orbits of system (7.1) is called invariant relation ([20], [38, Chapt. X, §4]).

Let F ∈ C[x]\C be some non-constant polynomial that is not a first integral of system

(7.1), or equivalently that is not V -invariant. Let M ⊂ Cn be a V -invariant subset such

that F |M (F restricted to M) is non-constant on any open subset of M . When F |M is a

local first integral of system (7.1) (or vector field V ) restricted to M?
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For this aim let us compute

dF

dt
(x) =

n∑
i=1

∂F

∂xi
(x)

dxi

dt
(x) =

n∑
i=1

∂F

∂xi
(x)fi(x)

def
= A(x).

A(x) is a polynomial, because F and {fi}1≤i≤n are polynomials. F is not a first integral

of system (7.1) on Cn, then A does not vanishes identically, but A(x) = 0 for x ∈ M .

Let us note Â = {x ∈ Cn;A(x) = 0}, Â ⊊ Cn. Thus M ⊂ Â and the problem is

reduced to the study of V -invariant subsets of the algebraic subset Â of Cn.

Let M ⊆ Â be a V -invariant smooth submanifold such that F |M is a partial first

integral of system (7.1) restricted to M . Any such submanifold will be called a domain

of F . In what follows we will consider exclusively the case when submanifold M is of

codimension one. Nevertheless the case of smaller codimension also deserves the study.

In what follows we will be interested of the identification of maximal domains of F .

7.2. Determination of the maximal domain. Now we shall determine codimension

one maximal domains of the Sretenskii partial first integral

F = (I3ω3 + b3)(ω
2
1 + ω2

2)− (c1ω1 + c2ω2)γ3. (7.2)

To avoid the Zhukovskii and Lagrange cases, we will suppose that (c1, c2) ̸= (0, 0).

Let U ∈ C6 be an open subset. We want to find all invariant manifolds

Ŝ = {(ω, γ) ∈ U ;S(ω, γ) = 0}, (7.3)

where S is a C1 smooth function defined on U , such that on Ŝ, F is a partial first integral

of equations (6.1).

We will consider five distinct cases.

1) Let us suppose that ∂S
∂γ1

̸= 0 in some point of U , and by continuity also in some

open subset of U . We express γ1 from equation (7.3) and obtain that locally

γ1 = Γ1(ω1, ω2, ω3, γ2, γ3). (7.4)

We compute dF
dt and replace γ1 with Γ1 everywhere.

dF

dt
=

[2(I3ω3 + b3)ω1 − c1γ3] [(I2 − I3)ω2ω3 + b3ω2 − b2ω3 + c3γ2 − c2γ3]

I1

+
[2(I3ω3 + b3)ω2 − c2γ3] [(I3 − I1)ω1ω3 − b3ω1 + b1ω3 + c1γ3 − c3Γ1]

I2

+ (ω2
1 + ω2

2) [(I1 − I2)ω1ω2 + b2ω1 − b1ω2 + c2Γ1 − c1γ2]

− (c1ω1 + c2ω2)(ω2Γ1 − ω1γ2).

As we suppose that F is a partial first integral on invariant manifold (7.3) we have

dF

dt
= 0. (7.5)

We solve equation (7.5) with respect to Γ1 and obtain a rational function depending on

ω1, ω2, ω3, γ2 and γ3:

Γ1 =
1

I1(−I2c2ω2
1 + I2c1ω1ω2 + 2b3c3ω2 + 2I3c3ω2ω3 − c2c3γ3)

[
I1I2(I1 − I2)ω

3
1ω2
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+ I1I2b2ω
3
1 − I1I2b1ω

2
1ω2 + I1I2(I1 − I2)ω1ω

3
2 + I1I2b2ω1ω

2
2

− 2I3(I1 − I2)(I1 + I2 − I3)ω1ω2ω
2
3 − 2(I21 − I22 )b3ω1ω2ω3 + I1I2c2ω1ω2γ2

− 2(I1 − I2)b
2
3ω1ω2 − 2I2I3b2ω1ω

2
3 + 2I2I3c3ω1ω3γ2

+ (I21 − I1I3 − 2I2I3)c2ω1ω3γ3 − 2I2b2b3ω1ω3 + 2I2b3c3ω1γ2

+ (I1 − 2I2)b3c2ω1γ3 − I1I2b1ω
3
2 − I1I2c1ω

2
2γ2 + 2I1I3b1ω2ω

2
3

+ (2I1I3 − I22 + I2I3)c1ω2ω3γ3 + 2I1b1b3ω2ω3 + (2I1 − I2)b3c1ω2γ3

− (I1b1c2 − I2b2c1)ω3γ3 − I2c1c3γ2γ3 − (I1 − I2)c1c2γ
2
3

]
. (7.6)

As Γ1 = γ1 then

W =
dΓ1

dt
− dγ1

dt
= 0. (7.7)

Function W depends on γ1 linearly. Indeed, as the expression for Γ1 from (7.6) does

not depend on γ1 then its derivative dΓ1

dt is a linear function of γ1 which is easily seen

taking into account that the right-hand sides of Euler-Poisson equations (1.1) are linear

with respect to γ1. It may happen that the coefficient of γ1 in dΓ1

dt is identically zero.

This only occurs in the following three cases:

Case 1.

I1 =
I2(I2 − I3)

2I3 + I2
, b2 = 0, b3 = 0, c2 = 0, c3 = 0,

Case 2.

I1 = 2I3, I2 = 4I3, b2 = 0, c2 = 0, c3 = 0,

Case 3.

I1 = 4RootOf(8Z2 + 78− 51Z)I3 − 12I3, I2 = RootOf(8Z2 + 78− 51Z)I3,

b1 = 0, b2 = 0, b3 = 0, c1 = 0, c3 = 0.

In the last case the gyrostat equations (6.1) are reduced to the Euler-Poisson equations

(1.1).

The two values of RootOf(8Z2 + 78− 51Z) are 51±
√
105

16 . In fact Case 3 presents two

different solutions, where in I1 and I2 the same sign + or - appears and so it will be in

what follows.

Let F be the Sretenskii partial first integral (7.2).

Let us compute dF
dt along the orbits of gyrostat equations (6.1). In above three cases

we obtain:

Case 1.

dF

dt
= −3I2I3ω

3
1ω2

I2 + 2I3
− b1ω

2
1ω2 − c1ω1ω2γ1 +

12I23 (I2 + I3)ω1ω2ω
2
3

I2(I2 + 2I3)

− 3I2I3ω1ω
3
2

I2 + 2I3
− b1ω

3
2 − c1ω

2
2γ2 +

2I3b1ω2ω
2
3

I2
− c1ω2ω3γ3,

Case 2.

dF

dt
= −2I3ω

3
1ω2 − b1ω

2
1ω2 − 2I3ω1ω

3
2 +

5I3ω1ω2ω
2
3

2
+ 3b3ω1ω2ω3 +

b23ω1ω2

2I3
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− c1ω1ω2γ1 − b1ω
3
2 − c1ω

2
2γ2 +

b1ω2ω
2
3

2
− c1ω2ω3γ3 +

b1b3ω2ω3

2I3
,

Case 3.

dF

dt
= 3

(
51±

√
105

16
− 4

)
I3ω

3
1ω2 + c2ω

2
1γ1 + 3

(
51±

√
105

16
− 4

)
I3ω1ω

3
2

+ c2ω1ω2γ2 +
I3ω1ω2ω

2
3

2
.

In all these cases, dF
dt does not vanish identically and thus these cases are outside of

the domain of the Sretenskii partial first integral and we will ignore them.

Outside of these three cases the Maple command degree gives that the degree of W

with respect to γ1 is 1.

We solve equation (7.7) with respect to γ1 and obtain

γ1 = Γ̂1(ω1, ω2, ω3, γ2, γ3).

The expression for Γ̂1 is too long to be written here and we skip it. Let us note however

that W is a rational function of all variables (ω, γ), whose numerator has 296 monomials

and its denominator is

I21I3(I2c2ω
2
1 − I2c1ω1ω2 − 2b3c− 3ω2 − 2I3c3ω2ω3 + c2c3γ3)

2.

Thus Γ1 − Γ̂1 = 0. Function Γ1 − Γ̂1 is a rational function of variables ω1, ω2, ω3, γ2
and γ3. We only take its numerator which we denote by D. We want to know when D is

identically equal to zero with respect to all the variables ω1, ω2, ω3, γ2 and γ3. For the

purpose we compute the coefficients of polynomial D. They are 513. We should find the

conditions on the parameters Ic at which all of these 513 coefficients are zero.

We apply simplification to the obtained system of 513 equations. After three consec-

utive simplifications we come to the reduced system consisting of nine equations:

c3 = 0, b2c2 = 0, b1c2 = 0, (I2 − 4I3)c2 = 0, (I1 − 4I3)c2 = 0,

b2c1 = 0, b1c1 = 0, (I2 − 4I3)c1 = 0, (I1 − 4I3)c1 = 0.
(7.8)

We solve it by the Maple command solve and obtain two solutions. The first one is

c1 = c2 = c3 = 0 and we remove it because it leads to the Zhukovskii case. The second

solution is

I1 = I2 = 4I3, b1 = b2 = 0, c3 = 0. (7.9)

Now D vanishes identically. Taking into account (7.4) we compute γ1 from (7.6) at

condition (7.9) and obtain

γ1 = −4I3ω2γ2 + I3ω3γ3 − b3γ3
4I3ω1

,

that is

4I3ω1γ1 + 4I3ω2γ2 + I3ω3γ3 − b3γ3 = 0.

Let us note that the last equation is actually nothing but H1 = 0 (see (6.2)) when

I1 = I2 = 4I3, b1 = b2 = 0. {H1 = 0} is an invariant manifold. Finally we conclude that

when ∂S
∂γ1

̸= 0 in some point of U , when I1 = I2 = 4I3, b1 = b2 = 0, (c1, c2) ̸= (0, 0),



72 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

c3 = 0, {H1 = 0} is the searched maximal invariant manifold. Thus we remain in the

framework of the Sretenskii case.

The gyrostat equations (6.1) admit permutational symmetry (see Sec. 2)

σ4 = {(2, 1, 3), (2, 1, 3)}.

Function F (see (7.2)) and also first integral H1 are σ4 invariant. Thus the solution of

the problem about maximal invariant manifold S when ∂S
∂γ2

̸= 0 in some point is exactly

the same as in the just studied case when ∂S
∂γ1

̸= 0 in some point of U .

2) Let us suppose now that ∂S
∂γ1

and ∂S
∂γ2

vanish identically on U that means that S

does not depend on γ1 and γ2. Thus

S = S(ω1, ω2, ω3, γ3).

Let us suppose that ∂S
∂γ3

̸= 0 in some point of U , and by continuity also in some open

subset of U . Like before we express γ3 from equation (7.3) and obtain

γ3 = Γ3(ω1, ω2, ω3).

We compute dF
dt , replace γ3 with Γ3 everywhere and obtain

dF

dt
=

[2(I3ω3 + b3)ω1 − c1Γ3] [(I2 − I3)ω2ω3 + b3ω2 − b2ω3 + c3γ2 − c2Γ3]

I1

+
[2(I3ω3 + b3)ω2 − c2Γ3] [(I3 − I1)ω1ω3 − b3ω1 + b1ω3 + c1Γ3 − c3γ1]

I2

+ (ω2
1 + ω2

2) [(I1 − I2)ω1ω2 + b2ω1 − b1ω2 + c2γ1 − c1γ2]

− (c1ω1 + c2ω2)(ω2γ1 − ω1γ2).

As we suppose that F is a partial first integral on invariant manifold {S = 0} we have
dF
dt = 0. Let us denote the numerator of dF

dt by J . In this way we obtain the following

equation for Γ3

J = −(I1 − I2)c1c2Γ
2
3 +

[
(I21 − I1I3 − 2I2I3)c2ω1ω3 + (I1 − 2I2)b3c2ω1

+ (2I1I3 − I22 + I2I3)c1ω2ω3 + (2I1 − I2)b3c1ω2 + (I2c1b2 − I1b1c2)ω3

+ I1c2c3γ1 − I2c1c3γ2
]
Γ3 + I1I2(I1 − I2)ω

3
1ω2 + I1I2b2ω

3
1 − I1I2b1ω

2
1ω2

+ I1I2c2ω
2
1γ1 + I1I2(I1 − I2)ω1ω

3
2 + I1I2b2ω1ω

2
2

− 2I3(I1 − I2)(I1 + I2 − I3)ω1ω2ω
2
3 − 2(I21 − I22 )b3ω1ω2ω3 + I1I2c2ω1ω2γ2

+ (−I1I2c1γ1 + 2I2b
2
3 − 2I1b

2
3)ω1ω2 − 2I2I3b2ω1ω

2
3 + 2I2I3c3ω1ω3γ2

− 2I2b2b3ω1ω3 + 2I2b3c2ω1γ2 − I1I2b1ω
3
2 − I1I2c1ω

2
2γ2 + 2I1I3b1ω2ω

2
3

− 2I1(I3c3γ1 − b1b3)ω2ω3 − 2I1b3c3ω2γ1 = 0.

As Γ3 = Γ3(ω1, ω2, ω3), after differentiation of J with respect to γ1 and γ2 we have

∂J

∂γ1
= I1I2c2ω

2
1 − I1I2c1ω1ω2 − 2I1I3c3ω2ω3 − 2I1b3c3ω2 + I1c2c3Γ3 = 0,

∂J

∂γ2
= I1I2c2ω1ω2 + 2I2I3c3ω1ω3 + 2I2b3c3ω1 − I1I2c1ω

2
2 − I2c1c3Γ3 = 0.

(7.10)
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Let us first suppose that c1, c2 and c3 are all different from zero. Then excluding Γ3

from (7.10) we obtain

(c1ω2 − c2ω1)(I2c1ω1 + I1c2ω2 + 2I3c3ω3 + 2b3c3) = 0,

which is obviously impossible.

Let now c1 = 0. Then from second equation (7.10) we have the following identity

I1I2c2ω1ω2 + 2I2I3c3ω1ω3 + 2I2b3c3ω1 = 0,

which is possible only when c2 = c3 = 0. But this is the Zhukovskii case.

Let now c2 = 0. From first equation (7.10) we have

−I1I2c1ω1ω2 − 2I1I3c3ω2ω3 − 2I1b3c3ω2 = 0,

which is possible only when c1 = c3 = 0, i.e. again we are in the Zhukovskii case.

Finally let c3 = 0. Equations (7.10) give

I1I2(c2ω1 − c1ω2)ω1 = 0, I1I2(c2ω1 − I1I2c1ω2)ω2 = 0.

The above two conditions can be fulfilled only when c1 = c2 = 0, i.e. only in the Zhukovskii

case.

The conclusion is that the sought function S(ω1, ω2, ω3, γ3) does not exist.

3) Let us suppose now that all ∂S
∂γi

, i = 1, 2, 3, vanish identically on U , that means

that S does not depend on γ1, γ2 and γ3. Thus

S = S(ω1, ω2, ω3).

Let us suppose that ∂S
∂ω3

̸= 0 in some point of U , and thus also in some open subset

of U . We express ω3 from equation (7.3) and obtain

ω3 = Ω3(ω1, ω2). (7.11)

We compute dF
dt and replace ω3 with Ω3 everywhere.

dF

dt
=

[2(I3Ω3 + b3)ω1 − c1γ3] [(I2 − I3)ω2Ω3 + b3ω2 − b2Ω3 + c3γ2 − c2γ3]

I1

+
[2(I3Ω3 + b3)ω2 − c2γ3] [(I3 − I1)ω1Ω3 − b3ω1 + b1Ω3 + c1γ3 − c3γ1]

I2

+ (ω2
1 + ω2

2) [(I1 − I2)ω1ω2 + b2ω1 − b1ω2 + c2γ1 − c1γ2]

− (c1ω1 + c2ω2)(ω2γ1 − ω1γ2).

As above dF
dt = 0. Denote the numerator of dF

dt by K. In this way we obtain the

following equation for Ω3

K =
[
− 2I3(I1 − I2)(I1 + I2 − I3)ω1ω2 − 2I2I3b2ω1 + 2I1I3b1ω2

]
Ω2

3

+
[
− 2b3(I

2
1 − I22 )ω1ω2 + 2I2I3c3ω1γ2 + (I21 − I1I3 − 2I2I3)c2ω1γ3 − 2I2b2b3ω1

− 2I1I3c3ω2γ1 + (2I1I3 − I22 + I2I3)c1ω2γ3 + 2I1b1b3ω2 + (I2b2c1 − I1b1c2)γ3
]
Ω3

+ I1I2(I1 − I2)ω
3
1ω2 + I1I2b1ω

3
1 − I1I2b1ω

2
1ω2 + I1I2c2ω

2
1γ1 + I1I2(I1 − I2)ω1ω

3
2

+ I1I2b2ω1ω
2
2 − I1I2c1ω1ω2γ1 + I1I2c2ω1ω2γ2 − 2(I1 − I2)b

2
3ω1ω2 + 2I2b3c3ω1γ2

+ (I1 − 2I2)b3c2ω1γ3 − I1I2b1ω
3
2 − I1I2c1ω

2
2γ2 − 2I1b3c3ω2γ1 + (2I1 − I2)b3c1ω2γ3

+ I1c2c3γ1γ3 − I2c1c3γ2γ3 − (I1 − I2)c1c2γ
2
3 = 0.
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As Ω3 = Ω3(ω1, ω2), then after differentiation of K with respect to γ1 and γ2 we have

∂K

∂γ1
= I1I2c2ω

2
1 − I1I2c1ω1ω2 − 2I1b3c3ω2 + I1c2c3γ3 − 2I1I3c3ω2Ω3 = 0,

∂K

∂γ2
= I1I2c2ω1ω2 − I1I2c1ω

2
2 + 2I2b3c3ω1 − I2c1c3γ3 + 2I2I3c3ω1Ω3 = 0.

(7.12)

If we suppose that c3 ̸= 0 then we come to the Lagrange case. Indeed, as Ω3 depends

only on ω1 and ω2, then from first equation of (7.12) it follows that c2 = 0. This is so

because otherwise Ω3 would depend on γ3 too. For the same reason second equation of

(7.12) gives that c1 = 0. However at the condition c1 = c2 = 0 and c3 ̸= 0 both first

and second equations of (7.12) lead to the conclusion that Ω3 = −b3/I3, i.e., according

to (7.11), ω3 = −b3/I3. In such a case we obtain from the third equation of the gyrostat

equations (6.1) that I1 = I2, b1 = b2 = 0 and c1 = c2 = 0. Thus we come to the Lagrange

case.

Let now c3 = 0. Then the first and second equations of (7.12) become:

I1I2(c2ω1 − c1ω2)ω1 = 0, I1I2(c2ω1 − c1ω2)ω2 = 0.

The above two equations should be identities which is possible only when c1 = c2 = 0,

i.e. we come to the Zhukovskii case.

The conclusion is that the sought function S(ω1, ω2, ω3) does not exist.

4) Let now the function S be

S = S(ω1, ω2)

and ∂S
∂ω2

̸= 0 in some point of U and therefore in some open subset of U . We express ω2

from equation (7.3) and obtain

ω2 = Ω2(ω1). (7.13)

We compute dF
dt , replace ω2 with Ω2 everywhere and obtain

dF

dt
=

[2(I3ω3 + b3)ω1 − c1γ3] [(I2 − I3)Ω2ω3 + b3Ω2 − b2ω3 + c3γ2 − c2γ3]

I1

+
[2(I3ω3 + b3)Ω2 − c2γ3] [(I3 − I1)ω1ω3 − b3ω1 + b1ω3 + c1γ3 − c3γ1]

I2

+ (ω2
1 +Ω2

2) [(I1 − I2)ω1Ω2 + b2ω1 − b1Ω2 + c2γ1 − c1γ2]

− (c1ω1 + c2Ω2)(Ω2γ1 − ω1γ2).

As above dF
dt = 0. Denote the numerator of dF

dt by L. In this way we obtain the

following equation for Ω2

L = I1I2
[
(I1 − I2)ω1 − b1

]
Ω3

2 + I1I2(b2ω1 − c1γ2)Ω
2
2

+
[
I1I2(I1 − I2)ω

3
1 − I1I2b1ω

2
1 − 2I3(I1 − I2)(I1 + I2 − I3)ω1ω

2
3 − 2(I21 − I22 )b3ω1ω3

− I1I2c1ω1γ1 + I1I2c2ω1γ2 − 2(I1 − I2)b
2
3ω1 + 2I1I3b1ω

2
3 − 2I1I3c3ω3γ1

+ (2I1I3 − I22 + I2I3)c1ω3γ3 + 2I1b3b1ω3 − 2I1b3c3γ1 + (2I1 − I2)b3c1γ3
]
Ω2

+ I1I2b2ω
3
1 + I1I2c2ω

2
1γ1 − 2I2I3b2ω1ω

2
3 + 2I2I3c3ω1ω3γ2

+ (I21 − I1I3 − 2I2I3)c2ω1ω3γ3 − 2I2b2b3ω1ω3 + 2I2b3c3ω1γ2 + (I1 − 2I2)b3c2ω1γ3
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+ (I2b2c1 − I1b1c2)ω3γ3 + I1c2c3γ1γ3 − I2c1c3γ2γ3 − (I1 − I2)c1c2γ
2
3 = 0.

As Ω2 = Ω2(ω1), then after differentiation of L with respect to γ1, γ2 and γ3 we have

∂L

∂γ1
= I1c2(I2ω

2
1 + c3γ3)− I1(I2c1ω1 + 2I3c3ω3 + 2b3c3)Ω2 = 0,

∂L

∂γ2
= I2c3(2I3ω1ω3 + 2b3ω1 − c1γ3) + I1I2c2ω1Ω2 − I1I2c1Ω

2
2 = 0,

∂L

∂γ3
= (I21 − I1I3 − 2I2I3)c2ω1ω3 + (I1 − 2I2)b3c2ω1 − I1c2b1ω3

+ I2c1b2ω3 + I1c2c3γ1 − I2c1c3γ2 − 2(I1 − I2)c1c2γ3

+
[
(2I1I3 − I22 + I2I3)c1ω3 + (2I1 − I2)b3

]
Ω2 = 0.

(7.14)

From the first equation of (7.14) it follows that c2 ̸= 0. Indeed, if c2 = 0 then either

c1 = c3 = 0 that is the Zhukovskii case or Ω2 vanishes identically, that contradicts (7.13).

From the same equation it is seen that c3 = 0 because if c3 ̸= 0 then this equation contains

only one monomial depending on γ3 which cannot be canceled because Ω2 depends on

ω1 only. Thus c3 = 0.

In such a case the first equation of (7.14) is rewritten as follows:

I1I2ω1(c2ω1 − c1Ω2) = 0. (7.15)

Equation (7.15) imposes the restriction c1 ̸= 0 because otherwise I1I2c2ω
2
1 = 0 which is

impossible. We solve (7.15) with respect to Ω2 and obtain

Ω2 = Ω2(ω1) =
c2ω1

c1
.

At this condition the second equation of (7.14) is satisfied and the third one becomes

(I1−I2)(I1+I3+I2)c2ω1ω3+3(I1−I2)b3c2ω1+(I2b2c1−I1b1c2)ω3−2(I1−I2)c1c2γ3 = 0.

Taking into account that c1 ̸= 0 and c2 ̸= 0, the last item of the above equation leads to

I1 = I2. Thus

I2(b2c1 − b1c2)ω3 = 0.

In this way we come to the case

I1 = I2, c1 ̸= 0, c2 ̸= 0, c3 = 0, b2c1 − b1c2 = 0.

In this case L vanishes identically and therefore we can take as function S the following

function

S = c1ω2 − c2ω1.

So far we have not yet examined when {S = 0} = {c1ω2 − c2ω1 = 0} is an invariant

manifold. To do this we compute dS
dt and obtain

dS

dt
=

(c1ω1 + c2ω2)
[
(I3 − I2)c2ω3 − b3c2

]
+ (c21 + c22)(b2ω3 + c2γ3)

I2c2
.

It is seen that in generic case {S = 0} is not an invariant manifold. But let us put

c21 + c22 = 0,
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i.e. either c1 = ic2 or c1 = −ic2. Let us first consider the case c1 = ic2. We have

S = c2S1, S1 = iω2 − ω1

and

dS1(t)

dt
=

i
[
(I2 − I3)ω3(t) + b3

]
(iω2(t)− ω1(t))

I2
= S1(t)

i
[
(I2 − I3)ω3(t) + b3

]
I2

.

This equation admits the zero solution S1(t) = 0 for all t. Thus from the unicity of

solutions for this equation one obtains that if S1(t0) = 0 for some t0, then S1(t) = 0 for

all t. In other words, if for some t0, iω2(t0) − ω1(t0) = 0, then iω2(t) − ω1(t) = 0 for all

t. But this is precisely the invariance of manifold Ŝ1 = {S1 = 0}. In this way we come to

the conclusion that when

I1 = I2, c1 = ic2 ̸= 0, c3 = 0, b2c1 − b1c2 = 0.

the gyrostat equations (6.1) have an invariant manifold {iω2 − ω1 = 0}.
The case c1 = −ic2 is considered in the same way. The difference is that now S = c2S2,

where S2 = −iω2 − ω1 and the invariant manifold is {iω2 + ω1}.
But F is not a partial first integral of the gyrostat equations (6.1) on the invariant

manifolds Ŝ1 = {S1 = 0} and Ŝ2 = {S2 = 0}. In fact it is easy to see that on them F

vanishes identically.

Finally, we conclude that the codimension one maximal domain of the Sretenskii

partial first integral (7.2) coincides with the manifold {H1 = 0} under the conditions

I1 = I2 = 4I3, b1 = b2 = 0, (c1, c2) ̸= (0, 0), c3 = 0.

In addition, when

I1 = I2, b2c1 − b1c2 = 0, c21 + c22 = 0, c3 = 0,

we found two invariant relations for gyrostat equations (6.1):

S1 = iω2 − ω1 when c1 = ic2 and S2 = −iω2 − ω1 when c1 = −ic2.

We will prove that S1 is functionally independent of first integrals H1, H2 and H3.

For this purpose we consider the Jacobi matrix J of functions H1, H2, H3 and S1. We

prove that rankJ = 4. Indeed, computing the determinant J14 composed from matrix J

by crossing out its first and fourth columns we obtain

J14 = −4iI3(I2ω2ω3γ3 − I3ω
2
3γ2 − c2γ

2
3 − b2ω3γ3 + b3ω3γ2).

It is clearly seen that J14 never vanishes identically. Thus functions H1, H2, H3 and

S1 are functionally independent.

The study of the functional independence of H1, H2, H3 and S2 is the same. The only

difference is that now the value of the determinant is −J14.

5) Finally let S = S(ω, γ) = S(ω1), where S does not vanish identically. It is easy to

see that then Ŝ = {(ω, γ) ∈ U ;S(ω1) = 0} is a five-dimensional submanifold if and only

if Ŝ = {(ω, γ) ∈ U ; ω1 ∈ Ω1}, where Ω1 is a set of zeros of S. In complex case Ω1 is at

most countable. In real case Ω1 is a subset of R that does not contains an open interval.

In both cases dω1

dt = 0 and from the first of the gyrostat equations (6.1) one obtains that

(I2 − I3)ω2ω3 + b3ω2 − b2ω3 + c3γ2 − c2γ3 = 0
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for all ω2, ω3, γ2 γ3 ∈ C. Thus I2 = I3, b2 = b3 = 0 and c2 = c3 = 0 and we recover the

Lagrange case. Thus in both cases, complex and real, the sought function S(ω1) does not

exist.

Let us recall that when in gyrostat equations (6.1) b1 = b2 = b3 = 0, we recover the

Euler-Poisson equations (1.1). The Sretenskii case of partial integrability becomes the

Goryachev-Chaplygin case of partial integrability and the Sretenskii partial first integral

(7.2) becomes the Goryachev-Chaplygin partial first integral (1.8).

Consequently, from the above, one deduces immediately that the maximal domain of

the Goryachev-Chaplygin partial first integral (1.8) is

{H1 = I1ω1γ1 + I2ω2γ2 + I3ω3γ3 = 0},

where I1 = I2 = 4I3, (c1, c2) ̸= (0, 0), c3 = 0.

Finally let us note that the invariant relations are the same in Sretenskii and in

Goryachev-Chaplygin cases.

8. Four-dimensional invariant manifolds. New integrals on
{Hi=Ui, Hj=Uj}, 1 ≤ i < j ≤ 3

8.1. Extraction procedure. In this section we study the existence of a local partial

first integral of the Euler-Poisson equations (1.1) restricted to the invariant complex four-

dimensional level manifold {Hi = Ui, Hj = Uj}, 1 ≤ i < j ≤ 3. We study when on each

of them there exists a local partial first integral that depends on at most three variables

and such that on {Hi = Ui, Hj = Uj} it is functionally independent of Hk, k ̸= i, j.

Let us fix i and j, 1 ≤ i < j ≤ 3. According to (2.5)

M(U0, Ui, Uj , Ic) = {x ∈ C6; Hi((ω, γ), Ic) = Ui, Hj((ω, γ), Ic) = Uj},

where (ω, γ) = (ω1, ω2, ω3, γ1, γ2, γ3).

We search all functions F of three variables F = F (s1, s2, s3) where (s1, s2, s3) ∈
(ω, γ), of class C1, such that gradF does not vanish identically on each open subset of

M(U0, Ui, Uj , Ic), which are local partial first integrals of the Euler-Poisson equations

(1.1) restricted to M(U0, Ui, Uj , Ic). Like in Sec. 5 the unique intrinsic property of C1

function F that is a local partial first integral is that gradF does not vanish identically

on any open subset of its domain of definition. This implies that some of the partial

derivatives of F may be identically zero. Thus the results of Sec. 8 also remain valid for

the functions of at most three variables.

We follow the same way as in Sec. 5.1. As in Sec. 5.1 the order of variables si, 1 ≤ i ≤ 3,

in F (s1, s2, s3) is irrelevant for F to be a first integral.

