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1. INTRODUCTION

Experiments studying quantum systems generally follow
the prepare, evolve and measure pattern: the system is
first prepared in a known quantum state, then it evolves
unobserved for a certain period of time, and finally a
projective measurement is performed. However, it was
discovered in the 1990s that certain experimental setups
allow to continuously measure a quantum system while it
evolves (Wiseman and Milburn (2009)). Nowadays, contin-
uous measurements are frequently used by experimenters,
notably in superconducting quantum circuits (Weber et al.
(2016); Ficheux et al. (2018)). In these experiments, the
observer is constantly acquiring information about the
state of the system, and the impact of the measurement
back-action must be taken into account at every time.
The dynamics of such a continuously measured quantum
system is described by the Stochastic Master Equation
(SME) formalism.

The quantum state and/or parameters can be recon-
structed from the measured signal via quantum filtering
(Wiseman and Milburn (2009)), but this is usually com-
putationally too expensive. In practice, the experimenters
have direct access to the measured signal, so they can
trivially calculate its n-point correlation functions. We
show in this paper how these functions can be expressed
explicitly from the SME modelling the system. Thus, al-
beit not optimal from a Bayesian point of view, they are
an alternative and more practical approach than quantum
filtering for quantum state reconstruction or for parameter
estimation (see e.g. Campagne-Ibarcq et al. (2016); Six
et al. (2015)).

Several recent and older works calculate these functions
analytically in restricted cases (Barchielli and Belavkin
(1991); Korotkov (2001); Wiseman and Milburn (2009);
Xu et al. (2015); Diósi (2016); Jordan et al. (2016);
Foroozani et al. (2016); Atalaya et al. (2018)), and a

general derivation in the case of the diffusive SME was
discovered independently by Hägele and Schefczik (2018)
and Tilloy (2018) in 2018. Related calculations can also
be found in the field of condensed matter physics, which
focuses on full counting statistics, cumulants and spectral
representation (Flindt et al. (2010); Sifft et al. (2021);
Landi et al. (2023)). This paper combines the general
method developed in Tilloy (2018) to derive n-point cor-
relations for diffusive SME with their discrete-time formu-
lations presented in Rouchon (2022). It provides explicit
formulae of n-point correlations for both jump and diffu-
sive SME: formulae (49) and (50) for 2-point; (51) and (52)
for n-point. Computing these formulae for realistic signals
involve solutions of modified Lindblad master equations
as shown in equations (63) to (66). As far as we know,
such calculations are not available in the literature, in
particular for the jump SME. Furthermore, we detail all
the ingredients necessary for the practical calculation of
these n-point correlation functions on arbitrary quantum
systems, including detector imperfections and for realistic
(binned or filtered) experimental data. For clarity, the
presentation focuses mainly on a single detector, but we
also give the formula to derive n-point correlations be-
tween diffusive and/or jump signals coming from multiple
different detectors.

This paper is organised as follows. In section 2, we recall
the structure of continuous-time jump or diffusive SMEs,
and we present their discrete-time formulations based on
partial Kraus maps. In section 3, we derive the general
correlations formula from the underlying SME and classi-
cal post-filtering. This derivation is almost straightforward
in the discrete-time formulation, and it directly provides
explicit formulae in the continuous-time formulation. In
section 4 we detail a novel numerical method for practi-
cally computing the correlation functions. Section 5 briefly
introduces an example application.
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∗ Alice & Bob, 53 Bd du Général Martial Valin, 75015 Paris, France
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2. THE SME FORMALISM

A SME is a non-linear and non-determinsitic differential
equation which determines the evolution of the system
state ρt at time t, conditioned on the detector measure-
ment record. Different measurement schemes lead to differ-
ent types of evolution: the state can evolve discontinuously,
with sudden jumps at random time, which is modeled
by a jump SME, or continuously in state space, which
is modeled by a diffusive SME. In quantum optics for
instance, the first situation corresponds to photon count-
ing schemes (Gardiner et al. (2004)) and the second to
homodyne or heterodyne detection schemes (Wiseman and
Milburn (1993)).

In this section, we first introduce the jump and diffusive
SMEs, then we give an equivalent discrete-time formula-
tion, and we conclude by explaining the link between SMEs
and the linear and deterministic Lindblad master equation
describing unobserved quantum systems.

2.1 Jump SME

When the result of the measurement at time t is either a
detection event or a no-detection event, the system state
undergoes abrupt jumps from one state to another upon
detection. The discrete-valued continuous-time stochastic
process driving the SME is the increment dNt, taking
the value 0 for no-detection and 1 for detection with
probabilities depending on the system state at time t:

P[dNt = 0] = 1 − P[dNt = 1], (1)

P[dNt = 1] =
(

θ + ηTr
[

LρtL
†
])

dt, (2)

where L is an arbitrary operator characterising the detec-
tor, θ ≥ 0 is the dark count rate and 0 < η ≤ 1 is the
detector efficiency.

