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Abstract

We propose a general framework for simultaneously calculating the threshold value for popula-
tion growth and determining the sign of the growth bound of the evolution family generated by the
problem below

dv(t)

dt
= Av(t) + F(t)v(t)− V(t)v(t),

where A : D(A) ⊂ X → X is a Hille-Yosida linear operator (possibly unbounded, non-densely
defined) on a Banach space (X, ∥ · ∥), and the maps t ∈ R 7→ V(t) ∈ L(X0, X), t ∈ R 7→ F(t) ∈
L(X0, X) are p-periodic in time and continuous in the operator norm topology. We give applica-
tions of our approach for two general examples of an age-structured model, and a delay differential
system. Other examples concern the dynamics of a nonlocal problem arising in population genetics
and the dynamics of a structured human-vector malaria model.
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Mathematics Subject Classification 34K20; 37B55; 47D62; 47N60; 92D25

1 Introduction

The basic reproductive number (universally denoted by the symbol R0) is an important quantity in epi-
demiology and life-history theory. The general definition of the R0 in life-history theory is the average
lifetime offspring number in a given environment. In epidemiology, the basic reproduction number is an
important quantity defined as the average number of secondary infections produced by a single infective
host in an entirely uninfected host population [23, 10, 1, 2, 8, 16, 9, 18, 19]. Usually, the R0 allows for ex-
pressing the relatively long-term threshold phenomenon for some epidemic models, i.e. the disease dies
out if the basic reproduction number is less than unity and the disease persists in the population if it is
greater than unity. Within a context of multi-strain interactions, R0 is a function of the pathogen traits or
label, x, and so is denoted byR0(x). Furthermore, the emphasis on “entirely uninfected host population”,
illustrated by the index "0" in R0 is fundamental because R0 is not only a function of the pathogen x
but also of the environment E experienced by the pathogens. Therefore, the basic reproduction number
of a pathogen trait x in the environment E is thus written as R(x,E). In a pathogen-free environment
E = E0, note that R(x,E0) = R0(x). Finally, the quantity R(x,E) measures the pathogen’s "fitness",
i.e. the pathogens’ competitive process in the adaptive dynamics (e.g., see [21]).

1



The main purpose of this work is to propose a simple and general framework for the calculation of
the threshold value for population growth for the below evolution problem

dv(t)

dt
= Av(t) + F(t)v(t)− V(t)v(t), t > t0,

v(t0) = x ∈ X0 = D(A),
(1.1)

where A : D(A) ⊂ X → X is a possibly unbounded non-densely defined Hille-Yosida linear operator,
(X, ∥ · ∥) a Banach space, and the maps t ∈ R 7→ V(t) ∈ L(X0, X), t ∈ R 7→ F(t) ∈ L(X0, X) are
p-periodic in time and continuous in the operator norm topology. Here, we recall that A is a Hille-Yosida
operator if there exists ω0 ∈ R and M0 ≥ 1 such that (ω0,+∞) ⊂ ρ(A) –the resolvent set of A– and
Rλ(A) = (λI − A)−1 satisfies

∥Rλ(A)
n∥L(X) ≤

M0

(λ− ω0)n
, ∀n ≥ 1, λ > ω0. (1.2)

Note that the threshold value we will obtain for System (1.1) does not necessarily match the ba-
sic reproduction number of such a system. However, both quantities will definitely serve as threshold
values for the global extinction of the population of concern. Determining the threshold value for pop-
ulation growth for Problem (1.1) is not an easy task in general, and in particular, not yet addressed in
the literature with only information that A is a Hille-Yosida linear operator on a given Banach space
(X, ∥ · ∥).

Indeed, in the context of both finite-dimensional (i.e., A ≡ 0) and autonomous systems (i.e., F and
V are independent of time t), general approaches for the calculations of reproduction numbers are well
known (see [8, 31]). Moreover, still being in the context of finite-dimensional systems, but with time-
periodic properties (i.e., F and V are p-periodic in time t), computation formulas of the reproduction
number are well established for a large class of compartmental epidemic models, see for instance [5,
6, 4, 32]. Furthermore, in [18, 19], the author proposed a very general approach for the computation
of the reproduction number in heterogeneous environments, i.e. for nonautonomous systems. Such
an approach is based on the generation evolution operator, with a clear biological meaning (the GEO
approach), and can be applied to a large class of mathematical models including particular cases of
problems of type (1.1) when the Banach space is X = L1.

The approach proposed in this work does not necessarily require specifying the Banach space X .
Such an approach is based on determining whether the spectral radius of a certain linear operator de-
rived from the evolution family generated by Problem (1.1) is less or greater than the unity. Within this
context of infinite-dimensional population structure and time heterogeneity, we can mention the work
in [30] where the same idea is developed for problems of type (1.1). However, the results presented here
generalized the ones proposed in [30] to the cases where the domain of the operator A is non-dense (i.e.
D(A) ̸= X).

The advantage in emphasizing the spectral radius of a linear operator derived from the evolution
family generated by Problem (1.1) is twice. First, in comparison to results in [18, 19] (when the Banach
space X = L1) and in [30] (for any given Banach space X , but with a densely defined operator A), the
approach proposed here will allow determining the threshold value for population growth of a large
class of nonautonomous systems. The second advantage of such an approach consists in showing at
the same time that the sign of the growth bound of the evolution family generated by Problem (1.1) is
equal to the sign of the spectral radius of our linear operator minus the unity. Consequently, this allows
determining the global convergence to zero of the evolution family generated by Problem (1.1). Finally,
we will show that the approach developed here can be applied to time-delay differential systems. Within
this context of time-delay differential equations, note that similar results have been obtained in [33, 20].
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More precisely, two key assumptions are made to derive our main result. The first assumption con-
cerns the exponential stability of the evolution family {UV(t, t0)}t≥t0 ⊂ L(X0) generated by the un-
perturbed Cauchy problem

du(t)

dt
= Au(t)− V(t)u(t), t > t0, u(t0) = x ∈ X0. (1.3)

The existence of such an evolution family follows from the assumption on A and the periodic perturba-
tions (see [24, Proposition 4.1]). Such assumption reads,

Assumption 1.1 The evolution family {UV(t, t0)}t≥t0 ⊂ L(X0) generated by (1.3) is exponentially stable
i.e., there exists MV ≥ 1 and ωV < 0 such that

∥UV(t, t0)x∥ ≤MVe
ωV(t−t0)∥x∥, ∀t ≥ t0, x ∈ X0.

Next, since we are concerned with the threshold for population dynamics models, the second assumption
guarantee that any solution of (1.1) with an initial condition with a nonnegative initial condition remains
nonnegative, in forwarding time. Throughout the paper, if otherwise stated, we assume that the Banach
space X has a positive cone X+ that is normal and generating. We recall that X+ is normal if there
exists an equivalent norm ∥ · ∥1 such that

y − x ∈ X+ =⇒ ∥x∥1 ≤ ∥y∥1.

The cone X+ is called generating if X = X+ − X−. Hence, setting X0 = D(A), it is clear that
X0+ = X0 ∩ X+ is a positive cone of X0 that is normal and generating. Recall that the exponential
bound of an evolution family {U(t, t0)}t≥t0 ⊂ L(X0) is defined by

ω(U) = inf
{
ω ∈ R : it exits Mω ≥ 1, such that ∥U(t+ s, s)∥L(X0) ≤Mωe

ωt, ∀t ≥ 0, ∀s ∈ R
}
.

Assumption 1.1 for the exponential stability of the evolution family {UV(t, t0)}t≥t0 ⊂ L(X0) is classical
in obtaining a threshold value even in finite dimension autonomous cases, eg., see [30, 33]. Our next
assumption reads as

Assumption 1.2 i) A : D(A) ⊂ X0 → X is resolvent positive i.e., there exists λ0 > ω0 such that
Rλ(A)X+ ⊂ X0+ for all λ ≥ λ0, where ω0 is the constant stated in (1.2).

ii) There exists λ1 > ω0 such that λ1x− V(t)x ∈ X+ for all x ∈ X0+ and t ∈ R.

iii) For each t ∈ R and each x ∈ X0+ we have F(t)x ∈ X+.

Before stating our main result, we make a short comment on condition ii) of Assumption 1.2. In fact, it
can be replaced by the following more general condition

lim
h→0+

1

h
dist(x− hV(t)x,X+) = 0, ∀x ∈ X0+, t ∈ R. (1.4)

where dist(·) is the distance to a set. We refer to [11, Theorem 4.4] for equivalent characterization of
(1.4). Therefore, the main result of this work is given by the following theorem

Theorem 1.3 Let Assumptions 1.1 and 1.2 be satisfied. Then the linear operator C defined by

C[f ](t) = lim
λ→+∞

∫ t

−∞
UV(t, s)λRλ(A)F(s)f(s)ds, t ∈ R, f ∈ Cp(R, X0), (1.5)
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is bounded and maps Cp(R, X0) –resp. Cp(R, X0+)– into Cp(R, X0) –resp. Cp(R, X0+). Moreover,

sign (r(C)− 1) = sign (r(UF(p, 0))− 1) , (1.6)

where {UF(t, t0)}t≥t0 ⊂ L(X0) is the p-periodic evolution family generates by (1.1), and r(C), r(UF(p, 0))
are the spectral radius of C and UF(p, 0).