We have exactly 20 different three elements subsets of (ω, γ) and thus 20 cases of

functions of three elements to examine. We will describe now an extraction procedure

based on permutational symmetries which reduces the above 20 cases to only six.

These 20 functions of three variables (up to the order of variables) are shown in Table

8.1.
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Table 8.1

Functions Case

F (ω1, ω2, ω3) (i)

F (ω1, ω2, γ3), F (ω1, ω3, γ2), F (ω2, ω3, γ1) (ii)

F (ω1, ω2, γ1), F (ω1, ω3, γ1), F (ω2, ω3, γ2),

F (ω1, ω2, γ2), F (ω1, ω3, γ3), F (ω2, ω3, γ3)
(iii)

F (ω1, γ1, γ2), F (ω1, γ1, γ3), F (ω2, γ2, γ3),

F (ω2, γ1, γ2), F (ω3, γ1, γ3), F (ω3, γ2, γ3)
(iv)

F (ω3, γ1, γ2), F (ω2, γ1, γ3), F (ω1, γ2, γ3) (v)

F (γ1, γ2, γ3) (vi)

It is easy to see that under the group of permutational symmetries (2.3) of the Euler-

Poisson equations for every case (i)–(vi) from Table 8.1 each function from the fixed case

is consequently transformed into all remaining functions from the same case.

Thus in virtue of Theorem 2.2 we can restrict ourselves to the study of only six

functions where every one belongs to a different case from Table 8.1 and is chosen arbitrary

from the functions of this case.

We will call such six functions Fi, 1 ≤ i ≤ 6, (up to the order of variables) a basis.

8.2. Invariant manifold {H1=U1, H2=U2}. Here we continue the study of the

existence of a partial first integral of the Euler-Poisson equations (1.1) restricted to the

complex four-dimensional level manifold

{H1 = U1, H2 = U2}, (8.1)

supposing that this first integral depends on at most three variables and that is function-

ally independent of H3. For this aim we shall use the same approach as in Sec. 5.

In the future when we refer to “some suitable open set” in space C4(α1, α2, α3, α4) in

Sec. 8 where {α1, α2, α3, α4} ∈ {ω1, ω2, ω3, γ1, γ2, γ3} or in space C3(α1, α2, α3) in Sec. 9

where {α1, α2, α3} ∈ {ω1, ω2, ω3, γ1, γ2, γ3}, we mean an open set such that all functions

of the above variables never vanish on it when this is necessary for a proof. For example

if such a function appears in some denominator or when we need to have a holomorphic

branch of roots of some of these functions. In the future, we will use this terminology

without any further discussion.

8.2.1. Elimination of γ2 and γ3. Using the Maple command solve we express γ2
and γ3 from the equations H1 = U1 and H2 = U2 and obtain the following solution:

γ2 =
I1ω1γ1 + I3ω3R− U1

I2ω2
, γ3 = R, (8.2)

where R is a root of equation

Q(x) = Ax2 +Bx+ C = 0,
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that is

Q(R) = AR2 +BR+ C = 0 (8.3)

and A = A(ω2, ω3), B = B(ω1, ω3, γ1) and C = C(ω1, ω2, γ1) are the following polynomi-

als:
A = I22ω

2
2 + I23ω

2
3 , B = 2I3ω3(I1ω1γ1 − U1),

C = I21ω
2
1γ

2
1 − 2I1U1ω1γ1 − I22U2ω

2
2 + I22ω

2
2γ

2
1 + U2

1 .
(8.4)

Here Maple does not give an explicit formula for R but expresses R as a root of the

following quadratic polynomial:

RootOf((I23ω
2
3 + I22ω

2
2)Z

2 + 2I3ω3(I1ω1γ1 − U1)Z

+ I21ω
2
1γ

2
1 − 2I1U1ω1γ1 − I22U2ω

2
2 + I22ω

2
2γ

2
1 + U2

1 )

= RootOf(AZ2 +BZ + C),

Thus we can say that R is a root of equation (8.3) where the coefficients A, B and C

are defined by (8.4).

Let us consider the four-dimensional vector space C4 = C4(ω1, ω2, ω3, γ1) and a point

(ω1, ω2, ω3, γ1) ∈ C4 with ωi ̸= 0, i = 1, 2, 3, γ1 ̸= 0.

All our considerations are local. Thus from the beginning we can restrict ourselves to

some suitable open set Ω in the space C4 = C4(ω1, ω2, ω3, γ1).

By their very definition the first integrals are not constant on any open subset of their

domain of definition. As we consider C1 first integrals, this means that their gradients

are non-zero on any open subset of their domain of definition.

We put the values of γ2 and γ3 from (8.2) in the Euler-Poisson equations (1.1) and

remove the fifth and sixth equations. In this way we have the following system of four

equations in unknowns ω1, ω2, ω3 and γ1:

dω1

dt
=

1

I1I2ω2

[
I2(I2 − I3)ω

2
2ω3 − I1c3ω1γ1 − (I2c2ω2 + I3c3ω3)R+ c3U1

]
,

dω2

dt
=

1

I2

[
(I3 − I1)ω1ω3 + c1R− c3γ1

]
,

dω3

dt
=

1

I2I3ω2

[
I2(I1 − I2)ω1ω

2
2 + I1c1ω1γ1 + I2c2ω2γ1 + I3c1ω3R− c1U1

]
,

dγ1
dt

=
1

I2ω2

[
− I1ω1ω3γ1 − (I2ω

2
2 + I3ω

2
3)R+ ω3U1

]
.

(8.5)

Here we study whether system (8.5) has a first integral that depends on at most three

variables among the variables (ω1, ω2, ω3, γ1) and that is functionally independent of H3

restricted to invariant manifold (8.1). Thus we should investigate the following four types

of a new first integral:

1. F (ω1, ω2, ω3), (case (i))

2. F (ω1, ω2, γ1), (case (iii))

3. F (ω1, ω3, γ1), (case (iii))

4. F (ω2, ω3, γ1). (case (ii))

Then, like in Sec. 5 it suffices to examine the functions of types 1, 2 and 4 respectively.
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Type 1. Let us suppose that the sought first integral F is of type 1, i.e. F =

F (ω1, ω2, ω3). As F is a first integral of system (8.5) we have

dF

dt
=

1

I1I2ω2

[
I2(I2 − I3)ω

2
2ω3 − I1c3ω1γ1 − (I2c2ω2 + I3c3ω3)R+ c3U1

] ∂F
∂ω1

+
1

I2

[
(I3 − I1)ω1ω3 + c1R− c3γ1

] ∂F
∂ω2

+
1

I2I3ω2

[
I2(I1 − I2)ω1ω

2
2 + I1c1ω1γ1 + I2c2ω2γ1 + I3c1ω3R− c1U1

] ∂F
∂ω3

= 0,

or equivalently

I1I2I3ω2
dF

dt
= Y1(F ) = 0, (8.6)

where Y1 is the corresponding vector field defined on Ω.

Equation (8.6) should be an identity with respect to all the four variables ω1, ω2, ω3

and γ1. As function F does not depend on γ1 then its partial derivatives will not depend

on γ1 too. Thus if we differentiate identity (8.6) with respect to γ1 we shall obtain again

a linear partial differential equation for function F . We obtain

∂Y1(F )

∂γ1
= −I3

[
I1c3ω1 + (I2c2ω2 + I3c3ω3)

∂R

∂γ1

]
∂F

∂ω1
+ I1I3ω2

(
c1

∂R

∂γ1
− c3

)
∂F

∂ω2

+ I1

(
I1c1ω1 + I2c2ω2 + I3c1ω3

∂R

∂γ1

)
∂F

∂ω3
= 0,

i.e.
∂Y1(F )

∂γ1
= Y2(F ) = 0, (8.7)

where Y2 is the corresponding vector field defined on Ω.

We differentiate one time more identity (8.7) with respect to γ1 and obtain

∂Y2(F )

∂γ1
= I3

∂2R

∂γ2
1

[
− (I2c2ω2 + I3c3ω3)

∂F

∂ω1
+ I2c1ω2

∂F

∂ω2
+ I1c1ω3

∂F

∂ω3

]
= 0,

i.e.
1

I3

∂Y2(F )

∂γ1
= Y3(F ) = 0, (8.8)

where Y3 is the corresponding vector field defined on Ω.

Let us suppose first that
∂2R

∂γ2
1

̸= 0. (8.9)

Equations (8.6)–(8.8) can be considered as a system of three homogeneous linear alge-

braic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

)
, which do not vanish identically,

because F is non-constant on any open subset of Ω.

Thus, if a fourth integral F exists, system (8.6)–(8.8) has a non-zero solution gradF .

This is possible if and only if the determinant D of the coefficients of this system is

identically equal to zero. We compute this determinant and obtain

D = I21I2I3ω
2
2

∂2R

∂γ2
1

D1D2,
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where
D1 = (I1c1ω1 + I2c2ω2 + I3c3ω3),

D2 = (I2 − I1)c3ω1ω2 + (I1 − I3)c2ω1ω3 + (I3 − I2)c1ω2ω3.
(8.10)

Note that D depends neither on R nor on ∂R
∂γ1

. Taking into account (8.9) it is clear

that D ≡ 0 if and only if at least one of the expressions (8.10) is identically equal to zero.

It is easily seen that this happens only in the Euler, Lagrange and kinetic symmetry

cases.

Thus the restriction (8.9) leads to nothing new and we suppose now that

∂2R

∂γ2
1

= 0. (8.11)

In such a case only equations (8.6) and (8.7) remain because Y3 ≡ 0.

Let us study whether there are such values of parameters Ic, U1 and U2 at which

(8.11) is fulfilled. For this purpose we differentiate (8.3) twice with respect to γ1. Taking

into account that polynomial A from (8.4) does not depend on γ1 we have

∂Q

∂γ1
=

∂B

∂γ1
R+

∂C

∂γ1
+

dQ

dR

∂R

∂γ1
= 0 (8.12)

and

∂2Q

∂γ2
1

=
∂2B

∂γ2
1

R+
∂B

∂γ1

∂R

∂γ1
+

∂2C

∂γ2
1

+
∂

∂γ1

(
dQ

dR

)
∂R

∂γ1
+

dQ

dR

∂2R

∂γ2
1

= 0. (8.13)

First we prove that if R is a root of equation (8.3), then dQ
dR ̸= 0. For this purpose we

apply Proposition 4.1 to polynomial Q. We consider the resultant ρ of polynomials Q(R)

and dQ
dR and prove that ρ ̸= 0. Indeed, we have

ρ = A(4AC −B2).

As we are interested in cases where ρ vanishes identically with respect to ω1, ω2, ω3 and

γ1 only and as A never vanishes identically we do not consider ρ but ρ̂ = 4AC − B2

instead. Putting in ρ̂ the expressions for A, B and C (see (8.4)) we obtain

ρ̂ = 4I22ω
2
2(I

2
1ω

2
1γ

2
1 + I22ω

2
2γ

2
1 + I23ω

2
3γ

2
1 − 2I1ω1γ1U1 − I22ω

2
2U2 − I23ω

2
3U2 + U2

1 ), (8.14)

which, as one can easily see, never vanishes identically. Thus we can express ∂R
∂γ1

from

equation (8.12) and then determine ∂2R
∂γ2

1
from (8.13) as follows:

∂2R

∂γ2
1

=
I22ω

2
2S

[(I22ω
2
2 + I23ω

2
3)R+ I3ω3(I1ω1γ1 − U1)]3

, (8.15)

where

S = −(I22ω
2
2 + I23ω

2
3)(I

2
1ω

2
1 + I22ω

2
2 + I23ω

2
3)R

2

+ 2I3ω3(I
2
1ω

2
1 + I22ω

2
2 + I23ω

2
3)(U1 − I1ω1γ1)R

− I41ω
4
1γ

2
1 + 2I31ω

3
1γ1U1 − 2I21I

2
2ω

2
1ω

2
2γ

2
1 − I21I

2
3ω

2
1ω

2
3γ

2
1 − I21ω

2
1U

2
1

+ 2I1I
2
2ω1ω

2
2γ1U1 + 2I1I

2
3ω1ω

2
3γ1U1 − I42ω

4
2γ

2
1 − I22I

2
3ω

2
2ω

2
3γ

2
1 − I23ω

2
3U

2
1 .
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Equations (8.15) and (8.11) imply that S = 0. Taking into account that Q = 0 (see

(8.3)) we can assert that

(I21ω
2
1 + I22ω

2
2 + I23ω

2
3)Q+ S = I22ω

2
2 [U

2
1 − U2(I

2
1ω

2
1 + I22ω

2
2 + I23ω

2
3)]

is also zero. This is possible if and only if

U1 = U2 = 0. (8.16)

Let us consider the case defined by (8.16). In this case R can be presented in the form

R = Pγ1, where P is a root of equation

(I22ω
2
2 + I23ω

2
3)P

2 + 2I1I3ω1ω3P + I21ω
2
1 + I22ω

2
2 = 0. (8.17)

This fact is obtained very easily from (8.3) if we take into account condition (8.16).

Indeed, it suffices to divide equation (8.3) by γ2
1 and denote R

γ1
by P . Moreover, being a

root of equation (8.17), P is a homogeneous function of degree zero and depends only on

ω1, ω2 and ω3.

Thus vector field Y1 (see (8.6)) is linear with respect to γ1 and can be presented as

follows

Y1 = K1γ1 +K2,

where K1 and K2 are vector fields defined on Ω by the formulas

K1 = −I3(I1c3ω1 + I2c2ω2P + I3c3ω3P )
∂

∂ω1
+ I1I3ω2(c1P − c3)

∂

∂ω2

+ I1(I1c1ω1 + I2c2ω2 + I3c1ω3P )
∂

∂ω3
,

K2 = ω2

[
I2I3ω2ω3(I2 − I3)

∂

∂ω1
− I1I3ω1ω3(I1 − I3)

∂

∂ω2

+ I1I2ω1ω2(I1 − I2)
∂

∂ω3

]
.

Equation (8.6) and the fact that first integral F does not depend on γ1 imply

K1(F ) = K2(F ) = 0. (8.18)

Function I21ω
2
1 + I22ω

2
2 + I23ω

2
3 is non-constant on all open subsets of C4(ω1, ω2, ω3, γ1).

Thus without any restriction of generality one can suppose that on our suitable open set

the function I21ω
2
1 + I22ω

2
2 + I23ω

2
3 ̸= 0.

In order to simplify the formulas let us put

α = I22ω
2
2 + I23ω

2
3 , β =

√
−I21ω

2
1 − I22ω

2
2 − I23ω

2
3 , Re(β) > 0. (8.19)

Equation (8.17) has two roots

P =
−I1I3ω1ω3 + εI2ω2β

α
,

where ε = ±1. Substituting this value of P in the expression for K1 we obtain

αK1

ω2
= −I2I3

[
I1ω1(I2c3ω2 − I3c2ω3) + εβ(I2c2ω2 + I3c3ω3)

]
∂

∂ω1

+ I1I3

[
− I1I3c1ω1ω3 − c3α+ εβI2c1ω2

]
∂

∂ω2
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+ I1I2

[
I1I2c1ω1ω2 + c2α+ εβI3c1ω3

]
∂

∂ω3
.

As we are interested in equations (8.18) we remove all the non-zero factors from K1 and

K2, i.e. we shall work with the vector fields

Z1 =
αK1

ω2
and Z2 =

K2

ω2
.

Therefore instead of (8.18) we consider the following equations:

Z1(F ) = Z2(F ) = 0. (8.20)

We compute the commutator K3 = [Z1, Z2] and obtain

K3

I1I2I3
=
[
− (I1 − I2) I1I2I3c2ω

2
1ω2 − (I1 − I3) I1I2I3c3ω

2
1ω3

+ (I2 − I3) I1I
2
2c1ω1ω

2
2 − (I2 − I3) I1I

2
3c1ω1ω

2
3

+ εβ (I1 − I2) I2I3c3ω1ω2 − εβ (I1 − I3) I2I3c2ω1ω3

+ (I2 − I3) I
3
2c2ω

3
2 + 2 εβ (I2 − I3) I2I3c1ω2ω3 − (I2 − I3) I

3
3c3ω

3
3

] ∂

∂ω1

+
[
− (I2 − I3) I

3
1c1ω

2
1ω2 − (I1 − I3) I1I

2
2c2ω1ω

2
2

− (I1I2 − 2 I1I3 + I2I3) I1I3c3ω1ω2ω3 − 2 (I1 − I3) I1I
2
3c2ω1ω

2
3

+ (I2 − I3) I1I
2
3c1ω2ω

2
3 + εβ (I1 − I3) I2I3c2ω2ω3

+ εβ (I1 − I3) I
2
3c3ω

2
3

] ∂

∂ω2

+
[
(I2 − I3) I

3
1c1ω

2
1ω3 − 2 (I1 − I2) I1I

2
2c3ω1ω

2
2

+ (2 I1I2 − I1I3 − I2I3) I1I2c2ω1ω2ω3 − (I1 − I2) I1I
2
3c3ω1ω

2
3

− (I2 − I3) I1I
2
2c1ω

2
2ω3 − εβ (I1 − I2) I

2
2c2ω

2
2 − εβ (I1 − I2) I2I3c3ω2ω3

] ∂

∂ω3
.

We consider vector field

Z3 =
K3

I1I2I3

instead of K3.

Equations (8.20) imply that Z3(F ) = 0. In this way we obtain the following three

equations for determining function F

Z1(F ) = Z2(F ) = Z3(F ) = 0. (8.21)

Equations (8.21) can be considered as a system of three homogeneous linear algebraic

equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

)
, which do not vanish identically,

because F is non-constant on any open subset of its domain of definition.

Thus, if a fourth integral F exists, system (8.21) has a non-zero solution gradF . We

know that this is possible if and only if the determinant D of the coefficients of equations

(8.21) is identically equal to zero. We compute this determinant and obtain that on Ω

D = I1I2I3(f1β + f2), (8.22)
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where f1 and f2 are the following polynomials in ω1, ω2 and ω3:

f1
ε

= − (I1 − I2) (I1 − I3) I
2
1I

3
2c1c2ω

3
1ω

3
2 − (I1 − I2) (I1 − I3) I

2
1I

2
2I3c1c3ω

3
1ω

2
2ω3

− (I1 − I2) (I1 − I3) I
2
1I2I

2
3c1c2ω

3
1ω2ω

2
3 − (I1 − I2) (I1 − I3) I

2
1I

3
3c1c3ω

3
1ω

3
3

+ (I1 − I2)
[
(I2 − I3) I1c

2
1 − (I1 − I3) I2c

2
2 − (I1 − I2) I3c

2
3

]
I1I

3
2ω

2
1ω

4
2

− 2 (I1 − I2) (I2 − I3) I
2
1I

2
2I3c2c3ω

2
1ω

3
2ω3

+ I1I2I3

[
(I2 − I3)

2
I21c

2
1 + (I1 − I3) (I1I2 − 3 I1I3 + 2 I2I3) I2c

2
2

− (I1 − I2) (3 I1I2 − I1I3 − 2 I2I3) I3c
2
3

]
ω2
1ω

2
2ω

2
3

+ 2 (I1 − I3) (I2 − I3) I
2
1I2I

2
3c2c3ω

2
1ω2ω

3
3

− (I1 − I3)
[
(I2 − I3) I1c

2
1 + (I1 − I3) I2c

2
2 + (I1 − I2) I3c

2
3

]
I1I

3
3ω

2
1ω

4
3

+ (I1 − I2) (I2 − I3) I1I
4
2c1c2ω1ω

5
2 + (I1 − I2) (I2 − I3) I1I

2
2I

2
3c1c2ω1ω

3
2ω

2
3

− (I1 − I3) (I2 − I3) I1I
2
2I

2
3c1c3ω1ω

2
2ω

3
3 − (I1 − I3) (I2 − I3) I1I

4
3c1c3ω1ω

5
3

− (I1 − I2) (I2 − I3) I
4
2I3c2c3ω

5
2ω3

+ (I2 − I3)
[
(I2 − I3) I1c

2
1 + (I1 − I3) I2c

2
2 − (I1 − I2) I3c

2
3

]
I32I3ω

4
2ω

2
3

+ (I2 − I3)
2
I1I

2
2I

2
3c2c3ω

3
2ω

3
3

+ (I2 − I3)
[
(I2 − I3) I1c

2
1 + (I1 − I3) I2c

2
2 − (I1 − I2) I3c

2
3

]
I2I

3
3ω

2
2ω

4
3

+ (I1 − I3) (I2 − I3) I2I
4
3c2c3ω2ω

5
3 ,

f2
β2

= −(I1 − I2)I
2
2I1c3c1(−I1I3 + I1I2 + ε2I1I3 − ε2I2I3)ω

2
1ω

3
2

+ ε2(I1 − I2)(−I3 + I1)I1I
2
2I3c2c1ω

2
1ω

2
2ω3

− ε2(I1 − I2)(I1 − I3)I1I2I
2
3c3c1ω

2
1ω2ω

2
3

+ (I1 − I3)(I1I3 − I2I1 + ε2I1I2 − ε2I2I3)I1I
2
3c2c1ω

2
1ω

3
3

− (I1 − I2)(I2 − I3)I1I
3
2c2c3ω1ω

4
2

− 2(I1 − I2)(I2 − I3)I1I
2
2I3(ε

2c21 + c23)ω1ω
3
2ω3

+ I1(I2 − I3)(I1I2 + I1I3 − 2I2I3)I2I3c2c3ω1ω
2
2ω

2
3

− 2(I2 − I3)(I1 − I3)I1I2I
2
3 (ε

2c21 + c22)ω1ω2ω
3
3

− (I1 − I3)(I2 − I3)I1I
3
3c3c2ω1ω

4
3 − ε2(I1 − I2)(I2 − I3)I

3
2I3c2c1ω

4
2ω3

− (I2 − I3)(I1I2 − I1I3 + ε2I1I3 − ε2I2I3)I
2
2I3c1c3ω

3
2ω

2
3

− (I2 − I3)(I1I3 − I1I2 + ε2I1I2 − ε2I2I3)I2I
2
3c1c2ω

2
2ω

3
3

− ε2(I1 − I3)(I2 − I3)I2I
3
3c1c3ω2ω

4
3 .

As Ii ̸= 0, 1 ≤ i ≤ 3, then from (8.22) one deduces that f1β + f2 = 0. If f1 = 0

identically, f2 = 0 identically too. Let us suppose that f1 ̸= 0. (8.22) is then equivalent

to

β = −f2
f1

. (8.23)

Applying Proposition 4.3 to β2 = −I21ω
2
1 − I22ω

2
2 − I23ω

2
3 one sees that (8.23) can never
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occur because β /∈ C(ω1, ω2, ω3). Consequently

f1 = f2 = 0.

Note that ε appears in f1 as a factor and in f2 only as ε2. We replace ε2 with 1

everywhere in f2. As β2 can never be identically equal to zero, we require that all the 18

coefficients of f1/ε and all the 13 coefficients of f2/β
2 be zero, i.e. we obtain a system of

31 equations for the parameters Ic.
After three consecutive simplifications we obtain the reduced system that contains

eight equations:

(I2 − I3)c2c3 = 0, (I1 − I3)c1c3 = 0, (I1 − I2)(I1 − I3)(I2 − I3)c3 = 0,

(I1 − I2)(I1 − I3)(c
2
2 + c23) = 0, (I1 − I2)(I2 − I3)c1c2 = 0,

(I1 − I2)(I1 + I2 − 2I3)c1c2 = 0,

(I2 − I3)
[
(I2 − I3)c

2
1 + (I1 − I3)c

2
2 + (I2 − I1)c

2
3

]
= 0,

(I1 − I3)(I2 − I3)(c
2
1 + c22) = 0.

We solve these eight equations by the Maple command solve and obtain a set of

eight solutions. We remove the solutions that lead to the Euler, Lagrange and kinetic

symmetry cases and obtain only three new solutions. They are:

I. I1 = I2, c1 = ±ic2, c3 = 0,

II. I1 = I3, c1 = ±ic3, c2 = 0,

III. I2 = I3, c1 = 0, c2 = ±ic3.

We describe here only solution I because solutions II and III are obtained from it by

permutational symmetries σ2 and σ3, respectively.

We consider separately two cases:

1. c1 = ic2 with ε = 1 and with ε = −1.

2. c1 = −ic2 with ε = 1 and with ε = −1.

Let us remark that the above situation is exactly the one we met in Sec. 7.2 when

finding invariant manifolds.

Case 1. Let I1 = I2, c1 = ic2, c3 = 0 and ε = 1. Now vector field Z3 is linearly

dependent on Z1 and Z2 and therefore the local solvability of system (8.21) around any

point (ω1, ω2, ω3) ̸= (0, 0, 0) follows from the Frobenius Integrability Theorem. Moreover,

system (8.5) is quasi-homogeneous (we recall that R = Pγ1 and P is a homogeneous

function of degree zero). Thus from [41] it follows that the searched first integral F

can be chosen as a homogeneous function of the variables (ω1, ω2, ω3). But in fact we

shall compute F by a crude computation, without any use of the Frobenius Integrability

Theorem nor the results of [41]. Nevertheless the above facts guide our approach to the

problem.

Let us add to equations (8.20) the Euler “homogeneity equation”

ω1
∂F

∂ω1
+ ω2

∂F

∂ω2
+ ω3

∂F

∂ω3
= F. (8.24)

Dividing equations (8.20) and (8.24) by F we obtain a system of three linear partial

differential equations for determining function V = logF . We solve this system as a linear
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inhomogeneous algebraic system with respect to partial derivatives of V and obtain

∂V

∂ω1
=

(
I22ω1ω2 − iI22ω

2
2 − iI23ω

2
3 + I3ω3β

)
ω1

(I22ω
2
1ω2 + I22ω

3
2 + I23ω2ω2

3 + I3ω1ω3β) (ω1 − iω2)
,

∂V

∂ω2
=

(
I22ω1ω2 − iI22ω

2
2 − iI23ω

2
3 + I3ω3β

)
ω2

(I22ω
2
1ω2 + I22ω

3
2 + I23ω2ω2

3 + I3ω1ω3β) (ω1 − iω2)
,

∂V

∂ω3
=

iI3 (I3ω1ω3 − ω2β)

I22ω
2
1ω2 + I22ω

3
2 + I23ω2ω2

3 + I3ω1ω3β
.

Now, by the standard procedure, we find function V .

We integrate ∂V
∂ωi

, 1 ≤ i ≤ 3, with respect to ωi and in this way we obtain three

expressions for the function V .

V =

∫ (
I22ω1ω2 − iI22ω

2
2 − iI23ω

2
3 + I3ω3β

)
ω1

(I22ω
2
1ω2 + I22ω

3
2 + I23ω2ω2

3 + I3ω1ω3β) (ω1 − iω2)
dω1 +G1(ω2, ω3),

V =

∫ (
I22ω1ω2 − iI22ω

2
2 − iI23ω

2
3 + I3ω3β

)
ω2

(I22ω
2
1ω2 + I22ω

3
2 + I23ω2ω2

3 + I3ω1ω3β) (ω1 − iω2)
dω2 +G2(ω1, ω3),

V =

∫
iI3 (I3ω1ω3 − ω2β)

I22ω
2
1ω2 + I22ω

3
2 + I23ω2ω2

3 + I3ω1ω3β
dω3 +G3(ω1, ω2),

where G1, G2 and G3 are arbitrary functions of the corresponding variables.

The first two expressions for V are too complicated and we do not use them. We only

use the third expression which is rewritten as follows:

V = csgn(I3)i arctan
csgn(I3)I3ω3

β
+G3(ω1, ω2),

where the function csgn(z) is used to determine in which half-plane (“left” or “right”)

the complex-valued number z lies. It is defined by

csgn(z) =


1 if Re(z) > 0,

−1 if Re(z) < 0,

sgn(Im(z)) if Re(z) = 0.

As arctan is an odd function we can write

V = i arctan
I3ω3

β
+G3(ω1, ω2). (8.25)

In order to determine function G3(ω1, ω2) we differentiate (8.25) with respect to ωi,

1 ≤ i ≤ 3, and obtain

∂V

∂ω1
= − iI3ω1ω3

(ω2
1 + ω2

2)β
+

∂G3

∂ω1
,

∂V

∂ω2
= − iI3ω2ω3

(ω2
1 + ω2

2)β
+

∂G3

∂ω2
,

∂V

∂ω3
=

iI3
β

.

We know that function V satisfies system (8.20) so that we have

Z1(V ) = Z2(V ) = 0. (8.26)
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System (8.26) is a system of two linear partial differential equations with respect to

function G3(ω1, ω2). We solve it as a linear inhomogeneous algebraic system in unknowns
∂G3

∂ω1
and ∂G3

∂ω2
and obtain

∂G3

∂ω1
=

ω1

ω2
1 + ω2

2

,
∂G3

∂ω2
=

ω2

ω2
1 + ω2

2

.

After integration these expressions lead to

G3(ω1, ω2) =
1

2
log (ω2

1 + ω2
2) + C,

where C is a constant which can be considered as a zero because it is added to a first

integral. Thus from (8.25) we have

V = i arctan
I3ω3

β
+

1

2
log (ω2

1 + ω2
2).

As V = logF we have

F = expV =
−I3ω3 + iβ

±I2
.

We remove the constant denominator and change the sign of the function. Let us note

the obtained function by F1. We have

F1 = I3ω3 − iβ.

F1 satisfies equations (8.20) that means that in Case 1 with ε = 1, F1 is a first integral

of system (8.5).

Let now ε = −1. The considerations are exactly the same as above however now

V = −i arctan
I3ω3

β
+

1

2
log (ω2

1 + ω2
2)

and F = expV is

F =
I2(ω

2
1 + ω2

2)

I3ω3 − iβ
.

Function F can be simplified. Indeed, as according to (8.19)

β2 = −I22 (ω
2
1 + ω2

2)− I23ω
2
3 ,

then

ω2
1 + ω2

2 = −I23ω
2
3 + β2

I22
= − (I3ω3 + iβ)(I3ω3 − iβ)

I22
.