The evolution of ρt is described by the jump SME (Rou-
chon (2022)):

dρt = − i[H, ρt]dt + D[L](ρt)dt

+ G[L](ρt)
(

dNt −
(

θ + ηTr
[

LρtL
†
])

dt
)

,
(3)

where H is the system Hamiltonian, D[L](ρ) = LρL† −
1
2 L†Lρ − 1

2 ρL†L is the standard dissipator, and the super-
operator G[L] describing the back-action of the measure-
ment is defined by:

G[L](ρ) =
θρ + ηLρL†

θ + ηTr[LρL†]
− ρ. (4)

The continuous-time signal measured by the detector is
It = dYt/dt, where dYt is directly defined as the stochastic
increment in the case of the jump SME:

dYt = dNt. (5)

The signal It is the rate of change of the counting process
Nt, which counts the number of jumps that occurred in
the time interval [0, t].

An experiment corresponds to a specific realisation of the
stochastic process dNt, giving rise to a quantum trajectory
which describes the path followed by the state of the
quantum system over time. This trajectory is conditioned
on the measurement results: we can replace the stochastic
term dNt by the measured signal values at each time in (3),
and thus reconstruct ρt from the measurement record.

2.2 Diffusive SME

When the result of the measurement at time t takes
a continuous range of values, the system state evolves
continuously in state space. The real-valued continuous-
time stochastic process driving the SME is the Wiener
process dWt, taking independent Gaussian distributed
increment.

The evolution of ρt is described by the diffusive SME in
Itô form (Jacobs and Steck (2006)):

dρt = −i[H, ρt]dt + D[L](ρt)dt +
√

ηM[L](ρt)dWt, (6)

where the superoperator M[L] describing the back-action
of the measurement is defined by:

M[L](ρ) = Lρ + ρL† − Tr
[

(L + L†)ρ
]

ρ. (7)

Similarly, the continous-time signal measured by the de-
tector It = dYt/dt verifies:

dYt =
√

ηTr
[

(L + L†)ρt

]

dt + dWt. (8)

Sometimes the signal is defined with a different but equiv-
alent normalisation dY ′

t = dYt/(2
√

η).

As for the jump SME, an experiment corresponds to a
specific realisation of the stochastic process dWt, giving
rise to a quantum trajectory that can be reconstructed
from the measured signal.

2.3 Discrete time formulation

We can derive both SMEs by taking the limit of infinitely
frequent and infinitely weak projective measurements (At-
tal and Pautrat (2006); Attal and Pellegrini (2010)). We
use such a discrete-time picture with a slightly different
formulation as described in Rouchon (2022).

In this formulation, the measurement process is described
by a quantum instrument, which combines a quantum
measurement characterised by a positive operator-valued
measure (POVM) and a classical uncertainty on the mea-
surement result accounting for imperfections of the detec-
tor. A map depending on the measurement result is applied
at each small time step dt:

ρk+1 =
Krk+1

(ρk)

Tr
[

Krk+1
(ρk)

] , (9)

where ρk is the state of the system at step k (at time
t = kdt), and Krk+1

is a linear map depending on rk+1,
the measurement result at step k + 1.

For both SMEs, we define the corresponding quantum
instrument by specifying the linear map Kr associated
with each possible measurement result r. The continuous-
time formulations (3) and (6) are recovered by taking the
limit of infinitesimally small time step, and expanding the
expression ρk+1 − ρk ∼ ρt+dt − ρt = dρt to first order in
dt.

Jump SME For the jump SME, the measurement result
is either 0 or 1, and the corresponding maps are:

K0(ρ) = (1 − θdt)M0ρM†
0 + (1 − η)M1ρM†

1 , (10)

K1(ρ) = θdtM0ρM†
0 + ηM1ρM†

1 , (11)

with

M0 = I − iHdt − 1

2
L†Ldt, (12)

M1 = L
√

dt. (13)
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2. THE SME FORMALISM

A SME is a non-linear and non-determinsitic differential
equation which determines the evolution of the system
state ρt at time t, conditioned on the detector measure-
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ent types of evolution: the state can evolve discontinuously,
with sudden jumps at random time, which is modeled
by a jump SME, or continuously in state space, which
is modeled by a diffusive SME. In quantum optics for
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ing schemes (Gardiner et al. (2004)) and the second to
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Milburn (1993)).
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SMEs, then we give an equivalent discrete-time formula-
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the value 0 for no-detection and 1 for detection with
probabilities depending on the system state at time t:

P[dNt = 0] = 1 − P[dNt = 1], (1)

P[dNt = 1] =
(

θ + ηTr
[

LρtL
†
])

dt, (2)

where L is an arbitrary operator characterising the detec-
tor, θ ≥ 0 is the dark count rate and 0 < η ≤ 1 is the
detector efficiency.

The evolution of ρt is described by the jump SME (Rou-
chon (2022)):

dρt = − i[H, ρt]dt + D[L](ρt)dt

+ G[L](ρt)
(

dNt −
(

θ + ηTr
[

LρtL
†
])

dt
)

,
(3)

where H is the system Hamiltonian, D[L](ρ) = LρL† −
1
2 L†Lρ − 1

2 ρL†L is the standard dissipator, and the super-
operator G[L] describing the back-action of the measure-
ment is defined by:

G[L](ρ) =
θρ + ηLρL†

θ + ηTr[LρL†]
− ρ. (4)

The continuous-time signal measured by the detector is
It = dYt/dt, where dYt is directly defined as the stochastic
increment in the case of the jump SME:

dYt = dNt. (5)

The signal It is the rate of change of the counting process
Nt, which counts the number of jumps that occurred in
the time interval [0, t].