Note that, the identity (1.6) between the spectral radius r(C) of the linear operator C derived from
the evolution family {UF(t, t0)}t≥t0 which generated by (1.1) allows characterizing a threshold value
for the population growth of some class of nonautonomous systems on a given Banach space X . Such
a result generalized the one in [18, 19] when X = L1, and in [30], for any given Banach space X
with a densely defined operator A. Importantly, the above theorem also allows determining the global
convergence to zero of the evolution family generated by Problem (1.1). Finally, we think that further
technical development is necessary to have a similar result as in Theorem 1.3 as a base of the linearized
stability principle of the nonautonomous nonlinear problems in general. However, such a linearized
stability principle is well established in the case of densely defined linear operators on X = L1 [19].

The rest of this work is organized as follows. Section 2 is devoted to preliminary results and some
general remarks. In Section 3, we give detailed proof of our main result (Theorem 1.3) in several steps.
Finally, in Section 4 we give some applications of our main result presented in Theorem 1.3. This includes
two general examples of where our results can be applied. The first example is about an age-structured
model, and the second concerns a delay differential system. The next two examples concern the dynamics
of a nonlocal problem arising in population genetics and the dynamics of a structured human-vector
malaria model.

2 Preliminaries and comments on Theorem 1.3

We recall that the part of A in X0 = D(A) is the linear operator A0 : D(A0) ⊂ X0 → X given by

D(A0) = {x ∈ D(A) : Ax ∈ X0} , A0x = Ax, ∀x ∈ D(A0).

Since A is a Hille-Yosida linear operator, see (1.2), the resolvent set ρ(A) of A is such that, ρ(A) = ρ(A0),
D(A0) = D(A) = X0 and A0 is a Hille-Yosida linear operator with dense domain [24]. Consequently,
A0 generates a C0-semigroup {TA0(t)}t≥0 ⊂ L(X0) satisfying

∥TA0(t)∥L(X0) ≤M0e
ω0t, ∀t ≥ 0. (2.1)

Furthermore, noting that t ∈ R 7→ V(t) is uniformly bounded, the Cauchy problem (1.3) generates an
exponentially bounded evolution family {UV(t, t0)}t≥t0 ⊂ L(X0) [24, Proposition 4.1]. Moreover, for
each x ∈ X0 and t0 ∈ R, the map defined by

u(t) = UV(t, t0)x, t ≥ t0

is the unique mild solution of (1.3) with initial condition x at time t = t0 and

UV(t, t0)x = TA0(t− t0)x+ lim
λ→+∞

∫ t

t0

TA0(t− s)λRλ(A)V(s)UV(s, t0)xds, ∀x ∈ X0. (2.2)

In a similar manner, using the fact that t 7→ F(t) is uniformly bounded in R, one can conclude from [26,
Theorem 1.6] that Problem (1.1) generates an exponentially bounded evolution family {UF(t, t0)}t≥t0 ⊂
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L(X0). Moreover, using the results in [26, Theorem 1.6] one knows that for each x ∈ X0 and t0 ∈ R,
the map

u(t) = UF(t, t0)x, t ≥ t0

is the unique solution of (1.1) with initial condition x at time t = t0 with

UF(t, t0)x = UV(t, t0)x+ lim
λ→+∞

∫ t

t0

UV(t, s)λRλ(A)F(s)UF(s, t0)xds, ∀x ∈ X0. (2.3)

It is now clear from (2.2) and (2.3) that the evolution families {UV(t, t0)}t≥t0 ⊂ L(X0) and {UF(t, t0)}t≥t0 ⊂
L(X0)) are p-periodic, that is

UV(t+ p, t0 + p) = UV(t, t0), ∀t ≥ t0, and UF(t+ p, t0 + p) = UF(t, t0), ∀t ≥ t0.

Remark 2.1 When V(t) ≡ 0 we have UV(t, t0) = TA0(t − t0) so that Assumption 1.1 is translated to
ω0 < 0, where ω0 is the constant stated in (2.1).

The proof of Theorem 1.3 will be given in Section 3. However, we complete this section by adding
some remarks that may be useful for applications of our main result. Let us first note that the linear
operator C in Theorem 1.3 can be expressed as follow

C[f ](t) = lim
t0→−∞

lim
λ→+∞

∫ t

t0

UV(t, s)λRλ(A)F(s)f(s)ds, t ∈ R, f ∈ Cp(R, X0),

and for the case V(t) ≡ 0, it takes the following form

C[f ](t) = lim
t0→−∞

lim
λ→+∞

∫ t

t0

TA0(t− s)λRλ(A)F(s)f(s)ds, t ∈ R, f ∈ Cp(R, X0).

Since the evolution family {UF(t, t0)}t≥t0 is exponentially bounded and periodic, we infer from [17,
Theorem 7.2.2] that the spectrum σ(UF(p+ s, s)), s ∈ R satisfies

σ(UF(p+ s, s)) \ {0} = σ(UF(p, 0)) \ {0}, ∀s ∈ R

and from [30, Proposition 5.5] that

ω(UF) =
ln (r(UF(p+ s, s)))

p
= lim

t→+∞

ln ∥UF(t+ s, s))∥
t

, ∀s ∈ R.

Moreover, we also have from [30, Theorem 5.7] that

sign (ω(UF)) = sign (r(UF(s+ p, s))− 1) , ∀s ∈ R. (2.4)

From where, using Theorem 1.3 together with (2.4) we obtain

sign (ω(UF)) = sign (r(C)− 1) = sign (r(UF(s+ p, s))− 1) , ∀s ∈ R.

Finally, by setting
F [f ](t) = F(t)f(t), ∀t ∈ R, f ∈ Cp(R, X0) (2.5)

and

R[f ](t) = lim
λ→+∞

∫ t

−∞
UV(t, s)λRλ(A)f(s)ds, t ∈ R, f ∈ Cp(R, X)
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it comes
C = R ◦ F ,

and since r(F ◦ R) = r(R ◦ F) we deduce that r(C) = r(F ◦ R) where

(F ◦ R)[f ](t) = F(t) lim
t0→−∞

lim
λ→+∞

∫ t

t0

UV(t, s)λRλ(A)f(s)ds,∀t ∈ R, f ∈ Cp(R, X). (2.6)

The latter gives an alternative way to compute r(C) and is sometimes easier to handle. In many appli-
cations, the positive perturbation F(t) maps X0 into X1, with X1 a closed subspace of X so that the
linear operator F ◦R maps Cp(R, X1) into Cp(R, X1). The following lemma will allow simplifying the
computation of r(C) in our applications.

Lemma 2.2 Let Assumptions 1.1 and 1.2 be satisfied. Assume that there exists a closed subspace X1 ⊂ X
such that F(t)X0 ⊂ X1 for all t ∈ R. Then r(C) = r(F ◦ R) = r(C1) with C1 the restriction of F ◦ R to
Cp(R, X1).

The lemma can be easily proved by using Gelfand’s formula and the proof is thus omitted.

Remark 2.3 In practice, we may combine the fact that r(C) = r(F ◦ R) together with Lemma 2.2 to
simplify the determination of the linear operator F ◦ R. Indeed, under the condition of Theorem 1.3, and
F(t)X0 ⊂ X1, the map

lim
t0→−∞

lim
λ→+∞

∫ t

t0

UV(t, s)λRλ(A)f(s)ds,∀t ∈ R, f ∈ Cp(R, X1)

is the unique entire solution of

du(t)

dt
= Au(t)− V(t)u(t) + f(t), t ∈ R.

3 Proof of Theorem 1.3

The main point in the proof of our main result lies in the fact that we will be able to go from a nonau-
tonomous problem to an autonomous problem by using the evolution semigroup approach. The results
obtained in the autonomous case are then transferred to the nonautonomous case. Let us mention that
such an approach has been used in [15] in the context of extrapolated semigroup and functional differ-
ential equations. We also refer to [19] where the evolution semigroups have been used successfully in
defining the basic reproduction number for nonautonomous problems. In what follows, it is not neces-
sary that X has a normal and generating cone X+ nor that the Assumption 1.2 be satisfied. However
the linear operator A : D(A) ⊂ X → X is still assumed to be Hille-Yosida while the maps t → V(t),
and t→ F(t) are assumed to be p-periodic and continuous in the operator norm topology.

