Mapping potential release areas and modelling runout distances of permafrost rock slope failures at regional scale for hazard assessment

Maëva Cathala, Florence Magnin, Ludovic Ravanel, Luuk Dorren, Frédéric
Berger, Franck Bourrier, Nicolas Zuanon, Philip Deline

To cite this version:

Maëva Cathala, Florence Magnin, Ludovic Ravanel, Luuk Dorren, Frédéric Berger, et al.. Mapping potential release areas and modelling runout distances of permafrost rock slope failures at regional scale for hazard assessment. 35th Nordic Winter Geological Meeting, May 2022, Reykjavik, Iceland. hal-03883109

HAL Id: hal-03883109

https://hal.science/hal-03883109

Submitted on 2 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mapping potential release areas and modelling runout distances of permafrost rock slope failures at regional scale for hazard assessment

 far-reaching cascading processes threatening human lives and infrastructure. Increasing knowledge on the triggering mechanism and propagation is therefore required to propose adaptation stratedelines for hazard assessment (GAPHAZ, 2017), the aims of this study are: (i) to propose a mapping approach of susceptible release areas of rock slope failures and resulting runout distances at a regional scale (French Alps), and (ii) to identify hotspots for further hazard assessment.

Statistical Anlysis

Statistical distribution of rockfall according to triggering conditions

The MBM rockfall database is used to analyse the distribution of rock slopes failures according to the permafrost (MARST) and the slope values. The results allows to determine the conditions the most prone to trigger rock slope failures.

Propagation analysis
The mobility of each rockfalls of the propagation database and the Rock the Alps database is given by the Energy Line Angle ${ }^{* 2}$ (ELA) normalize by the dimensionless area*3 (AA Dimensionless) ELA
90
90
\qquad

- Rock the Alps database Propagation database
*2 Angle between the maximum drop heigh and the maximum hori-
zontal deposition distance (from the top of the scar to the tip of the
denosit) ${ }^{* 3}$ The dimensio

The propagation database complete the $\mathbf{3 6 3 0}$ events recorded by $\quad \square$ to model.

Release areas mapping

The statistical distribution of the rockfalls according to slope and MARST are used to set up a multi-criteria GIS scheme to map potential release areas

Runout distances modelling

The RockavELA model (Rock avalanche Energy Line Angle) is used to map at regional scale the potential runout distances of rockfalls. The model is based on the Energy Line Angle and the Maximum Deviation Angle ${ }^{* 4}$ principles

Validation

The validation of the model will be realised by a sensitivity study of the different settings (e.g. lateral spread, segment length) and by measuring the error (vertical/horizontal distance) between the modelled deposition trajectories rockfall deposit from the propagation database.

Hazard assesment

This study is a first step to anticipate the location of potential rockfalls trajectory at regional scale and identify hotspots where human issues (e.g. mountainering routes, infrastructures, tourism area) could be impacted. More in-depth studies