An experiment corresponds to a specific realisation of the
stochastic process dNt, giving rise to a quantum trajectory
which describes the path followed by the state of the
quantum system over time. This trajectory is conditioned
on the measurement results: we can replace the stochastic
term dNt by the measured signal values at each time in (3),
and thus reconstruct ρt from the measurement record.

2.2 Diffusive SME

When the result of the measurement at time t takes
a continuous range of values, the system state evolves
continuously in state space. The real-valued continuous-
time stochastic process driving the SME is the Wiener
process dWt, taking independent Gaussian distributed
increment.

The evolution of ρt is described by the diffusive SME in
Itô form (Jacobs and Steck (2006)):

dρt = −i[H, ρt]dt + D[L](ρt)dt +
√

ηM[L](ρt)dWt, (6)

where the superoperator M[L] describing the back-action
of the measurement is defined by:

M[L](ρ) = Lρ + ρL† − Tr
[

(L + L†)ρ
]

ρ. (7)

Similarly, the continous-time signal measured by the de-
tector It = dYt/dt verifies:

dYt =
√

ηTr
[

(L + L†)ρt

]

dt + dWt. (8)

Sometimes the signal is defined with a different but equiv-
alent normalisation dY ′

t = dYt/(2
√

η).

As for the jump SME, an experiment corresponds to a
specific realisation of the stochastic process dWt, giving
rise to a quantum trajectory that can be reconstructed
from the measured signal.

2.3 Discrete time formulation

We can derive both SMEs by taking the limit of infinitely
frequent and infinitely weak projective measurements (At-
tal and Pautrat (2006); Attal and Pellegrini (2010)). We
use such a discrete-time picture with a slightly different
formulation as described in Rouchon (2022).

In this formulation, the measurement process is described
by a quantum instrument, which combines a quantum
measurement characterised by a positive operator-valued
measure (POVM) and a classical uncertainty on the mea-
surement result accounting for imperfections of the detec-
tor. A map depending on the measurement result is applied
at each small time step dt:

ρk+1 =
Krk+1

(ρk)

Tr
[

Krk+1
(ρk)

] , (9)

where ρk is the state of the system at step k (at time
t = kdt), and Krk+1

is a linear map depending on rk+1,
the measurement result at step k + 1.

For both SMEs, we define the corresponding quantum
instrument by specifying the linear map Kr associated
with each possible measurement result r. The continuous-
time formulations (3) and (6) are recovered by taking the
limit of infinitesimally small time step, and expanding the
expression ρk+1 − ρk ∼ ρt+dt − ρt = dρt to first order in
dt.

Jump SME For the jump SME, the measurement result
is either 0 or 1, and the corresponding maps are:

K0(ρ) = (1 − θdt)M0ρM†
0 + (1 − η)M1ρM†

1 , (10)

K1(ρ) = θdtM0ρM†
0 + ηM1ρM†

1 , (11)

with

M0 = I − iHdt − 1

2
L†Ldt, (12)

M1 = L
√
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The probability of obtaining the measurement result r at
step k + 1 depends only on the preceding state ρk:

P[rk+1 = r | ρk] = Tr[Kr(ρk)]. (14)

We can evaluate the probability of obtaining the measure-
ment record {r1, r2} knowing the initial state ρ0:

P[r1, r2 | ρ0] = P[r1 | ρ0] × P[r2 | r1, ρ0].

The first term is given by (14): P[r1 | ρ0] = Tr[Kr1
(ρ0)].

To evaluate the second term we use (9) to write the state
at step k = 1 conditioned on the measurement result r1:
ρ1 = Kr1

(ρ0)/Tr[Kr1
(ρ0)]. Then using (14) again:

P[r2 | r1, ρ0] = Tr[Kr2
(ρ1)] = Tr

[

Kr2

(

Kr1
(ρ0)

Tr[Kr1
(ρ0)]

)]

.

Combining the two terms, we get:

P[r1, r2 | ρ0] = Tr[Kr2
Kr1

(ρ0)]. (15)

This result directly extends to the probability of obtaining
the measurement record {r1, . . . , rN }:

P[r1, . . . , rN | ρ0] = Tr[KrN
. . . Kr1

(ρ0)]. (16)

Diffusive SME For the diffusive SME, the measurement
result takes a continuous range of values and the map
corresponding to the measurement result r is:

Kr(ρ) = MrρM†
r + (1 − η)LρL†dt, (17)

with

Mr = I − iHdt − 1

2
L†Ldt +

√
ηLr. (18)

The equivalent of (14) is given by the probability density
to get a measurement result in [r, r + dr[ at step k + 1
knowing the state ρk:

dP
[

rk+1 ∈ [r, r + dr[ | ρk

]

= dµ(r)Tr[Kr(ρk)], (19)

where dµ(r) is the Gaussian measure centered on 0 with
variance dt (Jacobs and Steck (2006); Rouchon (2022)):

dµ(r) =
1√

2πdt
exp

(−r2

2dt

)

dr. (20)

The same calculations as for the jump SME give the proba-
bility density to get the measurement record {r1, . . . , rN }:

dP[r1, . . . , rN | ρ0] =

dµ(r1) . . . dµ(rN )Tr[KrN
. . . Kr1

(ρ0)].
(21)

2.4 Unconditioned evolution

When the measurement results are unknown to the ob-
server, for example for a purely dissipative process or for
unread measurements, the system dynamics is determinis-
tic. The evolution of the unconditioned state ρt is recovered
by averaging over all possible quantum trajectories —
or equivalently over all possible measurement records —
weighted by their probability of occurrence:

ρt = E[ρt], (22)

where E denotes the statistical average over the stochastic
process driving the SME. Note that the unconditioned
state does not depend on the stochastic process averaged
over (jump or diffusive): different types of stochastic
evolution lead to the same ensemble average trajectory.