3.1 Step 1: From the nonautonomous to an autonomous problem

We first mention some known results which will be of importance later on. Consider the map

f ∈ Cp(R, X0) 7→ UV(·, · − t)f(· − t) ∈ Cp(R, X0), (3.1)

with
(UV(·, · − t)f(· − t))(s) = UV(s, s− t)f(s− t), ∀s ∈ R.
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It is well known that the map (3.1) defines a C0-semigroup on Cp(R, X0) (see for example [7] and [30,
Appendix B]). We denote its generator by −V0 : D(V0) ⊂ Cp(R, X0) → Cp(R, X0) and we set

T−V0(t)[f ] = UV(·, · − t)f(· − t), ∀f ∈ Cp(R, X0), t ≥ 0.

Our arguments for the proof of Theorem 1.3 as well as the main result of this section strongly rely on
the linear operator

Rλ[f ](t) := lim
µ→+∞

∫ t

−∞
e−λ(t−s)UV(t, s)µRµ(A)f(s)ds, t ∈ R, f ∈ Cp(R, X), λ > ωV, (3.2)

for which we will first investigate its properties. Before proceeding, we first recall some results ob-
tained in [26] in the context of the integrated semigroup. A similar result can be found in [14] where
extrapolated semigroups approach is used. Denote by BUCr(R, X) the Banach space of bounded and
uniformly continuous functions with relatively compact range. Note that we always have the inclusions
Cp(R, X0) ⊂ Cp(R, X) ⊂ BUCr(R, X) where all the Banach spaces are endowed with the supremum
norm. For more compactness in the notations, we set

X := Cp(R, X) and X0 := Cp(R, X0)

with the norm in X and X0 defined by

∥f∥∞ := sup
t∈R

∥f(t)∥, ∀f ∈ X .

The next result can be obtained from [26, Theorem 1.11].

Lemma 3.1 Let Assumption 1.1 be satisfied. Then the following properties hold true:

i) For each f ∈ BUCr(R, X) there exists a unique entire mild solution uf ∈ C(R, X0) of

du(t)

dt
= Au(t)− V(t)u(t) + f(t), t > t0, u(t0) = x0 ∈ X0,

given by

uf (t) = lim
λ→+∞

∫ t

−∞
UV(t, s)λRλ(A)f(s)ds, ∀t ∈ R, (3.3)

where the limit is uniform with respect to t in R. Moreover, for each f ∈ X0, the above limit (3.3)
takes the form

uf (t) =

∫ t

−∞
UV(t, s)f(s)ds, ∀t ∈ R.

ii) There exists a constant CD > 0 such that for each f ∈ BUCr(R, X) the solution uf ∈ C(R, X0)
satisfies

∥uf∥∞ ≤ CD∥f∥∞.

The Lemma 3.1 ensures that the linear operator Rλ defined in (3.2) is continuous from X into X0 with
RλX ⊂ X0. However, to be able to perform our study, we need to obtain a more refined estimate on the
operator norm of Rλ. It reads as
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Lemma 3.2 Let Assumption 1.1 be satisfied. For each λ > ωV, the linear operator f ∈ X 7→ Rλ[f ] is
continuous in X with

∥Rλ[f ]∥∞ ≤ M̂V

λ− ωV
∥f∥∞, ∀f ∈ X , (3.4)

with M̂V =M0MV.

Proof. Let f ∈ X be given and fixed. Note that for each µ > max(ω0, ωV), the linear operator

Rµ
λ[f ](t) :=

∫ t

−∞
e−λ(t−s)UV(t, s)µRµ(A)f(s)ds, t ∈ R, f ∈ X

satisfies
∥Rµ

λ[f ]∥∞ ≤ MV

λ− ωV

µM0

µ− ω0
∥f∥∞, ∀λ > ω0. (3.5)

and the result follows by taking the limit when µ→ +∞ in (3.5).

Theorem 3.3 Let Assumption 1.1 be satisfied. There exists a Hille-Yosida linear operator −V : D(V) ⊂
X → X on X such that −V0 is the part of −V in X0. Moreover, (ωV,+∞) ⊂ ρ(−V) and for each λ > ωV

we have
(λ+ V)−1[f ] := Rλ(−V)[f ] = Rλ[f ], ∀f ∈ X ,

and

∥Rλ(−V)n[f ]∥∞ ≤ M̂0

(λ− ωV)n
∥f∥∞, ∀n ≥ 1,

with M̂0 =MVM̂V.

Proof. Thanks to Lemma 3.1, f 7→ Rλ[f ] maps X into X0 i.e.,

Rλ[f ] ∈ Cp(R, X0), ∀f ∈ Cp(R, X) (3.6)

and
Rλ[f ] = 0 ⇐⇒ f = 0. (3.7)

Moreover, using Lemma 3.1 (with A replaced respectively by A − λ and A − δ) and (3.6) it follows that
for each f ∈ Cp(R, X), λ > ωV and δ > ωV we have

Rλ ◦ Rδ[f ](t) :=

∫ t

−∞
e−λ(t−s)UV(t, s)Rδ[f ](s)ds, ∀t ∈ R. (3.8)

We claim that for each n ≥ 2 and f ∈ Cp(R, X)

Rn
λ[f ](t) :=

∫ t

−∞

(t− s)n−2

(n− 2)!
e−λ(t−s)UV(t, s)Rλ[f ](s)ds, ∀t ∈ R. (3.9)

To prove the above claim, we argue by recurrence in n ≥ 2. From (3.8), one can see that the property
is clearly satisfied when n = 2. Assume that (3.9) is satisfied for some n ≥ 2. Note that for each n ≥ 2
and t ∈ R

Rn+1
λ [f ](t) =

∫ t

−∞
e−λ(t−s)UV(t, s)Rn

λ[f ](s)ds

=

∫ t

−∞

∫ s

−∞

(s− l)n−2

(n− 2)!
e−λ(t−l)UV(t, l)Rλ[f ](l)dlds

=

∫ t

−∞

∫ t

l

(s− l)n−2

(n− 2)!
e−λ(t−l)UV(t, l)Rλ[f ](l)dsdl

=

∫ t

−∞

(t− l)n−1

(n− 1)!
e−λ(t−l)UV(t, l)Rλ[f ](l)dl

8



which proves the claim. Therefore, using the above formula with n instead of n+1 combined with (3.4)
we obtain

∥Rn
λ[f ]∥∞ ≤ MV

(λ− ωV)n−1
∥Rλ[f ]∥∞ ≤ MVM̂V

(λ− ωV)n
∥f∥∞, ∀λ > ωV.

Next, we prove that Rλ satisfies the resolvent identity. Let λ > ωV and δ > ωV be given and fixed such
that λ ̸= δ. Then using (3.8) one has

Rλ ◦ Rδ[f ](t) =

∫ t

−∞
e−λ(t−s)UV(t, s) lim

µ→+∞

(∫ t

−∞
e−δ(s−l)UV(s, l)µRµ(A)f(l)dl

)
ds.

Since f ∈ X = Cp(R, X), and δ > ωV it follows that the limit

lim
µ→+∞

(∫ t

−∞
e−δ(s−l)UV(s, l)µRµ(A)f(s)

)
ds

exists uniformly for t ∈ R (see Lemma 3.1 with A replaced by A− δ). From where we obtain

Rλ ◦ Rδ[f ](t) = lim
µ→+∞

∫ t

−∞

(∫ t

−∞
e−δ(s−l)e−λ(t−s)UV(t, l)µRµ(A)f(l)dl

)
ds

= lim
µ→+∞

∫ t

−∞

(∫ t

l
e−δ(s−l)e−λ(t−s)UV(t, l)µRµ(A)f(l)ds

)
dl

which gives after integration

Rλ ◦ Rδ[f ](t) =
1

λ− δ
(Rδ[f ](t)−Rλ[f ](t)) , ∀t ∈ R.

Because Rλ, λ > ωV is a family of bounded linear operators that satisfies (3.7) and the resolvent formula
in (ωV,+∞) we deduce from [3, Proposition B.6] there exists a closed linear operator −V such that
Rλ = Rλ(−V).
To complete the proof, it remains to prove that −V0 is the part of −V in X0 = Cp(R, X0). To do so, let
f ∈ X0 be given. Then for each t ∈ R we have

Rλ(−V)[f ](t) = lim
µ→+∞

∫ t

−∞
e−λ(t−s)UV(t, s)µRµ(A)f(s)ds

=

∫ t

−∞
e−λ(t−s)UV(t, s)f(s)ds

=

∫ +∞

0
e−λsUV(t, t− s)f(t− s)ds

=

∫ +∞

0
e−λsT−V0(s)[f ](t)ds

= Rλ(−V0)[f ](t)

providing that
Rλ(−V)[f ] = Rλ(−V0)[f ], ∀f ∈ X0. (3.10)

The equality (3.10) has the following immediate consequence

D(V0) ⊂ D(V) and − V0[f ] = −V[f ], ∀f ∈ D(V0).
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Let f ∈ D(V) be given such that −V[f ] ∈ X0. Note that (3.6) ensures that D(V) ⊂ X0. Then using the
equality (3.10) we have

f = Rλ(−V)(λ+ V)[f ] = λRλ(−V0)[f ] +Rλ(−V0)V[f ] ∈ D(V0).