We put the obtained value for ω2
1 + ω2

2 in the above expression for F and obtain

F = −I3ω3 + iβ

I2
.

By removing the constant denominator I2 and changing the sign of F we obtain a

new function noted by F2

F2 = I3ω3 + iβ.

F2 satisfies equations (8.20). Thus in Case 1 with ε = −1, F2 is a first integral of

system (8.5).
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Case 2. Let I1 = I2, c1 = −ic2, c3 = 0. The only difference in this case in comparison

with Case 1 is that when ε = 1, F2 is a first integral of system (8.5) and when ε = −1

the first integral is F1.

The functional independence of these partial first integrals with H3 follows from the

fact that they do not depend on γ1 while H3 does.

Let us note that the partial first integrals F1 and F2 are algebraic without being

rational. This is a new fact. Up to now, the known first integrals or partial first integrals

not depending on all variables, have been polynomials.

Type 2. Let us study the existence of a first integral of type 2, i.e. F = F (ω1, ω2, γ1).

Now we have

dF

dt
=

1

I1I2ω2

[
I2(I2 − I3)ω

2
2ω3 − I1c3ω1γ1 − (I2c2ω2 + I3c3ω3)R+ c3U1

] ∂F
∂ω1

+
1

I2

[
(I3 − I1)ω1ω3 + c1R− c3γ1

] ∂F
∂ω2

+
1

I2ω2

[
− I1ω1ω3γ1 − (I2ω

2
2 + I3ω

2
3)R+ ω3U1

] ∂F
∂γ1

= 0,

or equivalently

I1I2ω2
dF

dt
= Y1(F ) = 0, (8.27)

where Y1 is the corresponding vector field defined on Ω.

Equation (8.27) should be an identity with respect to all four variables (ω1, ω2, ω3, γ1).

Similarly to the consideration of a first integral of type 1 if we differentiate identity (8.27)

with respect to ω3 we will again obtain a linear partial differential equation for function

F . We obtain

∂Y1(F )

∂ω3
=

[
I2(I2 − I3)ω

2
2 − I3c3R− (I2c2ω2 + I3c3ω3)

∂R

∂ω3

]
∂F

∂ω1

− I1ω2

[
(I1 − I3)ω1 − c1

∂R

∂ω3

]
∂F

∂ω2

− I1

[
I1ω1γ1 + 2I3ω3R+ (I2ω

2
2 + I3ω

2
3)

∂R

∂ω3
− U

]
∂F

∂γ1
= 0,

i.e.
∂Y1(F )

∂ω3
= Y2(F ) = 0, (8.28)

where Y2 is the corresponding vector field defined on Ω.

After differentiating identity (8.28) with respect to ω3 we obtain

∂Y2(F )

∂ω3
= −

[
2I3c3

∂R

∂ω3
+ (I2c2ω2 + I3c3ω3)

∂2R

∂ω2
3

]
∂F

∂ω1
+ I1c1ω2

∂2R

∂ω2
3

∂F

∂ω2

− I1

[
2I3R+ 4I3ω3

∂R

∂ω3
+ (I2ω

2
2 + I3ω

2
3)
∂2R

∂ω2
3

]
∂F

∂γ1
= 0,

i.e.
∂Y2(F )

∂ω3
= Y3(F ) = 0, (8.29)
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where Y3 is the corresponding vector field defined on Ω.

We already know that if a fourth integral F exists, system (8.27)–(8.29) has a non-

zero solution gradF and it is possible if and only if the determinant D of the coefficients

of this system is identically equal to zero.

We compute D and obtain a long expression which we do not write here. Let us note

that D has a non-zero factor I21ω2 and we note

D̂(R) =
D(R)

I21ω2
.

It is clear that the equation D(R) = 0 is equivalent to D̂(R) = 0.

Derivatives ∂R
∂ω3

and ∂2R
∂ω2

3
appear in D̂(R). To determine them we differentiate equation

(8.3) with respect to ω3 two times. Taking into account that polynomial C from (8.4)

does not depend on ω3 we obtain

∂Q

∂ω3
=

∂A

∂ω3
R2 +

∂B

∂ω3
R+

dQ

dR

∂R

∂ω3
= 0. (8.30)

and

∂2Q

∂ω2
3

=
∂2A

∂ω2
3

R2 + 2R
∂A

∂ω3

∂R

∂ω3
+

∂2B

∂ω2
3

R+
∂B

∂ω3

∂R

∂ω3

+
∂

∂ω3

(
dQ

dR

)
∂R

∂ω3
+

dQ

dR

∂2R

∂ω2
3

= 0. (8.31)

Like in the investigation for a first integral of type 1, by Proposition 4.1 we prove that

if R is a root of equation (8.3), then dQ
dR ̸= 0. Of course, the resultant ρ of polynomials

Q(R) and dQ
dR is the same and we make the conclusion that dQ

dR ̸= 0 (see formula (8.14)).

Thus we can correctly determine ∂R
∂ω3

from equation (8.30) and put its value in (8.31).

Then we easily determine ∂2R
∂ω2

3
from (8.31). This determination is also correct because

the coefficient in front of ∂2R
∂ω2

3
is also dQ

dR .

Then we put the obtained values for the derivatives of R in the expression for D̂(R)

and obtain that D̂(R) has a non-zero factor 8I3R and denominator
(
dQ
dR

)3
. We note

δ(R) =

(
dQ
dR

)3
8I3R

D̂(R),

where δ(R) is a polynomial of R of degree five with coefficients which are polynomials of

ω1, ω2, ω3 and γ1. It is clear that the equation D̂(R) = 0 is equivalent to δ(R) = 0.

We know that if Q(R) = 0, then if in addition some supplementary first integral

F (ω1, ω2, γ1) of system (8.5) exists, then also δ(R) = 0. Thus all assumptions of Proposi-

tion 4.2 are fulfilled. Consequently in polynomial ring K[x], where K = Alg(ω1, ω2, ω3, γ1),

the polynomial Q(x) divides the polynomial δ(x).

Using Maple command rem we divide δ by Q and obtain a remainder which is a

polynomial r of the form:

r(x) =
I42ω

4
2

I22ω
2
2 + I23ω

2
3

(a0x+ a1),

where a0 and a1 are polynomials of ω1, ω2, ω3 and γ1.
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According to Proposition 4.2 we know that if R is a root of equation (8.3), then a0
and a1 should be identically equal to zero. We use a0 only because it turns out to be

sufficient for our purposes.

Polynomial a0 has 81 coefficients. Thus we should equate to zero all of them. In

this way we obtain a system of 81 equations for parameters Ic, U1 and U2. After two

consecutive simplifications we obtain the reduced system which is very simple:

c3 = 0, (I1 − I3)c2 = 0, (I2 − I3)c1 = 0.

The solutions are obvious:

{c1 = 0, c2 = 0, c3 = 0}, U1, U2, I1, I2 and I3 are parameters,

{I2 = I3, c2 = 0, c3 = 0}, U1, U2, I1, I3 and c1 are parameters,

{I1 = I3, c1 = 0, c3 = 0}, U1, U2, I2, I3 and c2 are parameters,

{I1 = I3, I2 = I3, c3 = 0}, U1, U2, I3, c1 and c2 are parameters.

It is easily seen that these solutions lead to the Euler, Lagrange and kinetic symmetry

cases, respectively. Thus the sought partial first integral of type 2 cannot exist.

Type 4. Finally let us investigate the possibilities for the existence of a first integral

of type 4, F (ω2, ω3, γ1), i.e. when it does not depend on ω1.

As F is a first integral of system (8.5) we have

dF

dt
=

1

I2

[
(I3 − I1)ω1ω3 + c1R− c3γ1

] ∂F
∂ω2

+
1

I2I3ω2

[
I2(I1 − I2)ω1ω

2
2 + I1c1ω1γ1 + I2c2ω2γ1 + I3c1ω3R− c1U1

] ∂F
∂ω3

+
1

I2ω2

[
− I1ω1ω3γ1 − (I2ω

2
2 + I3ω

2
3)R+ ω3U1

] ∂F
∂γ1

= 0,

or equivalently

I2I3ω2
dF

dt
= Y1(F ) = 0, (8.32)

where Y1 is the corresponding vector field defined on Ω.

Equation (8.32) should be an identity with respect to all four variables (ω1, ω2, ω3, γ1).

As in the previous considerations taking into account that F does not depend on ω1, dif-

ferentiating identity (8.32) with respect to ω1 we obtain again a linear partial differential

equation for function F

∂Y1(F )

∂ω1
= I3ω2

[
(I3 − I1)ω3 + c1

∂R

∂ω1

]
∂F

∂ω2

+

[
I2(I1 − I2)ω

2
2 + I1c1γ1 + I3c1ω3

∂R

∂ω1

]
∂F

∂ω3

+ I3

[
−I1ω3γ1 − (I2ω

2
2 + I3ω

2
3)

∂R

∂ω1

]
∂F

∂γ1
= Y2(F ) = 0, (8.33)

where Y2 is the corresponding vector field defined on Ω.
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We differentiate identity (8.33) with respect to ω1 and obtain

1

I3

∂Y2(F )

∂ω1
=

∂2R

∂ω2
1

[
c1ω2

∂F

∂ω2
+ c1ω3

∂F

∂ω3
− (I2ω

2
2 + I3ω

2
3)

∂F

∂γ1

]
= Y3(F ) = 0, (8.34)

where Y3 is the corresponding vector field defined on Ω.

Let us first suppose that ∂2R
∂ω2

1
̸= 0. In such a case, if first integral F exists then the

system (8.32)–(8.34) has a non-zero solution gradF . This is possible if and only if the

determinant D of the coefficients of this system is identically equal to zero.

Let us compute D. We have

D = I2I3ω
2
2

∂2R

∂ω2
1

D̂,

where

D̂ = I2(I1 − I2)c3ω
3
2γ1 − I2(I1 − I3)c2ω

2
2ω3γ1 + I3(I1 − I2)c3ω2ω

2
3γ1

+ (I2 − I3)c1U1ω2ω3 + I1c1c3ω2γ
2
1 − I3(I1 − I3)c2ω

3
3γ1 − I1c1c2γ

2
1ω3.

As I2I3ω
2
2
∂2R
∂ω2

1
̸= 0 we use D̂ instead D.

Polynomial D̂ has 7 coefficients. Equating to zero all of them we obtain a system of 7

equations for parameters Ic and U1. After two consecutive simplifications we obtain the

reduction (see Sec. 3) of this system that consists of 6 equations as follows:

c1c3 = 0, (I1 − I2)c3 = 0, c1c2 = 0, (I1 − I3)c2 = 0,

(I2 − I3)c2c3 = 0, (I2 − I3)c1U1 = 0.
(8.35)

A simple case analysis leads to a set of six solutions that the Maple command solve

gives in the following way:

{U1 = 0, I1 = I1, I2 = I2, I3 = I3, c1 = c1, c2 = 0, c3 = 0},
{U1 = U1, I1 = I1, I2 = I3, I3 = I3, c1 = c1, c2 = 0, c3 = 0},
{U1 = U1, I1 = I3, I2 = I3, I3 = I3, c1 = 0, c2 = c2, c3 = c3},
{U1 = U1, I1 = I3, I2 = I2, I3 = I3, c1 = 0, c2 = c2, c3 = 0},
{U1 = U1, I1 = I2, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = c3},
{U1 = U1, I1 = I1, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = 0}.

This list should be understood as follows. If an equation Ui = Ui or Ii = Ii or ci = ci,

1 ≤ i ≤ 3, appears we should consider the corresponding parameter as an arbitrary

complex number. For example, let us consider the third row. There U1, I3, c2 and c3 are

arbitrary complex numbers but I1, I2 and c1 have fixed values. Some of these fixed values

can depend on the chosen value of some arbitrary parameter like in this example I1 and

I2 depend on the arbitrary fixed value of I3.

We remove the solutions that lead to the Euler, Lagrange and kinetic symmetry cases

and obtain only one new solution

{U1 = 0, I1 = I1, I2 = I2, I3 = I3, c1 = c1, c2 = 0, c3 = 0}.

Let us study this solution. Therefore we have U1 = 0, c2 = c3 = 0 and Ii ̸= 0,

1 ≤ i ≤ 3, and c1 are arbitrary parameters. In this case D̂ = 0. Thus vector fields
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Yi ̸= 0, 1 ≤ i ≤ 3, (see (8.32)–(8.34)) are linearly dependent. More precisely the following

equation

Y1 = ω1Y2 + I3

(
R− ω1

∂R

∂ω1

)
Y3

holds.

We remove vector field Y1 because it is a linear combination of Y2 and Y3 and compute

the Lie bracket Z = [Y2, Y3]

Z = I3c1ω2

[
(I2ω

2
2 + I3ω

2
3)

∂2R

∂ω1∂γ1
− c1ω2

∂2R

∂ω1∂ω2
− c1ω3

∂2R

∂ω1∂ω3
+ (I1 − I3)ω3

] ∂

∂ω2

+ c1

{
I3ω3

[
(I2ω

2
2 + I3ω

2
3)

∂2R

∂ω1∂γ1
− c1ω2

∂2R

∂ω1∂ω2
− c1ω3

∂2R

∂ω1∂ω3

]
+ I22ω

2
2 + I1I3ω

2
3 + I1c1γ1

}
∂

∂ω3

− I3

{
(I2ω

2
2 + I3ω

2
3)
[
(I2ω

2
2 + I3ω

2
3)

∂2R

∂ω1∂γ1
− c1ω2

∂2R

∂ω1∂ω2
− c1ω3

∂2R

∂ω1∂ω3

]
+ I2(I1 − 2I2 + 2I3)ω

2
2ω3 + I1I3ω

3
3 + I1c1ω3γ1

}
∂

∂γ1
.

As we have already known if a first integral F of the sought type exists, then it should

satisfy the following system

Y2(F ) = Y3(F ) = Z(F ) = 0

and the determinant of the coefficients of that system should be identically equal to zero.

We compute the determinant and obtain the following expression

−I2I3(I2 − I3)c1ω
3
2ω3

[
I2ω

2
2(3I1 − 2I2) + I3ω

2
3(3I1 − 2I3) + 4I1c1γ1

]
.

It is easily seen that this expression can be identically equal to zero only if I2 = I3
or if c1 = 0. The first possibility leads to the Lagrange case and the second one - to the

Euler case.

Thus if we suppose that ∂2R
∂ω2

1
̸= 0, then a first integral of type 4, i.e. F (ω2, ω3, γ1) does

not exist.

Let us suppose now that ∂2R
∂ω2

1
= 0. In such a case we have

R = f(ω2, ω3, γ1)ω1 + g(ω2, ω3, γ1), (8.36)

where f and g are arbitrary smooth functions not depending on ω1.

We put the value of R from (8.36) in (8.3) and obtain

Q =
[
(I22ω

2
2 + I23ω

2
3)f

2 + 2I1I3ω3γ1f + I21γ
2
1

]
ω2
1

+ 2
[
(I22ω

2
2 + I23ω

2
3)gf − I3U1ω3f + I1I3ω3γ1g − I1U1γ1

]
ω1

+ (I22ω
2
2 + I23ω

2
3)g

2 + I22ω
2
2γ

2
1 − U2ω

2
2 − 2I3U1ω3g + I22U

2
1 = 0,

that is Q is a polynomial of second degree of ω1 with coefficients depending on ω2, ω3

and γ1. As Q = 0, then its three coefficients should be zeros.
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We equate to zero the coefficient of Q in front of ω2
1 and determine f from the obtained

equation. We have

f =
I1(iεI2ω2 − I3ω3)γ1

I22ω
2
2 + I23ω

2
3

,

where ε = ±1.

With this value of f we equate to zero the coefficient of Q in front of ω1 and determine

g as follows

g = − iU1(I2ω2 + iI3εω3)γ1
ε(I22ω

2
2 + I23ω

2
3)

.

Using these values of f and g and having in mind that ε2 = 1, we equate to zero the

constant term of polynomial Q developed in powers of ω1, that is the value of polynomial

Q when ω1 = 0 and obtain

I22ω
2
2(I

2
2ω

2
2 + I23ω

2
3)(γ

2
1 − U2)

I22ω
2
2 + I23ω

2
3

= 0.

Taking into account that I22ω
2
2 , I

2
2ω

2
2 + I23ω

2
3 and γ2

1 −U2 never vanish identically, we

conclude that the last equality cannot be fulfilled.

Thus a first integral of type 4, i.e. F (ω2, ω3, γ1) does not exist also in the case when
∂2R
∂ω2

1
= 0.

8.2.2. Elimination of ω1 and γ1. We eliminate variables ω1 and γ1 from equations

H1 = U1, H2 = U2 and obtain the following solution:

ω1 = −I2ω2γ2 + I3ω3γ3 − U1

I1
√
−γ2

2 − γ2
3 + U2

, γ1 =
√

−γ2
2 − γ2

3 + U2. (8.37)

Further to simplify the formulas we note

Γ =
√

−γ2
2 − γ2

3 + U2.

As all our considerations are local we can restrict ourselves to some suitable open set

Ω ⊆ C4(ω2, ω3, γ2, γ3).

We put the values of ω1 and γ1 from (8.37) in the Euler-Poisson equations (1.1) and

remove the first and fourth equations. In this way we obtain the following system of four

equations in unknowns ω2, ω3, γ2 and γ3:

dω2

dt
=

(I1 − I3)(I2ω2γ2 + I3ω3γ3 − U1)ω3 − I1c3Γ
2 + I1c1γ3Γ

I1I2Γ
,

dω3

dt
= − (I1 − I2)(I2ω2γ2 + I3ω3γ3 − U1)ω2 − I1c2Γ

2 + I1c1γ2Γ

I1I3Γ
,

dγ2
dt

= − (I2ω2γ2 + I3ω3γ3 − U1)γ3 + I1ω3Γ
2

I1Γ
,

dγ3
dt

=
(I2ω2γ2 + I3ω3γ3 − U1)γ2 + I1ω2Γ

2

I1Γ
.

(8.38)

Here we study whether system (8.38) has a first integral that depends on at most

three variables among the variables (ω2, ω3, γ2, γ3) and that is functionally independent
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of H3 restricted to invariant manifold (8.1). Thus we should investigate the following four

types of a new first integral:

1. F (ω2, ω3, γ2), (case (iii))

2. F (ω2, ω3, γ3), (case (iii))

3. F (ω2, γ2, γ3), (case (iv))

4. F (ω3, γ2, γ3). (case (iv))

As local partial first integrals belonging to case (iii) were already excluded in Sec.

8.2.1, we will now study if the function of type 3, belonging to case (iv) can be a local

partial first integral of the Euler-Poisson equations (1.1).

Type 3. Let us study the existence of a first integral F of type 3, i.e. F = F (ω2, γ2, γ3).

F being a first integral of system (8.38) satisfies the following equation

dF

dt
=

(I1 − I3)ω3(I2ω2γ2 + I3ω3γ3 − U1)− I1c3Γ
2 + I1c1γ3Γ

I1I2Γ

∂F

∂ω2

− γ3(I2ω2γ2 + I3ω3γ3 − U1) + I1ω3Γ
2

I1Γ

∂F

∂γ2

+
γ2(I2ω2γ2 + I3ω3γ3 − U1) + I1ω2Γ

2

I1Γ

∂F

∂γ3
= 0,

or equivalently

I1I2Γ
dF

dt
= Y (F ) = 0, (8.39)

where Y is the corresponding vector field defined on Ω.

The left hand side of equation (8.39), i.e. Y (F ), is a polynomial of ω3 of degree two

with coefficients depending on parameters Ic, U1, U2 and variables (ω2, γ2, γ3).

Let us write Y (F ) as follows

Y (F ) = Y1(F )ω2
3 + Y2(F )ω3 + Y3(F ),

where Yi, 1 ≤ i ≤ 3, are the following vector fields:

Y1 = I3γ3(I1 − I3)
∂

∂ω2
,

Y2 = (I1 − I3)(I2ω2γ2 − U1)
∂

∂ω2
+ I2

[
I1γ

2
2 + (I1 − I3)γ

2
3 − I1U2

] ∂

∂γ2
+ I2I3γ2γ3

∂

∂γ3
,

Y3 = I1(c3γ
2
2 + c3γ

2
3 + c1γ3Γ− c3U2)

∂

∂ω2
− I2γ3(I2ω2γ2 − U1)

∂

∂γ2

− I2

[
(I1 − I2)ω2γ

2
2 + I1ω2γ

2
3 − I1U2ω2 + U1γ2

] ∂

∂γ3
,

defined on Ω.

Y (F ) should be identically equal to zero with respect to all four variables ω2, ω3, γ2
and γ3. As Yi(F ), 1 ≤ i ≤ 3, do not depend on ω3 we have the following three equations:

Y1(F ) = Y2(F ) = Y3(F ) = 0. (8.40)
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If a first integral F = F (ω2, γ2, γ3) exists then system (8.40) has a non-zero solution

gradF . We know that this is possible if and only if the determinant D of system (8.40)

is identically equal to zero. We compute D and obtain

D = I1I
2
2I3(I1 − I3)γ3Γ

2
[
(I1 − I2)ω2γ

2
2 + (I1 − I3)ω2γ

2
3 − I1U2ω2 + γ2U1

]
= 0.

One can easily see that D ≡ 0 if and only if

I1 = I3. (8.41)

Let us study this case. Now Y1 = 0 but simple computations show that vector fields

Y2 and Y3 are always linearly independent. We compute Lie bracket Z = [Y2, Y3]/(I2I3)

and obtain

Z = 2I3γ2Γ(c1γ3 − c3Γ)
∂

∂ω2
+ I2(I2U2ω2 − U1γ2)γ3

∂

∂γ2

+ I2

{[
(I3 − I2)Γ

2 − I2U2

]
ω2γ2 − U1γ

2
3 + U1U2

]} ∂

∂γ3
.

Second and third equations (8.40) imply that Z(F ) = 0 and we come to the following

system for first integral F :

Y2(F ) = Y3(F ) = Z(F ) = 0. (8.42)

As above we should study when determinant D̂ of system (8.42) is identically equal

to zero. We compute D̂ and obtain D̂ = d1d2d3, where

d1 = I32I
3
3Γ

2,

d2 = (c1γ3 − c3Γ)Γ,

d3 = (I3 − I2)ω2γ
3
2 − (2I2 + I3)U2ω2γ2 + 2U1γ

2
2 + U1U2.

It is clear that d1 never vanishes identically. If d2 vanishes then it follows that c1 =

c3 = 0 which together with condition (8.41) leads to the Lagrange case. The third factor

d3 = 0 if and only if I2 = I3 and U1 = U2 = 0. But taking into account (8.41) this is a

particular case of the kinetic symmetry case. Thus a partial first integral of type 3 does

not exist.

It only remains to study the functions belonging to the cases (v) and (vi).

8.2.3. Elimination of ω1 and γ2. Solving equations H1 = U1, H2 = U2 with respect

to ω1 and γ2 we obtain:

ω1 = −I2ω2

√
−γ2

1 − γ2
3 + U2 + I3ω3γ3 − U1

I1γ1
, γ1 =

√
−γ2

1 − γ2
3 + U2. (8.43)

To simplify the formulas we note

Γ =
√

−γ2
1 − γ2

3 + U2.

As till now we restrict ourselves to some suitable open set Ω ⊆ C4(ω2, ω3, γ1, γ3).

We put the values of ω1 and γ2 from (8.43) in the Euler-Poisson equations (1.1) and

remove the first and fifth equations. In this way we obtain the following system of four
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equations in unknowns ω2, ω3, γ1 and γ3:

dω2

dt
=

(I1 − I3)(I3ω3γ3 + I2ω2Γ− U1)ω3 − (I1c3γ1 − I1c1γ3)γ1
I1I2γ1

,

dω3

dt
= − (I1 − I2)(I3ω3γ3 + I2ω2Γ− U1)ω2 − (I1c2γ1 − I1c1Γ)γ1

I1I3γ1
,

dγ1
dt

= ω3Γ− ω2γ3,

dγ3
dt

=
(I1γ

2
1 + I2Γ

2)ω2 + I3ω3γ3Γ− U1Γ

I1γ1
.

(8.44)

Here we look for first integrals of system (8.44) of the following four types:

1. F (ω2, ω3, γ1), case(ii)

2. F (ω2, ω3, γ3), case(iii)

3. F (ω2, γ1, γ3), case(v)

4. F (ω3, γ1, γ3), case(iv)

requiring in addition that they are functionally independent of H3 restricted to invariant

manifold (8.1). The functions from cases (ii), (iii) and (iv) was already examined. There

remains only to examine case (v).

Type 3. Let us study the existence of a partial first integral of type 3 F (ω2, γ1, γ3)

belonging to case (v). Then we have

dF

dt
=

(I1 − I3)(I3ω3γ3 + I2ω2Γ− U1)ω3 − (I1c3γ1 − I1c1γ3)γ1
I1I2γ1

∂F

∂ω2

+ (ω3Γ− ω2γ3)
∂F

∂γ1
+

(I1γ
2
1 + I2Γ

2)ω2 + I3ω3γ3Γ− U1Γ

I1γ1

∂F

∂γ3
= 0,

or equivalently

I1I2γ1
dF

dt
= Y (F ) = 0,

where Y is the corresponding vector field defined on Ω.

Y (F ) is a polynomial of ω3 of degree two with coefficients depending on parameters

Ic, U1, U2 and variables ω2, γ1 and γ3.

Let us write Y (F ) in the following way

Y (F ) = Y1(F )ω2
3 + Y2(F )ω3 + Y3(F ),

where Yi, 1 ≤ i ≤ 3, are:

Y1 = I3(I1 − I3)γ3
∂

∂ω2
,

Y2 = (I1 − I3)(I2ω2Γ− U1)
∂

∂ω2
+ I1I2γ1Γ

∂

∂γ1
+ I2I3γ3Γ

∂

∂γ3
,

Y3 = I1γ1(c1γ3 − c3γ1)
∂

∂ω2
− I1I2ω2γ1γ3

∂

∂γ1
+ I2

[
(I2Γ

2 + I1γ
2
1)ω2 − U1Γ

] ∂

∂γ3
.

Y (F ) should be identically equal to zero with respect to all four variables ω2, ω3, γ2
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and γ3. As Yi(F ), 1 ≤ i ≤ 3, do not depend on ω3 we have

Y1(F ) = Y2(F ) = Y3(F ) = 0. (8.45)

If a first integral F = F (ω2, γ2, γ3) exists then the determinant D of system (8.45) is

identically equal to zero. We compute D and obtain

D = I1I
2
2I3(I1 − I3)γ1γ3Γ

{
ω2[(I1 − I2)γ

2
1 + (I3 − I2)γ

2
3 + I2U2]− U1Γ

}
= 0.

It is easily seen that D vanishes identically if either

I1 = I3 (8.46)

or the expression in the curly brackets vanishes. This expression is a linear function of

ω2 and we should require that its two coefficients vanish. But this leads to the kinetic

symmetry case with the additional restriction U1 = U2 = 0.

Thus we study only the case (8.46). Now Y1 = 0 but simple computations show that

outside of the particular case (U1 = U2 = 0) of the kinetic symmetry vector fields Y2 and

Y3 are always linearly independent. We compute Lie bracket Z = [Y2, Y3] and obtain

ZΓ

I2I3
= 2I3γ1(c1γ3 − c3γ1)Γ

2 ∂

∂ω2
+ I2γ1γ3Γ

[
(I2 − I3)ω2Γ− U1

] ∂

∂γ1

+ I2Γ
[
ω2Γ(I3γ

2
1 − I2γ

2
1 − I2U2)− U1γ

2
3 + U1U2

] ∂

∂γ3
.

Second and third equations (8.45) imply that Z(F ) = 0 and thus

Ẑ(F ) =
ZΓ

I2I3
= 0.

In this way we come to the following system for first integral F :

Y2(F ) = Y3(F ) = Ẑ(F ) = 0. (8.47)

As above we should find the cases when determinant D̂ of system (8.47) is identically

equal to zero. We compute D̂ and obtain D̂ = d1d2, where

d1 = I22I
2
3γ

2
1(c1γ3 − c3γ1)Γ

2,

d2 = [(I3 − I2)γ
2
1 + (I3 − I2)γ

2
3 + 3I2U2]ω2Γ− U1(2Γ

2 + U2).

It is clear that d1 vanishes identically only when c1 = c3 = 0 which together with

condition (8.46) leads to the Lagrange case. As d2 is a linear function of ω2 equation

d2 = 0 is fulfilled if and only if its two coefficients with respect to ω2 vanish identically.

Thus I2 = I3 and U1 = U2 = 0. Taking into account (8.46) this is a particular case of the

kinetic symmetry case. Thus a partial first integral of type 3 does not exist.

8.2.4. First integrals F (γ1, γ2, γ3). Finally it remains to study the existence of the

partial first integral F (γ1, γ2, γ3), that cannot be studied by elimination of variables like

above.

We have H2 = γ2
1 + γ2

2 + γ2
3 = U2, thus γ1 =

√
−γ2

2 − γ2
3 + U2 and then

F (γ1, γ2, γ3) = F (
√
−γ2

2 − γ2
3 + U2, γ2, γ3) = F̃ (γ2, γ3).
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Our problem now is reduced to the study of partial first integrals of the form F̃ =

F̃ (γ2, γ3) on the submanifold {H1 = U1}. Absence of these partial first integrals fol-

lows from Sec. 8.2.2 where the absence of partial first integrals of more general form

F (ωi, γ2, γ3), i = 2, 3, is proved for all U1 and U2.

8.3. Invariant manifold {H1=U1, H3=U3}. Here we study the existence of a par-

tial first integral of the Euler-Poisson equations (1.1) restricted to the complex four-

dimensional level manifold

{H1 = U1, H3 = U3}, (8.48)

supposing that this partial first integral depends on at most three variables and that is

functionally independent of H2.