The evolution of ρt is then described by the linear and
deterministic Lindblad master equation (Haroche and Rai-
mond (2006)):

dρt

dt
= −i[H, ρt] + D[L](ρt) = L(ρt), (23)

where L is the system Lindbladian, the superoperator
generating the evolution of the system when the observer
does not know the measured signal. For time-independent
Lindbladian, the formal solution reads:

ρt = etL(ρ0). (24)

For time-dependent Lindbladian Lt, the solution is written
using the time-ordered exponential:

ρt = T exp

(∫ t

0

Lt′dt′

)

(ρ0), (25)

where T is the time-ordering symbol.

Similarly to the jump and diffusive SME, the Lindblad
master equation has a discrete-time formulation. The
general evolution of an unobserved open quantum system
between two time steps is characterised by a completely
positive trace preserving (CPTP) linear map K (also called
quantum channel or dynamical map):

ρk+1 = K(ρk). (26)

In this discrete-time formulation, we also recover the
unconditionned evolution by averaging over all possible
measurement outcomes at each step:

ρk+1 = E[ρk+1 | ρk]. (27)

As in the continuum, we find the same CPTP map K,
that is the same unconditionned state dynamics, when
averaging over either of the stochastic processes (jump or
diffusive):

K(ρ) = K0(ρ) + K1(ρ) =

∫ ∞

−∞

dµ(r)Kr(ρ). (28)

In the continuous-time limit we recover the evolution
generated by the system Lindbladian L.

3. CORRELATION FUNCTIONS

The statistics of the measured signal are fully characterised
by its correlation functions. The n-point correlation func-
tion of the signal It is defined by:

Ct1,t2,...,tn
= E[It1

It2
. . . Itn

| ρ0]. (29)

The one-point correlation function is the signal mean, and
the two-point correlation function is the signal autocorre-
lation.

The signal It is a singular quantity, in the case of the jump
SME it can be loosely thought of as a series of Dirac delta
distributions at the times of detection, and in the case
of the diffusive SME as white noise with a trend. This
quantity is better defined when it is integrated against a
smooth test function f :

If =

∫

ftdYt. (30)

In practice, the signal is obtained from a finite bandwidth
detection chain, and is therefore effectively filtered. Ex-
perimentally, the smooth test function f then corresponds
to the transfer function of the detection chain. In the
following, we will refer to It as the sharp signal, and to
If as the filtered signal.

The filtered signal If is the only quantity actually avail-
able to an experimenter. Thus, we are also interested in
calculating its correlation functions:

Cf1,f2,...,fn
= E[If1

If2
. . . Ifn

| ρ0]. (31)

The objective of this section is to give an analytical for-
mula depending only on the SME for the correlation func-
tions of the sharp and filtered signal. We first introduce the
generating functional of the correlation functions, allowing
us to evaluate both Ct1,...,tn

and Cf1,...,fn
. We then deduce

the formula for the correlation functions using the discrete-
time formulation and its continuous limit. The remainder
of the section is devoted to examples of how to calculate
basic correlation functions using this general formula, and
we finally generalise the result to the case of multiple
detectors and mixed jump-diffusive SME.

3.1 Generating functional

The sharp and filtered signal correlation functions can
both be determined using the generating functional Z(j)
defined by (Barchielli and Gregoratti (2009); Tilloy
(2018)):

Z(j) = E

�

exp

�

� u=T

u=0

judYu

�

�

�

� ρ0

�

, (32)

where j is a smooth test function and T is a large time,
typically larger than any time involved in the correlation
functions we wish to evaluate. This generating functional
is defined analogously to the moment-generating function
M(t) = E

�

etX
�

of a random variable X, whose n-th
derivative yields the n-th moment of X:

E[Xn] =
dn

dtn
M(t)

�

�

�

t=0
. (33)

Sharp signal correlations The functional derivative of
Z(j) with respect to jt for t ∈ [0, T ] reads:

δ

δjt
Z(j) = E

�

dYt

dt
exp

�

� T

0

judYu

�

�

�

� ρ0

�

. (34)

Thus for t1 < t2 < · · · < tn, the sharp signal correlation
function can be expressed as:

Ct1,...,tn
=

δ

δjt1

· · · δ

δjtn

Z(j)
�

�

�

j=0
. (35)

The correlation functions involving equal time contribu-
tions are not well defined for the sharp signal, because
they yield Dirac delta distribution. However, these contri-
butions should not be missed when evaluating the filtered
signal correlation functions.

Filtered signal correlations The correlation functions of
the filtered signals If1

, . . . , Ifn
are given by the standard

partial derivative of Z(α1f1 + · · · + αnfn) with respect to
α1, . . . , αn:

Cf1,...,fn
=

∂

∂α1
· · · ∂

∂αn
Z(α1f1 + · · · + αnfn)

�

�

�

α1,...,αn=0
.