The proof is completed.
Noting that the linear operator F defined in (2.5) is continuous from X0 to X , Theorem 3.3 ensures

that the part (−V + F)0 of −V + F generates a strongly continuous C0-semigroup {T(−V+F)0(t)}t≥0

on X0. Moreover, it is uniquely determined by

T(−V+F)0(t)[f ] = T−V0(t)[f ] + lim
λ→∞

∫ t

0
T−V0(t− l)λRλ(−V)FT(−V+F)0(l)[f ]dl, ∀t ≥ 0, ∀f ∈ X0.

(3.11)
Consider the C0-semigroup on X0 defined by

T0(t)[f ](s) = UF(s, s− t)f(s− t), ∀s ∈ R, t ≥ 0.

In the following, we will prove that the semigroups {T(−V+F)0(t)}t≥0 and {T0(t)}t≥0 coincides in X0.
To do so, we will prove that {T0(t)}t≥0 satisfies (3.11) and conclude by the uniqueness of the solution
to (3.11). The following result will be crucial in our arguments.

Proposition 3.4 Let Assumption 1.1 be satisfied. Then for each f ∈ X and each t ∈ R, the map s 7→
g(t, s) defined by

g(t, s) := lim
µ→+∞

∫ t

0
UV(s, s− t+ l)µRµ(A)F(s− t+ l)T0(l)[f ](s− t+ l)dl, ∀s ∈ R

satisfies g(t, ·) ∈ X0 and

λRλ(−V)[g(t, ·)](s) =
∫ t

0
T−V0(t− l)λRλ(−V)FT0(l)[f ](s)dl, ∀s ∈ R, (3.12)

as well as the identity

g(t, s) = lim
λ→+∞

∫ t

0
T−V0(t− l)λRλ(−V)FT0(l)[f ](s)dl, ∀s ∈ R. (3.13)

Proof. By definition, the map g(t, ·) belongs in X0. Thanks to Lemma 3.1 with A replaced with A−λ, all
the limits below exist uniformly for t ∈ R. Since g(t, ·) belongs in X0 we have

Zs
t := Rλ(−V)[g(t, ·)](s) =

∫ s

−∞
e−λ(s−r)UV(s, r)g(t, r)dr, ∀s ∈ R,

so that

Zs
t = lim

µ→+∞

∫ s

−∞

∫ t

0
e−λ(s−r)UV(s, r − t+ l)µRµ(A)F(r − t+ l)T0(l)[f ](r − t+ l)dldr

= lim
µ→+∞

∫ t

0

∫ s

−∞
e−λ(s−r)UV(s, r − t+ l)µRµ(A)F(r − t+ l)T0(l)[f ](r − t+ l)drdl

= lim
µ→+∞

∫ t

0

∫ s−t+l

−∞
e−λ(s−t+l−r)UV(s, r)µRµ(A)F(r)T0(l)[f ](r)drdl

= lim
µ→+∞

∫ t

0
UV(s, s− t+ l)

∫ s−t+l

−∞
e−λ(s−t+l−r)UV(s− t+ l, r)µRµ(A)F(r)T0(l)[f ](r)drdl

=

∫ t

0
UV(s, s− t+ l)Rλ(−V)(FT0(l)[f ])(s− t+ l)dl

=

∫ t

0
T−V0(t− l)Rλ(−V)(FT0(l)[f ])(s)dl.
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Since −V is a Hille-Yosida linear operator on X , the limit (3.13) follows from (3.12) (See for example
[25, 29]).

Proposition 3.5 Let Assumption 1.1 be satisfied. The C0-semigroups {T(−V+F)0(t)}t≥0 and {T0(t)}t≥0

coincide in X0 that is for all t ≥ 0 and f ∈ X0 we have

T0(t)[f ](s) = T(−V+F)0(t)[f ](s) = UF(s, s− t)f(s− t), ∀s ∈ R.

Proof. Let f ∈ X0 be given and fixed. Recall that for each t ≥ 0, x ∈ X0, and s ∈ R we have from (2.3)

UF(s, s− t)x = UV(s, s− t)x+ lim
µ→+∞

∫ s

s−t
UV(s, l)µRµ(A)F(l)UF(l, s− t)xdl. (3.14)

In particular for each f ∈ X0 = Cp(R, X0), replacing x by f(s − t) in (3.14) gives for each t ≥ 0 and
s ∈ R

T0(t)[f ](s) = T−V0(t)[f ](s) + lim
µ→+∞

∫ s

s−t
UV(s, l)µRµ(A)F(l)UF(l, s− t)f(s− t)dl

= T−V0(t)[f ](s)

+ lim
µ→+∞

∫ t

0
UV(s, s− t+ l)µRµ(A)F(s− t+ l)UF(s− t+ l, s− t)f(s− t)dl

= T−V0(t)[f ](s) + lim
µ→+∞

∫ t

0
UV(s, s− t+ l)µRµ(A)F(s− t+ l)T0(l)[f ](s− t+ l)dl.

Thus, using (3.13) we obtain for each t ≥ 0

T0(t)[f ](s) = T−V0(t)[f ](s) + lim
λ→+∞

∫ t

0
T−V0(t− l)(λRλ(−V)FT0(l)[f ])(s)dl, ∀s ∈ R.

The proof is completed since the semigroup satisfying (3.11) is uniquely determined.

3.2 Step 2: proof of Theorem 1.3

By making an autonomous reformulation of the problem (1.1) in terms of evolution semigroups in Section
3.1, we now have all the elements necessary for the proof of Theorem 1.3. In this section, we will always
assume that Assumption 1.2 and Assumption 1.1 are satisfied. The Banach space X has a positive cone
that is normal and generating. Using Theorem 3.3, one knows that there exists a Hille-Yosida linear
operator −V : D(V) ⊂ Cp(R, X0) → Cp(R, X) such that the semigroup {T(−V+F)0(t)} generated by
(−V + F)0, the part of −V + F in D(V) = Cp(R, X0) is given by

T(−V+F)0(t)[f ](s) = UF(s, s− t)f(s− t), ∀s ∈ R, t ≥ 0, f ∈ Cp(R, X0). (3.15)

Using [30, Lemma 5.8], it follows that the spectral bound of (−V + F)0 that is s((−V + F)0) and the
growth bound ω((−V + F)0) of {T(−V+F)0(t)}t≥0 are equal i.e.,

s((−V + F)0) = ω((−V + F)0).

Moreover, using the equality

Rλ(−V)[f ](t) = lim
λ→+∞

∫ t

−∞
UV(t, s)λRλ(A)f(s)ds, t ∈ R, λ > ω0

11



it is clear that −V is resolvent positive and Theorem 3.3 implies s(−V) ≤ ωV < 0. Since F is a positive
operator, the positive cone Cp(R, X+) is normal and generating, we deduce from [30, Lemma 5.8] that

sign
(
r(V−1F)− 1

)
= sign (s(−V + F)) .

Recalling that (−V +F)0 and (−V +F) have the same spectrum (see [24, Lemma 2.1 and Lemma 2.2])
we deduce that s((−V + F)0) = s(−V + F) that is

sign
(
r(V−1F)− 1

)
= sign (s((−V + F)0)) = sign (ω((−V + F)0)) .

By [30, Lemma B.1, Proposition 5.6] and (3.15) we have ω((−V + F)0) = ω(UF) and hence

sign
(
r(V−1F)− 1

)
= sign (ω(UF)) ⇐⇒ sign

(
r(V−1F)− 1

)
= sign (r(UF(p, 0))− 1) .

The other properties of Theorem 1.3 are now completed by noting that

V−1F [f ](t) = R0(−V)F [f ](t) = lim
λ→+∞

∫ t

−∞
UV(t, s)λRλ(A)F(s)f(s)ds, t ∈ R.

To complete the proof, we show that formula (1.5) takes the form (2.6). To this end, we note that for each
t0 < t and each f ∈ Cp(R, X) we have

C[f ](t) = lim
λ→+∞

∫ t0

−∞
UV(t, s)λRλ(A)f(s)ds+ lim

λ→+∞

∫ t

t0

UV(t, s)λRλ(A)f(s)ds

= UV(t, t0) lim
λ→+∞

∫ t0

−∞
UV(t0, s)λRλ(A)f(s)ds+ lim

λ→+∞

∫ t

t0

UV(t, s)λRλ(A)f(s)ds

= UV(t, t0)C[f ](t0) + lim
λ→+∞

∫ t

t0

UV(t, s)λRλ(A)f(s)ds

Recalling that ω(UV) < 0 and t 7→ C[f ](t) is uniformly bounded, it follows that

lim
t0→−∞

UV(t, t0)C[f ](t0) = 0.