8.3.1. Elimination of ω1 and ω2. In the same way as in Sec. 8.2.1 we express ω1 and

ω2 from the equations H1 = U1 and H3 = U3 and obtain the following solution:

ω1 = −I2Rγ2 + I3ω3γ3 − U1

I1γ1
, ω2 = R, (8.49)

where R is a root of equation

Q(x) = Ax2 +Bx+ C = 0,

that is

Q(R) = AR2 +BR+ C = 0. (8.50)

Here the functions A = A(γ1, γ2), B = B(ω3, γ2, γ3) and C = C(ω3, γ1, γ2, γ3) are the

following polynomials:

A = I2(I1γ
2
1 + I2γ

2
2), B = 2I2γ2(I3ω3γ3 − U1),

C = I1I3ω
2
3γ

2
1 + I23ω

2
3γ

2
3 − 2I3U1ω3γ3 + 2I1c1γ

3
1 + 2I1c2γ

2
1γ2

+ 2I1c3γ
2
1γ3 − I1U3γ

2
1 + U2

1 .

(8.51)

We put the values of ω1 and ω2 from (8.49) in the Euler-Poisson equations (1.1) and

remove the first and second equations. In this way we have the following system of four

equations in unknowns ω3, γ1, γ2 and γ3:

dω3

dt
= − (I1 − I2)(I2γ2R+ I3ω3γ3 − U1)R− I1(γ1c2 − c1γ2)γ1

I1I3γ1
,

dγ1
dt

= ω3γ2 − γ3R,

dγ2
dt

= − (I2Rγ2 + I3ω3γ3 − U1)γ3 + I1ω3γ
2
1

I1γ1
,

dγ3
dt

=
(I1γ

2
1 + I2γ

2
2)R+ (I3ω3γ3 − U1)γ2

I1γ1
.

(8.52)

Now we study the existence of a first integral of system (8.52) that depends on at most

three variables among the variables (ω3, γ1, γ2, γ3) and that is functionally independent

of H2 restricted to invariant manifold (8.48). Thus we should investigate the following

four types of a first integral:

1. F (ω3, γ1, γ2), (case (iv))
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2. F (ω3, γ1, γ3), (case (iv))

3. F (ω3, γ2, γ3), (case (iv))

4. F (γ1, γ2, γ3). (case (vi))

Then, like in Sec. 5 it suffices to examine the functions of types 1 and 4 respectively.

Type 1. Let us consider the existence of a first integral F of system (8.52) which is

of type 1, i.e. F = F (ω3, γ1, γ2). Thus

dF

dt
= − (I1 − I2)(I2γ2R+ I3ω3γ3 − U1)R− I1(γ1c2 − c1γ2)γ1

I1I3γ1

∂F

∂ω3

+ (ω3γ2 − γ3R)
∂F

∂γ1
− (I2Rγ2 + I3ω3γ3 − U1)γ3 + I1ω3γ

2
1

I1γ1

∂F

∂γ2
= 0.

We rewrite the above equation as follows

I1I3γ1
dF

dt
= Y1(F ) = 0, (8.53)

where Y1 is the corresponding vector field defined on some suitable open set Ω ⊆
C4(ω3, γ1, γ2, γ3).

We differentiate identity (8.53) with respect to γ3 and obtain a linear partial differ-

ential equation for function F

∂Y1(F )

∂γ3
= (I1 − I2)

[
−2I2γ2R

∂R

∂γ3
− I3ω3R− (I3ω3γ3 − U1)

∂R

∂γ3

]
∂F

∂ω3

− I1I3γ1

(
R+ γ3

∂R

∂γ3

)
∂F

∂γ1

− I3

[
2I3ω3γ3 + I2γ2

(
R+ γ3

∂R

∂γ3

)
− U1

]
∂F

∂γ2
= Y2(F ) = 0, (8.54)

where Y2 is the corresponding vector field defined on Ω.

After differentiating identity (8.54) with respect to γ3 we obtain

∂Y2(F )

∂γ3
= (I1 − I2)

[
− 2I2γ2R

∂2R

∂γ2
3

− 2I2γ2

(
∂R

∂γ3

)2

− 2I3ω3
∂R

∂γ3
− (I3ω3γ3 − U1)

∂2R

∂γ2
3

]
∂F

∂ω3

− I1I3γ1

(
2
∂R

∂γ3
+ γ3

∂2R

∂γ2
3

)
∂F

∂γ1

− I3

(
2I2γ2

∂R

∂γ3
+ I2γ2γ3

∂2R

∂γ2
3

+ 2I3ω3

)
∂F

∂γ2
= Y3(F ) = 0, (8.55)

where Y3 is the corresponding vector field defined on Ω.

If a first integral F exists, then the linear system (8.53)–(8.55) has a non-zero solution

gradF =
(

∂F
∂ω3

, ∂F
∂γ1

, ∂F
∂γ2

)
, which is possible if and only if the determinant D of the

coefficients of this system is identically equal to zero.

We compute D. It has a non-zero factor I1I
2
3γ1 and that is why we work with

D̂ =
D

I1I23γ1
.
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The expression for D̂ is

D̂ = a1R
3 + a2R

2 ∂R

∂γ3
+ a3R

2 ∂
2R

∂γ2
3

+ a4R
2 + a5R

(
∂R

∂γ3

)2

+ a6R
∂R

∂γ3

+ a7R
∂2R

∂γ2
3

+ a8R+ a9

(
∂R

∂γ3

)3

+ a10

(
∂R

∂γ3

)2

+ a11
∂R

∂γ3
+ a12

∂2R

∂γ2
3

, (8.56)

where

a1 = −2I2I3(I1 − I2)ω3γ2, a2 = −2I2(I1 − I2)γ2(U1 − 3I3ω3γ3),

a3 = −I2(I1 − I2)γ2(−2ω3γ
2
1I1 − 2ω3γ

2
2I2 + γ3U1), a4 = 2I3(I1 − I2)U1ω3,

a5 = 2(I1 − I2)I2γ2(−ω3γ
2
1I1 − ω3γ

2
2I2 − 3I3ω3γ

2
3 + 2γ3U1),

a6 = 2(I1 − I2)(−2I2I3ω
2
3γ

2
2 − 2I3U1ω3γ3 + U2

1 ),

a7 = (I1 − I2)(−U1ω3γ
2
1I1 − 3ω3γ

2
2I2U1 − I3ω3γ

2
3U1 + U2

1 γ3 + 4I3ω
2
3γ3γ

2
2I2),

a8 = −2I3ω3(−I3ω
2
3I2γ2 + I3ω

2
3I1γ2 − I1γ

2
1c2 + c1γ2I1γ1),

a9 = −2I2(I1 − I2)γ2γ3(−ω3γ
2
1I1 − ω3γ

2
2I2 − I3ω3γ

2
3 + γ3U1),

a10 = −2(I1 − I2)(−U1ω3γ
2
1I1 − 2I3ω

2
3γ3γ

2
2I2 − I3ω3γ

2
3U1 + U2

1 γ3),

a11 = 2(−I1γ
2
1c2I3γ3ω3 + I1I

2
3ω

3
3γ3γ2 − c1γ2I1γ1U1 + c1γ2I1γ1I3γ3ω3

+ I1γ
2
1c2U1 − I2I

2
3ω

3
3γ3γ2),

a12 = (U1 − 2I3ω3γ3)(−U1I2ω3γ2 + U1I1ω3γ2 − c1γ2I1γ1γ3 − I3ω
2
3I1γ3γ2

+ I1γ
2
1c2γ3 + I3ω

2
3I2γ3γ2).

To determine the derivatives ∂R
∂γ3

and ∂2R
∂γ2

3
we differentiate equation (8.50) with respect

to γ3 two times. Taking into account that polynomial A from (8.51) does not depend on

γ3 we obtain

∂Q

∂γ3
=

∂B

∂γ3
R+

∂C

∂γ3
+

dQ

dR

∂R

∂γ3
= 0. (8.57)

and

∂2Q

∂γ2
3

=
∂2B

∂γ2
3

R+
∂B

∂γ3

∂R

∂γ3
+

∂2C

∂γ2
3

+
∂

∂γ3

(
dQ

dR

)
∂R

∂γ3
+

dQ

dR

∂2R

∂γ2
3

= 0. (8.58)

By Proposition 4.1 we prove that if R is a root of equation (8.50), then dQ
dR ̸= 0. For

the purpose we consider the resultant ρ = A(4AC−B2) of polynomials Q(R) and dQ
dR and

prove that ρ ̸= 0. As A never vanishes identically we do not consider ρ but ρ̂ = 4AC−B2.

Putting in ρ̂ the expressions for A, B and C (see (8.51)) we obtain

ρ̂ = 4I1I2γ
2
1

[
I3ω

2
3(I1γ

2
1 + I2γ

2
2 + I3γ

2
3) + 2(I1γ

2
1 + I2γ

2
2)(c1γ1 + c2γ2 + c3γ3)

− 2I3U1ω3γ3 − U3I1γ
2
1 − I2U3γ

2
2 + U2

1

]
,

which never vanishes identically at least because contains a monomial 4I21I2I3ω
2
3γ

4
1 .

Thus dQ
dR ̸= 0 and ∂R

∂γ3
can be correctly determined from equation (8.57). Then by

equation (8.58) we determine ∂2R
∂γ2

3
and put the obtained values for the derivatives of R
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in the expression for D̂ (see (8.56)). In this way we obtain

D̂(R) =
8I2δ(R)(

dQ
dR

)3 ,

where δ(R) is a polynomial of R of degree six with coefficients depending on ω3, γ1, γ2
and γ3.

It is clear that the equation D̂(R) = 0 is equivalent to δ(R) = 0. We know that if

Q(R) = 0, then if in addition some supplementary first integral F (ω3, γ1, γ2) of system

(8.52) exists, then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled.

Consequently in polynomial ring K[x], where K = Alg(ω3, γ1, γ2, γ3), the polynomial Q(x)

divides the polynomial δ(x).

By theMaple command rem we compute remainder r from the division of polynomial

δ(x) by polynomial Q(x). The remainder is of the form:

r(R) =
I21γ

4
1

I1γ2
1 + I2γ2

2

(a0x+ a1),

where a0 and a1 are polynomials of ω3, γ1, γ2 and γ3.

According to Proposition 4.2 if R is a root of equation (8.3), then a0 and a1 should

be identically equal to zero. We shall use a1 only.

Polynomial a1 has 210 coefficients. Thus we should equate to zero all of them. In this

way we obtain a system of 210 equations for parameters Ic, U1 and U3. The reduced

system (see Sec. 3) that is obtained after two consecutive simplifications is very simple:

c1 = 0, c2 = 0, I1 − I2 = 0.

These equations lead to the Lagrange case. Thus the sought partial first integral of

type 1 does not exist.

Type 4. The study of the existence of a first integral of type 4 is considerably different.

Indeed, let us suppose that F = F (γ1, γ2, γ3) is a first integral of system (8.52). Then we

have

dF

dt
= (ω3γ2 − γ3R)

∂F

∂γ1
− (I2Rγ2 + I3ω3γ3 − U1)γ3 + I1ω3γ

2
1

I1γ1

∂F

∂γ2

+
(I1γ

2
1 + I2γ

2
2)R+ (I3ω3γ3 − U1)γ2

I1γ1

∂F

∂γ3
= 0,

which we rewrite as follows

I1γ1
dF

dt
= Y1(F ) = 0, (8.59)

where Y1 is the corresponding vector field defined on Ω.

After differentiation identity (8.59) with respect to ω3 one obtains again a linear

partial differential equation for function F

∂Y1(F )

∂ω3
= I1γ1

(
γ2 − γ3

∂R

∂ω3

)
∂F

∂γ1
−
(
I2γ2γ3

∂R

∂ω3
+ I3γ

2
3 + I1γ

2
1

)
∂F

∂γ2

+

[(
I1γ

2
1 + I2γ

2
2

) ∂R

∂ω3
+ I3γ2γ3

]
∂F

∂γ3
= Y2(F ) = 0, (8.60)
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where Y2 is defined on Ω.

System (8.59)–(8.60) has one solution. This is first integral H2. In order to have one

more solution this system should consist of dependent equations. Let us study when this

is possible.

We compute determinant D23 corresponding to the square matrix obtained from the

2 × 3 matrix of the coefficients of system (8.59)–(8.60) by crossing out its first column.

The result is

D23 = I1γ
2
1

[
(I1γ

2
1 + I2γ

2
2 + I3γ

2
3)

(
R− ω3

∂R

∂ω3

)
− U1

(
γ2 − γ3

∂R

∂ω3

)]
.

The expression for D23 depends on derivative ∂R
∂ω3

. We determine it by differentiating

equation (8.50) with respect to ω3. Polynomial A does not depend on ω3 (see (8.51)) and

therefore
∂Q

∂ω3
=

∂B

∂ω3
R+

∂C

∂ω3
+

dQ

dR

∂R

∂ω3
= 0.

As in the studying of a first integral of type 1, using Proposition 4.1, we prove that if

R is a root of equation (8.50) then dQ
dR ̸= 0 and obtain from the above equation

∂R

∂ω3
= −

I3
[
γ3(I2Rγ2 − U1) + ω3(I1γ

2
1 + I3γ

2
3)
]

I2
[
R(I1γ2

1 + I2γ2
2) + γ2(I3ω3γ3 − U1)

] .
We put this value of ∂R

∂ω3
in the expression for D23 and obtain

D23 =
I1γ

2
1

I2
[
R(I1γ2

1 + I2γ2
2) + γ2(I3ω3γ3 − U1)

]D̂23,

where D̂23 is

D̂23 = I2(I1γ
2
1 + I2γ

2
2 + I3γ

2
3)
[
(I1γ

2
1 + I2γ

2
2)R

2 + 2γ2(I3ω3γ3 − U1)R
]

+ I3(I1γ
2
1 + I2γ

2
2 + I3γ

2
3)
[
(I1γ

2
1 + I3γ

2
3)ω

2
3 − 2U1γ3ω3

]
+ U2

1 (I2γ
2
2 + I3γ

2
3).

It is clear that D23 = 0 is equivalent to

D̂23 = 0. (8.61)

If first integral F = F (γ1, γ2, γ3) exists then equation (8.61) is fulfilled. Thus R

is simultaneously a root of equations (8.50) and (8.61). In such a case D̂23 and Q as

polynomials of R should have a zero resultant.

Let us denote the resultant with ρ and compute it. We obtain

ρ = I21I
2
2γ

4
1(I1γ

2
1 + I2γ

2
2)

2ρ̂2,

where

ρ̂ = (2c1γ1 + 2c2γ2 + 2c3γ3 + U3)(I1γ
2
1 + I2γ

2
2 + I3γ

2
3) + U2

1 .

Equation ρ = 0 implies ρ̂ = 0. It is easily seen that this happens only if c1 = c2 =

c3 = 0 and U1 = U3 = 0, i.e. a particular case of the Euler case. Thus a new first integral

of type 4 does not exist.
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8.3.2. Elimination of ω1 and γ1. Here we should study two cases: when c1 ̸= 0 and

when c1 = 0. This is necessary because when we express γ1 from equation H1 = U1 we

obtain

γ1 = −I2ω2γ2 + I3ω3γ3 − U1

I1ω1
(8.62)

independently of c1. But putting γ1 from (8.62) in equation H3 = U3, two different case

for determining ω1 arises. When c1 ̸= 0 the equation for ω1 is of degree three while when

c1 = 0 it is of degree two. That is why, to avoid any confusion, we consider separately

two cases.

Case A. c1 ̸= 0. In the same way as in Sec. 8.2.1, taking into account the value of γ1
from (8.62) we solve equation H3 = U3 with respect to ω1 and obtain

ω1 = R,

where R is a root of equation

Q(x) = I21x
3 +Ax+B = 0,

that is

Q(R) = I21R
3 +AR+B = 0 (8.63)

and A = A(ω2, ω3, γ2, γ3) and B = B(ω2, ω3, γ2, γ3) are the following polynomials:

A = I1(I2ω
2
2 + I3ω

2
3 + 2c2γ2 + 2c3γ3 − U3),

B = −c1(2I2ω2γ2 + 2I3ω3γ3 − 2U1).
(8.64)

In this way we come to the following values of the eliminated variables:

ω1 = R, γ1 = −I2ω2γ2 + I3ω3γ3 − U1

I1R
. (8.65)

We put the values of ω1 and γ1 from (8.65) in the Euler-Poisson equations (1.1),

remove the first and fourth equations and obtain the following system of four equations

in unknowns ω2, ω3, γ2 and γ3:

dω2

dt
= −I1(I1 − I3)ω3R

2 − I1c1γ3R− c3(I2ω2γ2 + I3ω3γ3 − U1)

I1I2R
,

dω3

dt
=

I1(I1 − I2)ω2R
2 − I1c1γ2R− c2(I2ω2γ2 + I3ω3γ3 − U1)

I1I3R
,

dγ2
dt

=
I1γ3R

2 + ω3(I2ω2γ2 + I3ω3γ3 − U1)

I1R
,

dγ3
dt

= −I1γ2R
2 + ω2(I2ω2γ2 + I3ω3γ3 − U1)

I1R
.

(8.66)

Case B. c1 = 0. We solve equation H3 = U3 with respect to ω1 at the value of γ1
given from (8.62) and obtain ω1 = R, where R is a root of equation

Q(x) = I1x
2 +B,

that is

Q(R) = I1R
2 +B, (8.67)
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and B(ω2, ω3, γ2, γ3) is the following polynomial:

B = I2ω
2
2 + I3ω

2
3 + 2c2γ2 + 2c3γ3 − U3.

In fact the values of the eliminated variables are determined as in Case A, i.e. by

formula (8.65) but R is a root of different equation.

The restricted Euler-Poisson equations are

dω2

dt
= −I1(I1 − I3)ω3R

2 − c3(I2ω2γ2 + I3ω3γ3 − U1)

I1I2R
,

dω3

dt
=

I1(I1 − I2)ω2R
2 − c2(I2ω2γ2 + I3ω3γ3 − U1)

I1I3R
,

dγ2
dt

=
I1γ3R

2 + ω3(I2ω2γ2 + I3ω3γ3 − U1)

I1R
,

dγ3
dt

= −I1γ2R
2 + ω2(I2ω2γ2 + I3ω3γ3 − U1)

I1R
.

(8.68)

To study the existence of a first integrals of systems (8.66) and (8.68) that depend on

at most three variables among the variables ω2, ω3, γ2 and γ3 and that are functionally

independent of H2 restricted to invariant manifold (8.48) we should consider the following

four types of a first integral:

1. F (ω2, ω3, γ2), (case (iii))

2. F (ω2, ω3, γ3), (case (iii))

3. F (ω2, γ2, γ3), (case (iv))

4. F (ω3, γ2, γ3). (case (iv))

Thus we should study the first integral of type 1 only.

Case A.1. We consider a first integral of type 1, i.e. F = F (ω2, ω3, γ2). Thus

dF

dt
= −I1(I1 − I3)ω3R

2 − I1c1γ3R− c3(I2ω2γ2 + I3ω3γ3 − U1)

I1I2R

∂F

∂ω2

+
I1(I1 − I2)ω2R

2 − I1c1γ2R− c2(I2ω2γ2 + I3ω3γ3 − U1)

I1I3R

∂F

∂ω3

+
I1γ3R

2 + ω3(I2ω2γ2 + I3ω3γ3 − U1)

I1R

∂F

∂γ2
= 0,

which is equivalent to

I1I2I3R
dF

dt
= Y1(F ) = 0. (8.69)

Y1 from (8.69) is the corresponding vector field defined on some suitable open set Ω ⊆
C4(ω2, ω3, γ2, γ3).

We differentiate identity (8.69) with respect to γ3 and obtain again a linear partial

differential equation for function F

∂Y1(F )

∂γ3
= I3

[
−2I1(I1 − I3)ω3R

∂R

∂γ3
+ I1c1R+ I1c1γ3

∂R

∂γ3
+ I3c3ω3

]
∂F

∂ω2

+ I2

[
2I1(I1 − I2)ω2R

∂R

∂γ3
− I1c1γ2

∂R

∂γ3
− I3c2ω3

]
∂F

∂ω3
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+ I2I3

(
I1R

2 + 2I1γ3R
∂R

∂γ3
+ I3ω

2
3

)
∂F

∂γ2
= Y2(F ) = 0, (8.70)

where Y2 is the corresponding vector field defined on Ω.

After differentiating identity (8.70) with respect to γ3 we obtain

∂Y2(F )

∂γ3
= I1I3

[
− 2(I1 − I3)ω3R

∂2R

∂γ2
3

− 2(I1 − I3)ω3

(
∂R

∂γ3

)2

+ 2c1
∂R

∂γ3
+ c1γ3

∂2R

∂γ2
3

]
∂F

∂ω2

+ I1I2

[
2(I1 − I2)ω2R

∂2R

∂γ2
3

+ 2(I1 − I2)ω2

(
∂R

∂γ3

)2

− c1γ2
∂2R

∂γ2
3

]
∂F

∂ω3

+ 2I1I2I3

[
γ3R

∂2R

∂γ2
3

+ γ3

(
∂R

∂γ3

)2

+ 2R
∂R

∂γ3

]
∂F

∂γ2
= Y3(F ) = 0, (8.71)

where Y3 is the corresponding vector field defined on Ω.

If a first integral F exists, system (8.69)–(8.71) has a non-zero solution gradF =(
∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ2

)
, which is possible if and only if the determinant D of its coefficients is

identically equal to zero.

We compute D. It has a non-zero factor I21I
2
2I

2
3 and that is why we note

D̂ =
D

I21I
2
2I

2
3

.

The expression for D̂ is

D̂ = a1R
4 ∂R

∂γ3
+ a2R

4 ∂
2R

∂γ2
3

+ a3R
3

(
∂R

∂γ3

)2

+ a4R
3 ∂R

∂γ3
+ a5R

3 ∂
2R

∂γ2
3

+ a6R
2

(
∂R

∂γ3

)2

+ a7R
2 ∂R

∂γ3
+ a8R

2 ∂
2R

∂γ2
3

+ a9R

(
∂R

∂γ3

)2

+ a10R
∂R

∂γ3

+ a11R
∂2R

∂γ2
3

+ a12

(
∂R

∂γ3

)3

+ a13

(
∂R

∂γ3

)2

,

where

a1 = −2I1c1ω2(I1 − I2), a2 = I1c1[(−I1 + I2)ω2γ3 + (I1 − I3)ω3γ2],

a3 = −2I1c1[(−I1 + I2)ω2γ3 + (I1 − I3)ω3γ2],

a4 = 2[2I3(I2 − I1)c3ω2ω3 + 2I3(I1 − I3)c2ω
2
3 + I1c

2
1γ2],

a5 = −2I2(I1 − I2)c3ω
2
2γ2 + 2I2(−I3 + I1)c2ω2ω3γ2 − 2I3(I1 − I2)c3ω2ω3γ3

+ 2(I1 − I2)c3U1ω2 + 2I3(−I3 + I1)c2ω
2
3γ3 − 2(−I3 + I1)c2U1ω3 + I1c

2
1γ2γ3,

a6 = 6[(I2 − I1)c3ω2 + (I1 − I3)c2ω3](−I2ω2γ2 − I3ω3γ3 + U1),

a7 = −2c1(−I3(I1 − I2)ω2ω
2
3 − c2I2ω2γ2 − 2c3I3ω3γ2 + c2U1),

a8 = −c1[−2I2(I1 − I2)ω
2
2ω3γ2 − I3(I1 − I2)ω2ω

2
3γ3 + 2(I1 − I2)U1ω2ω3

− I2c3ω2γ
2
2 − I2c2ω2γ2γ3 − I3(−I3 + I1)ω

3
3γ2 − 2I3c3ω3γ2γ3 + c3U1γ2 + c2U1γ3],

a9 = 2c1[−I2(I1 − I2)ω
2
2ω3γ2 − 2I3(I1 − I2)ω2ω

2
3γ3 + U1(I1 − I2)ω2ω3 − 2c3I2ω2γ

2
2



106 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

+ I2c2ω2γ2γ3 + I3(−I3 + I1)ω
3
3γ2 − I3c3ω3γ2γ3 + 2c3U1γ2 − c2U1γ3],

a10 = −2I3c
2
1ω

2
3γ2, a11 = c21ω3γ2(−I2ω2γ2 − I3ω3γ3 + U1),

a12 = 2c1[(I2 − I1)ω2ω3γ3 + (−I3 + I1)ω
2
3γ2 + c3γ2γ3 − c2γ

2
3 ](−I2ω2γ2 − I3ω3γ3 + U1),

a13 = −2c21ω3γ2(−I2ω2γ2 − I3ω3γ3 + U1).

The first and second derivatives of R with respect to γ3 appear in D. To determine

them we differentiate equation (8.63) with respect to γ3 two times and obtain

∂Q

∂γ3
=

∂A

∂γ3
R+

∂B

∂γ3
+

dQ

dR

∂R

∂γ3
= 0 (8.72)

and

∂2Q

∂γ2
3

=
∂2A

∂γ2
3

R+
∂A

∂γ3

∂R

∂γ3
+

∂2B

∂γ2
3

+
∂

∂γ3

(
dQ

dR

)
∂R

∂γ3
+

dQ

dR

∂2R

∂γ2
3

= 0. (8.73)

We prove that if R is a root of equation (8.63), then dQ
dR ̸= 0. For the purpose we

consider the resultant ρ = I41 (4A
3 + 27I21B

2) of polynomials Q(R) and dQ
dR = 3I21R

2 +A

and prove that ρ ̸= 0. Indeed, putting in ρ the expressions for A and B from (8.64) we

obtain a polynomial which we do not give here but it never vanishes identically as it has

a monomial 4I31I
3
2ω

6
2 .

Thus, by Proposition 4.1, dQ
dR ̸= 0 and ∂R

∂γ3
can be correctly determined from equa-

tion (8.72). Then by equation (8.73) we determine ∂2R
∂γ2

3
, put the obtained values for the

derivatives of R in the expression for D̂(R) and obtain

D̂(R) =
Lδ(R)(
dQ
dR

)3 ,
where L = 4(I1c3R−I3c1ω3) and δ(R) is a polynomial ofR of degree eight with coefficients

depending on ω2, ω3, γ2 and γ3.

We prove that expression L does not vanish identically provided that R is a root of

(8.63). Indeed, if c3 = 0 then L = −4I3c1ω3 and as c1 ̸= 0 L could not vanish identically. If

c3 ̸= 0 and we suppose that L = 0 then we have R = I3c1ω3/(I1c3). Simple computations

show that this value of R cannot be a root of (8.63). Thus we can work with D̂ instead

of D because L and dQ
dR are non-zeros.

Thus the equation D̂(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0,

then if in addition some supplementary first integral F (ω2, ω3, γ2) of system (8.66) exists,

then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω2, ω3, γ2, γ3), the polynomial Q(x) divides the

polynomial δ(x).

By theMaple command rem we compute remainder r from the division of polynomial

δ(x) by polynomial Q(x). The remainder is of the form:

r(x) = 2I1c1a0x
2 + a1x+ 4c1(−I2ω2γ2 − I3ω3γ3 + U1)a2,

where the coefficients a0, a1 and a2 are polynomials of ω2, ω3, γ2 and γ3.

According to Proposition 4.2 if R is a root of equation (8.63), then, as 2I1c1 is not zero

and 4c1(−I2ω2γ2 − I3ω3γ3 + U1) does not vanish identically, we have a0 = a1 = a2 = 0
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identically. We use only the last equation a2 = 0.

a2 is a polynomial with 51 monomials and therefore with 51 coefficients. We equate

them to zeros and apply simplification on the obtained system. After three consecutive

simplifications we come to the reduced system that consists of only one equation 1=0.

Thus a first integral of type 1, F = F (ω2, ω3, γ2) does not exist when c1 ̸= 0.

Case B.1. Here we consider Case B, i.e. c1 = 0 and study the existence of a first

integral of system (8.68) which is of type 1, F (ω2, ω3, γ2).

In the same way as in Case A we obtain a system

Y1(F ) = Y2(F ) = Y3(F ) = 0, (8.74)

where vector fields Yi, 1 ≤ i ≤ 3, are defined on Ω.

System (8.74) coincides with system (8.69)–(8.71) if we substitute in the last one

c1 = 0. As we know the existence of the sought first integral is possible if and only if the

determinant D of the coefficients of system (8.74) is identically equal to zero.

Let us compute this determinant. We obtain

D(R) = 2I21I
2
2I

2
3R

2
[
(I2 − I1)c3ω2 + (I1 − I3)c2ω3

]
D̂(R), (8.75)

where

D̂(R) = (I2ω2γ2 + I3ω3γ3 − U1)

[
R
∂2R

∂γ2
3

− 3

(
∂R

∂γ3

)2
]
+ 2I3ω3R

∂R

∂γ3
.

Taking into account that now R = 0 cannot be a root of equation (8.67) and that

c1 = 0 we easily see that the factor before D̂(R) in (8.75) can vanish identically only in the

Euler, Lagrange and kinetic symmetry cases. Thus the equation D(R) = 0 is equivalent

to the equation D̂(R) = 0.

We compute the derivatives of R (see (8.67)) with respect to γ3 and obtain

∂R

∂γ3
= − c3

I1R
,

∂2R

∂γ2
3

= − c23
I21R

3

and determine D̂(R) as follows

D̂(R) = −2c3
I1I3ω3R

2 + 2c3(I2ω2γ2 + I3ω3γ3 − U1)

I21R
2

.

Let us suppose that c3 ̸= 0. It is clear that now D̂(R) never vanishes identically and

consequently the sought partial first integral does not exist.

Let c3 = 0. In such a case D̂ = 0 and therefore equations (8.74) are linearly dependent.

More precisely Y3 ≡ 0 because when c3 = 0 then R does not depend on γ3 but every item

of Y3 contains either ∂R
∂γ3

or ∂2R
∂γ2

3
(see (8.71) under condition c1 = 0).

Thus we have only two partial differential equations for first integral F . They are

Y1(F ) = 0, Y2(F ) = 0. (8.76)

Easy computations show that these equations are independent unless c2 = 0 which

leads to the Euler case or I1 = I3 - Lagrange case.