(36)

3.2 Derivation of the analytical formula

Our goal is to find an analytical formula for the generating
functional Z(j). In this subsection we give the proof for the
jump SME by using the discrete-time formulation, and ex-
plain how it extends to the diffusive SME. For a calculation
in the diffusive case relying only on continuous stochastic
calculus techniques without resorting to discretisation, see
Tilloy (2018).

In the discrete-time formulation we divide the time T in
N steps of duration dt = T/N , Z(j) then reads:

Z(j) = E

�

exp

�

N
�

k=1

jkrk

�

�

�

� ρ0

�

, (37)

where jk is the test function value at step k (at time
t = kdt).

To evaluate the expectation value in Z(j), we need to
average over all possible measurement records weighted
by their probability of occurrence. In the case of the jump
SME, the measurement result rk at step k is either 0 or 1,
so:

Z(j) =
�

rk∈{0,1}

P[r1, . . . , rN | ρ0] exp

�

N
�

k=1

jkrk

�

. (38)

The probability of a specific measurement record is given
by (16): P[r1, . . . , rN | ρ0] = Tr[KrN

. . . Kr1
(ρ0)]. Now we

split the exponential, reorder and regroup the terms to
get the final result:

Z(j) =
�

rk∈{0,1}

Tr[KrN
. . . Kr1

(ρ0)]
N

�

k=1

exp(jkrk) (39)

= Tr

�





�

rN ∈{0,1}

KrN
ejN rN



 . . .

. . .





�

r1∈{0,1}

Kr1
ej1r1



 (ρ0)

�

(40)

= Tr
�

(K0 + K1ejN ) . . . (K0 + K1ej1)(ρ0)
�

(41)

= Tr[ΦjN
. . . Φj1

(ρ0)], (42)

with Φjk
a linear map defined by:

Φjk
(ρ) = (K0 + K1ejk )(ρ)

= ρ +
�

L(ρ) + (ejk − 1) (θρ + ηL×(ρ))
�

dt, (43)

where we defined the superoperator L×(ρ) = LρL†.

By taking the limit of infinitesimally small time step, we
have:

Z(j) = Tr

�

T exp

�

� T

0

Lju
du

�

(ρ0)

�

, (44)

with Ljt
identified from (43) as the generator of the

evolution:

Ljt
= L + (ejt − 1) (θI + ηL×) . (45)

The calculations are very similar in the case of the diffusive
SME: replacing sums by integrals over the Gaussian mea-
sure (20) and using the partial Kraus map defined by (17)
and (18), we obtain the same formula for Z(j) where the
generator of the evolution Ljt

is now:

Ljt
= L +

√
ηjtL+ +

jt
2

2
I, (46)

where we defined the superoperator L+(ρ) = Lρ + ρL†.

Note that the expression of Z(j) depends only on the
initial state and on the SME describing the system.

3.3 Sharp signal correlation functions

In this subsection, we explain how to calculate the cor-
relation functions of the sharp signal using the analytical



	 Pierre Guilmin  et al. / IFAC PapersOnLine 56-2 (2023) 5164–5170	 5167

The objective of this section is to give an analytical for-
mula depending only on the SME for the correlation func-
tions of the sharp and filtered signal. We first introduce the
generating functional of the correlation functions, allowing
us to evaluate both Ct1,...,tn

and Cf1,...,fn
. We then deduce

the formula for the correlation functions using the discrete-
time formulation and its continuous limit. The remainder
of the section is devoted to examples of how to calculate
basic correlation functions using this general formula, and
we finally generalise the result to the case of multiple
detectors and mixed jump-diffusive SME.

3.1 Generating functional

The sharp and filtered signal correlation functions can
both be determined using the generating functional Z(j)
defined by (Barchielli and Gregoratti (2009); Tilloy
(2018)):

Z(j) = E

�

exp

�

� u=T

u=0

judYu

�

�

�

� ρ0

�

, (32)

where j is a smooth test function and T is a large time,
typically larger than any time involved in the correlation
functions we wish to evaluate. This generating functional
is defined analogously to the moment-generating function
M(t) = E

�

etX
�

of a random variable X, whose n-th
derivative yields the n-th moment of X:

E[Xn] =
dn

dtn
M(t)

�

�

�

t=0
. (33)

Sharp signal correlations The functional derivative of
Z(j) with respect to jt for t ∈ [0, T ] reads:

δ
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dYt

dt
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� T

0

judYu

�

�

�

� ρ0

�

. (34)

Thus for t1 < t2 < · · · < tn, the sharp signal correlation
function can be expressed as:

Ct1,...,tn
=

δ

δjt1

· · · δ

δjtn

Z(j)
�

�

�

j=0
. (35)

The correlation functions involving equal time contribu-
tions are not well defined for the sharp signal, because
they yield Dirac delta distribution. However, these contri-
butions should not be missed when evaluating the filtered
signal correlation functions.

Filtered signal correlations The correlation functions of
the filtered signals If1

, . . . , Ifn
are given by the standard

partial derivative of Z(α1f1 + · · · + αnfn) with respect to
α1, . . . , αn:

Cf1,...,fn
=

∂

∂α1
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Z(α1f1 + · · · + αnfn)
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α1,...,αn=0
.

(36)

3.2 Derivation of the analytical formula

Our goal is to find an analytical formula for the generating
functional Z(j). In this subsection we give the proof for the
jump SME by using the discrete-time formulation, and ex-
plain how it extends to the diffusive SME. For a calculation
in the diffusive case relying only on continuous stochastic
calculus techniques without resorting to discretisation, see
Tilloy (2018).