Hence, taking the limit when t0 → −∞ it comes

R[f ](t) = lim
t0→−∞

lim
λ→+∞

∫ t

t0

UV(t, s)λRλ(A)f(s)ds, ∀t ∈ R,

and the result follows using the equality C = R ◦ F .

4 Applications of Theorem 1.3

In this section, we introduce some applications of our main result presented in Theorem 1.3. We start
by introducing two general examples of where our results can be applied. The first example is about an
age-structured model, and the second concerns a delay differential system. The next two examples are
devoted to the dynamics of a nonlocal problem arising in population genetics, and the dynamics of a
structured human-vector malaria model.
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4.1 Application to an age-structured model

Let us consider the following age-structured model describing the dynamics of a structured population
u(t, a) at time t, and with a structural variable a:

(∂t + ∂a)n(t, a) = −(µ0 + d(t, a))n(t, a)

n(t, 0) =
∫∞
0 β(t, a)n(t, a)da,

n(t0, ·) = n0 ∈ L1
+((0,+∞),R),

(4.1)

and µ0 > 0, the maps (t, a) 7→ d(t, a) and (t, a) 7→ β(t, a) are p-periodic in time with

d(t, ·), β(t, ·) ∈ L∞
+ ((0,+∞),R), ∀t ∈ R

and are continuous from R into L∞((0,+∞),R). To apply our results to (4.1), we first bring the system
in our abstract framework. To do this, we introduce the Banach spaces

X := R× L1((0,+∞),R), X0 := {0R} × L1((0,+∞),R) and X1 := R× {0L1}.

Consider the linear operator A : D(A) ⊂ X0 → X defined by

A

(
0
φ

)
=

(
−ϕ(0)

−ϕ′ − µ0ϕ

)
with D(A) = {0R} ×W 1,1((0,+∞),R).

We also define for each t ∈ R, the linear operators V(t) : X0 → X and F(t) : X0 → X by

V(t)

(
0
ϕ

)
=

(
0

d(t, ·)ϕ

)
and F(t)

(
0
ϕ

)
=

(∫∞
0 β(t, a)ϕ(a)da

0L1

)
. (4.2)

Thus, making the identification v(t) :=
(

0
n(t, ·)

)
and v0 :=

(
0
n0

)
the system (4.1) can be rewritten as

the following abstract Cauchy problem

dv(t)

dt
= Av(t)− V(t)v(t) + F(t)v(t), t > t0, v(t0) = v0 ∈ X0. (4.3)

The Cauchy problem (4.3) is associated with the following unperturbed inhomogeneous system

du(t)

dt
= Au(t)− V(t)u(t) + f(t), t > t0, u(t0) = u0 ∈ X0 (4.4)

with f ∈ Cp(R, X). To determine the threshold for the age-structured model (4.3), we will make use of
Theorem 1.3, Lemma 2.2 and Remark 2.3. It is of course classical to show that Assumptions 1.2 is satisfied.
We refer to [25] and the references therein where such verification is done in many different situations.
In what follows, we only give the steps for deriving the linear operator that gives the threshold dynamics
of (4.1). Note that by definition, we have F(t)X0 ⊂ X1. Thanks to Remark 2.3 and Lemma 2.2, this can
be done by determining firstly the entire solution of (4.4) and secondly using the explicit form of the

linear operator F(t) for t ∈ R. To this end, let f =

(
m
0

)
∈ Cp(R, X1) be given. Thus the abstract

Cauchy problem (4.4) is given explicitly by
(∂t + ∂a)n(t, a) = −d(t, a)n(t, a)
n(t, 0) = m(t),

n(t0, ·) = ϕ ∈ L1((0,+∞),R).
(4.5)
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Next, solving (4.5) along the characteristics gives the following formula

n(t, a) =

{
e−µ0(t−t0)e

−
∫ a
a−t+t0

d(l−a+t0,l)dlϕ(a− t+ t0) if 0 ≤ t− t0 ≤ a

e−µ0ae−
∫ a
0 d(l+t−a,l)dlm(t− a) if t− t0 > a.

(4.6)

From where we deduce that the evolution family generated by A− V in (4.4) is given by

UV(t, t0)

(
0
ϕ

)
=

(
0

ÛV (t, t0)ϕ

)
, t ≥ t0

with

(ÛV (t, t0)ϕ)(a) =

{
e−µ0(t−t0)e

−
∫ a
a−t+t0

d(l−a+t0,l)dlϕ(a− t+ t0) if 0 ≤ t− t0 ≤ a
0 if t− t0 > a.

(4.7)

From (4.7), it easily follows that the evolution family {UV(t, t0)}t≥t0 is exponentially stable with

∥UV(t, t0)∥L(X0) ≤ e−µ0(t−t0), ∀t ≥ t0.

Next, we infer from (4.7) that letting t0 goes to −∞, the entire solution of (4.5) is given by

n(t, a) = e−µ0ae−
∫ a
0 d(l+t−a,l)dlm(t− a), ∀t ∈ R, a ≥ 0.

Therefore, recalling the definition of the linear operator F(t) in (4.2), we deduce that

F(t)

(
0

n(t, ·)

)
=

∫ +∞

0
β(t, a)n(t, a)da

0L1


=

∫ +∞

0
β(t, a)e−µ0ae−

∫ a
0 d(l+t−a,l)dlm(t− a)da

0L1

 , ∀t ≥ t0.

As a consequence, the threshold dynamics of the age-structured model is given by the spectral radius of
the following linear operator

C[m](t) :=

∫ +∞

0
β(t, a)e−µ0ae−

∫ a
0 d(l+t−a,l)dlm(t− a)da, ∀t ∈ R.

4.2 Application to a delay differential equation

We will show that our result can be applied to derive the threshold value for population growth (or
equivalently the basic reproductive number) for a system of delay differential equations. A similar result
can be also found in [20, 33]. Let τ ≥ 0 be given and fixed and set E = C([−τ, 0],Rn). Let V : R →
Mn(R) and F : R → L(E,Rn) be p-periodic continuous maps. For any given t0 ∈ R and a function
function x ∈ C([t0 − τ, δ),Rn), with δ > 0, we define for t ∈ [t0 − τ, δ) the map xt ∈ E by setting

xt(θ) := x(t+ θ), ∀θ ∈ [−τ, 0].

Consider the following system of delay differential equation
dx(t)

dt
= F̂(t)xt − V̂(t)x(t), t ≥ t0

x(t0) = φ ∈ C([−τ, 0],Rn).
(4.8)
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Denote by {Φ(t, t0)}t≥t0 the evolution family generated by
dq(t)

dt
= −V̂(t)q(t), t ≥ t0

q(t0) = q0 ∈ Rn.

Let E+ and Rn
+ denote the positive cones of E and Rn, respectively. As in [33] we make the following

assumption

(DH1) For each t ∈ R, we have F(t)E+ ⊂ Rn
+

(DH2) For each t ∈ R, the matrix −V(t) is quasi-positive and ω(Φ) < 0.

Let us note that condition (DH2) ensures that for each α ∈ (0,−ω(Φ)) there exists M0 ≥ 1 such that

∥Φ(t, t0)q0∥ ≤M0e
−α(t−t0)∥q0∥, ∀t ≥ t0, q0 ∈ Rn.

In order to apply our result to (4.8) we reformulate it first as a partial differential equation and secondly
as an abstract Cauchy problem. To this end, we proceed formally by setting

z(t, θ) = x(t+ θ)

so that when x is C1 we obtain
∂z(t, θ)

∂t
− ∂z(t, θ)

∂θ
= 0,

∂z(t, 0)

∂θ
= F̂(t)[z(t, ·)]− V̂(t)z(t, 0)

z(t0, ·) = φ ∈ E = C([−τ, 0],Rn).

(4.9)

Next, we reformulate (4.9) as an abstract non-densely defined Cauchy problem. Consider the Banach
space X = Rn × E. Let A : D(A) ⊂ X → X be the linear operator

A

(
0Rn

ϕ

)
=

(
−ϕ′(0)
ϕ′

)
, ∀
(
0Rn

ϕ

)
∈ D(A) = {0Rn} × C1([−τ, 0],Rn).

Define for each t ∈ R, the linear operators F(t) : X → X and V(t) : X → X by

F(t)

(
0Rn

ϕ

)
=

(
F̂(t)[ϕ]
0E

)
and V(t)

(
0Rn

ϕ

)
=

(
V̂(t)ϕ(0)

0E

)
.