108 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

We compose the Lie bracket Z = [Y1, Y2]. Equations (8.76) imply that

Z(F ) = 3(I1 − I3)I2I
2
3c2ω3(I2ω

2
2 + I3ω

2
3 + 2c2γ2 − U3)

∂F

∂ω2

− I22I3c2
[
I2I1ω

3
2 + I3(I1 − I2)ω2ω

2
3

+ c2(2I1 − I2)ω2γ2 − I1U3ω2 + c2U1

] ∂F
∂ω3

+ I22I
2
3ω3

[
− I2(2I1 − I2 − 2I3)ω

3
2 − 2I3(I1 − I3)ω2ω

2
3

− c2(4I1 − I2 − 4I3)ω2γ2 + (2I1 − I2 − 2I3)U3ω2 + c2U1

] ∂F
∂γ2

= 0. (8.77)

Determinant δ composed from the coefficients of equations (8.76) and (8.77) should

be identically equal to zero. We compute it and obtain

δ = δ1δ2,

where

δ1 = I32I
3
3 (I1 − I3)c2ω3(I2ω

2
2 + I3ω

2
3 + 2c2γ2 − U3)

2,

δ2 = −I2(2I1 − 3I2)ω
3
2 − 2I3(I1 − I3)ω2ω

2
3 − 2c2(2I1 − I2)ω2γ2

+ U3(2I1 − 3I2)ω2 + 4c2U1.

It is easily seen that δ1 can vanish identically only in the Euler and Lagrange cases.

The expression for δ2 contains a monomial 2I3(I1 − I3)ω2ω
2
3 and therefore the minimal

requirement for δ2 to vanish identically is I1 = I3 - the Lagrange case.

Thus a new first integral of type 1 does not exist also when c1 = 0.

8.3.3. Elimination of ω1 and γ2. In the same way as in Sec. 8.2.1 we solve equations

H1 = U1 and H3 = U3 with respect to ω1 and γ2 and obtain

ω1 = R, γ2 = −I1γ1R+ I3ω3γ3 − U1

I2ω2
, (8.78)

where R is a root of equation

Q(x) = Ax2 +Bx+ C = 0,

that is

Q(R) = AR2 +BR+ C = 0. (8.79)

Functions A = A(ω2), B = B(γ1) and C = C(ω2, ω3, γ1, γ3) are given by the following

polynomials:

A = I1I2ω2, B = −2I1c2γ1,

C = I22ω
3
2 + I2I3ω2ω

2
3 + 2I2c1ω2γ1 + 2I2c3ω2γ3

− I2U3ω2 − 2I3c2ω3γ3 + 2c2U1.

(8.80)

We put the values of ω1 and γ2 from (8.78) in the Euler-Poisson equations (1.1) and

remove its first and fifth equations. In this way we obtain the following system of four



The Euler-Poisson equations; partial integrability 109

equations in unknowns ω2, ω3, γ1 and γ3:

dω2

dt
= − (I1 − I3)ω3R− c1γ3 + c3γ1

I2
,

dω3

dt
=

I2(I1 − I2)ω
2
2R+ I2c2ω2γ1 + c1(I1γ1R+ I3ω3γ3 − U1)

I2I3ω2
,

dγ1
dt

= −I1ω3γ1R+ I3ω
2
3γ3 − U1ω3 + I2ω

2
2γ3

I2ω2
,

dγ3
dt

=
I2ω

2
2γ1 + (I1γ1R+ I3ω3γ3 − U1)R

I2ω2

(8.81)

We consider the following four possible types of a first integral of system (8.81) that

depends on at most three variables among the variables ω2, ω3, γ1 and γ3:

1. F (ω2, ω3, γ1), (case (ii))

2. F (ω2, ω3, γ3), (case (iii))

3. F (ω2, γ1, γ3), (case (v))

4. F (ω3, γ1, γ3). (case (iv))

As we have already studied cases (iii) and (iv) now we should consider the first

integrals of types 1 and 3.

We suppose that the studied partial first integral is functionally independent of H2

restricted to invariant manifold (8.48).

Type 1. Let us start with a first integral of type 1, F = F (ω2, ω3, γ1). We have

dF

dt
= − (I1 − I3)ω3R− c1γ3 + c3γ1

I2

∂F

∂ω2

+
I2(I1 − I2)ω

2
2R+ I2c2ω2γ1 + c1(I1γ1R+ I3ω3γ3 − U1)

I2I3ω2

∂F

∂ω3

− I1ω3γ1R+ I3ω
2
3γ3 − U1ω3 + I2ω

2
2γ3

I2ω2

∂F

∂γ1
= 0,

which is equivalent to

I2I3ω2
dF

dt
= Y1(F ) = 0. (8.82)

Y1 from the above equation is the corresponding vector field defined on some suitable

open set Ω ⊆ C4(ω2, ω3, γ1, γ3).

We differentiate identity (8.82) with respect to γ3 and obtain again a linear partial

differential equation for function F

∂Y1(F )

∂γ3
= I3

[
(I3 − I1)ω2ω3

∂R

∂γ3
+ c1ω2

]
∂F

∂ω2

+

[
I2(I1 − I2)ω

2
2

∂R

∂γ3
+ I1c1γ1

∂R

∂γ3
+ I3c1ω3

]
∂F

∂ω3

− I3

(
I1ω3γ1

∂R

∂γ3
+ I2ω

2
2 + I3ω

2
3

)
∂F

∂γ1
= Y2(F ) = 0. (8.83)
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We differentiate Y2(F ) with respect to γ3 and obtain

∂Y2(F )

∂γ3
=

∂2R

∂γ2
3

[
I3(I3 − I1)ω2ω3

∂F

∂ω2
+ (I1I2ω

2
2 − I22ω

2
2 + I1c1γ1)

∂F

∂ω3

− I1I3ω3γ1
∂F

∂γ1

]
= Y3(F ) = 0, (8.84)

where Y2 and Y3 are the corresponding vector fields defined on Ω.

If a first integral F = F (ω2, ω3, γ1) exists, system (8.82)–(8.84) has a non-zero solu-

tion gradF =
(

∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ1

)
. This is possible if and only if the determinant D of its

coefficients is identically equal to zero.

We compute D and obtain

D(R) = −I2I
2
3ω

2
2

∂2R

∂γ2
3

∆,

where

∆ = (I2 − I3)c1U1ω2ω3 + I1c1γ
2
1(c3ω2 − c2ω3)

+ (I2ω
2
2 + I3ω

2
3)[(I1 − I2)c3ω2 − (I1 − I3)c2ω3]γ1.

Let us first suppose that

∂2R

∂γ2
3

̸= 0. (8.85)

In such a case D(R) = 0 if and only if ∆ = 0. Polynomial ∆ has seven coefficients and

they should be zeros, i.e. we have a system of seven equations for the parameters Ic and
U1.

After two consecutive simplifications we come to the reduced system that consists of

the following six equations:

c3c1 = 0, (I1 − I2)c3 = 0, c1c2 = 0, (I1 − I3)c2 = 0,

(I2 − I3)c2c3 = 0, (I2 − I3)c1U1 = 0.

The system obtained coincides with system (8.35) and therefore has the same six

solutions. After removing the solutions that lead to the Euler, Lagrange and kinetic

symmetry cases we obtain only one new solution

{U1 = 0, I1 = I1, I2 = I2, I3 = I3, c1 = c1, c2 = 0, c3 = 0},

which is impossible because the condition c2 = c3 = 0 contradicts to (8.85). Indeed,

equation (8.79) has no root that depends on γ3 because the three its coefficients A, B

and C (see (8.80)) do not depend on γ3 when c2 = c3 = 0 and therefore R does not

depend too.

Thus a first integral of type 1 does not exist when condition (8.85) is fulfilled.

Let us study what happens when

∂2R

∂γ2
3

= 0. (8.86)
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Equation (8.86) implies that R = M(ω2, ω3, γ1)γ3 + N(ω2, ω3, γ1), where M and N

are some functions not depending on γ3. Now equation (8.79) gives

Q = AM2γ2
3 +Mγ3(2AN +B) +AN2 +BN + C = 0.

Thus Q is a polynomial of γ3 of degree two. The coefficient of γ2
3 is AM2. As Q = 0 then

AM2 = 0. As A cannot be zero (see (8.80)) it remains the only possibility M = 0 and

equation (8.79) is transform in the form

Q = AN2 +BN + C = 0,

i.e. Q is already a polynomial of γ3 of degree one. Its leading coefficient is 2(I2c3ω2 −
I3c2ω3) (see the expression for C in (8.80)). This coefficient should be identically equal

to zero. Thus c2 = c3 = 0.

As function B vanishes at this condition then R takes the following simple form

R =

√
I1(−I2ω2

2 − I3ω2
3 − 2c1γ1 + U3)

I1
. (8.87)

Now Y3(F ) ≡ 0 and equations Yi(F ) = 0, 1 ≤ i ≤ 2, are obtained from (8.82) and

(8.83) where we put c2 = c3 = 0 and ∂R
∂γ3

= 0, i.e.

Y1(F ) = −I3ω2 [(I1 − I3)ω3R− c1γ3]
∂F

∂ω2

+
[
I2(I1 − I2)ω

2
2R+ c1(I1γ1R+ I3ω3γ3 − U1)

] ∂F

∂ω3

− I3
[
(I2ω

2
2 + I3ω

2
3)γ3 + (I1γ1R− U1)ω3

] ∂F
∂γ1

= 0,

Y2(F ) = I3c1ω2
∂F

∂ω2
+ I3c1ω3

∂F

∂ω3
− I3

(
I2ω

2
2 + I3ω

2
3

) ∂F

∂γ1
= 0,

where R is taken from (8.87).

Further we work with vector fields

Z1 = Y1 − γ3Y2, Z2 = Y2, Z3 =
[Z1, Z2]

I3
.

We compute Z3

Z3 = I3(I1 − I3)c1ω2ω3R
∂

∂ω2
+ c1

[
(I22ω

2
2 + I1I3ω

2
3 + I1c1γ1)R− c1U1

] ∂

∂ω3

+ I3ω3

[
(2I22ω

2
2 − 2I2I3ω

2
2 − I1I2ω

2
2 − I1I3ω

2
3 − I1c1γ1)R+ c1U1

] ∂

∂γ1
.

In this way we obtain the following system of three equations for function F :

Zi(F ) = 0, 1 ≤ i ≤ 3,

and we know that determinant δ of the coefficients of this system should vanish identically

with respect to ω2, ω3 and γ1. We compute δ and obtain

I21δ = δ1δ2,

where

δ1 = I1I2I
2
3 (I2 − I3)c1ω

3
2ω3
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δ2 =
[
I2(2I2 − 3I1)ω

2
2 + I3(2I3 − 3I1)ω

2
3 − 4I1c1γ1

]
(−I2ω

2
2 − I3ω

2
3 − 2c1γ1 + U3)

+ 4c1U1

√
I1(−I2ω2

2 − I3ω2
3 − 2c1γ1 + U3)

δ1 vanishes identically if I2 = I3 which leads to the Lagrange case or if c1 = 0 which

leads to the Euler case. Thus we suppose that I2 ̸= I3 and c1 ̸= 0 and should study when

δ2 vanishes.

According to Proposition 4.3 applied to V = I1(−I2ω
2
2−I3ω

2
3−2c1γ1+U3) we conclude

that U1 = 0. Thus

δ2 =
[
I2(2I2 − 3I1)ω

2
2 + I3(2I3 − 3I1)ω

2
3 − 4I1c1γ1

]
(−I2ω

2
2 − I3ω

2
3 − 2c1γ1 + U3)

and it is easily seen that if c1 ̸= 0 then neither the first factor in the square brackets nor

the second one vanishes independently of the values of the moments of inertia.

Thus a new first integral of type 1, F (ω2, ω3, γ1) does not exist.

Type 3. We go to the consideration of a first integral of type 3, F (ω2, γ1, γ3). Thus

dF

dt
= − (I1 − I3)ω3R− c1γ3 + c3γ1

I2

∂F

∂ω2

− I1ω3γ1R+ I2ω
2
2γ3 + I3ω

2
3γ3 − U1ω3

I2ω2

∂F

∂γ1

+
I2ω

2
2γ1 + (I1γ1R+ I3ω3γ3 − U1)R

I2ω2

∂F

∂γ3
= 0,

which is equivalent to

I2ω2
dF

dt
= Y1(F ) = 0, (8.88)

where Y1 is the corresponding vector field defined on a Ω.

We differentiate (8.88) with respect to ω3 two times and obtain

∂Y1(F )

∂ω3
= ω2(I3 − I1)

(
ω3

∂R

∂ω3
+R

)
∂F

∂ω2

−
[
I1γ1

(
ω3

∂R

∂ω3
+R

)
+ 2I3ω3γ3 − U1

]
∂F

∂γ1

+

[
I3γ3

(
ω3

∂R

∂ω3
+R

)
+ 2I1γ1R

∂R

∂ω3
− U1

∂R

∂ω3

]
∂F

∂γ3
= Y2(F ) = 0 (8.89)

and

∂Y2(F )

∂ω3
= ω2(I3 − I1)

(
ω3

∂2R

∂ω2
3

+ 2
∂R

∂ω3

)
∂F

∂ω2

−
[
I1γ1

(
ω3

∂2R

∂ω2
3

+ 2
∂R

∂ω3

)
+ 2I3γ3

]
∂F

∂γ1

+

[
I3γ3

(
ω3

∂2R

∂ω2
3

+ 2
∂R

∂ω3

)
+ 2I1γ1

(
∂R

∂ω3

)2

+ (2I1γ1R− U1)
∂2R

∂ω2
3

]
∂F

∂γ3
= Y3(F ) = 0, (8.90)

where Y2 and Y3 are the corresponding vector fields defined on Ω.
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If a first integral F (ω2, γ1, γ3) exists, system (8.88)–(8.90) has a non-zero solution

gradF =
(

∂F
∂ω2

, ∂F
∂γ1

, ∂F
∂γ3

)
. This is possible if and only if the determinant D(R) of its

coefficients is identically equal to zero.

D(R) has a factor ω2 and we note

D̂(R) =
D(R)

ω2
.

The expression for D̂(R) is

D̂(R) = a1R
3 + a2R

2 ∂R

∂ω3
+ a3R

2 ∂
2R

∂ω2
3

+ a4R
2 + a5R

(
∂R

∂ω3

)2

+ a6R
∂2R

∂ω2
3

+ a7R
∂2R

∂ω2
3

+ a8R+ a9

(
∂R

∂ω3

)3

+ a10

(
∂R

∂ω3

)2

+ a11
∂R

∂ω3
+ a12

∂2R

∂ω2
3

, (8.91)

where

a1 = 2I1I3(I1 − I3)γ1γ3, a2 = 2I1(I1 − I3)(−3I3ω3γ3 + U1)γ1,

a3 = I1[−2I2(I1 − I3)ω
2
2γ3 + U1(I1 − I3)ω3 + 2I1c3γ

2
1 − 2I1c1γ1γ3]γ1,

a4 = −2I3(I1 − I3)U1γ3

a5 = 2I1[I2(I1 − I3)ω
2
2γ3 + 3I3(I1 − I3)ω

2
3γ3 − 2U1(I1 − I3)ω3 − I1c3γ

2
1 + I1c1γ1γ3]γ1

a6 = 4I3(I1 − I3)U1ω3γ3 − 4I1I3c3γ
2
1γ3 + 4I1I3c1γ1γ

2
3 − 2(I1 − I3)U

2
1 ,

a7 = I2(I1 − I3)U1ω
2
2γ3 + I3(I1 − I3)U1ω

2
3γ3 + 4I1I3c3ω3γ

2
1γ3 − 4I1I3c1ω3γ1γ

2
3

− (I1 − I3)U
2
1ω3 − 3I1c3U1γ

2
1 + 3I1c1U1γ1γ3,

a8 = 2I3γ3[I2(I1 − I3)ω
2
2γ1 − I3c3γ1γ3 + I3c1γ

2
3 ],

a9 = 2I1ω3γ1[−I2(I1 − I3)ω
2
2γ3 − I3(I1 − I3)ω

2
3γ3

+ (I1 − I3)U1ω3 + I1c3γ
2
1 − I1c1γ1γ3],

a10 = −2I2(I1 − I3)U1ω
2
2γ3 − 2I3(I1 − I3)U1ω

2
3γ3 + 4I1I3c3ω3γ

2
1γ3

− 4I1I3c1ω3γ1γ
2
3 + 2(I1 − I3)U

2
1ω3,

a11 = −2I2I3(I1 − I3)ω
2
2ω3γ1γ3 + 2I2(I1 − I3)U1ω

2
2γ1 + 2I23c3ω3γ1γ

2
3 − 2I23c1ω3γ

3
3 ,

a12 = (U1 − 2I3ω3γ3)[I2(I1 − I3)ω
2
2ω3γ1 − I3c3ω3γ1γ3 + I3c1ω3γ

2
3 + c3U1γ1 − c1U1γ3].

D̂(R) contains ∂R
∂ω3

and ∂2R
∂ω2

3
. We determine them by the same method we used for a

first integral of type 2 and obtain

∂R

∂γ1
= −I3(I2ω2ω3 − c2γ3)

I1(I2ω2R− c2γ1)
,

∂2R

∂γ2
1

= − I2I3ω2

I21 (I2ω2R− c2γ1)3
(
I22I3ω

2
2ω

2
3 − 2I2I3c2ω2ω3γ3 + I1I

2
2R

2ω2
2

− 2I1I2c2ω2γ1R+ I1c
2
2γ

2
1 + I3c

2
2γ

2
3

)
.

We put these values of the derivatives of R in the expression (8.91) and obtain

D̂(R) =
I3

I21 (I2ω2R− c2γ1)3
δ(R),
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where δ(R) is a polynomial of R of degree six with coefficients that are polynomials of

ω2, ω3, γ1, γ3 and parameters Ic and U1.

It is clear that the equation D̂(R) = 0 is equivalent to δ(R) = 0. We know that if

Q(R) = 0, then if in addition some supplementary first integral F (ω2, γ1, γ3) of system

(8.81) exists, then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled.

Consequently in polynomial ring K[x], where K = Alg(ω2, ω3, γ1, γ3), the polynomial

Q(x) divides the polynomial δ(x).

By the Maple command rem we compute remainder r(x) from the division of poly-

nomial δ(x) by polynomial Q(x). It is of the form:

r(x) =
1

I22ω
2
2

(a0x+ a1),

where the coefficients a0 and a1 are polynomials of ω2, ω3, γ1 and γ3 and parameters Ic,
U1 and U3.

According to Proposition 4.2 if R is a root of equation (8.79), then we have a0 = a1 = 0

identically. Although polynomial a0 has 84 coefficients we use a1 which has 160 ones. This

is because if we use a0 = 0 then the reduced system has one solution U1 = 0, c2 = 0

which should be studied separately whereas only two consecutive simplifications on the

system with 160 equations coming from a1 = 0 lead to the reduced system

c1 = 0, c3 = 0, I1 − I3 = 0,

which immediately implies the Lagrange case and leads to the conclusion that a new first

integral of type 3 does not exist.

8.3.4. Elimination of γ2 and γ3. Like in Sec. 8.2.1 we solve equations H1 = U1 and

H3 = U3 with respect to γ2 and γ3 and obtain

γ2 =
I3ω3(I1ω

2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3)− 2I1c3ω1γ1 + 2c3U1

2(I2c3ω2 − I3c2ω3)
,

γ3 = −I2ω2(I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3)− 2I1c2ω1γ1 + 2c2U1

2(I2c3ω2 − I3c2ω3)
.

(8.92)

Let us note that the elimination of γ2 and γ3 from equations H1 = U1 and H3 = U3

is possible only if

(c2, c3) ̸= (0, 0). (8.93)

Further we suppose that this condition is fulfilled.

We put the values of γ2 and γ3 from (8.92) in the Euler-Poisson equations (1.1) and

remove its fifth and sixth equations. In this way we obtain the following system of four

equations in unknowns ω1, ω2, ω3 and γ1:

dω1

dt
=

1

2I1(I2c3ω2 − I3c2ω3)

[
I1I2c2ω

2
1ω2 + I1I3c3ω

2
1ω3 + I22c2ω

3
2

+ I23c3ω
3
3 + 2I2c1c2ω2γ1 + I2(2I2 − I3)c3ω

2
2ω3 + 2I3c1c3ω3γ1

− I3(I2 − 2I3)c2ω2ω
2
3 − I2c2U3ω2 − I3c3U3ω3

− 2I1(c
2
2 + c23)ω1γ1 + 2(c22 + c23)U1

]
,
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dω2

dt
=

1

2I2(I2c3ω2 − I3c2ω3)

[
− I1I2c1ω

2
1ω2 − I22c1ω

3
2 − I2I3c1ω2ω

2
3

+ 2I1c1c2ω1γ1 − 2I2(I1 − I3)c3ω1ω2ω3 + 2I3c2c3ω3γ1

+ 2I3(I1 − I3)c2ω1ω
2
3 + I2c1U3ω2 − 2I2(c

2
1 + c23)ω2γ1 − 2c1c2U1

]
, (8.94)

dω3

dt
=

1

2I3(I2c3ω2 − I3c2ω3)

[
− I1I3c1ω

2
1ω3 − I2I3c1ω

2
2ω3 − I23c1ω

3
3

+ 2I1c1c3ω1γ1 + 2I2c2c3ω2γ1 + 2I2(I1 − I2)c3ω1ω
2
2

− 2I3(I1 − I2)c2ω1ω2ω3 + I3c1U3ω3 − 2I3(c
2
1 + c22)ω3γ1 − 2c1c3U1

]
,

dγ1
dt

=
1

2(I2c3ω2 − I3c2ω3)

[
I1I2ω

2
1ω

2
2 + I1I3ω

2
1ω

2
3 + I22ω

4
2 + 2I2I3ω

2
2ω

2
3

+ I23ω
4
3 − 2I1c2ω1ω2γ1 − 2I1c3ω1ω3γ1 + 2I2c1ω

2
2γ1 + 2I3c1ω

2
3γ1

− I2U3ω
2
2 − I3U3ω

2
3 + 2c2U1ω2 + 2c3U1ω3

]
.

We consider the following four possible types of a first integral of system (8.94) that

depends on at most three variables among the variables ω1, ω2, ω3 and γ1:

1. F (ω1, ω2, ω3), (case (i))

2. F (ω1, ω2, γ1), (case (iii))

3. F (ω1, ω3, γ1), (case (iii))

4. F (ω2, ω3, γ1). (case (ii))

The only not yet studied case for the invariant manifold (8.48) is case (i). Thus here

we should study the existence of a first integral of type 1 only.

We suppose that the studied partial first integral is functionally independent of H2

restricted to invariant manifold (8.48).

Type 1. Let us consider a first integral of type 1, F (ω1, ω2, ω3). Thus

2I1I2I3(I2c3ω2 − I3c2ω3)
dF

dt
= Z(F ) = 0, (8.95)

where Z is the corresponding vector field defined on some suitable open set Ω ⊆
C4(ω1, ω2, ω3, γ1).

Note that the right-hand sides of equations (8.94) are linear functions of γ1. Thus, as F

does not depend on γ1, Z(F ) is also a linear function of γ1, i.e. Z(F ) = γ1Y1(F )+Y2(F ).

Equation (8.95) which is an identity with respect to variables ω1, ω2, ω3 and γ1 implies

that coefficients Y1(F ) and Y2(F ) should vanish. The vector fields Y1 and Y2 are given

by the following expressions:

Y1 = 2I2I3
[
I2c1c2ω2 + I3c1c3ω3 − I1(c

2
2 + c23)ω1

] ∂

∂ω1

+ 2I1I3
[
I1c1c2ω1 + I3c2c3ω3 − I2(c

2
1 + c23)ω2

] ∂

∂ω2

+ 2I1I2
[
2I1c1c3ω1 + 2I2c2c3ω2 − 2I3(c

2
1 + c22)ω3

] ∂

∂ω3
,

Y2 = I2I3
[
I2c2ω2(I1ω

2
1 + I2ω

2
2) + I3c3ω3(I1ω

2
1 + I3ω

2
3) + I2(2I2 − I3)c3ω

2
2ω3
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− I3(I2 − 2I3)c2ω2ω
2
3 − I2c2U3ω2 − I3c3U3ω3 + 2(c22 + c23)U1

] ∂

∂ω1

+ I1I3
[
− I2c1ω2(I1ω

2
1 + I2ω

2
2 + I3ω

2
3)− 2I2(I1 − I3)c3ω1ω2ω3

+ 2I3(I1 − I3)c2ω1ω
2
3 + I2c1U3ω2 − 2c1c2U1

] ∂

∂ω2

+ I1I2
[
− I3c1ω3(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + 2I2(I1 − I2)c3ω1ω

2
2

− 2I3(I1 − I2)c2ω1ω2ω3 + I3c1U3ω3 − 2c1c3U1

] ∂

∂ω3
.

We compose the Lie bracket Y3 = −[Y1, Y2]/(2I1I2I3). The expression for Y3 is long

and we do not write it here.

We consider equations

Yi(F ) = 0, 1 ≤ i ≤ 3. (8.96)

If a first integral F (ω1, ω2, ω3) exists, system (8.96) has a non-zero solution gradF =(
∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

)
. This is possible if and only if the determinant D of its coefficients is

identically equal to zero.

The expression for D is very long to be given here but our computations show that

D = 4I1I2I3(I2c3ω2 − I3c2ω3)
2D̂.

As the factor in front of D̂ never vanishes identically because of the condition (8.93),

equation D = 0 is equivalent to D̂ = 0. D̂ is a polynomial of ω1, ω2 and ω3 with 37

coefficients depending on parameters Ic, U1 and U3.

Thus we should solve the system obtained by equating to zero the 37 coefficients of

D̂. After four consecutive simplifications we obtain the following simple reduced system:

c3(I1 − I2) = 0, c2(I1 − I3) = 0, c1(I2 − I3) = 0, c2c3(I2 − I3) = 0.

We solve this system by the Maple command solve and obtain the following five

solutions with arbitrary values of U1 and U3:

{I1 = I1, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = 0}
{I1 = I1, I2 = I3, I3 = I3, c1 = c1, c2 = 0, c3 = 0}
{I1 = I2, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = c3}
{I1 = I3, I2 = I2, I3 = I3, c1 = 0, c2 = c2, c3 = 0}
{I1 = I3, I2 = I3, I3 = I3, c1 = c1, c2 = c2, c3 = c3}.

Taking into account condition (8.93), we remove the first and second solutions. The

remaining three solutions lead either to the Lagrange case or to the kinetic symmetry.

Thus the sought first integral of type 1 does not exist.

8.4. Invariant manifold {H2=U2, H3=U3}. Here we study the existence of a par-

tial first integral of the Euler-Poisson equations (1.1) restricted to the complex four-

dimensional level manifold

{H2 = U2, H3 = U3}, (8.97)
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supposing that this first integral depends on at most three variables and that is function-

ally independent of H1. U2 and U3 are arbitrary complex numbers, fixed once and for

all.

Let us stress that the elimination of ω1 and ω2 is impossible on invariant manifold

(8.97).

8.4.1. Elimination of ω1 and γ1. We express γ1 from the equation H2 = U2 and

obtain

γ1 =
√
−γ2

2 − γ2
3 + U2. (8.98)

Then we put γ1 from (8.98) in the equation H3 = U3 and like in Sec. 8.2.1 solve it by the

Maple command solve. In this way we obtain

ω1 = R, (8.99)

where R is a root of equation

Q(x) = I1x
2 +B = 0, (8.100)

that is

Q(R) = I1R
2 +B = 0, (8.101)

where B = B(ω2, ω3, γ2, γ3) is the following function:

B = I2ω
2
2 + I3ω

2
3 + 2c1

√
−γ2

2 − γ2
3 + U2 + 2c2γ2 + 2c3γ3 − U3. (8.102)

R and B are algebraic functions defined on C4(ω2, ω3, γ2, γ3). The equation (8.100) has

only simple roots because the function B does not vanish identically.

Further, to simplify the notations, we put

Γ =
√

−γ2
2 − γ2

3 + U2.

We put the values of γ1 and ω1 from (8.98) and (8.99) in the Euler-Poisson equations

(1.1), remove the first and fourth equations and obtain the following system of four

differential equations in unknowns ω2, ω3, γ2 and γ3:

dω2

dt
=

1

I2
[(I3 − I1)ω3R+ c1γ3 − c3Γ] ,

dγ2
dt

= γ3R− ω3Γ,

dω3

dt
=

1

I3
[(I1 − I2)ω2R− c1γ2 + c2Γ] ,

dγ3
dt

= −γ2R+ ω2Γ.

(8.103)

We want to study the existence of a first integral of system (8.103) that depends on

at most three variables among the variables ω2, ω3, γ2 and γ3 and that is functionally

independent of H1 restricted to invariant manifold (8.97). The following four types of a

first integral are possible:

1. F (ω2, ω3, γ2), (case (iii))

2. F (ω2, ω3, γ3), (case (iii))

3. F (ω2, γ2, γ3), (case (iv))

4. F (ω3, γ2, γ3). (case (iv))

Like in Sec. 5 we consider here only types 1 and 3.
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Type 1. Let us suppose that there exists a first integral of type 1, F (ω2, ω3, γ2). Then

I2I3
dF

dt
= Y1(F ) = 0, (8.104)

where Y1 is the vector field

Y1 = I3 [(I3 − I1)ω3R+ c1γ3 − c3Γ]
∂

∂ω2

+ I2 [(I1 − I2)ω2R− c1γ2 + c2Γ]
∂

∂ω3

+ I2I3 [γ3R− ω3Γ]
∂

∂γ2
,

defined on C4(ω2, ω3, γ2, γ3).

