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May 22,2023

We propose a self-contained and accessible derivation of an exact formula for the n-point
correlation functions of the signal measured when continuously observing a quantum system.
The expression depends on the initial quantum state and on the Stochastic Master Equation
(SME) governing the dynamics. This derivation applies to both jump and diffusive evolu-
tions and takes into account common imperfections of realistic measurement devices. We
show how these correlations can be efficiently computed numerically for commonly filtered

and integrated signals available in practice.

1. INTRODUCTION

Experiments studying quantum systems generally follow
the prepare, evolve and measure pattern: the system is first
prepared in a known quantum state, then it evolves unob-
served for a certain period of time, and finally a projec-
tive measurement is performed. However, it was discovered
in the 1990s that certain experimental setups allow to con-
tinuously measure a quantum system while it evolves [1].
Nowadays, continuous measurements are frequently used
by experimenters, notably in superconducting quantum cir-
cuits [2, 3]. In these experiments, the observer is constantly
acquiring information about the state of the system, and the
impact of the measurement back-action must be taken into
account at every time. The dynamics of such a continuously
measured quantum system is described by the Stochastic
Master Equation (SME) formalism.

The quantum state and/or parameters can be reconstructed
from the measured signal via quantum filtering [1], but this
is usually computationally too expensive. In practice, the
experimenters have direct access to the measured signal, so
they can trivially calculate its n-point correlation functions.
We show in this paper how these functions can be expressed
explicitly from the SME modelling the system. Thus, albeit
not optimal from a Bayesian point of view, they are an alter-
native and more practical approach than quantum filtering
for quantum state reconstruction or for parameter estima-
tion (see e.g. [4, 5]).

Several recent and older works calculate these functions an-
alytically in restricted cases [1, 6—12], and a general deriva-
tion in the case of the diffusive SME was discovered inde-
pendently by [13] and [14] in 2018. Related calculations
can also be found in the field of condensed matter physics,
which focuses on full counting statistics, cumulants and
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spectral representation [15—17]. This paper combines the
general method developed in [14] to derive n-point corre-
lations for diffusive SME with their discrete-time formu-
lations presented in [18]. It provides explicit formulae of
n-point correlations for both jump and diffusive SME: for-
mulae (49) and (50) for 2-point; (51) and (52) for n-point.
Computing these formulae for realistic signals involve so-
lutions of modified Lindblad master equations as shown in
equations (63) to (66). As far as we know, such calcula-
tions are not available in the literature, in particular for the
jump SME. Furthermore, we detail all the ingredients nec-
essary for the practical calculation of these n-point correla-
tion functions on arbitrary quantum systems, including de-
tector imperfections and for realistic (binned or filtered) ex-
perimental data. For clarity, the presentation focuses mainly
on a single detector, but we also give the formula to derive
n-point correlations between diffusive and/or jump signals
coming from multiple different detectors.

This paper is organised as follows. In section 2, we recall
the structure of continuous-time jump or diffusive SMEs,
and we present their discrete-time formulations based on
partial Kraus maps. In section 3, we derive the general cor-
relations formula from the underlying SME and classical
post-filtering. This derivation is almost straightforward in
the discrete-time formulation, and it directly provides ex-
plicit formulae in the continuous-time formulation. In sec-
tion 4 we detail a novel numerical method for practically
computing the correlation functions. Section 5 briefly in-
troduces an example application.

2. THE SME FORMALISM

A SME is a non-linear and non-determinsitic differen-
tial equation which determines the evolution of the system
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state p; at time ¢, conditioned on the detector measurement
record. Different measurement schemes lead to different
types of evolution: the state can evolve discontinuously,
with sudden jumps at random time, which is modeled by
a jump SME, or continuously in state space, which is mod-
eled by a diffusive SME. In quantum optics for instance,
the first situation corresponds to photon counting schemes
[19] and the second to homodyne or heterodyne detection
schemes [20].

In this section, we first introduce the jump and diffusive
SME:s, then we give an equivalent discrete-time formula-
tion, and we conclude by explaining the link between SMEs
and the linear and deterministic Lindblad master equation
describing unobserved quantum systems.

2.1. Jump SME

When the result of the measurement at time ¢ is either a
detection event or a no-detection event, the system state un-
dergoes abrupt jumps from one state to another upon detec-
tion. The discrete-valued continuous-time stochastic pro-
cess driving the SME is the increment d/Vy, taking the value
0 for no-detection and 1 for detection with probabilities de-
pending on the system state at time ¢:

P[dN; = 0] = 1 — P[dN, = 1],
P[AN; = 1] = (6 + nTr[Lp,LT]) dt,

)]
(@)

where L is an arbitrary operator characterising the detector,
0 > 0 is the dark count rate and 0 < 1 < 1 is the detector
efficiency.