Therefore, setting

v(t) =

(
0Rn

z(t, ·)

)
, t ≥ t0 and v(t0) =

(
0Rn

ψ

)
system (4.9) becomes 

dv(t)

dt
= Av(t) + F(t)v(t)− V(t)v(t)

u(0) = u0 ∈ X0.
(4.10)

It is well known (see [22, 27]) that the linear operator A is Hille-Yosida with ρ(A) = C \ {0}. Moreover,
for each λ > 0 we have

(λI − A)−1

(
α
φ

)
=

(
0
ϕ

)
⇐⇒ ϕ(θ) = eλθ

φ(0) + α

λ
+

∫ 0

θ
eλ(θ−s)φ(s)ds, θ ∈ [−τ, 0]. (4.11)
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Thus, using (4.11) together with conditions (DH1)-(DH2), one can see that Assumption 1.2 is trivially
satisfied. Hence, to apply our results, we have to show that Assumption 1.1 is also satisfied. Before
proceeding, we note that the part A0 of A in D(A) = {0Rn} × E generates a C0-semigroup given by

TA0(t)

(
0Y
ϕ

)
=

(
0Y

T̂A0(t)ϕ

)
, ∀t ≥ 0

with

(T̂A0(t)ϕ)(θ) =

{
ϕ(t+ θ) if −τ ≤ t+ θ ≤ 0
ϕ(0) if t+ θ ≥ 0.

Let us also note that the unperturbed system corresponding to (4.10) is given by
du(t)

dt
= Au(t)− V(t)u(t)

u(0) = u0 ∈ X0.
(4.12)

The following lemma can be found in [27, Theorem 3.2].

Lemma 4.1 There exists a unique evolution family {UV(t, t0)}t≥t0 on X0 = {0Rn}×E satisfying for all
t ≥ t0

UV(t, t0)

(
0Rn

ψ

)
= TA0(t− t0)

(
0Rn

ψ

)
− lim

λ→+∞

∫ t

t0

TA0(t− s)λRλ(A)V(s)UV(s, t0)

(
0Rn

ψ

)
ds,

with

UV(t, t0)

(
0Rn

ψ

)
=

(
0Rn

ÛV(t, t0)ψ

)
(4.13)

and

(ÛV(t, t0)ψ)(θ) =

{
ψ(t− t0 + θ) if −τ ≤ t− t0 + θ ≤ 0
Φ(t+ θ, t0)ψ(0) if t− t0 + θ ≥ 0.

(4.14)

To show that Assumption 1.1 is satisfied, observe that for t ≥ t0 we have

−τ ≤ t− t0 + θ ≤ 0 and θ ∈ [−τ, 0] ⇒ t− t0 ∈ [0, τ ]

and from Lemma 4.1 it follows that

∥(ÛV(t, t0)ψ)(θ)∥ ≤
{
eατe−α(t−t0)∥ψ∥E if −τ ≤ t− t0 + θ ≤ 0

M0e
ατe−α(t−t0)∥ψ(0)∥ if t− t0 + θ ≥ 0.

From where do we obtain

∥ÛV(t, t0)ψ∥E ≤M0e
ατe−α(t−t0)∥ψ∥E , ∀t ≥ t0,

so that Assumption 1.1 is satisfied for the unperturbed system (4.12). Thus observing that F(t)X0 ⊂ X1

with X1 = Rn × {0E} one can define (see Lemma 2.2 and Remark 2.3) the threshold for (4.10) as the
spectral radius of the operator

C
(
f
0E

)
(t) := F(t) lim

λ→+∞

∫ t

−∞
UV(t, s)λRλ(A)

(
f(s)
0E

)
ds, ∀t ∈ R, f ∈ Cp(R,Rn). (4.15)
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Next, recall that from (4.11) we have

λRλ(A)

(
f(s)
0E

)
=

(
0Rn

eλ·f(s)

)
, ∀s ∈ R

and using (4.13) we obtain for each λ > 0∫ t

−∞
UV(t, s)λRλ(A)

(
f(s)
0E

)
ds =

(
0Rn∫ t

−∞ ÛV(t, s)(e
λ·f(s))ds

)
, ∀t ∈ R

that is

F(t) lim
λ→+∞

∫ t

−∞
UV(t, s)λRλ(A)

(
f(s)
0E

)
ds =

(
F̂(t) lim

λ→+∞

∫ t
−∞ ÛV(t, s)(e

λ·f(s))ds

0E

)
, ∀t ∈ R.

(4.16)
From the above formulas (4.15) and (4.16) we obtain that the spectral radius of C is given by the spectral
radius of the linear operator Ĉ : Cp(R,Rn) → Cp(R,Rn)

Ĉ[f ](t) := F̂(t) lim
λ→+∞

∫ t

−∞
ÛV(t, s)(e

λ·f(s))ds, ∀t ∈ R. (4.17)

In the following, we show that the linear operator Ĉ corresponds to the one given in [33]. In fact, using
(4.14) and (4.17) we obtain(∫ t

−∞
ÛV(t, s)(e

λ·f(s))ds

)
(θ) =

∫ t

−∞
ÛV(t, s)(e

λ·f(s))(θ)ds

=

∫ t+θ

−∞
ÛV(t, s)(e

λ·f(s))(θ)ds+

∫ t

t+θ
ÛV(t, s)(e

λ·f(s))(θ)ds

=

∫ t+θ

−∞
Φ(t+ θ, s)f(s)ds+

∫ t

t+θ
eλ(t−s+θ)f(s)ds

and since for all f ∈ Cp(R,Rn) we have

lim
λ→+∞

∫ t

t+·
eλ(t−s+·)f(s)ds = 0E in E

it follows that

lim
λ→+∞

∫ t

−∞
ÛV(t, s)(e

λ·f(s))ds =

∫ t+·

−∞
Φ(t+ ·, s)f(s)ds

=

∫ +∞

0
Φ(t+ ·, t− s+ ·)f(t− s+ ·)ds.

(4.18)

Therefore, we deduce from (4.17) and (4.18) that for all f ∈ Cp(R,Rn)

Ĉ[f ](t) = F̂(t)

∫ +∞

0
Φ(t+ ·, t− s+ ·)f(t− s+ ·)ds, ∀t ∈ R.
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4.3 Application to an evolutionary epidemiological model

Here we introduce a nonlocal system of equations structured by both the age of infection a and a pheno-
typic trait x ∈ RN (a label of the pathogen strain) with N ≥ 1. At time t, the state variables S = S(t),
i = i(t, a, x), and M = M(t, x) denote the density of healthy area, infected area since a-time unit by
a pathogen phenotype x, and spores respectively. Infected area exits at rate µ0 > 0, and spores become
unviable at rate δ > 0. The healthy area is infected at rate β(t, x). An infected area produces spores
at rate r(a, ·), a-time since infected. The evolution in the space of phenotypic values is modelled by an
integral operator with kernel K(x − y) describing mutations from a pathogen strain with phenotypic
value y ∈ RN to another one with phenotypic value x ∈ RN . We then have the linearisation of the
model ([12]) around the disease-free (S̄(t), 0, 0)

(∂t + ∂a)i(t, a, x) = −µ0i(t, a, x),
i(t, 0, x) = β(t, x)S̄(t)M(t, x),

∂tM(t, x) =

∫
RN

∫ ∞

0
K(x− y)r(a, y)i(t, a, y)dady − δM(t, x)

(4.19)

with initial conditions inL1((0,+∞)×RN ,R) andL1(RN ,R), respectively. In order to apply our result
we first reformulate the above system in our abstract framework. To this end, we introduce the Banach
spaces

Y := L1(RN ,R) and Z := L1((0,+∞)× RN ,R)
as well as 

X := Y × Y × Z

X0 := Y × {0Y } × Z

X1 := Y × Y × {0Z}.
Consider the linear operator A : D(A) ⊂ X0 → X defined by

A

p0
ϕ

 =

 −δp
−ϕ(0)

−ϕ′ − µ0ϕ

 ,

with

D(A) =


p0
ϕ

 ∈ Y × {0Y } × Z : ϕ(·, x) ∈W 1,1((0,+∞),R), ∀x ∈ RN

 .

It is classical to show that the linear operator A is Hille-Yosida and A0, the part of A in D(A) = X0

generates a C0-semigroup. Next, we define for each t ∈ R, the linear operator F(t) : X0 → X by

F(t)

p0
ϕ

 =

∫RN

∫∞
0 K(x− y)r(a, y)ϕ(a, y)dady

β(t, ·)S̄(t)p
0

 . (4.20)

We can define the coneX+ asX+ = Y+×Y+×Z+ where Y+ = L1
+(RN ,R) and Z+ = L1

+((0,+∞)×
RN ,R) are the classical normal and generating cones associated to Y and Z , respectively. Next, making

the identification v(t) :=

M(t, ·)
0

i(t, ·, ·)

 the system (4.19) can be rewritten as the following abstract Cauchy

problem
dv(t)

dt
= Av(t) + F(t)v(t), t > t0, v(t0) = v0 ∈ X0.
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Noting that F(t)X0 ⊂ X1 and using Lemma 2.2 together with Remark 2.3, we can obtain the threshold
for (4.19) by considering the following unperturbed problem

du(t)

dt
= Au(t) + f(t), t > t0, u(t0) = u0 ∈ X0, (4.21)

where f(t) ∈ X1 for all t ≥ t0. More precisely, setting f =

f1f2
0

 ∈ Cp(R, X1), we are reduce to solve

the following problem along the characteristics
(∂t + ∂a)i(t, a, x) = −µ0i(t, a, x), t > t0

i(t, 0, x) = f2(t, x), t > t0

∂tM(t, x) = f1(t, x)− δM(t, x), t > t0

(4.22)

with initial conditions at time t = t0 given by

i(t0, ·, ·) = i0 ∈ Z, and M(t0, ·) =M ∈ Y.