As function F does not depend on γ3, then if we differentiate identity (8.104) with

respect to γ3 we obtain again a linear partial differential equation for function F

Γ
∂Y1(F )

∂γ3
= I3

[
∂R

∂γ3
(I3 − I1)ω3Γ + c1Γ + c3γ3

]
∂F

∂ω2

+ I2

[
∂R

∂γ3
(I1 − I2)ω2Γ− c2γ3

]
∂F

∂ω3

+ I2I3

[
∂R

∂γ3
γ3Γ +RΓ + ω3γ3

]
∂F

∂γ2
= Y2(F ) = 0, (8.105)

where Y2 is the corresponding vector field defined on C4(ω2, ω3, γ2, γ3).

After differentiating identity (8.105) with respect to γ3 we obtain

Γ
∂Y2(F )

∂γ3
= I3

[
∂2R

∂γ2
3

(I3 − I1)ω3Γ
2 − ∂R

∂γ3
(I3 − I1)ω3γ3 − c1γ3 + c3Γ

]
∂F

∂ω2

+ I2

[
∂2R

∂γ2
3

(I1 − I2)ω2Γ
2 − ∂R

∂γ3
(I1 − I2)ω2γ3 − c2Γ

]
∂F

∂ω3

+ I2I3

[
∂2R

∂γ2
3

γ3Γ
2 +

∂R

∂γ3

(
2Γ2 − γ2

3

)
−Rγ3 + ω3Γ

]
∂F

∂γ2

= Y3(F ) = 0, (8.106)

where Y3 is the corresponding vector field defined on C4(ω2, ω3, γ2, γ3).

If a first integral F exists, linear system (8.104)–(8.106) has a non-zero solution

gradF =
(

∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ2

)
. This is possible if and only if the determinant D(R) of its

coefficients is identically equal to zero on C4(ω2, ω3, γ2, γ3).

The expression for D(R) is too long to be shown here. D(R) has a non-zero factor

I22I
2
3 so we remove it and note

D̂(R) =
D(R)

I22I
2
3

.

D̂(R) contains the partial derivatives ∂R
∂γ3

and ∂2R
∂γ2

3
as well. To determine them we use

equation (8.101) which we differentiate with respect to γ3 two times and obtain two
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equations for the derivatives of R:

∂Q(R)

∂γ3
= 2I1R

∂R

∂γ3
+

∂B

∂γ3
= 0,

∂2Q(R)

∂γ2
3

= 2I1

(
∂R

∂γ3

)2

+ 2I1R
∂2R

∂γ2
3

+
∂2B

∂γ2
3

= 0.

The determination of ∂R
∂γ3

and ∂2R
∂γ2

3
from these two equations is possible if and only

if 2I1R ̸= 0. It is clear that this is always so because R = 0 is not a root of equation

(8.101). Thus the derivatives of R can be found. We obtain the following expressions

∂R

∂γ3
=

c1γ3 − c3Γ

I1RΓ
,

∂2R

∂γ2
3

= − (c21γ
2
3 + c23Γ

2)Γ− 2c1c3γ3Γ
2 + I1c1R

2(γ2
2 − U2)

I21R
3Γ3

.

We put the obtained values for the derivatives of R in the expression for determinant

D̂(R) and obtain

D̂(R) =
δ(R)

I21R
3
,

where δ is a huge polynomial of R of degree five, whose coefficients are algebraic functions

of (ω2, ω3, γ2, γ3).

It is clear that D̂(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0, then

if in addition some supplementary first integral F (ω2, ω3, γ2) of system (8.103) exists,

then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω2, ω3, γ2, γ3), the polynomial Q(x) divides the

polynomial δ(x).

Using the Maple command rem we compute the remainder r from the division of

polynomial δ(x) by polynomial Q(x). We obtain

r(x) = a0x+ a1,

where ai = ai(ω2, ω3, γ2, γ3), i = 0, 1, depend linearly on Γ.

According to Proposition 4.2, a0 and a1 should vanish identically with respect to ω2,

ω3, γ2 and γ3. We use only a0 which suffices for our aims. We have

a0 = b0Γ + b1,

where b0 and b1 are polynomials of variables ω2, ω3, γ2 and γ3.

According to Proposition 4.3, the coefficients b0 and b1 should vanish identically be-

cause Γ /∈ C(γ2, γ3). Polynomial b0 has 30 coefficients and b1 has 68. Equating to zero all

of them we obtain 98 equations for the parameters Ic, U2 and U3.

After three consecutive simplifications we come to the reduced system that consists

of the following four equations:

c1 = 0, c3(I1 − I2) = 0, c2(I1 − I3) = 0, c2c3(I2 − I3) = 0.

We solve this system by the Maple command solve and obtain four solutions all of

them with arbitrary values of U2 and U3:

I1 = I1, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = 0;
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I1 = I2, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = c3;

I1 = I3, I2 = I2, I3 = I3, c1 = 0, c2 = c2, c3 = 0;

I1 = I3, I2 = I3, I3 = I3, c1 = 0, c2 = c2, c3 = c3.

The first solution is the Euler case, the second and third ones are the Lagrange case

and the fourth solution is a particular cases of the kinetic symmetry case.

Thus a sought partial first integral of type 1 F (ω2, ω3, γ2) does not exist.

Type 3. The study of a new first integral of type 3, F (ω2, γ2, γ3) follows the algorithm

already described in the considerations concerning a first integral of type 1. There are

some differences of course. For example, the computations of vector fields Y2 and Y3

require differentiation with respect to ω3 instead of γ3. By the way, as it is seen below,

this considerably simplifies the computations because the differentiation does not affect

the function Γ.

Let us suppose that there exists a first integral of type 3, F (ω2, γ2, γ3). Then we have

I2
dF

dt
= Y1(F ) = 0, (8.107)

where Y1 is the vector field

Y1 = [(I3 − I1)ω3R+ c1γ3 − c3Γ]
∂

∂ω2
+ I2 (γ3R− ω3Γ)

∂

∂γ2
− I2 (γ2R− ω2Γ)

∂

∂γ3
,

defined on C4(ω2, ω3, γ2, γ3).

As in the study of a first integral of type 1, we differentiate identity (8.107) with

respect to ω3 and obtain

∂Y1(F )

∂ω3
= (I3 − I1)

(
∂R

∂ω3
ω3 +R

)
∂F

∂ω2
+ I2

(
∂R

∂ω3
γ3 − Γ

)
∂F

∂γ2

− I2
∂R

∂ω3
γ2

∂F

∂γ3
= Y2(F ) = 0, (8.108)

where Y2 is the corresponding vector field defined on C4(ω2, ω3, γ2, γ3).

After differentiating identity (8.108) with respect to ω3 we obtain

∂Y2(F )

∂ω3
= (I3 − I1)

[
∂2R

∂ω2
3

ω3 + 2
∂R

∂ω3

]
∂F

∂ω2
+ I2

∂2R

∂ω2
3

γ3
∂F

∂γ2

− I2
∂2R

∂ω2
3

γ2
∂F

∂γ3
= Y3(F ) = 0, (8.109)

where Y3 is the corresponding vector field defined on C4(ω2, ω3, γ2, γ3).

As in the investigation of a first integral of type 1, we require that the determinant

D(R) of the coefficients of system (8.107)–(8.109) be identically equal to zero. Computing

it we see that it has a non-zero factor I22Γ. We remove it and note

D̂(R) =
D(R)

I22Γ
.

In this way we obtain

D̂(R) = −
{
[(I1 − I3)ω2ω3 + c3γ2]

∂2R

∂ω2
3

+ 2ω2(I1 − I3)
∂R

∂ω3

}
Γ + c1γ2γ3

∂2R

∂ω2
3
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+ 2γ2(I1 − I3)R
∂R

∂ω3
+ (ω2γ3 − ω3γ2)(I1 − I3)

[
2

(
∂R

∂ω3

)2

− ∂2R

∂ω2
3

R

]
D̂(R) contains the partial derivatives ∂R

∂ω3
and ∂2R

∂ω2
3
. We use equation (8.101) to deter-

mine them. For this aim we differentiate (8.101) with respect to ω3 two times and obtain

two equations for the sought derivatives of R:

∂Q

∂ω3
= 2I1R

∂R

∂ω3
+

∂B

∂ω3
= 0,

∂2Q

∂ω2
3

= 2I1

(
∂R

∂ω3

)2

+ 2I1R
∂2R

∂ω2
3

+
∂2B

∂ω2
3

= 0.

As we have mentioned studying the first integral of type 1, R = 0 cannot be a root of

equation (8.101) and therefore the partial derivatives of R can be correctly determined

from the above equations. We put the value of B taken from (8.102) in these equations

and solve them. The solution is

∂R

∂ω3
= −I3ω3

I1R
,

∂2R

∂ω2
3

= −I3(I3ω
2
3 + I1R

2)

I21R
3

.

We put the above values of ∂R
∂ω3

and ∂2R
∂ω2

3
in the expression for determinant D̂(R) and

obtain

D̂(R) =
I3δ(R)

I21R
3
,

where δ(R) is the following polynomial of R of degree three:

δ(R) = −I1(I1 − I3)(3ω3γ2 − ω2γ3)R
3 + I1 [3(I1 − I3)ω2ω3Γ + (c3Γ− c1γ3)γ2]R

2

− 3I3(I1 − I3)ω
2
3(ω3γ2 − ω2γ3)R+ I3ω

2
3 [(I1 − I3)ω2ω3Γ + (c3Γ− c1γ3)γ2] .

It is clear that D̂(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0, then

if in addition some supplementary first integral F (ω2, γ2, γ3) of system (8.103) exists,

then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω2, ω3, γ2, γ3), the polynomial Q(x) divides the

polynomial δ(x).

Using the Maple command rem we compute the remainder r from the division of

polynomial δ(x) by polynomial Q(x). We obtain

r(x) = (a0 + b0Γ)x+ a1 + b1Γ,

where

a0 = (I3 − I1)(I2ω
3
2γ3 − 3I2ω

2
2ω3γ2 − 2I3ω2ω

2
3γ3 + 2c2ω2γ3γ2 + 2c3ω2γ

2
3 − U3ω2γ3

− 6c2ω3γ
2
2 − 6ω3c3γ2γ3 + 3U3ω3γ2),

b0 = 2(I3 − I1)c1(ω2γ3 − 3ω3γ2),

a1 = c1[I2ω
2
2γ2γ3 − 6c1(I1 − I3)ω2ω3Γ

2 + 2c3γ
3
2 + 2c2γ

2
2γ3 + 4c3γ2γ

2
3

− U3γ2γ3 − 2c3U2γ2],

b1 = −I2c3ω
2
2γ2 − (I1 − I3)(3I2ω

2
2 + 2I3ω

2
3 + 6c2γ2 + 6c3γ3 − 3U3)ω2ω3

− 2c2c3γ
2
2 + 2(c21 − c23)γ2γ3 + c3U3γ2.
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According to Proposition 4.2, all the coefficients of the remainder r should vanish

identically with respect to ω2, ω3, γ2 and γ3. We use only the coefficient a1 + b1Γ which

is sufficient for our aims.

According to Proposition 4.3, the coefficients a1 and b1 should vanish identically

because Γ /∈ C(γ2, γ3). We use only b1. It has nine coefficients. Equating to zero all of

them we obtain nine equations for the parameters Ic, U2 and U3 as follows:

2I3(I3 − I1) = 0, 3I2(I3 − I1) = 0, −I2c3 = 0, 3(I1 − I3)U3, c3U3 = 0,

2c2c3 = 0, 2(c21 − c23) = 0, 6(I3 − I1)c2 = 0, 6(I3 − I1)c3 = 0.

It is very easy to see that this equations imply that

c1 = 0, c3 = 0, I1 − I3 = 0,

which obviously leads to the Lagrange case.

Thus a sought partial first integral of type 3 does not exist.

8.4.2. Elimination of ω1 and γ2. Like in Sec. 8.4.1, we express γ2 from the equations

H2 = U2 and obtain

γ2 =
√
−γ2

1 − γ2
3 + U2. (8.110)

Then we put γ2 from (8.110) in the equation H3 = U3 and like in Sec. 8.2.1 solve it by

the Maple command solve. In this way we obtain

ω1 = R, (8.111)

where R is a root of equation

Q(x) = I1x
2 +B = 0, (8.112)

that is

Q(R) = I1R
2 +B = 0, (8.113)

and B = B(ω2, ω3, γ1, γ3) is the following function:

B = I2ω
2
2 + I3ω

2
3 + 2c1γ1 + 2c2

√
−γ2

1 − γ2
3 + U2 + 2c3γ3 − U3.

R and B are algebraic functions defined on C4(ω2, ω3, γ1, γ3). The equation (8.112) has

only simple roots because the function B does not vanish identically.

Further, to simplify the notations, we put

Γ =
√
−γ2

1 − γ2
3 + U2.

We put the values of γ2 and ω1 from (8.110) and (8.111) in the Euler-Poisson equa-

tions (1.1), remove the first and fifth equations and obtain the following system of four

differential equations in unknowns ω2, ω3, γ1 and γ3:

dω2

dt
=

1

I2
[(I3 − I1)ω3R+ c1γ3 − c3γ1] ,

dγ1
dt

= ω3Γ− ω2γ3,

dω3

dt
=

1

I3
[(I1 − I2)ω2R+ c1Γ− c2γ1] ,

dγ3
dt

= ω2γ1 −RΓ.

(8.114)

We want to study the existence of a first integral of system (8.114) that depends on

at most three variables among the variables ω2, ω3, γ1 and γ3 and that is functionally
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independent of H1 restricted to invariant manifold (8.97). The following four types of a

first integral are possible:

1. F (ω2, ω3, γ1), (case (ii))

2. F (ω2, ω3, γ3), (case (iii))

3. F (ω2, γ1, γ3), (case (v))

4. F (ω3, γ1, γ3). (case (iv))

As the cases (iii) and (iv) were already examined, there remains only to examine cases

(ii) and (v).

Type 1. Let us suppose that there exists a first integral of type 1, F (ω2, ω3, γ1). Then

I2I3
dF

dt
= Y1(F ) = 0, (8.115)

where Y1 is the vector field

Y1 = I3 [(I3 − I1)ω3R+ c1γ3 − c3γ1]
∂

∂ω2

+ I2 [(I1 − I2)ω2R+ c1Γ− c2γ1]
∂

∂ω3
+ I2I3 (ω3Γ− ω2γ3)

∂

∂γ1
,

defined on C4(ω2, ω3, γ1, γ3).

As function F does not depend on γ3, then if we differentiate identity (8.115) with

respect to γ3 we obtain again a linear partial differential equation for function F

Γ
∂Y1(F )

∂γ3
= I3

[
∂R

∂γ3
(I3 − I1)ω3 + c1

]
Γ
∂F

∂ω2
+ I2

[
∂R

∂γ3
(I1 − I2)ω2Γ + c1γ3

]
∂F

∂ω3

− I2I3 [ω2Γ + ω3γ3]
∂F

∂γ1
= Y2(F ) = 0, (8.116)

where Y2 is the corresponding vector field defined on C4(ω2, ω3, γ1, γ3).

After differentiating identity (8.116) with respect to γ3 we obtain

Γ
∂Y2(F )

∂γ3
= I3

[
∂2R

∂γ2
3

(I3 − I1)ω3Γ
2 − ∂R

∂γ3
(I3 − I1)ω3γ3 − c1γ3

]
∂F

∂ω2

+ I2

[
∂2R

∂γ2
3

(I1 − I2)ω2Γ
2 − ∂R

∂γ3
(I1 − I2)ω2γ3 + c1Γ

]
∂F

∂ω3

+ I2I3 (ω2γ3 − ω3Γ)
∂F

∂γ1
= Y3(F ) = 0, (8.117)

where Y3 is the corresponding vector field defined on C4(ω2, ω3, γ1, γ3).

If a first integral F exists, linear system (8.115)–(8.117) has a non-zero solution

gradF =
(

∂F
∂ω2

, ∂F
∂ω3

, ∂F
∂γ1

)
. This is possible if and only if the determinant D(R) of its

coefficients is identically equal to zero on C4(ω2, ω3, γ1, γ3).

The expression for D(R) has a non-zero factor I22I
2
3 so we remove it and note

D̂(R) =
D(R)

I22I
2
3

.
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In this way we obtain

D̂(R) = −∂2R

∂γ2
3

[
c3(I1 − I2)ω

2
2γ1Γ− c1(I2 − I3)ω2ω3γ

2
1 + c3(I1 − I2)ω2ω3γ1γ3

− c2(I1 − I3)ω2ω3γ1Γ + (I2 − I3)c1U2ω2ω3 − c2(I1 − I3)ω
2
3γ1γ3

]
Γ2

− ∂R

∂γ3
ω3

[
c3(I2 − I1)ω2γ1 − c1(I2 − I3)ω2γ3 + c2(I1 − I3)ω3γ1

]
(U2 − γ2

1)

− c1
[
R(I2 − I3)ω2ω3 + c3ω2γ1 − c2ω3γ1

]
(U2 − γ2

1)

D̂(R) contains the partial derivatives ∂R
∂γ3

and ∂2R
∂γ2

3
. To determine them we use equation

(8.113) which we differentiate with respect to γ3 two times and in the same way as in

Sec. 8.4.1 obtain
∂R

∂γ3
=

c2γ3 − c3Γ

I1RΓ
,

∂2R

∂γ2
3

= − (c22γ
2
3 + c23Γ

2)Γ− 2c2c3γ3Γ
2 + I1c2R

2(γ2
1 − U2)

I21R
3Γ3

.

We put the obtained values for the derivatives of R in the expression for determinant

D̂(R) and obtain

D̂(R) =
δ(R)

I21R
3
,

where δ is a long polynomial of R of degree four, whose coefficients are algebraic functions

of (ω2, ω3, γ1, γ3).

The identity D̂(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0, then

if in addition some supplementary first integral F (ω2, ω3, γ1) of system (8.114) exists,

then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω2, ω3, γ1, γ3), the polynomial Q(x) divides the

polynomial δ(x).

Using the Maple command rem we compute the remainder r from the division of

polynomial δ(x) by polynomial Q(x). We obtain:

r(x) = a0x+ a1, (8.118)

where ai = ai(ω2, ω3, γ1, γ3), i = 0, 1, depend linearly on Γ.

According to Proposition 4.2, a0 and a1 should vanish identically with respect to ω2,

ω3, γ1 and γ3. We use only a1 which suffices for our aims. We have

a1 = b0Γ + b1,

where b0 and b1 are polynomials of variables ω2, ω3, γ1 and γ3.

According to Proposition 4.3, the coefficients b0 and b1 should vanish identically be-

cause Γ /∈ C(γ1, γ3).
We use only polynomial b1. It has 48 coefficients. Equating to zero all of them we

obtain a system of 48 equations for the parameters Ic, U2 and U3.

After four consecutive simplifications we come to the reduced system that consists of

the following four equations:

c1(I2 − I3) = 0, c2(I1 − I3) = 0 c3(I1 − I2) = 0, c2c3(I2 − I3) = 0.
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We solve this system by the Maple command solve and obtain five solutions all of

them with arbitrary values of U2 and U3:

I1 = I1, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = 0;

I1 = I1, I2 = I3, I3 = I3, c1 = c1, c2 = 0, c3 = 0;

I1 = I2, I2 = I2, I3 = I3, c1 = 0, c2 = 0, c3 = c3;

I1 = I3, I2 = I2, I3 = I3, c1 = 0, c2 = c2, c3 = 0;

I1 = I3, I2 = I3, I3 = I3, c1 = c1, c2 = c2, c3 = c3.

The first solution is the Euler case, the next three are the Lagrange case and the last

one is the kinetic symmetry case.

Thus a partial first integral of type 1 F (ω2, ω3, γ1) does not exist.

Type 3. Let us suppose that there exists a first integral of type 3, F (ω2, γ1, γ3). The

independence of the first integral of ω3 considerably simplifies the computations because

there is not need of differentiation of the function Γ.

So, let F (ω2, γ1, γ3) be a first integral of system (8.114). Then we have

I2
dF

dt
= Y1(F ) = 0, (8.119)

where Y1 is the vector field

Y1 = [(I3 − I1)ω3R+ c1γ3 − c3γ1]
∂

∂ω2
+ I2 (ω3Γ− ω2γ3)

∂

∂γ1
+ I2 (ω2γ1 −RΓ)

∂

∂γ3
,

defined on C4(ω2, ω3, γ1, γ3).

We differentiate identity (8.119) with respect to ω3 and obtain

∂Y1(F )

∂ω3
= (I3 − I1)

(
∂R

∂ω3
ω3 +R

)
∂F

∂ω2
+ I2Γ

∂F

∂γ1
− I2

∂R

∂ω3
Γ
∂F

∂γ3
= Y2(F ) = 0, (8.120)

where Y2 is the corresponding vector field defined on C4(ω2, ω3, γ1, γ3).

After differentiating identity (8.120) with respect to ω3 we obtain

∂Y2(F )

∂ω3
= (I3 − I1)

(
∂2R

∂ω2
3

ω3 + 2
∂R

∂ω3

)
∂F

∂ω2
− I2

∂2R

∂ω2
3

Γ
∂F

∂γ3
= Y3(F ) = 0, (8.121)

where Y3 is the corresponding vector field defined on C4(ω2, ω3, γ1, γ3).

The existence of a first integral F (ω2, γ1, γ3) implies that the determinant D(R) of

the coefficients of system (8.119)–(8.121) is identically equal to zero. Computing D(R)

we see that it has a non-zero factor I22Γ. We remove it and note

D̂(R) =
D(R)

I22Γ
.

In this way we obtain

D̂(R) = −
{
[(I1 − I3)ω3R− c3γ1 + c1γ3]

∂2R

∂ω2
3

− 2ω3(I1 − I3)

(
∂R

∂ω3

)2

+ 2(I1 − I3)R
∂R

∂ω3

}
Γ
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+ ω2(I1 − I3)

[
(ω3γ1 + γ3R)

∂2R

∂ω2
3

− 2γ3

(
∂R

∂ω3

)2

+ 2γ1
∂R

∂ω3

]
D̂(R) contains the partial derivatives ∂R

∂ω3
and ∂2R

∂ω2
3
. We use equation (8.113) to deter-

mine them. We differentiate (8.113) with respect to ω3 two times and in the same way

as in Sec. 8.4.1 obtain

∂R

∂ω3
= −I3ω3

I1R
,

∂2R

∂ω2
3

= −I3(I3ω
2
3 + I1R

2)

I21R
3

.

We put the above values of ∂R
∂ω3

and ∂2R
∂ω2

3
in the expression for determinant D̂(R) and

obtain

D̂(R) =
I3δ(R)

I21R
3
,

where δ is the following polynomial of R of degree three

δ(R) = I1(I1 − I3)(3ω3Γ− ω2γ3)R
3 + I1 [3(I3 − I1)ω2ω3γ1 − (c3γ1 − c1γ3)Γ]R

2

+ 3I3(I1 − I3)ω
2
3(ω3Γ− ω2γ3)R+ I3ω

2
3 [(I3 − I1)ω2ω3γ1 − Γ(c3γ1 − c1γ3)] ,

whose coefficients are algebraic functions of (ω2, ω3, γ1, γ3).

The identity D̂(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0, then

if in addition some supplementary first integral F (ω2, γ1, γ3) of system (8.114) exists,

then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω2, ω3, γ1, γ3), the polynomial Q(x) divides the

polynomial δ(x).

Using Maple we divide δ by Q and obtain a remainder which is a polynomial r of

the form (8.118) and coefficients ai = ai(ω2, ω3, γ1, γ3), i = 0, 1, which depend linearly

on Γ.

According to Proposition 4.2, a0 and a1 should vanish identically with respect to ω2,

ω3, γ1 and γ3. We use only a1 which suffices for our aims. We have

a1 = b0Γ + b1,

where b0 and b1 are polynomials of variables ω2, ω3, γ1 and γ3.

According to Proposition 4.3, the coefficients b0 and b1 should vanish identically be-

cause Γ /∈ C(γ1, γ3).
We use only polynomial b0. It has eight coefficients. Equating to zero all of them

we obtain a system of eight equations for the parameters Ic, U2 and U3. These eight

equations are:

c21 − c23 = 0, I2c3 = 0, I2c1 = 0 (I1 − I3)c2 = 0,

c3U3 = 0, c3c1 = 0, c1U3 = 0, c1c3 = 0.

After two consecutive simplifications we come to the reduced system that is

c1 = 0, c3 = 0, (I1 − I3)c2 = 0

and leads either to the Euler case or the Lagrange case.

Thus a partial first integral of type 3, F (ω2, γ1, γ3) does not exist.
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8.4.3. Elimination of γ2 and γ3. Let us note that the elimination of γ2 and γ3 from

equations H2 = U2 and H3 = U3 is possible only if

(c2, c3) ̸= (0, 0). (8.122)

Further we suppose that this condition is always fulfilled.

We start with the case c2 ̸= 0 and c3 is arbitrary. The elimination is made in a similar

way like in Sec. 8.4.1. First we express γ2 from equation H3 = U3 and put the obtained

value of γ2 in equation H2 = U2 from where we find γ3. In this way we have:

γ2 = −I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3 + 2c3R

2c2
, γ3 = R, (8.123)

where, if c22 + c23 ̸= 0, R is a root of equation

Q(x) = 4(c22 + c23)x
2 +Bx+ C = 0,

that is

Q(R) = 4(c22 + c23)R
2 +BR+ C = 0. (8.124)

If c22 + c23 = 0 R is a root of equation

Q(x) = Bx+ C = 0,

that is

Q(R) = BR+ C = 0. (8.125)

Functions B = B(ω2, ω3, γ1, γ3) and C = C(ω2, ω3, γ1, γ3) are the following polyno-

mials:

B = 4c3(I1ω
2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3)

C = (I1ω
2
1 + I2ω

2
2 + I3ω

2
3)

2 + 4c1(I1ω
2
1 + I2ω

2
2 + I3ω

2
3)γ1

− 2U3(I1ω
2
1 + I2ω

2
2 + I3ω

2
3) + 4(c21 + c22)γ

2
1 − 4c1U3γ1 − 4c22U2 + U2

3 .

(8.126)

Let us note that if c22+ c23 = 0 then c3 ̸= 0 because if c3 = 0 the condition (8.122) will

not be satisfied. Consequently B ̸= 0 and therefore (8.125) is well defined.

We put the values of γ2 and γ3 from (8.123) in the Euler-Poisson equations (1.1) and

remove its fifth and sixth equations. In this way we obtain the following system of four

equations in unknowns ω1, ω2, ω3 and γ1:

dω1

dt
=

1

2I1c2

[
− c3(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + 2(I2 − I3)c2ω2ω3

− 2c1c3γ1 − 2(c22 + c23)R+ c3U3

]
,

dω2

dt
=

1

I2

[
(I3 − I1)ω1ω3 + c1R− c3γ1

]
,

dω3

dt
=

1

2I3c2

[
c1(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + 2(I1 − I2)c2ω1ω2

+ c1(2c3R− U3) + 2(c21 + c22)γ1
]
,

dγ1
dt

=
1

2c2

[
(−I1ω

2
1 − I2ω

2
2 − I3ω

2
3 − 2c1γ1 − 2c3R+ U3)ω3 − 2c2ω2R

]
.

(8.127)

We consider the following four possible types of a first integral of system (8.127) that

depends on at most three variables among the variables ω1, ω2, ω3 and γ1:
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1. F (ω1, ω2, ω3), (case(i))

2. F (ω1, ω2, γ1), (case(iii))

3. F (ω1, ω3, γ1), (case(iii))

4. F (ω2, ω3, γ1). (case(iii))

We suppose that the sought first integral is functionally independent of H1 restricted

to invariant manifold (8.97). As the case (iii) was already examined, there remains only

to examine case (i).

Type 1. Let us consider a first integral of type 1, i.e. F (ω1, ω2, ω3). We have

2I1I2I3c2
dF

dt
= Y1(F ) = 0, (8.128)

where the vector field Y1, defined on C4(ω1, ω2, ω3, γ1), is:

Y1 = I2I3

[
− c3(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + 2(I2 − I3)c2ω2ω3 − 2c1c3γ1

− 2(c22 + c23)R+ c3U3

] ∂

∂ω1
+ 2I1I3c2

[
(I3 − I1)ω1ω3 + c1R− c3γ1

] ∂

∂ω2

+ I1I2

[
c1(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + 2(I1 − I2)c2ω1ω2

+ c1(2c3R− U3) + 2(c21 + c22)γ1

] ∂

∂ω3
.

We differentiate identity (8.128) with respect to γ1 and obtain again a linear partial

differential equation for function F

1

2

∂Y1(F )

∂γ1
= −I2I3

[
(c22 + c23)

∂R

∂γ1
+ c1c3

]
∂F

∂ω1
+ I1I3c2

(
c1

∂R

∂γ1
− c3

)
∂F

∂ω2

+ I1I2

(
c1c3

∂R

∂γ1
+ c21 + c22

)
∂F

∂ω3
= Y2(F ) = 0, (8.129)

where Y2 is the corresponding vector field defined on C4(ω1, ω2, ω3, γ1).

The derivative of Y2(F ) with respect to γ1 has a factor ∂2R
∂γ2

1
. Crude computations

show that for the two roots of equation (8.124), i.e. when c22 + c23 ̸= 0, and also for the

single root of equation (8.125), i.e. when c22 + c23 = 0, one has

∂2R

∂γ2
1

̸= 0.

In this way differentiating identity (8.129) with respect to γ1 we obtain(
∂2R

∂γ2
1

)−1
∂Y2(F )

∂γ1
= −I2I3(c

2
2 + c23)

∂F

∂ω1
+ I1I3c1c2

∂F

∂ω2
+ I1I2c1c3

∂F

∂ω3

= Y3(F ) = 0, (8.130)

where Y3 is the corresponding vector field defined on C4(ω1, ω2, ω3, γ1).

Instead of vector field Y1 we consider Y4 = Y1 − 2RY3 which implies that Y4(F ) = 0.