In the discrete-time formulation we divide the time T in
N steps of duration dt = T/N , Z(j) then reads:

Z(j) = E
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N
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k=1

jkrk
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, (37)

where jk is the test function value at step k (at time
t = kdt).

To evaluate the expectation value in Z(j), we need to
average over all possible measurement records weighted
by their probability of occurrence. In the case of the jump
SME, the measurement result rk at step k is either 0 or 1,
so:

Z(j) =
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rk∈{0,1}

P[r1, . . . , rN | ρ0] exp
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N
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k=1

jkrk

�

. (38)

The probability of a specific measurement record is given
by (16): P[r1, . . . , rN | ρ0] = Tr[KrN

. . . Kr1
(ρ0)]. Now we

split the exponential, reorder and regroup the terms to
get the final result:

Z(j) =
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
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
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
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(40)
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(K0 + K1ejN ) . . . (K0 + K1ej1)(ρ0)
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(ρ0)], (42)

with Φjk
a linear map defined by:
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(ρ) = (K0 + K1ejk )(ρ)

= ρ +
�

L(ρ) + (ejk − 1) (θρ + ηL×(ρ))
�

dt, (43)

where we defined the superoperator L×(ρ) = LρL†.

By taking the limit of infinitesimally small time step, we
have:

Z(j) = Tr

�

T exp

�

� T

0

Lju
du

�

(ρ0)

�

, (44)

with Ljt
identified from (43) as the generator of the

evolution:

Ljt
= L + (ejt − 1) (θI + ηL×) . (45)

The calculations are very similar in the case of the diffusive
SME: replacing sums by integrals over the Gaussian mea-
sure (20) and using the partial Kraus map defined by (17)
and (18), we obtain the same formula for Z(j) where the
generator of the evolution Ljt

is now:

Ljt
= L +

√
ηjtL+ +

jt
2

2
I, (46)

where we defined the superoperator L+(ρ) = Lρ + ρL†.

Note that the expression of Z(j) depends only on the
initial state and on the SME describing the system.

3.3 Sharp signal correlation functions

In this subsection, we explain how to calculate the cor-
relation functions of the sharp signal using the analytical
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formula for Z(j). The calculations for filtered signals are
discussed in section 4.

We assume that the Lindbladian does not depend on
time to simplify the expressions (the extension to time-
dependent Lindbladian is straightforward). In the follow-
ing calculations we also use the trace-preserving property
of the Lindbladian evolution: Tr

[

etL(ρ)
]

= Tr[ρ] = 1.

Signal mean The one-point correlation function for the
jump SME reads:

Ct =
δ

δjt
Z(j)

∣

∣

∣

j=0

= Tr

[

T exp

(

∫ T

t

Lju
du

)

ejt(θI + ηL×)

T exp

(∫ t

0

Lju
du

)

(ρ0)

]∣

∣

∣

∣

∣

j=0

= θ + ηTr
[

L×etL(ρ0)
]

. (47)

And for the diffusive SME:

Ct =
√

ηTr
[

L+etL(ρ0)
]

. (48)

Signal autocorrelation For t1 < t2, the two-point corre-
lation function for the jump SME reads:

Ct1,t2
=

δ

δjt1

δ

δjt2

Z(j)
∣

∣

∣

j=0

= Tr
[

(θI + ηL×)e(t2−t1)L(θI + ηL×)et1L(ρ0)
]

= θ2 + η2Tr
[

L×e(t2−t1)LL×et1L(ρ0)
]

(49)

+ θη
(

Tr
[

L×et1L(ρ0)
]

+ Tr
[

L×et2L(ρ0)
])

.

And for the diffusive SME:

Ct1,t2
= ηTr

[

L+e(t2−t1)LL+et1L(ρ0)
]

. (50)

Multipoint correlation function More generally for dis-
tinct times t1 < · · · < tn, the n-point correlation function
for the jump SME reads:

Ct1,...,tn
= Tr

[

(θI + ηL×)e(tn−tn−1)L . . .

. . . (θI + ηL×)et1L(ρ0)
]

.
(51)

And for the diffusive SME:

Ct1,...,tn
= ηn/2Tr

[

L+e(tn−tn−1)L . . . L+et1L(ρ0)
]

. (52)

The exact result is thus obtained by inserting specific
superoperators at the correlation times (θI + ηL× for
the jump SME and

√
ηL+ for the diffusive SME), and

evolving the system with the ensemble-averaged evolution
in-between.

3.4 Generalisation to mixed jump-diffusive SME and
multiple detectors

We generalise the analytical formula of Z(j) to the case
of mixed jump-diffusive SME with multiple detectors,
when the quantum system is continuously measured by
nµ detectors with discrete-valued measurement results,
resulting in a jump-type evolution, and by nν detector
with continuous-valued measurement results, resulting in
a diffusive-type evolution.