This reads as

i(t, a, x) =

{
e−µ0(t−t0)i0(a− t+ t0) if 0 ≤ t− t0 ≤ a

e−µ0af2(t− a, x) if t− t0 > a
(4.23)

and

M(t, x) = e−δ(t−t0)M0(x) +

∫ t

t0

e−δ(t−s)f1(s, x)ds, t ≥ t0. (4.24)

The semigroup generated by A0 the part of A in X0 is obtained from (4.23) and (4.24) by setting f1 =
f2 ≡ 0. From where it is straightforward that the semigroup generated by A0 is exponentially stable. As
t0 goes to −∞ in (4.23) provides that the unique entire solution to (4.21) (equivalently (4.22)) is given byi(t, a, x) = e−µ0af2(t− a, x) ∀t ∈ R

M(t, x) =

∫ t

−∞
e−δ(t−s)f1(s, x)ds, ∀t ∈ R.

Next, using (4.24) and the definition of F(t) in (4.20) we obtain

F(t)

M(t, ·)
0

i(t, ·, ·)

 =


∫
RN

∫∞
0 K(· − y)r(a, y)e−µ0af2(t− a, y)dady

β(t, ·)S(t)
∫ t
−∞ e−δ(t−s)f1(s, ·)ds

0

 , ∀t ∈ R.

Thus, the threshold dynamics of (4.19) is given by the spactral radius of the linear operator C defined by

C
[
f1
f2

]
(t) =

(
C12[f2](t)
C21[f1](t)

)
where we have set for each fi ∈ Cp(R, Y ), i = 1, 2

C12[f2](t) :=
∫
RN

∫ ∞

0
K(· − y)r(a, y)e−µ0af2(t− a, y)dady, ∀t ∈ R

C21[f1](t) := β(t, ·)S(t)
∫ t

−∞
e−δ(t−s)f1(s, ·)ds, ∀t ∈ R.
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Using similar arguments as in [13], we conclude that sign(r(C)− 1) = sign(r(C12 ◦ C21)− 1) where the
linear operator C12 ◦ C21 is given by

(C12◦C21)[f ](t) =
∫
RN

∫ ∞

0
K(·−y)r(a, y)e−µ0a

(
β(t− a, y)S(t− a)

∫ t−a

−∞
e−δ(t−a−s)f1(s, y)ds

)
dady,

for every f ∈ Cp(R, Y ) and t ∈ R.

4.4 Application to a structured human-vector malaria model

The below system describes the transmission dynamics human-vector malaria, where both human (sub-
script h) and mosquitoes (subscript m) populations are structured by the chronological age a and time
since infection τ (eg. [28]). The density of susceptible human and mosquitoes, at the disease-free, aged
a is given respectively by S̄h(t, a) and S̄m(t, a) at time t. Natural death rate of humans aged a is µh(a),
and if infected since time τ , the disease induced mortality is νh(t, a, τ). The force of infection from
mosquitoes to humans at time t is given by

∫∞
0

∫∞
0 βm(t, s, τ)Im(t, s, τ)dsdτ . Humans aged a and in-

fected since time τ recover from the disease at rate γh(t, a, τ). Natural death rate of mosquitoes aged a
is µm(a), and if infected since time τ , the disease induced mortality is νm(t, a, τ). The force on infection
from humans to mosquitoes at time t is given by

∫∞
0

∫∞
0 βh(t, s, τ)Ih(t, s, τ)dsdτ . We then have the

following model

(∂t + ∂a + ∂τ )Ih(t, a, τ) = −(µh(a) + νh(t, a, τ) + γh(t, a, τ))Ih(t, a, τ)

(∂t + ∂a + ∂τ )Im(t, a, τ) = −(µm(a) + νm(t, a, τ))Im(t, a, τ)

Ih(t, a, 0) = S̄h(t, a)

∫ ∞

0

∫ ∞

0
βm(t, s, τ)Im(t, s, τ)dsdτ,

Im(t, a, 0) = S̄m(t, a)

∫ ∞

0

∫ ∞

0
βh(t, s, τ)Ih(t, s, τ)dsdτ,

Im(t, 0, τ) = 0 = Ih(t, 0, τ)

(4.25)

with initial conditions in L1((0,+∞)2,R2). For the parameters, we assume that there exists µ0 > 0
such that µk(a) ≥ µ0, k ∈ {m,h} for almost every a ∈ (0,+∞) and µk ∈ L∞

+ ((0,+∞),R). We
also assume that the maps t 7→ βk(t, ·, ·) ∈ L∞

+ ((0,+∞)2,R) and t 7→ νk(t, ·, ·) ∈ L∞
+ ((0,+∞)2,R),

k ∈ {m,h}, are continuous and p-periodic. Next, we proceed as in the preceding sections. We first
rewrite (4.25) in a more convenient form. To do this, we define

I :=

(
Ih
Im

)
and ϑ(t, ·, ·) :=

(
µh(·) + νh(t, ·, ·) + γh(t, ·, ·) 0

0 µm(·) + νm(t, ·, ·)

)
and the periodic transmission matrix

β(t, ·, ·) :=
(

0 βm(t, ·, ·)
βh(t, ·, ·) 0

)
, ∀t ∈ R.

Thus, setting S̄ =

(
S̄h
S̄m

)
the system (4.25) rewrites as the following more compact form



(∂t + ∂a + ∂τ )I(t, a, τ) = −ϑ(t, a, τ)I(t, a, τ)

I(t, a, 0) = diag(S̄(t, a))
∫ ∞

0

∫ ∞

0
β(t, s, τ)I(t, s, τ)dsdτ,

I(t, 0, τ) = 0

I(0, ·, ·) = φ ∈ L1(R2
+,R2),

(4.26)
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Consider the Banach spaces

Y := L1((0,+∞),R2), Z = L1((0,+∞)2,R2)

as well has 
X := Y × Y × Z,

X0 = {0Y } × {0Y } × Z,

X1 = Y × {0Y } × {0Z}.

Let A : D(A) ⊂ X0 → X be the linear operator defined by

A

0Y
0Y
φ

 =

 −φ(0, ·)
−φ(·, 0)

−(∂a + ∂τ )φ− ϑ(·, ·)φ


with domain

D(A) = {0Y } × {0Y } ×W 1,1(R2
+,R2).

Next, we define for each t ∈ R the linear operator F(t) : X0 → X as

F(t)

0Y
0Y
φ

 =

diag(S̄(t, ·))
∫∞
0

∫∞
0 β(t, s, τ)φ(s, τ)dsdτ
0Y
0



Thus by setting v(t) :=

 0Y
0Y

I(t, ·, ·)

 we rewrite (4.26) as the following abstract Cauchy problem

dv(t)

dt
= Av(t) + F(t)v(t), t > 0, v(0) = v0.

Noting that F(t)X0 ⊂ X1, Lemma 2.2 and Remark 2.3 ensure that we can obtain the threshold dynamics
of (4.26) by determining the entire solution of the following unperturbed inhomogeneous problem

du(t)

dt
= Au(t) + f(t), t > t0, v(t0) = v0,

where f =

w
0Y
0Z

 with w ∈ Cp(R, Y ). Thus, using the notation w(t)(a) = w(t, a), the foregoing

problem (4.26) has the following explicit form
(∂t + ∂a + ∂τ )I(t, a, τ) = −ϑ(a, τ)I(t, a, τ)
I(t, a, 0) = w(t, a)

I(t, 0, τ) = 0

I(t0, ·, ·) = φ ∈ L1(R2
+,R2).

(4.27)

Integrating (4.27) along the characteristics gives

I(t, a, τ) =


e
−

∫ a
a−t+t0

ϑ(l−a+t,l,l−a+τ)dl
φ(a− t+ t0, τ − t+ t0) if a ≥ t− t0, t− t0 ≤ τ

e−
∫ a
a−τ ϑ(l−a+t,l,l−a+τ)dlw(t− τ, a− τ) if t− t0 > τ, a > τ

0 if t− t0 > a, τ ≥ a
(4.28)
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The semigroup generated by A0, the part of A in D(A), is obtained from (4.28) by setting φ ≡ 0. It is
exponentially stable so that we can obtain the unique entire mild solution to (4.26) by letting t0 → −∞
in (4.28). Thus, we deduce that the entire solution takes the following form

I(t, a, τ) =

{
e−

∫ a
a−τ ϑ(l−a+t,l,l−a+τ)dlw(t− τ, a− τ) if t ∈ R, a > τ

0 if t ∈ R, τ ≥ a

so that

F(t)

 0Y
0Y

I(t, ·, ·)

 =

diag(S̄(t, ·))
∫ +∞
0

∫∞
τ β(t, s, τ)

(
e−

∫ s
s−τ ϑ(l−s+t,l,l−s+τ)dlw(t− τ, s− τ)

)
dsdτ

0Y
0

 .