The evolution of p, is described by the jump SME [18]:

dpy = —i[H, p]dt + D[L](p;)dt

+ G[L](pe) (AN¢ — (60 + nTr[Lp,L1]) dt) @

where H is the system Hamiltonian, D[L](p) = LpLt —
$LTLp—3pLT L is the standard dissipator, and the superop-
erator G[L] describing the back-action of the measurement
is defined by:

Op + nLpLt

“)
The continuous-time signal measured by the detector is
I, = dY;/dt, where dY}; is directly defined as the stochastic
increment in the case of the jump SME:

dY; = dN;. ®)

The signal I, is the rate of change of the counting process
Ny, which counts the number of jumps that occurred in the
time interval [0, ¢].

An experiment corresponds to a specific realisation of the
stochastic process dVy, giving rise to a quantum trajec-
tory which describes the path followed by the state of the

quantum system over time. This trajectory is conditioned
on the measurement results: we can replace the stochastic
term dV; by the measured signal values at each time in (3),
and thus reconstruct p; from the measurement record.

2.2. Diffusive SME

When the result of the measurement at time ¢ takes a contin-
uous range of values, the system state evolves continuously
in state space. The real-valued continuous-time stochastic
process driving the SME is the Wiener process dW;, taking
independent Gaussian distributed increment.

The evolution of p; is described by the diffusive SME in It6
form [21]:

dp: = —i[H, ps]dt + D[L](ps)dt

T VIMIL (o) AW, ©

where the superoperator M|[L] describing the back-action
of the measurement is defined by:

M[L)(p) = Lp+ pL" = Te[(L+ LY)plp. (7
Similarly, the continous-time signal measured by the detec-
tor I; = dY;/dt verifies:

dY; = /iTe[(L + L) pe] dt + dW;. ®)

Sometimes the signal is defined with a different but equiva-
lent normalisation dY; = dY;/(2./7).

As for the jump SME, an experiment corresponds to a spe-
cific realisation of the stochastic process dW;, giving rise
to a quantum trajectory that can be reconstructed from the
measured signal.

2.3. Discrete-time formulation

We can derive both SMEs by taking the limit of infinitely
frequent and infinitely weak projective measurements [22,
23]. We use such a discrete-time picture with a slightly dif-
ferent formulation as described in [18].

In this formulation, the measurement process is described
by a quantum instrument, which combines a quantum mea-
surement characterised by a positive operator-valued mea-
sure (POVM) and a classical uncertainty on the measure-
ment result accounting for imperfections of the detector. A
map depending on the measurement result is applied at each
small time step dt:

K'r'k+1 (pk)
Tr [Kmurl (Pk)] 7
where pj is the state of the system at step k (at time

t = kdt), and K, , is a linear map depending on 741,
the measurement result at step k + 1.

€))

Pk+1 =

For both SMEs, we define the corresponding quantum in-
strument by specifying the linear map K, associated with



each possible measurement result . The continuous-time
formulations (3) and (6) are recovered by taking the limit of
infinitesimally small time step, and expanding the expres-
Sion pr+1 — Pk ~ Pe+dt — Pt = dpy to first order in dt.

Jump SME - For the jump SME, the measurement result
is either O or 1, and the corresponding maps are:

Ko(p) = (1 = 0dt)MopM{ + (1 — n)MypM{, ~ (10)

K1(p) = 0dtMopM{ + nM,pM], an
with

My =1—iHdt — %LTLdt, (12)

M, = LVdt. (13)

The probability of obtaining the measurement result r at
step k + 1 depends only on the preceding state py:

Plri1 =7 pr] = Tr[K; (pr)]. (14)

We can evaluate the probability of obtaining the measure-
ment record {71, ro} knowing the initial state py:

Plri,72 | po] = P[r1 | po] X P[ra | 1, po).