The general jump-diffusive SME with multiple detectors
reads:

dρt = −i[H, ρt]dt +
∑

µ

D[Vµ](ρt)dt +
∑

ν

D[Lν ](ρt)dt

+
∑

µ

G[Vµ](ρt)
(

dNµ,t −
(

θµ + ηµTr
[

VµρtV
†

µ

]

dt
))

+
∑

ν

√
ηνM[Lν ](ρt)dWν,t, (53)

where dNµ,t are independent stochastic increments and
dWν,t are independent Wiener processes. The observer has
access to nµ + nν signals:

{

Iµ,t =
dYµ,t

dt
, Jν,t =

dZν,t

dt

}

µ∈�1,nµ�,ν∈�1,nν�

, (54)

with

dYµ,t = dNµ,t, (55)

dZν,t =
√

ηνTr
[

(Lν + L†
ν)ρt

]

dt + dWν,t. (56)

The generating functional Z(j) has the same expression,
where j is now the set of test functions each associated
with a detector: j = {jµ, jν}µ∈�1,nµ�,ν∈�1,nν�. The genera-
tor of the evolution Ljt

reads:

Ljt
= L +

∑

µ

(ejµ,t − 1) (θµI + ηµVµ,×)

+
∑

ν

(√
ηνjν,tLν,+ +

jν,t
2

2
I

)

.

(57)

For example, the two-point correlation function for t1 < t2

between the jump-type detector indexed µ and the
diffusive-type detector indexed ν reads:

E[Iµ,t1
Jν,t2

] = Tr
[√

ηνLν,+e(t2−t1)L

(θµI + ηµVµ,×)et1L(ρ0)
]

.
(58)

4. PRACTICAL COMPUTATION FOR REALISTIC
DATA IN THE DIFFUSIVE CASE

In this section we detail a novel numerical method for
practically computing analytical correlation functions on
experimental data. We use a simple but easily generalis-
able example to explain the methodology.

In a common experimental setup, the detector consists
of a chain of finite bandwidth amplifiers concluded by
an analogue-to-digital converter (ADC), which converts
the analogue signal into a discrete signal. This amplified
and digitised output signal is usually integrated against a
rectangular window of duration ∆t much longer than the
inverse of the ADC sampling rate. Thus from a practical
point of view, the discrete-time signal Ik available to an
experimenter is simply the integral of the continuous-time
signal It against a rectangular window of duration ∆t (a
time bin):

Ik =

∫ (k+1)∆t

k∆t

dYt. (59)

Let us illustrate how to evaluate the two-point correlation
function of this integrated signal in a slightly more general
setting, when the integration windows partially overlap.
This example illustrates the importance of not missing
the equal time contributions when evaluating correlation
functions of the filtered signal. We consider the signals I1

t = 0 time

Ω1 Ω2

Fig. 1. Overlapping integration windows

integrated on some time interval Ω1 and I2 integrated on
some time interval Ω2 (see figure 1):

Im =

∫

t∈Ωm

dYt =

∫

1Ωm
(t)dYt, (60)

where 1Ω is the rectangular window defined by 1Ω(t) = 1
if t ∈ Ω and 1Ω(t) = 0 otherwise.

We consider a system whose evolution is described by
a diffusive SME, and for simplicity we assume that the
Lindbladian does not depend on time.

It is tempting to evaluate the two-point correlation func-
tion naively by taking partial derivatives of the generating
functional explicitly as in (36):

CI1,I2
= ∂α1

∂α2
Z(α11Ω1

+ α21Ω2
)
∣

∣

∣

α1,α2=0

=

∫

Ω1∩ Ω2

dt

+ η

∫∫

Ω1,Ω2,t1≤t2

dt1dt2Tr
[

L+e(t2−t1)LL+et1L(ρ0)
]

+ η

∫∫

Ω1,Ω2,t1>t2

dt1dt2Tr
[

L+e(t1−t2)LL+et2L(ρ0)
]

,

where we use the abbreviated notation ∂α = ∂
∂α for

the partial derivative. Note the overlapping term for
t ∈ Ω1 ∩ Ω2 coming from the equal time contributions of
the sharp signal. One could then evaluate this expres-
sion numerically by i) discretising the double integrals ii)
evaluating the trace integrand at each quadrature point
(e.g. by diagonalising L and evaluating the exponentials
exactly). This is prohibitively expensive for large Hilbert
space dimensions and correlation functions involving more
than two points.

We propose a faster way to compute such correlation
functions, which requires no discretisation when the filter
is a simple binning as we assume here. We go back to the
generating functional and pull the derivatives inside the
trace:

CI1,I2
= ∂α1

∂α2
Tr

[

T exp

(

∫ T

0

Lju
du

)

(ρ0)

]∣

∣

∣

∣

∣

α1,α2=0

= Tr

[

∂α1
∂α2

ρj
T

∣

∣

∣

α1,α2=0

]

= Tr
[

ρ
(1,2)
T

]

, (61)

where j = α11Ω1
+ α21Ω2

and ρj
t is the solution to the

ordinary differential equation (ODE) dρj
t/dt = Ljt

(ρj
t ).