We obtain

Y4(F ) = I2I3

[
− c3(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + 2(I2 − I3)c2ω2ω3 − 2c1c3γ1 + c3U3

] ∂F
∂ω1
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+ 2I1I3c2

[
(I3 − I1)ω1ω3 − c3γ1

] ∂F
∂ω2

+ I1I2

[
c1(I1ω

2
1 + I2ω

2
2 + I3ω

2
3)

+ 2(I1 − I2)c2ω1ω2 − c1U3 + 2(c21 + c22)γ1

] ∂F
∂ω3

= 0. (8.131)

Note that Y4 does not depend on R.

Instead of vector field Y2 we consider Y5 = Y2 −Y3
∂R
∂γ1

which also does not depend on

R. We have

Y5(F ) = −I2I3c1c3
∂F

∂ω1
− I1I3c2c3

∂F

∂ω2
+ I1I2(c

2
1 + c22)

∂F

∂ω3
= 0. (8.132)

We compute the Lie bracket Y6 = [Y3, Y4]/(2I1I2I3). We know that Y6(F ) = 0 so we

have

Y6(F ) =
[
I2I3(c

2
3 + c22)c3ω1 + I2(I2 − 2I3)c1c2c3ω2 + I3(I2c

2
2 − I3c

2
2 − I2c

2
3)c1ω3

] ∂F
∂ω1

− (I1 − I3)c2

[
I1c1c3ω1 − I3(c

2
3 + c22)ω3

] ∂F
∂ω2

+
[
I1(I1c

2
2 − 2I2c

2
2 − I2c

2
3)c1ω1

+ I2(I1c
2
1 + I2c

2
2 − I1c

2
2 + I2c

2
3 − I1c

2
3)c2ω2 + I2I1c

2
1c3ω3

] ∂F
∂ω3

= 0. (8.133)

Thus we have obtained four linear homogeneous equations in unknowns gradF =(
∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

)
, that is system (8.130)–(8.133). If a first integral F exists, system (8.130)–

(8.133) has a non-zero solution. This is possible if and only if

rankM < 3, (8.134)

where M is the (4× 3) matrix composed from the coefficients of system (8.130)–(8.133).

Let us compute the determinant D345 that consists of the coefficients of Y3, Y4 and

Y5. It should be identically zero because of requirement (8.134).

We compute D345 and obtain

D345 = −2I21I
2
2I

2
3c

2
2

[
c3(I1 − I2)ω1ω2 + c2(I3 − I1)ω1ω3 + c1(I2 − I3)ω2ω3

]
δ345,

where

δ345 = c21 + c22 + c23.

The expression in the square brackets vanishes identically only in the kinetic symmetry

case and in the Lagrange case I1 = I3, c1 = c3 = 0. The factor −2I21I
2
2I

2
3c

2
2 ̸= 0. Thus

D345 = 0 is equivalent to δ345 = 0.

Now we compute the determinant D346 that consists of the coefficients of Y3, Y4 and

Y6. It should be identically equal to zero too (see (8.134)). We have D346 = I1I2I3c
2
2δ346,

where

δ346 = −I31c
2
1c2c3(I2 − I3)ω

3
1

− I1I2c1c3
[
(I1 − I2)(2I1 − 3I3)(c

2
2 + c23)− I1(I2 − I3)c

2
1

]
ω2
1ω2

+ I1I3c1c2
[
(I1 − I3)(2I1 − 3I2)(c

2
2 + c23) + I1(I2 − I3)c

2
1

]
ω2
1ω3

+ I1I2c
2
1c2c3(I1I2 − 3I1I3 − 2I22 + 4I2I3)ω1ω

2
2

+ 2I1I2I3c
2
1

[
(−I1 + 2I2 − I3)c

2
3 + (I1 + I2 − 2I3)c

2
2

]
ω1ω2ω3

+ I1I3c
2
1c2c3(3I1I2 − I1I3 − 4I2I3 + 2I23 )ω1ω

2
3
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− 2I21c1c2c3(c
2
1 + c22 + c23)(I2 − I3)ω1γ1 + I21 (I2 − I3)c

2
1c2c3U3ω1

− I22c1c3
[
I3(I1 − I2)(c

2
2 + c23)− I1(I2 − I3)c

2
1

]
ω3
2

− I2I3c1c2
[
(−3I1I2 + 2I1I3 + 2I22 − I2I3)(c

2
2 + c23) + I1(I2 − I3)c

2
1

]
ω3ω

2
2

− I2I3c1c3
[
(3I1I3 − 2I1I2 + I2I3 − 2I23 )(c

2
2 + c23) + I1(I2 − I3)c

2
1

]
ω2
3ω2

− 2I2c3(c
2
3 + c21 + c22)

[
I3(I1 − I2)(c

2
2 + c23)− I1(I2 − I3)c

2
1

]
ω2γ1

+ I2c1c3U3

[
I3(I1 − I2)(c

2
2 + c23)− I1(I2 − I3)c

2
1

]
ω2

+ I23c1c2
[
I2(I1 − I3)(c

2
2 + c23) + I1(I2 − I3)c

2
1

]
ω3
3

+ 2I3c2(c
2
1 + c22 + c23)

[
I2(I1 − I3)(c

2
2 + c23) + I1(I2 − I3)c

2
1

]
ω3γ1

− I3c1c2U3

[
I2(I1 − I3)(c

2
2 + c23) + I1(I2 − I3)c

2
1

]
ω3.

As I1I2I3c
2
2 ̸= 0 then D346 = 0 is equivalent to δ346 = 0.

Thus we should find the conditions at which polynomials δ345 and δ346 vanish iden-

tically with respect to variables (ω1, ω2, ω3, γ1). This means to find the values of the

parameters Ic and U3 at which all the coefficients of δ345 and δ346 are zero.

Polynomial δ345 has only one coefficient and δ346 has 16 coefficients. In this way we

obtain a system of 17 equations. To solve it we apply a simplification. At the fourth

consecutive simplification we obtain the reduced system:

c23 + c21 + c22 = 0, (I2 − I3)c1 = 0, (I1 − I3)c1 = 0,

(I2 − I3)(c
2
2 + c23) = 0, (I1 − I3)(c

2
2 + c23) = 0.

The Maple command solve gives two solutions at an arbitrary value of U3:

{I1 = I1, I2 = I2, I3 = I3, c1 = 0, c2 = c2, c3 = RootOf(Z2 + 1)c2}
{I1 = I3, I2 = I3, I3 = I3, c1 = RootOf(Z2 + c22 + c23), c2 = c2, c3 = c3}.

The second solution is a particular case of the kinetic symmetry case so we remove

it. We have to consider the first solution. Thus

c1 = 0, c3 = εic2,

where ε = ±1. We consider here only the case ε = 1 because the final result is the same

also when ε = −1.

Let us study this case. Now Y3(F ) and Y6(F ) are identically zeros and therefore

condition (8.134) is fulfilled. Y4(F ) and Y5(F ) are:

Y4(F ) = −iI2I3c2

[
I1ω

2
1 + I2ω

2
2 + I3ω

2
3 + 2i(I2 − I3)ω2ω3 − U3

] ∂F
∂ω1

− 2I1I3c2

[
(I1 − I3)ω1ω3 + ic2γ1

] ∂F
∂ω2

+ 2I1I2c2

[
(I1 − I2)ω1ω2 + c2γ1

] ∂F
∂ω3

,

Y5(F ) = −I1c
2
2

(
iI3

∂F

∂ω2
− I2

∂F

∂ω3

)
.

We compute

Y7(F ) =
[Y4(F ), Y5(F )]

2I1I2I3c32
=
[
I2(I2 − 2I3)ω2 − iI3(I3 − 2I2)ω3

] ∂F
∂ω1
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− I1(I1 − I3)ω1
∂F

∂ω2
+ iI1(I1 − I2)ω1

∂F

∂ω3
.

We compute the determinant ∆ of the coefficients of equations Y4(F ), Y5(F ) and

Y7(F ) and obtain ∆ = I21I2I3c
3
2ω1∆̃ where

∆̃ = iI21 (I2 − I3)ω
2
1 + iI2(2I

2
2 − 4I2I3 − I1I2 + 3I3I1)ω

2
2

− 2I2I3(2I1 − I2 − I3)ω2ω3 − iI3(2I
2
3 − 4I2I3 − I3I1 + 3I1I2)ω

2
3 − iI1(I2 − I3)U3.

As the factor I21I2I3c
3
2ω1 ̸= 0, we require that ∆̃ = 0. Looking at the coefficient of

ω2
1 in the expression for ∆̃ we see that I2 = I3 should be fulfilled. At this condition we

obtain

∆̃ = 2I23 (I1 − I3)(ω2 + iω3)
2.

Thus ∆̃ = 0 only if I1 = I2 = I3, i.e. we come to the kinetic symmetry case. Consequently

the sought integral of type 1 does not exist when c2 ̸= 0.

Let us consider the case c2 = 0. In this case, according to condition (8.122), c3 ̸= 0.

First we express γ3 from equation H3 = U3 and put the obtained value of γ3 in equation

H2 = U2 from where we find γ2. In this way we have:

γ2 =
R̂

2c3
, γ3 = −I1ω

2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3

2c3
, (8.135)

where R̂ is a root of equation

Q(x) = x2 + Ĉ = 0,

that is

Q(R̂) = R̂2 + Ĉ = 0. (8.136)

Function Ĉ = Ĉ(ω2, ω3, γ1, γ3) is the following polynomial:

Ĉ = (I1ω
2
1 + I2ω

2
2 + I3ω

2
3)

2 + 4c1(I1ω
2
1 + I2ω

2
2 + I3ω

2
3)γ1

− 2U3(I1ω
2
1 + I2ω

2
2 + I3ω

2
3) + 4(c21 + c23)γ

2
1 − 4c1U3γ1 − 4c23U2 + U2

3 .

We put the values of γ2 and γ3 from (8.135) in the Euler-Poisson equations (1.1) and

remove its fifth and sixth equations. In this way we obtain the following system of four

equations in unknowns ω1, ω2, ω3 and γ1:

dω1

dt
=

2(I2 − I3)ω2ω3 + R̂

2I1
,

dω2

dt
= − 1

2I2c3

[
c1(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + 2(I1 − I3)c3ω1ω3

+ 2(c21 + c23)γ1 − c1U3

]
,

dω3

dt
=

2(I1 − I2)c3ω1ω2 − c1R̂

2I3c3
,

dγ1
dt

=
1

2c3

[
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3 + 2c1γ1 − U3)ω2 + ω3R̂

]
.

(8.137)

Let c2 = 0 and function F (ω1, ω2, ω3) be a first integral of type 1. We have

2I1I2I3c3
dF

dt
= Y1(F ) = 0, (8.138)
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where the vector field Y1, defined on C4(ω1, ω2, ω3, γ1), is:

Y1 = I2I3c3

[
2(I2 − I3)ω2ω3 + R̂

] ∂

∂ω1

+ I1I3

[
− c1(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) + 2c3(I3 − I1)ω1ω3 − 2(c21 + c23)γ1 + c1U3

] ∂

∂ω2

+ I1I2

[
2(I1 − I2)c3ω1ω2 − c1R̂

] ∂

∂ω3
.

We differentiate identity (8.138) with respect to γ1 and obtain again a linear partial

differential equation for function F

∂Y1(F )

∂γ1
= I2I3c3

∂R̂

∂γ1

∂F

∂ω1
− 2I1I3(c

2
1 + c23)

∂F

∂ω2
− I1I2c1

∂R̂

∂γ1

∂F

∂ω3
= Y2(F ) = 0,

where Y2 is the corresponding vector field defined on C4(ω1, ω2, ω3, γ1).

The derivative of Y2(F ) with respect to γ1 has a factor I2
∂2R̂
∂γ2

1
. We have verified that for

the two roots of equation (8.136) this derivative is not zero. Thus differentiating identity

(8.129) with respect to γ1 we obtain

1

I2

(
∂2R̂

∂γ2
1

)−1
∂Y2(F )

∂γ1
= I3c3

∂F

∂ω1
− I1c1

∂F

∂ω3
= Y3(F ) = 0, (8.139)

where Y3 is the corresponding vector field defined on C4(ω1, ω2, ω3, γ1).

Instead of vector field Y1 we consider Y4 = Y1 − I2RY3 which implies that Y4(F ) = 0.

We obtain

Y4(F ) = 2I2I3(I2 − I3)c3ω2ω3
∂F

∂ω1
− I1I3

[
c1(I1ω

2
1 + I2ω

2
2 + I3ω

2
3)

+ 2(I1 − I3)c3ω1ω3 + 2(c21 + c23)γ1 − c1U3

] ∂F
∂ω2

+ 2I1I2(I1 − I2)c3ω1ω2
∂F

∂ω3
= 0. (8.140)

Note that Y4 does not depend on R̂.

Instead of vector field Y2 we consider

Y5 =
I2Y3

∂R̂
∂γ1

− Y2

2I1I3
,

which also does not depend on R̂. We have

Y5(F ) = (c21 + c23)
∂F

∂ω2
= 0. (8.141)

We compute the Lie bracket Y6 = [Y3,Y4]
2I1I3

. We know that Y6(F ) = 0 so we have

Y6(F ) = −I2(I2 − I3)c1c3ω2
∂F

∂ω1

+
[
I1(I1 − 2I3)c1c3ω1 + I3(I1c

2
1 − I1c

2
3 + I3c

2
3)ω3

] ∂F
∂ω2

+ I2(I1 − I2)c
2
3ω2

∂F

∂ω3
= 0. (8.142)
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Thus we have obtained four linear homogeneous equations in unknowns gradF =(
∂F
∂ω1

, ∂F
∂ω2

, ∂F
∂ω3

)
, that is system (8.139)–(8.142). If a first integral F exists, system (8.139)–

(8.142) has a non-zero solution. This is possible if and only if

rankM < 3, (8.143)

where M is the (4× 3) matrix composed from the coefficients of system (8.139)–(8.142).

Let us compute the determinant D345 that consists of the coefficients of Y3, Y4 and

Y5. It should be identically zero because of requirement (8.143).

We compute D345 and obtain

D345 = −2I1I2I3c3ω2

[
c3(I1 − I2)ω1 + c1(I2 − I3)ω3

]
δ345,

where

δ345 = c21 + c23.

As now c2 = 0 then according to (8.122), c3 ̸= 0. Thus the expression in the square

brackets vanishes identically only in the kinetic symmetry case and in the Lagrange case

I1 = I3, c1 = c2 = 0. The factor −2I1I2I3c3ω2 ̸= 0. Thus D345 = 0 is equivalent to

δ345 = 0.

We compute also the determinant D346 that consists of the coefficients of Y3, Y4 and

Y6. It should be identically equal to zero too (see (8.134)). We haveD346 = I1I2I3c3ω2δ346,

where

δ346 = I1
[
I1(I2 − I3)c

2
1 − (2I1 − 3I3)(I1 − I2)c

2
3

]
c1ω

2
1 − 2I1I3(I1 + I3 − 2I2)c

2
1c3ω1ω3

+ I2
[
I3(I2 − I1)c

2
3 + I1(I2 − I3)c

2
1

]
c1ω

2
2 − I3

[
I1(I2 − I3)c

2
1 + I3(3I1 − 2I3)c

2
3

+ I2(I3 − 2I1)c
2
3

]
c1ω

2
3 + 2(c21 + c23)

[
I1(I2 − I3)c

2
1 + I3(I2 − I1)c

2
3

]
γ1

− c1
[
I1(I2 − I3)c

2
1 + I3(I2 − I1)c

2
3

]
U3.

As I1I2I3c3ω2 ̸= 0 then D346 = 0 is equivalent to δ346 = 0.

Thus we should find the conditions at which polynomials δ345 and δ346 vanish iden-

tically with respect to variables (ω1, ω2, ω3, γ1). This means to find the values of the

parameters Ic and U3 at which all the coefficients of δ345 and δ346 are zero.

Polynomial δ345 has only one coefficient and δ346 has six coefficients. In this way we

obtain a system of seven equations. To solve it we apply a simplification. At the third

consecutive simplification we obtain the reduced system:

I2 − I3 = 0, I1 − I3 = 0 c21 + c23 = 0.

This system obviously lead to the kinetic symmetry case. Thus the sought integral of

type 1 does not exist also when c2 = 0.

8.4.4. First integrals F (γ1, γ2, γ3). Finally it remains to study the existence of the

partial first integral F (γ1, γ2, γ3), that cannot be studied by elimination of variables like

above.

We proceed here in the same way as in Sec. 8.2.4.

F (γ1, γ2, γ3) = F̃ (γ2, γ3). Our problem now is reduced to the study of partial first

integrals of the form F̃ = F̃ (γ2, γ3) on the submanifold {H3 = U3}. Absence of these
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partial first integrals follows from Sec. 8.4.1 where the absence of partial first integrals of

more general form F (ωi, γ2, γ3), i = 2, 3, is proved for all U2 and U3.

This concludes the description of the four-dimensional invariant manifolds.

9. Three-dimensional invariant manifold {H1=U1, H2=U2,
H3=U3}

9.1. Extraction procedure. In this section we study the existence of a local partial

first integral of the Euler-Poisson equations (1.1) restricted to the invariant complex

three-dimensional level manifold

{H1 = U1, H2 = U2, H3 = U3},

which depends on at most two variables.

According to (2.5)

M(U0, U1, U2, U3, Ic) =
= {x ∈ C6; H1((ω, γ), Ic) = U1, H2((ω, γ), Ic) = U2, H3((ω, γ), Ic) = U3},

where (ω, γ) = (ω1, ω2, ω3, γ1, γ2, γ3).

We search all functions F of two variables F = F (s1, s2) where (s1, s2) ∈ (ω, γ), of

class C1, such that gradF does not vanish identically on each open subset of the manifold

M(U0, U1, U2, U3, Ic), which are local partial first integrals of the Euler-Poisson equations

(1.1) restricted to this manifold.

As in Sec. 5.1 the order of variables si, 1 ≤ i ≤ 2, in F (s1, s2) is irrelevant for F to

be a first integral.

We have exactly 15 different two elements subsets of (ω, γ) and thus 15 cases of

functions of two elements to examine. We will describe now an extraction procedure

based on permutational symmetries which reduces the above 15 cases to only four.

These 15 functions of two variables (up to the order of variables) are shown in Table

9.1. This Table can be easily obtained directly like Table 5.1. But it can be also easily

deduced from Table 5.1 and reciprocally.

Table 9.1

Functions Case

F (γi, γj), 1 ≤ i < j ≤ 3 (i)

F (ω1, γ1), F (ω2, γ2), F (ω3, γ3) (ii)

F (ω3, γ2), F (ω2, γ3), F (ω1, γ3),

F (ω3, γ1), F (ω2, γ1), F (ω1, γ2)
(iii)

F (ωi, ωj), 1 ≤ i < j ≤ 3 (iv)

Like in Sec. 8, let us stress that the permutational symmetries act on variables
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(ω, γ) and parameters Ic but not on the constants U1, U2, U3 that define the mani-

fold M(U0, U1, U2, U3, Ic).
It is easy to see that under the group of permutational symmetries (2.3) of the Euler-

Poisson equations for every case (i)–(iv) from Table 9.1 the first function from the case

is consequently transformed into all remaining functions from the same case.

Thus in virtue of Theorem 2.2 we can restrict ourselves to the study of only four

functions where every one belongs to a different case from Table 9.1 and is chosen arbitrary

from the functions of this case.

Like in Secs. 5 and 8, we will call such four functions Fi, 1 ≤ i ≤ 4, (up to the order

of variables) a basis.

9.2. Elimination of ω1,ω2,γ1. Here we study the existence of a partial first integral of

the Euler-Poisson equations (1.1) after expressing variables ω1, ω2 and γ1 from equations

Hi = Ui, 1 ≤ i ≤ 3. (9.1)

First we express γ1 from second equation of (9.1) and obtain

γ1 =
√
−γ2

2 − γ2
3 + U2. (9.2)

Further, to simplify the notations, we put

Γ =
√
−γ2

2 − γ2
3 + U2.

Then, using the Maple command solve, we express ω1 and ω2 from first and third

equations of (9.1) and obtain the following solution:

ω1 = R, ω2 = −I1RΓ + I3ω3γ3 − U1

I2γ2
, (9.3)

where R = R(ω3, γ2, γ3) is a root of equation

Q(x) = Ax2 +Bx+ C = 0,

that is

Q(R) = AR2 +BR+ C = 0. (9.4)

Here A = A(γ2, γ3), B = B(ω3, γ2, γ3) and C = C(ω3, γ2, γ3) are the following functions:

A = I1
[
(I2 − I1)γ

2
2 − I1γ

2
3 + I1U2

]
,

B = 2I1Γ(I3ω3γ3 − U1),

C = I3ω
2
3(I2γ

2
2 + I3γ

2
3)− 2I3ω3γ3U1

+ I2γ
2
2(2c2γ2 + 2c3γ3 + 2c1Γ− U3) + U2

1 .

(9.5)

R, A, B and C are algebraic functions defined on C3(ω3, γ2, γ3).

We put the values of γ1, ω1 and ω2 from (9.2) and (9.3) in the Euler-Poisson equations

(1.1) and remove the first, second and fourth equations. In this way we have the following
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system of three equations in unknowns ω3, γ2 and γ3:

dω3

dt
=

1

I2I3γ2

[
I1(I2 − I1)ΓR

2 + (I2 − I1)(I3ω3γ3 − U1)R+ I2γ2(c2Γ− c1γ2)
]
,

dγ2
dt

= γ3R− ω3Γ,

dγ3
dt

=
1

I2γ2

[
(I1γ

2
2 − I2γ

2
2 + I1γ

2
3 − I1U2)R− Γ(I3ω3γ3 − U1)

]
.

(9.6)

Now we study whether system (9.6) has a first integral that depends on at most two

variables among the variables (ω3, γ2, γ3). Thus we should investigate the following three

types of a first integral:

1. F (γ2, γ3), (case (i))

2. F (ω3, γ3), (case (ii))

3. F (ω3, γ2). (case (iii))

Then, like in Secs. 5 and 8 we should examine the three types given above because

they belong to different cases (see Table 9.1).

Let us fix U2 ∈ C. Let us consider some suitable open set Ω ⊆ C3(ω3, γ2, γ3) belonging

to the domain of definition of F .

From the now we consider system (9.6) and the first integral F only on Ω. System

(9.6) restricted to Ω has C1 right-hand sides.

We always suppose that the considered first integrals are not constant on any open

subset of their domain of definition. As we consider C1 first integrals, this means that

their gradients do not vanish identically on any open subset of their domain of definition.

Type 1. Let us consider the existence of a first integral F of system (9.6) which is of

type 1, i.e. F = F (γ2, γ3). Thus we have

dF

dt
=

dγ2
dt

∂F

∂γ2
+

dγ3
dt

∂F

∂γ3
= Y1(F ) = 0, (9.7)

where Y1 is the corresponding vector field defined on Ω.

Equation (9.7) should be an identity with respect to all the three variables (ω3, γ2, γ3).

As function F does not depend on ω3 then its partial derivatives will not depend on ω3

too. Thus if we differentiate identity (9.7) with respect to ω3 we shall obtain again a

linear partial differential equation for function F .

∂Y1(F )

∂ω3
=

∂

∂ω3

(
dγ2
dt

)
∂F

∂γ2
+

∂

∂ω3

(
dγ3
dt

)
∂F

∂γ3
= Y2(F ) = 0, (9.8)

where Y2 is the corresponding vector field defined on Ω.

Equations (9.7) and (9.8) can be considered as a system of two homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂γ2

, ∂F
∂γ3

)
, which do not vanish identically,

because F is non-constant on any open subset of its domain of definition.

Thus, if first integral F exists, system (9.7)–(9.8) has a non-zero solution gradF .

This is possible if and only if determinant ∆ of this linear system satisfies identity ∆ ≡ 0

provided that R is a root of equation (9.4).
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We compute this determinant and obtain

∆(R) =
dγ2
dt

∂

∂ω3

(
dγ3
dt

)
− dγ3

dt

∂

∂ω3

(
dγ2
dt

)
=

Γ

I2γ2

{[
(I1 − I2)γ

2
2 + (I1 − I3)γ

2
3 − I1U2

](
R− ω3

∂R

∂ω3

)
+ U1γ3

∂R

∂ω3
− U1Γ

}
.

As we are interested in case ∆ = 0 we remove the denominator I2γ2 and the non-zero

factor Γ and note

∆(R) =
Γ

I2γ2
δ(R),

where

δ(R) =
[
(I1 − I2)γ

2
2 + (I1 − I3)γ

2
3 − I1U2

](
R− ω3

∂R

∂ω3

)
− U1γ3

∂R

∂ω3
+ U1Γ. (9.9)

As δ(R) contains ∂R
∂ω3

we should determine this derivative. For the purpose we use

equation (9.4). We differentiate it with respect to ω3 and, as A does not depend on ω3

(see (9.5)), obtain

∂Q

∂ω3
= (2AR+B)

∂R

∂ω3
+

∂B

∂ω3
R+

∂C

∂ω3
= 0. (9.10)

The determination of ∂R
∂ω3

from the last equation is possible only if dQ(R)
dR = 2AR+B ̸=

0. Using Proposition 4.1 we prove that if R is a root of equation (9.4) then 2AR+B = 0

only in a very particular case

I1 = I2 = I3, c1 = c2 = c3 = 0, U1 = U2 = U3 = 0. (9.11)

Indeed, let us compute the resultant ρ of Q(R) and 2AR +B with respect to R. We

obtain

ρ = A(4AC −B2).

As we are interested only in the cases when ρ vanishes identically with respect to ω3,

γ2 and γ3 and as A never vanishes identically we consider ρ̂ = 4AC − B2 instead of ρ.

We compute ρ̂ with values of A, B and C from (9.5) and obtain

ρ̂ = 4I1I2γ
2
2 (a0Γ + a1) ,

where

a0 = 2c1(I2γ
2
2 − I1γ

2
2 − I1γ

2
3 + I1U2),

a1 = −I3(I1 − I2)ω
2
3γ

2
2 − I3(I1 − I3)ω

2
3γ

2
3 + I1I3U2ω

2
3 − 2I3U1ω3γ3

− 2(I1 − I2)c2γ
3
2 − 2(I1 − I2)c3γ

2
2γ3 + (I1 − I2)U3γ

2
2 − 2I1c2γ2γ

2
3

+ 2I1c2U2γ2 − 2I1c3γ
3
3 + I1U3γ

2
3 + 2I1c3U2γ3 + U2

1 − I1U2U3.

According to Proposition 4.3, if ρ̂ = 0 then a0 = a1 = 0 because Γ /∈ C(γ2, γ3). a0 = 0

is possible if and only if c1 = 0. One immediately sees that a1 = 0 will be true if and

only if I1 = I2 = I3, c2 = c3 = 0 and U1 = U2 = U3 = 0, i.e. we come to condition (9.11).

Thus out of this case equations Q(R) = 0 and 2AR+B = 0 have no common roots, i.e.

if Q(R) = 0 then 2AR+B ̸= 0.
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Thus the determination of ∂R
∂ω3

from (9.10) is possible and we obtain

∂R

∂ω3
= −

∂B
∂ω3

R+ ∂C
∂ω3

2AR+B

and put it in the expression (9.9) for δ(R). The non-zero expression 2AR+B appears as

a denominator of δ(R) and we note

δ(R) =
δ̃(R)

2AR+B
,

where

δ̃(R) =
[
(I1 − I2)γ

2
2 + (I1 − I3)γ

2
3 − I1U2

] [
(2AR+B)R+ ω3

(
R

∂B

∂ω3
+

∂C

∂ω3

)]
+ U1γ3

(
R

∂B

∂ω3
+

∂C

∂ω3

)
+ U1(2AR+B)Γ.

After substituting A, B and C with their values from (9.5) we obtain

δ̃(R) = 2

{[
(I1 − I2)γ

2
2 + (I1 − I3)γ

2
3 − I1U2

] [
I1(I1U2 + I2γ

2
2 − I1γ

2
2 − I1γ

2
3)R

2

+ 2I1(I3ω3γ3 − U1)RΓ

]
+ I2I3(I1 − I2)ω

2
3γ

4
2 + I3(I1I2 + I1I3 − 2I2I3)ω

2
3γ

2
2γ

2
3

− I1I2I3U2ω
2
3γ

2
2 + I23 (I1 − I3)ω

2
3γ

4
3 − I1I

2
3U2ω

2
3γ

2
3 − 2I3(I1 − I2)U1ω3γ

2
2γ3

− 2I3(I1 − I3)U1ω3γ
3
3 + 2I1I3U1U2ω3γ3 + I1U

2
1 γ

2
2 + (I1 − I3)U

2
1 γ

2
3 − I1U

2
1U2

}
.

Let us note the following observation. The expression in square brackets above, i.e.

I1(I1U2 + I2γ
2
2 − I1γ

2
2 − I1γ

2
3)R

2 + 2I1(I3ω3γ3 − U1)RΓ = AR2 +BR = Q(R)− C

and, as Q(R) = 0 (cf. (9.4)), we replace this expression with −C. In this way we obtain

δ̃ as a function that does not depend on R as follows:

δ̃ = b0Γ + b1,

where

b0 = −4I2c1γ
2
2

[
(I1 − I2)γ

2
2 + (I1 − I3)γ

2
3 − I1U2

]
,

b1 = 2I2γ
2
2

[
2c2(I2 − I1)γ

3
2 + 2c3(I2 − I1)γ

2
2γ3 + 2c2(I3 − I1)γ2γ

2
3 + 2c3(I3 − I1)γ

3
3

+ (I1 − I2)U3γ
2
2 + (I1 − I3)U3γ

2
3 + 2I1c2U2γ2 + 2I1c3U2γ3 + U2

1 − I1U2U3

]
.

According to Proposition 4.3, if δ̃ = 0 then b0 = b1 = 0 because Γ /∈ C(γ2, γ3). b0 = 0

is possible either if I1 = I2 = I3 and U2 = 0 which is a particular case of the kinetic

symmetry or when c1 = 0.