Hence, the threshold dynamics of (4.25) is given by the spectral radius of the following linear operator

(C[w](t))(a) = diag(S̄(t, a))
∫ ∞

0

∫ ∞

τ
β(t, s, τ)e−

∫ s
s−τ ϑ(l−s+t,l,l−s+τ)dlw(t− τ, s− τ)dsdτ,

for all t ∈ R, m ∈ Cp(R, Y ) with the notation w(t)(a) = w(t, a). Setting w =

(
wh

wm

)
the linear

operator C takes the following form

C[w] =
(
Cm[wm]
Ch[wh]

)
where we have set for k = h,m

(Ck[wk](t))(a) := S̄k(t, a)

∫ ∞

0

∫ ∞

τ
βk(t, s, τ)e

−
∫ s
s−τ ϑk(l−s+t,l,l−s+τ)dlwk(t− τ, s− τ)dsdτ.

Using similar arguments in [13], we deduce that r(C) − 1, r(Ch ◦ Cm) − 1 and r(Cm ◦ Ch) − 1 have the
same sign. Note that r(Ch ◦ Cm) = r(Cm ◦ Ch) is actually the basic reproduction number of (4.25); see
[28].

Declarations

Data Availability. Not applicable.

Ethical Approval. Not applicable.

Competing interests. We have no competing interests.

Authors’ contributions. All authors contributed equally to this work.

References

[1] R. M. Anderson and R. May. Infectious Diseases of Humans. Dynamics and Control. Oxford University
Press, Oxford, 1991.

[2] R. M. Anderson and R. M. May. Directly transmitted infections diseases: Control by vaccination.
Science (New York, N.Y.), 215(4536):1053–1060, Feb. 1982.

22



[3] W. Arendt, C. J. Batty, M. Hieber, and F. Neubrander. Vector-Valued Laplace Transforms and Cauchy
Problems. Springer Basel, Basel, 2011.

[4] N. Bacaër and E. H. Ait Dads. Genealogy with seasonality, the basic reproduction number, and the
influenza pandemic. Journal of Mathematical Biology, 62(5):741–762, May 2011.

[5] N. Bacaër and S. Guernaoui. The epidemic threshold of vector-borne diseases with seasonality.
Journal of Mathematical Biology, 53(3):421–436, Sept. 2006.

[6] N. Bacaër and R. Ouifki. Growth rate and basic reproduction number for population models with
a simple periodic factor. Mathematical Biosciences, 210(2):647–658, Dec. 2007.

[7] C. Chicone and Y. Latushkin. Evolution Semigroups in Dynamical Systems and Differential Equations,
volume 70 of Mathematical Surveys and Monographs. American Mathematical Society, Providence,
Rhode Island, Aug. 1999.

[8] O. Diekmann, J. A. Heesterbeek, and J. A. Metz. On the definition and the computation of the basic
reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of
Mathematical Biology, 28(4):365–382, 1990.

[9] O. Diekmann and J. A. P. Heesterbeek. Mathematical Epidemiology of Infectious Diseases: Model
Building, Analysis and Interpretation. Wiley–Blackwell, Chichester ; New York, 2000.

[10] K. Dietz. Transmission and control of arbovirus diseases. In Transmission and Control of Arbovirus
Diseases. Society for Industrial and Applied Mathematics, Philadelphia, 1975.

[11] M. Dieye, R. Djidjou-Demasse, and O. Seydi. Flow invariance for non densely defined Cauchy
problems, Oct. 2022.

[12] R. Djidjou-Demasse, A. Ducrot, and F. Fabre. Steady state concentration for a phenotypic structured
problem modeling the evolutionary epidemiology of spore producing pathogens. Mathematical
Models and Methods in Applied Sciences, 27(02):385–426, Feb. 2017.

[13] R. Djidjou-Demasse, C. Lemdjo, and O. Seydi. Global Dynamics of a Spore Producing Pathogens
Epidemic System with Nonlocal Diffusion Process. In D. Seck, K. Kangni, P. Nang, and M. Sa-
lomon Sambou, editors, Nonlinear Analysis, Geometry and Applications, Trends in Mathematics,
pages 83–120, Cham, 2022. Springer International Publishing.

[14] G. Gühring and F. Räbiger. Asymptotic properties of mild solutions of nonautonomous evolution
equations with applications to retarded differential equations. Abstract and Applied Analysis, 4:169–
194, 1999.

[15] G. Gühring, W. M. Ruess, and F. Räbiger. Linearized stability for semilinear non-autonomous evo-
lution equations with applications to retarded differential equations. Differential and Integral Equa-
tions, 13(4-6):503–527, Jan. 2000.

[16] J. a. P. Heesterbeek and K. Dietz. The concept of R0 in epidemic theory. Statistica Neerlandica,
50(1):89–110, 1996.

[17] D. Henry. Geometric Theory of Semilinear Parabolic Equations, volume 840 of Lecture Notes in Math-
ematics. Springer, Berlin, Heidelberg, 1981.

23



[18] H. Inaba. On a new perspective of the basic reproduction number in heterogeneous environments.
Journal of Mathematical Biology, 65(2):309–348, Aug. 2012.

[19] H. Inaba. The basic reproduction number R0 in time-heterogeneous environments. Journal of
Mathematical Biology, 79(2):731–764, July 2019.

[20] X. Liang, L. Zhang, and X.-Q. Zhao. Basic Reproduction Ratios for Periodic Abstract Functional
Differential Equations (with Application to a Spatial Model for Lyme Disease). Journal of Dynamics
and Differential Equations, 31(3):1247–1278, Sept. 2019.

[21] S. Lion and J. A. J. Metz. Beyond R0 Maximisation: On Pathogen Evolution and Environmental
Dimensions. Trends in Ecology & Evolution, 33(6):458–473, June 2018.

[22] Z. Liu, P. Magal, and S. Ruan. Projectors on the generalized eigenspaces for functional differential
equations using integrated semigroups. Journal of Differential Equations, 244(7):1784–1809, Apr.
2008.

[23] G. Macdonald. The analysis of the sporozoite rate. Tropical Diseases Bulletin, 49(6):569–586, June
1952.

[24] P. Magal and S. Ruan. Center Manifolds for Semilinear Equations with Non-Dense Domain and Ap-
plications to Hopf Bifurcation in Age Structured Models. American Mathematical Soc., 2009.

[25] P. Magal and S. Ruan. Theory and Applications of Abstract Semilinear Cauchy Problems, volume 201
of Applied Mathematical Sciences. Springer International Publishing, Cham, 2018.

[26] P. Magal and O. Seydi. Variation of constants formula and exponential dichotomy for nonau-
tonomous non-densely defined Cauchy problems. Canadian Journal of Mathematics, 73(5):1347–
1389, Oct. 2021.

[27] A. Rhandi. Extrapolation methods to solve non-autonomous retarded partial differential equations.
Studia Mathematica, 126(3):219–233, 1997.

[28] Q. Richard, M. Choisy, T. Lefèvre, and R. Djidjou-Demasse. Human-vector malaria transmission
model structured by age, time since infection and waning immunity. Nonlinear Analysis: Real
World Applications, 63:103393, Feb. 2022.

[29] H. R. Thieme. Semiflows generated by Lipschitz perturbations of non-densely defined operators.
Differential and Integral Equations, 3(6):1035–1066, 1990.

[30] H. R. Thieme. Spectral bound and Reproduction Number for Infinite-Dimensional Population Struc-
ture and Time Heterogeneity. SIAM Journal on Applied Mathematics, 70(1):188–211, Jan. 2009.

[31] P. van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic equi-
libria for compartmental models of disease transmission. Mathematical Biosciences, 180(1):29–48,
Nov. 2002.

[32] W. Wang and X.-Q. Zhao. Threshold Dynamics for Compartmental Epidemic Models in Periodic
Environments. Journal of Dynamics and Differential Equations, 20(3):699–717, Sept. 2008.

[33] X.-Q. Zhao. Basic Reproduction Ratios for Periodic Compartmental Models with Time Delay. Jour-
nal of Dynamics and Differential Equations, 29(1):67–82, Mar. 2017.

24


	Introduction
	Preliminaries and comments on Theorem 1.3
	Proof of Theorem 1.3
	Step 1: From the nonautonomous to an autonomous problem
	Step 2: proof of Theorem 1.3

	Applications of Theorem 1.3
	Application to an age-structured model
	Application to a delay differential equation
	Application to an evolutionary epidemiological model
	Application to a structured human-vector malaria model