To compute the derivatives of ρj
T with respect to α1, α2,

we simply (forward) differentiate the ODE:

d

dt
ρ

(1,2)
t = ∂α1

∂α2

(

Ljt
(ρj

t )
)∣

∣

∣

α1,α2=0
. (62)

Introducing the partial derivatives

ρ
(1)
t = ∂α1

ρj
t

∣

∣

∣

α1,α2=0
and ρ

(2)
t = ∂α2

ρj
t

∣

∣

∣

α1,α2=0
,

and using the explicit expression of Ljt
from (46), we

obtain the system of coupled linear ODEs describing the

evolution of four fictitious states ρt, ρ
(1)
t , ρ

(2)
t and ρ

(1,2)
t :

d

dt
ρt = Ljt

(ρj
t )

∣

∣

∣

α1,α2=0
= L(ρt), (63)

d

dt
ρ

(1)
t = ∂α1

(

Ljt
(ρj

t )
)∣

∣

∣

α1,α2=0

= L(ρ
(1)
t ) + 1Ω1

(t)
√

ηL+(ρt), (64)

d

dt
ρ

(2)
t = ∂α2

(

Ljt
(ρj

t )
)∣

∣

∣

α1,α2=0

= L(ρ
(2)
t ) + 1Ω2

(t)
√

ηL+(ρt), (65)

d

dt
ρ

(1,2)
t = ∂α1

∂α2

(

Ljt
(ρj

t )
)∣

∣

∣

α1,α2=0

= L(ρ
(1,2)
t ) + 1Ω1

(t)
√

ηL+(ρ
(2)
t ) (66)

+ 1Ω2
(t)

√
ηL+(ρ

(1)
t ) + 1Ω1∩ Ω2

(t)ρt.

To obtain ρ
(1,2)
T , we solve this system linear ODE (which

we see simply as a larger linear ODE) with initial condition

ρt=0 = ρ0 and ρ
(1)
t=0 = ρ

(2)
t=0 = ρ

(1,2)
t=0 = 0 from time 0 to T .

This is particularly economical numerically, because the
generator of the linear ODE is piecewise constant. We
may thus obtain the final state by four successive expo-
nentiation of the generator, corresponding to the evolution
before Ω1, on Ω1\Ω2, on Ω1 ∩ Ω2 and finally on Ω2\Ω1 (the
evolution for times after Ω2 is trace-preserving and thus
does not need to be computed).

For large Hilbert space dimensions, one does not need
to compute the exponential explicitly, but simply its
action on the initial state. This can be done efficiently
using Krylov subspace methods. We propose an example
implementation in an elementary Julia script available
at https://github.com/PierreGuilmin/continu
ous-quantum-measurement-correlations using the
QuantumOptics.jl library (Krämer et al. (2018)) and the
KrylovKit.jl library (https://github.com/Jutho/Krylo
vKit.jl).

For more general filters, when the generator is not piece-
wise constant, our method remains practical and one may
simply solve the time-dependent ODEs (63) to (66) with
a high-order Runge-Kutta discretisation.

5. APPLICATION

The main practical application of these calculations is
to infer, from n-point correlations given by experimental
measurement data, some key parameters appearing in the
modelling SME (e.g. typical transition frequency in the
Hamiltonian H, detection efficiency η or dark count rate
θ).

Our formulation enables efficient fitting and optimisation
algorithms, based for example on gradient computations
via adjoint methods. Moreover, imperfections of the de-
tection chain can be directly included in the model via the
filter function f . In the end, this makes the estimation of
parameters from realistic experimental correlation func-
tions practical, even for Hilbert space dimensions ∼ 100
typically arising in bosonic problems.
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integrated on some time interval Ω1 and I2 integrated on
some time interval Ω2 (see figure 1):

Im =

∫

t∈Ωm

dYt =

∫

1Ωm
(t)dYt, (60)

where 1Ω is the rectangular window defined by 1Ω(t) = 1
if t ∈ Ω and 1Ω(t) = 0 otherwise.

We consider a system whose evolution is described by
a diffusive SME, and for simplicity we assume that the
Lindbladian does not depend on time.

It is tempting to evaluate the two-point correlation func-
tion naively by taking partial derivatives of the generating
functional explicitly as in (36):

CI1,I2
= ∂α1

∂α2
Z(α11Ω1

+ α21Ω2
)
∣

∣
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α1,α2=0

=

∫
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,

where we use the abbreviated notation ∂α = ∂
∂α for
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the sharp signal. One could then evaluate this expres-
sion numerically by i) discretising the double integrals ii)
evaluating the trace integrand at each quadrature point
(e.g. by diagonalising L and evaluating the exponentials
exactly). This is prohibitively expensive for large Hilbert
space dimensions and correlation functions involving more
than two points.

We propose a faster way to compute such correlation
functions, which requires no discretisation when the filter
is a simple binning as we assume here. We go back to the
generating functional and pull the derivatives inside the
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t is the solution to the

ordinary differential equation (ODE) dρj
t/dt = Ljt

(ρj
t ).
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nentiation of the generator, corresponding to the evolution
before Ω1, on Ω1\Ω2, on Ω1 ∩ Ω2 and finally on Ω2\Ω1 (the
evolution for times after Ω2 is trace-preserving and thus
does not need to be computed).
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For more general filters, when the generator is not piece-
wise constant, our method remains practical and one may
simply solve the time-dependent ODEs (63) to (66) with
a high-order Runge-Kutta discretisation.

5. APPLICATION

The main practical application of these calculations is
to infer, from n-point correlations given by experimental
measurement data, some key parameters appearing in the
modelling SME (e.g. typical transition frequency in the
Hamiltonian H, detection efficiency η or dark count rate
θ).

Our formulation enables efficient fitting and optimisation
algorithms, based for example on gradient computations
via adjoint methods. Moreover, imperfections of the de-
tection chain can be directly included in the model via the
filter function f . In the end, this makes the estimation of
parameters from realistic experimental correlation func-
tions practical, even for Hilbert space dimensions ∼ 100
typically arising in bosonic problems.
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