Let c1 = 0. We consider b1 = 0. As c1 = 0 we should have (c2, c3) ̸= (0, 0) to avoid the

Euler case. First let us suppose that c2 ̸= 0. Then the annulment of the coefficients of γ3
2

and γ2γ
2
3 of b1 leads to the kinetic symmetry case. Let us suppose now that c3 ̸= 0. Then

the coefficients of γ3
3 and γ2

2γ3 lead to the same case. Consequently the sought partial

first integral of type 1 does not exist.
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Type 2. Let us study the existence of a first integral of type 2. That means to look

for a first integral of system (9.6) which does not depend on γ2, i.e. F (ω3, γ3).

In fact the investigations go along the same lines but, of course, the expressions are

different. Now we have

dF

dt
=

dω3

dt

∂F

∂ω3
+

dγ3
dt

∂F

∂γ3
= Y1(F ) = 0, (9.12)

where Y1 is the corresponding vector field defined on Ω.

Equation (9.12) should be an identity with respect to all three variables (ω3, γ2, γ3).

As function F does not depend on γ2 then its partial derivatives will not depend on γ2
too. Thus if we differentiate identity (9.12) with respect to γ2 we shall obtain again a

linear partial differential equation for function F .

∂Y1(F )

∂γ2
=

∂

∂γ2

(
dω3

dt

)
∂F

∂ω3
+

∂

∂γ2

(
dγ3
dt

)
∂F

∂γ3
= Y2(F ) = 0, (9.13)

where Y2 is the corresponding vector field defined on Ω.

Equations (9.12) and (9.13) can be considered as a system of two homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω3

, ∂F
∂γ3

)
, which do not vanish identically,

because F is non-constant on any open subset of its domain of definition.

Thus, if integral F exists, system (9.12)–(9.13) has a non-zero solution gradF . This

is possible if and only if determinant ∆(R) composed of the coefficients of this system

satisfies identity ∆(R) ≡ 0 provided that R is a root of equation (9.4).

We compute this determinant and obtain a long expression which we do not show

here. We only mention that ∆(R) has a non-zero denominator I22I3γ
2
2Γ and we note

∆(R) =
∆̂(R)

I22I3γ
2
2Γ

.

Thus ∆(R) = 0 is equivalent to ∆̂(R) = 0.

∆̂(R) depends on ∂R
∂γ2

. To determine this derivative we use the same steps as in the

case of the first integral of type 1 and obtain

∂R

∂γ2
= −

∂A
∂γ2

R2 + ∂B
∂γ2

R+ ∂C
∂γ2

2AR+B
.

We put it in the expression for ∆̂(R). After this substitution the non-zero expression

2AR+B appears as a denominator of ∆̂(R) and we note

∆̂(R) =
∆̃(R)

2AR+B
.

The identity ∆̂(R) = 0 is equivalent to ∆̃(R) = 0 but ∆̃(R) depends on the functions A,

B and C from (9.5) and their derivatives with respect to γ2. We put these functions in

the expression for ∆̃(R) and obtain that ∆̃(R) has a denominator Γ. We note

∆̃(R) =
δ(R)

Γ
.

The identity ∆̃(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0,

then if in addition some supplementary first integral F (ω3, γ3) of system (9.6) exists,
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then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω3, γ2, γ3), the polynomial Q(x) divides the

polynomial δ(x).

Using Maple we divide δ by Q and obtain a remainder which is a polynomial r of

the form

r =
r0x+ r1

[(I2 − I1)γ2
2 − I1γ2

3 + I1U2]2
,

where

r0 = r01Γ + r02 and r1 = r11Γ + r12,

Here r01, r02, r11 and r12 are polynomials of variables ω3, γ2, γ3 and parameters Ic and

Ui, 1 ≤ i ≤ 3.

According to Propositions 4.2 we have r0 = r1 = 0. Then by Propositions 4.3 we

conclude that r01 = r02 = r11 = r12 = 0 because Γ /∈ C(γ2, γ3). It turns out that for

our aims equation r11 = 0 is sufficient. Equation r11 = 0 will be identically satisfied

if and only if all the coefficients of polynomial r11 are zero. The coefficients of r11 are

109. We should find all values of the parameters Ic and Ui, 1 ≤ i ≤ 3, for which the

109 coefficients are zero. At the fourth consecutive simplification we obtain the reduced

system of only three very simple equations:

I1 − I2 = 0, c1 = 0, c2 = 0

and the values of Ui, 1 ≤ i ≤ 3, I2, I3 and c3 are arbitrary. It is clear that this is the

Lagrange case.

Thus the sought partial first integral of type 2, F (ω3, γ3) does not exist.

Type 3. Let us consider the existence of a first integral of type 3, i.e. F (ω3, γ2). Now

we have
dF

dt
=

dω3

dt

∂F

∂ω3
+

dγ2
dt

∂F

∂γ2
= Y1(F ) = 0, (9.14)

where Y1 is the corresponding vector field defined on Ω.

Equation (9.14) should be an identity with respect to all three variables (ω3, γ2, γ3).

As function F does not depend on γ3 then its partial derivatives will not depend on γ3
too. Thus if we differentiate identity (9.14) with respect to γ3 we shall obtain again a

linear partial differential equation for function F .

∂Y1(F )

∂γ2
=

∂

∂γ3

(
dω3

dt

)
∂F

∂ω3
+

∂

∂γ3

(
dγ2
dt

)
∂F

∂γ2
= Y2(F ) = 0, (9.15)

where Y2 is the corresponding vector field defined on Ω.

Equations (9.14) and (9.15) can be considered as a system of two homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω3

, ∂F
∂γ2

)
, which do not vanish identically,

because F is non-constant on any open subset of its domain of definition.

Thus, if integral F exists, system (9.14)–(9.15) has a non-zero solution gradF . This

is possible if and only if determinant ∆(R) composed of the coefficients of this system

satisfies identity ∆(R) ≡ 0 provided that R is a root of equation (9.4).
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We compute this determinant and obtain

∆(R) =
∆̂(R)

I2I3γ2Γ
,

where

∆̂(R) =

[
−2I1(I1 − I2)ω3Γ

2 ∂R

∂γ3
R− I2c1γ

2
2γ3

∂R

∂γ3
+ (I1 − I2)U1R

2 − I2c1γ
2
2R

]
Γ

+ I1(I1 − I2)γ3Γ
2 ∂R

∂γ3
R2 + Γ2

[
I3(I2 − I1)ω

2
3γ3 + (I1 − I2)U1ω3 + I2c2γ2γ3

] ∂R
∂γ3

+
[
I3(I1 − I2)ω

2
3γ

2
2 − I3(I1 − I2)U2ω

2
3 + (I1 − I2)U1ω3γ3 + I2c2γ2(−γ2

2 + U2)
]
R

− I1(I1 − I2)(−γ2
2 + U2)R

3 − I2c1ω3γ
2
2γ3.

Thus ∆(R) = 0 is equivalent to ∆̂(R) = 0.

∆̂(R) depends on ∂R
∂γ3

. To determine this derivative we use the same steps as in the

case of the first integral of type 1 and obtain

∂R

∂γ3
= −

∂A
∂γ3

R2 + ∂B
∂γ3

R+ ∂C
∂γ3

2AR+B
.

We put it in the expression for ∆̂(R). After this substitution the non-zero expression

2AR+B appears as a denominator of ∆̂(R) and we note

∆̂(R) =
∆̃(R)

2AR+B
.

The identity ∆̂(R) = 0 is equivalent to ∆̃(R) = 0 but ∆̃(R) depends on the functions A,

B and C from (9.5) and their derivatives with respect to γ3. We put these functions in

the expression for ∆̃(R) and obtain that ∆̃(R) has a denominator Γ. We note

∆̃(R) =
δ(R)

Γ
,

where δ(R) is a polynomial of R of degree four.

The identity ∆̃(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0,

then if in addition some supplementary first integral F (ω3, γ3) of system (9.6) exists,

then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω3, γ2, γ3), the polynomial Q(x) divides the

polynomial δ(x).

Using Maple we divide δ by Q and obtain a remainder which is a polynomial r of

the form

r =
r0x+ r1

[(I2 − I1)γ2
2 − I1γ2

3 + I1U2]3
,

where

r0 = r01Γ + r02 and r1 = r11Γ + r12,

Here r01, r02, r11 and r12 are polynomials of variables ω3, γ2, γ3 and parameters Ic and

Ui, 1 ≤ i ≤ 3.

According to Propositions 4.2 we have r0 = r1 = 0. Then by Propositions 4.3 we

conclude that r01 = r02 = r11 = r12 = 0 because Γ /∈ C(γ2, γ3). It turns out that for
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our aims equation r11 = 0 is sufficient. Equation r11 = 0 will be identically satisfied

if and only if all the coefficients of polynomial r11 are zero. The coefficients of r11 are

179. We should find all values of the parameters Ic and Ui, 1 ≤ i ≤ 3, for which the

179 coefficients are zero. At the three consecutive simplification we obtain the reduced

system of seven equations:

I1 − I2 = 0, c2c3 = 0, (I2 − I3)c2 = 0, c2U3 = 0,

c2U2 = 0, c2U1 = 0, c21 + 2c22 = 0.

We solve this system by the Maple command solve and obtain two solutions. The

first of them gives the Lagrange case I1 = I2, c1 = 0, c2 = 0 and the second - a particular

case of the kinetic symmetry case.

Thus the sought partial first integral of type 3, F (ω3, γ2) does not exist.

9.3. Elimination of γ1,γ2,γ3. Using the Maple command solve we determine vari-

ables γ1 and γ2 from equations H1 = U1 and H3 = U3 (see (9.1)). Then we put the

obtained values of γ1 and γ2 in the equation H2 = U2 from where we determine γ3. In

this way we obtain the following solution:

γ1 =
I2ω2(I1ω

2
1 + I2ω

2
2 + I3ω

2
3 − U3) + 2c2U1 + 2(I2c3ω2 − I3c2ω3)R

2(I1c2ω1 − I2c1ω2)
,

γ2 = −I1ω1(I1ω
2
1 + I2ω

2
2 + I3ω

2
3 − U3) + 2c1U1 + 2(I1c3ω1 − I3c1ω3)R

2(I1c2ω1 − I2c1ω2)
,

γ3 = R,

(9.16)

where R = R(ω1, ω2, ω3) is a root of equation

Q(x) = Ax2 +Bx+ C = 0,

that is

Q(R) = AR2 +BR+ C = 0, (9.17)

and A = A(ω1, ω2, ω3), B = B(ω1, ω2, ω3) and C = C(ω1, ω2, ω3) are the following

polynomials:

A = 4I21 (c
2
2 + c23)ω

2
1 − 8I1I2c1c2ω1ω2 − 8I1I3c1c3ω1ω3

+ 4I22 (c
2
1 + c23)ω

2
2 − 8I2I3c2c3ω2ω3 + 4I23 (c

2
1 + c22)ω

2
3 ,

B = 4I31c3ω
4
1 − 4I21I3c1ω

3
1ω3 + 4I1I2(I1 + I2)c3ω

2
1ω

2
2 − 4I1I2I3c2ω

2
1ω2ω3

+ 4I21I3c3ω
2
1ω

2
3 − 4I1I2I3c1ω1ω

2
2ω3 − 4I1I

2
3c1ω1ω

3
3 + 4I32c3ω

4
2

− 4I22I3c2ω
3
2ω3 + 4I22I3c3ω

2
2ω

2
3 − 4I2I

2
3c2ω2ω

3
3 − 4I21c3U3ω

2
1

+ 4I1I3c1U3ω1ω3 − 4I22c3U3ω
2
2 + 4I2I3c2U3ω2ω3

+ 8I1c1c3U1ω1 + 8I2c2c3U1ω2 − 8I3(c
2
1 + c22)U1ω3,

C = I41ω
6
1 + I21I2(2I1 + I2)ω

4
1ω

2
2 + 2I31I3ω

4
1ω

2
3 + I1I

2
2 (I1 + 2I2)ω

2
1ω

4
2 (9.18)

+ 2I1I2I3(I1 + I2)ω
2
1ω

2
2ω

2
3 + I21I

2
3ω

2
1ω

4
3 + I42ω

6
2 + 2I32I3ω

4
2ω

2
3 + I23I

2
2ω

2
2ω

4
3

− 2I31U3ω
4
1 − 2I1I2(I1 + I2)U3ω

2
1ω

2
2 − 2I21I3U3ω

2
1ω

2
3 − 2I32U3ω

4
2

− 2I22I3U3ω
2
2ω

2
3 + 4I21c1U1ω

3
1 + 4I1I2c2U1ω

2
1ω2 + 4I1I2c1U1ω1ω

2
2
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+ 4I1I3c1U1ω1ω
2
3 + 4I22c2U1ω

3
2 + 4I2I3c2U1ω2ω

2
3 − I21 (4c

2
2U2 − U2

3 )ω
2
1

+ 8I1I2c1c2U2ω1ω2 − I22 (4c
2
1U2 − U2

3 )ω
2
2

− 4I1c1U1U3ω1 − 4I2c2U1U3ω2 + 4(c21 + c22)U
2
1 .

Putting the values of γ1, γ2 and γ3 from (9.16) in the Euler-Poisson equations (1.1)

and removing the last three equations we obtain the following system of three equations

in unknowns ω1, ω2 and ω3:

dωi

dt
=

Mi

2Ii(I1c2ω1 − I2c1ω2)
, 1 ≤ i ≤ 3, (9.19)

where M1, M2 and M3 are polynomials of ωj , γj , Ij , cj , Uj , 1 ≤ i ≤ 3, and of R. The

system (9.19) is correctly defined only if

(c1, c2) ̸= (0, 0). (9.20)

Let us suppose first that the condition (9.20) is satisfied.

As we are going to study the first integrals of system (9.19) we can multiply its right-

hand sides by the non-zero factor 2I1I2I3(I1c2ω1 − I2c1ω2). In this way we come to the

following system:

dω1

dt
= −I2I3

{
2
[
I1(c

2
2 + c23)ω1 − I2c1c2ω2 − I3c1c3ω3

]
R

+ I21c3ω
3
1 + I1I2c3ω1ω

2
2 − 2I1(I2 − I3)c2ω1ω2ω3 + I1I3c3ω1ω

2
3

+ 2I2(I2 − I3)c1ω
2
2ω3 − I1c3U3ω1 + 2c1c3U1

}
,

dω2

dt
= I1I3

{
2
[
I1c1c2ω1 − I2(c

2
1 + c23)ω2 + I3c2c3ω3

]
R

− I1I2c3ω
2
1ω2 − 2I1(I1 − I3)c2ω

2
1ω3 + 2I2(I1 − I3)c1ω1ω2ω3 (9.21)

− I22c3ω
3
2 − I2I3c3ω2ω

2
3 + I2c3U3ω2 − 2c2c3U1

}
,

dω3

dt
= I1I2

{
2
[
I1c1c3ω1 + I2c2c3ω2 − I3(c

2
1 + c22)ω3

]
R

+ I21c1ω
3
1 + I1(2I1 − I2)c2ω

2
1ω2 − I2(I1 − 2I2)c1ω1ω

2
2 + I1I3c1ω1ω

2
3

+ I22c2ω
3
2 + I2I3c2ω2ω

2
3 − I1c1U3ω1 − I2c2U3ω2 + 2(c21 + c22)U1

}
.

We study the existence of a first integral of system (9.21) that depends on at most

two variables among the variables (ω1, ω2, ω3). There are three possible types of such a

first integral:

1. F (ω1, ω2), (case(iv))

2. F (ω1, ω3), (case(iv))

3. F (ω2, ω3). (case(iv))

As all the three types of first integrals belong to case (iv) it suffices to study only the

first type.

Type 1. We consider a first integral F of system (9.21) of type 1, i.e. F (ω1, ω2). We
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have
dF

dt
=

dω1

dt

∂F

∂ω1
+

dω2

dt

∂F

∂ω2
= Y1(F ) = 0, (9.22)

where dω1

dt and dω2

dt are taken from (9.21) and Y1 is the corresponding vector field defined

on C3(ω1, ω2, ω3).

This equation should be identically equal to zero with respect to variables ω1, ω2 and

ω3. As function F does not depend on ω3 then its partial derivatives will not depend on

ω3 too. Thus if we differentiate identity (9.22) with respect to ω3 we obtain again a linear

partial differential equation for F

∂Y1(F )

∂ω3
=

∂

∂ω3

(
dω1

dt

)
∂F

∂ω1
+

∂

∂ω3

(
dω2

dt

)
∂F

∂ω2
= Y2(F ) = 0, (9.23)

where Y2 is the corresponding vector field defined on C3(ω1, ω2, ω3).

Equations (9.22) and (9.23) can be considered as a system of two homogeneous linear

algebraic equations with unknowns gradF =
(

∂F
∂ω1

, ∂F
∂ω2

)
. This linear system admits a

non-zero solution if and only if its determinant ∆(R) vanishes identically with respect to

variables ω1, ω2 and ω3 provided that R is a root of equation (9.17).

We compute ∆(R), remove its non-zero factor 2I1I2I
2
3 (I1c2ω1 − I2c1ω2) and obtain

∆̂(R) =
∆(R)

2I1I2I23 (I1c2ω1 − I2c1ω2)
= −2I3c3(c

2
1 + c22 + c23)R

2

−
[
I1(2I3c

2
2 − 2I1c

2
2 − 2I1c

2
3 + 3I3c

2
3)ω

2
1 + 2(2I1I2 − I1I3 − I2I3)c1c2ω1ω2

− 2I1I3c1c3ω1ω3 + I2(2I3c
2
1 − 2I2c

2
1 − 2I2c

2
3 + 3I3c

2
3)ω

2
2

− 2I2I3c2c3ω2ω3 − I23c
2
3ω

2
3 − I3c

2
3U3

]
R

−
[
I21c1c3ω

3
1 + I1I2c2c3ω

2
1ω2 + I1(2I1c

2
2 − 2I3c

2
2 + 2I1c

2
3 − I3c

2
3)ω

2
1ω3

+ I1I2c1c3ω1ω
2
2 − 2(2I1I2 − I1I3 − I2I3)c1c2ω1ω2ω3

− I3(I1 − 2I3)c1c3ω1ω
2
3 + I22c2c3ω

3
2 (9.24)

+ I2(2I2c
2
1 − 2I3c

2
1 + 2I2c

2
3 − I3c

2
3)ω

2
2ω3

+ I3(2I3 − I2)c2c3ω2ω
2
3 + I23c

2
3ω

3
3 − I1c1c3U3ω1 − I2c2c3U3ω2

− I3c
2
3U3ω3 + 2c3(c

2
1 + c22 + c23)U1

] ∂R
∂ω3

+ c3

[
I21 (I1 − I3)ω

4
1 + I1I2(I1 + I2 − 2I3)ω

2
1ω

2
2 − I1I3(I1 − I3)ω

2
1ω

2
3

+ I22 (I2 − I3)ω
4
2 − I2I3(I2 − I3)ω

2
2ω

2
3 − I1(I1 − I3)U3ω

2
1

− I2(I2 − I3)U3ω
2
2 + 2(I1 − I3)c1U1ω1 + 2(I2 − I3)c2U1ω2 − 2I3c3U1ω3

]
.

Like in Sec. 9.2 we should obtain ∆̂(R) as a polynomial of R that is we should deter-

mine ∂R
∂ω3

as a function of R. For the purpose we use equation (9.17) where polynomials

A(ω1, ω2, ω3), B(ω1, ω2, ω3) and C(ω1, ω2, ω3) are taken from (9.18). We differentiate
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(9.17) with respect to ω3 and obtain

∂Q(R)

∂ω3
=

∂A

∂ω3
R2 +

∂B

∂ω3
R+

∂C

∂ω3
+

dQ

dR

∂R

∂ω3
= 0. (9.25)

The determination of ∂R
∂ω3

from (9.25) is possible if and only if dQ
dR = 2AR+B is not

zero when R is a root of polynomial Q. Then we obtain

∂R

∂ω3
= −

∂A
∂ω3

R2 + ∂B
∂ω3

R+ ∂C
∂ω3

2AR+B
.

Let us prove that dQ
dR is not zero. We use Proposition 4.1. Let R be a root of equation

Q(R) = 0. We consider the resultant ρ of Q and dQ
dR and prove that it can never be

identically zero with respect to ω1, ω2 and ω3. We have

ρ = A(4AC −B2)

and as A never vanishes identically we do not consider ρ but ρ̂ = 4AC − B2 instead.

Putting in ρ̂ the expressions for A, B and C from (9.18) we obtain

ρ̂ = 16(I1c2ω1 − I2c1ω2)
2ρ̃.

As we consider the case (9.20), then the first factor never vanishes identically. The second

one, i.e. ρ̃ is a long polynomial of ω1, ω2 and ω3 that has 35 monomials. Among them

is the monomial I41ω
6
1 and therefore ρ̃ never vanishes identically. Consequently ρ never

vanishes identically either.

We put the value of ∂R
∂ω3

obtained from equation (9.25) in (9.24) and find ∆̂(R). After

this substitution the non-zero expression 2AR + B appears as a denominator of ∆̂(R)

and we note

∆̂(R) =
δ(R)

2AR+B
,

where δ(R) is a polynomial of R of degree three.

It is clear that ∆̂(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0,

then if in addition some supplementary first integral F (ω1, ω2) of system (9.21) exists,

then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω1, ω2, ω3), the polynomial Q(x) divides the

polynomial δ(x).

Using the Maple command rem we compute the remainder of the division of poly-

nomial δ by Q and obtain a remainder r of the form:

r(x) =
4(I1c2ω1 − I2c1ω2)

(I1c2ω1 − I2c1ω2)2 + (I1c3ω1 − I3c1ω3)2 + (I2c3ω2 − I3c2ω3)2
(r0x+ r1),

where r0 and r1 are polynomials of ω1, ω2 and ω3.

It is easily seen that when (c1, c2) ̸= (0, 0) the fraction in the above equality is non-zero

on open dense subset of C3(ω1, ω2, ω3).

Thus r0 = r1 = 0 identically with respect to ω1, ω2 and ω3. Below we consider only

r0 = 0 which turns out sufficient for our needs.

As r0 has a non-zero factor I3 we remove it. The obtained polynomial has 74 co-

efficients. To find all values of the parameters Ic and Ui, 1 ≤ i ≤ 3, for which these
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coefficients are zero we apply simplification and after four consecutive simplifications we

obtain the reduced system of five equations:

c2c3 = 0, c1c3 = 0, (I1 − I2)c3 = 0, (I1 − I3)c2 = 0, (I2 − I3)c1 = 0.

Solving it by the Maple command solve we obtain the following five solutions:

c1 = 0, c2 = 0, c3 = 0 with arbitrary I1, I2, I3, U1, U2, U3,

I1 = I2, c1 = 0, c2 = 0 with arbitrary I2, I3, c3, U1, U2, U3,

I2 = I3, c2 = 0, c3 = 0 with arbitrary I1, I3, c1, U1, U2, U3,

I1 = I3, c1 = 0, c3 = 0 with arbitrary I2, I3, c2, U1, U2, U3,

I1 = I3, I2 = I3, c3 = 0 with arbitrary I3, c1, c2, U1, U2, U3.

As (c1, c2) ̸= (0, 0) we remove the first and second solutions. Third and fourth solutions

give the Lagrange case and fifth one – the kinetic symmetry case. Thus the sought partial

first integral of type 1, i.e. F (ω1, ω2) does not exist when (c1, c2) ̸= (0, 0).

Let us suppose now that (9.20) is not fulfilled, i.e. (c1, c2) = (0, 0). To avoid the Euler

case we suppose that c3 ̸= 0. Solving equations (9.1) with respect to γ1, γ2 and γ3 by

the Maple command solve we obtain

γ1 =
I1I3ω

2
1ω3 + I2I3ω

2
2ω3 + I23ω

3
2 − I3U3ω3 + 2c3U1 − 2I2ω2R

2I1c3ω1
,

γ2 =
R

c3
, γ3 = −I1ω

2
1 + I2ω

2
2 + I3ω

2
3 − U3

2c3
,

(9.26)

where R = R(ω1, ω2, ω3) is a root of equation

Q(x) = Ax2 +Bx+ C = 0,

that is

Q(R) = AR2 +BR+ C = 0. (9.27)

Here A = A(ω1, ω2), B = B(ω1, ω2, ω3) and C = C(ω1, ω2, ω3) are the following polyno-

mials:

A = 4(I21ω
2
1 + I22ω

2
2),

B = −4I2ω2(I1I3ω
2
1ω3 + I2I3ω

2
2ω3 + I33ω

3
3 − I3U3ω3 + 2c3U1),

C = I41ω
6
1 + 2I31I2ω

4
1ω

2
2 + I21I3(2I1 + I3)ω

4
1ω

2
3 + I21I

2
2ω

2
1ω

4
2

+ 2I1I2I3(I1 + I3)ω
2
1ω

2
2ω

2
3 + I1I

2
3 (I1 + 2I3)ω

2
1ω

4
3 + I22I

2
3ω

4
2ω

2
3 (9.28)

+ 2I2I
3
3ω

2
2ω

4
3 + I43ω

6
3 − 2I31U3ω

4
1 − 2I21I2U3ω

2
1ω

2
2 − 2I1I3(I1 + I3)U3ω

2
1ω

2
3

− 2I2I
2
3U3ω

2
2ω

2
3 − 2I33U3ω

4
3 + 4I1I3c3U1ω

2
1ω3 + 4I2I3c3U1ω

2
1ω3

+ 4I23c3U1ω
3
3 − I21 (4c

2
3U2 − U2

3 )ω
2
1 + I23U

2
3ω

2
3 − 4I3c3U1U3ω3 + 4U2

1 c
2
3.

After substitution of γ1, γ2 and γ3 from (9.26) in the first three Euler-Poisson equa-
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tions (1.1) we obtain the following system for ω1, ω2 and ω3:

dω1

dt
=

R+ (I2 − I3)ω2ω3

I1
,

dω2

dt
=

2I2ω2R− I1(2I1 − I3)ω
2
1ω3 − I2I3ω

2
2ω3 − I23ω

3
3 + I3U3ω3 − 2c3U1

2I1I2ω1
,

dω3

dt
=

(I1 − I2)ω1ω2

I3
.

(9.29)

Like in case (9.20) we examine only the type 1 of first integrals of system (9.29).

Type 1. As in the case when (c1, c2) ̸= (0, 0) we define the vector fields Y1 and Y2 by

Y1(F ) = dF
dt (see (9.22)) and Y2(F ) = ∂Y1(F )

∂ω3
(see (9.23)) but now dω1

dt and dω2

dt are taken

from (9.29).

Determinant ∆(R) of linear system (9.22) and (9.23) should vanish identically with

respect to variables ω1, ω2 and ω3 provided that R is a root of equation (9.27).

We compute ∆(R). It has a non-zero denominator 2I21I2ω1. We note

∆̂(R) = 2I21I2ω1∆(R) = −
[
I1(2I1 − I3)ω

2
1 + I2(2I2 − I3)ω

2
2 + 3I23ω

2
3 − I3U3

]
R

+
[
I1(2I1 − I3)ω

2
1ω3 + I2(2I2 − I3)ω

2
2ω3 + I23ω

3
3 − I3U3ω3 + 2U1c3

] ∂R
∂ω3

− 2(I2 − I3)(I
2
3ω

3
3 − U1c3)ω2. (9.30)

In order to obtain ∆̂(R) as a polynomial of R we determine ∂R
∂ω3

using equation (9.27)

where polynomials A(ω1, ω2), B(ω1, ω2, ω3) and C(ω1, ω2, ω3) are taken from (9.28). After

differentiating (9.27) with respect to ω3 we obtain

∂Q

∂ω3
=

∂B

∂ω3
R+

∂C

∂ω3
+

dQ

dR

∂R

∂ω3
= 0. (9.31)

In the same way as in the case (c1, c2) ̸= (0, 0) we prove by Proposition 4.1 that dQ
dR is

not zero and determine ∂R
∂ω3

from (9.31). Then we put it in (9.30) and find ∆̂(R). After

this substitution the non-zero expression 2AR + B appears as a denominator of ∆̂(R)

and we note

∆̂(R) =
δ(R)

2AR+B
,

where δ(R) is a polynomial of R of degree two.

It is clear that ∆̂(R) = 0 is equivalent to δ(R) = 0. We know that if Q(R) = 0,

then if in addition some supplementary first integral F (ω1, ω2) of system (9.29) exists,

then also δ(R) = 0. Thus all assumptions of Proposition 4.2 are fulfilled. Consequently

in polynomial ring K[x], where K = Alg(ω1, ω2, ω3), the polynomial Q(x) divides the

polynomial δ(x).

The remainder r(x) of the division of polynomial δ(x) by polynomial Q(x) is a poly-

nomial of x of degree one

r(x) = r0x+ r1,

where r0 and r1 are polynomials of ω1, ω2 and ω3 which, by Proposition 4.2, should be
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identically equal to zero. We consider only the leading coefficient of r(x)

r0 = −8I1I3(I1 − I2)ω
2
1ω2(I

2
3ω

3
3 − c3U1) = 0.

It is easily seen that r0 vanish identically if and only if I1 = I2 which together with

restriction c1 = c2 = 0 considered now leads to the Lagrange case. Thus the sought

partial first integral of type 1, F (ω1, ω2) does not exist.

This concludes our study.
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& Applications. Birkhäuser Boston, Inc., Boston, MA, 2006. xviii+652 pp.

[69] G. N. Watson, A treatise on the theory of Bessel functions, Reprint of the second (1944)

edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995.

viii+804 pp.

[70] E. von Weber, Partielle Differentialgleichungen. Allgemaine Eigenschaften der Differen-

tialsysteme, Die linearen partiellen Differentialgleichungen erster Ordnung mit einer Um-



152 J. Moulin-Ollagnier, S. I. Popov and J.-M. Strelcyn

bekanten, in Burkhardt (H.), Wirtinger (W.) & Fricke (Robert), eds., Encyklopädie der
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