The first term is given by (14): P[ry | po] = Tr[K,, (po)]-
To evaluate the second term we use (9) to write the state
at step £ = 1 conditioned on the measurement result r;:
p1 = K, (po)/Tr[K,, (po)]- Then using (14) again:

KT’l (pO)

Blra | 11, po] = Te[Kr (p1)] = T {Km (w«wﬂ |

Combining the two terms, we get:

Plry, 72 | po] = Tr[K, Koy (o) 15)

This result directly extends to the probability of obtaining
the measurement record {ry,...,ryN}:

Plri,...,rn | po] = Tv[Kyy - .. Kry (po)]- (16)

Diffusive SME — For the diffusive SME, the measurement
result takes a continuous range of values and the map cor-
responding to the measurement result 7 is:

K, (p) = MypM] + (1 - n)LpL'dt, (17)

with
1
M, =1—iHdt — §LTLdt +nLr.  (18)

The equivalent of (14) is given by the probability density to
get a measurement result in [r, 7 +dr[ at step k£ + 1 knowing
the state py:

dP[ri1 € [r,r 4+ dr[ | p] = du(r) Te[K - (pr)],  (19)

where du(r) is the Gaussian measure centered on 0 with
variance d¢ [18, 21]:

1 —r?
du(r) = exp | =—— | dr. 20)
) == (577
The same calculations as for the jump SME give the proba-
bility density to get the measurement record {ry,...,ry}:

d]P)[Th...,’r‘Nlpo] =

21
dp(ry) ... dp(ry) Te[K, - @1

K (po)]-

2.4. Unconditioned evolution

‘When the measurement results are unknown to the observer,
for example for a purely dissipative process or for unread
measurements, the system dynamics is deterministic. The
evolution of the unconditioned state p, is recovered by av-
eraging over all possible quantum trajectories — or equiv-
alently over all possible measurement records — weighted
by their probability of occurrence:

ﬁt = E[pt]a (22)
where [E denotes the statistical average over the stochastic
process driving the SME. Note that the unconditioned state
does not depend on the stochastic process averaged over
(jump or diffusive): different types of stochastic evolution
lead to the same ensemble average trajectory.

The evolution of p, is then described by the linear and de-
terministic Lindblad master equation [24]:

dp I _ _
o~ "]+ DG = L), (23)
where L is the system Lindbladian, the superoperator gen-
erating the evolution of the system when the observer does
not know the measured signal. For time-independent Lind-
bladian, the formal solution reads:

P = e (po)- (24)
For time-dependent Lindbladian £;, the solution is written
using the time-ordered exponential:

t
py =T exp (/ »Ct’dtl) (o),
0

where 7T is the time-ordering symbol.

(25)

Similarly to the jump and diffusive SME, the Lindblad mas-
ter equation has a discrete-time formulation. The general
evolution of an unobserved open quantum system between
two time steps is characterised by a completely positive
trace preserving (CPTP) linear map K (also called quan-
tum channel or dynamical map):

P11 = K(py,)- (26)



In this discrete-time formulation, we also recover the un-
conditionned evolution by averaging over all possible mea-
surement outcomes at each step:

Pry1 = Elpr+1 | prl- (27
As in the continuum, we find the same CPTP map K, that
is the same unconditionned state dynamics, when averaging
over either of the stochastic processes (jump or diffusive):

Kp) = Kolp) + Ka(p) = [ au)Klp) 29)

In the continuous-time limit we recover the evolution gen-
erated by the system Lindbladian L.

3. CORRELATION FUNCTIONS

The statistics of the measured signal are fully characterised
by its correlation functions. The n-point correlation func-
tion of the signal I; is defined by:

I, | pol. (29)

ceey

The one-point correlation function is the signal mean, and
the two-point correlation function is the signal autocorrela-
tion.

The signal I; is a singular quantity, in the case of the jump
SME it can be loosely thought of as a series of Dirac delta
distributions at the times of detection, and in the case of the
diffusive SME as white noise with a trend. This quantity
is better defined when it is integrated against a smooth test
Sfunction f:

Iy = / fdY;. (30)

In practice, the signal is obtained from a finite bandwidth
detection chain, and is therefore effectively filtered. Exper-
imentally, the smooth test function f then corresponds to
the transfer function of the detection chain. In the follow-
ing, we will refer to I; as the sharp signal, and to Iy as the
filtered signal.

The filtered signal Iy is the only quantity actually available
to an experimenter. Thus, we are also interested in calculat-
ing its correlation functions:

Chrforntn = EllpIps -1, | po]- €3]
The objective of this section is to give an analytical formula
depending only on the SME for the correlation functions of
the sharp and filtered signal. We first introduce the gener-
ating functional of the correlation functions, allowing us to
¢, and Cy, .t . We then deduce the
formula for the correlation functions using the discrete-time
formulation and its continuous limit. The remainder of the
section is devoted to examples of how to calculate basic cor-
relation functions using this general formula, and we finally
generalise the result to the case of multiple detectors and
mixed jump-diffusive SME.

.....

3.1. Generating functional

The sharp and filtered signal correlation functions can both
be determined using the generating functional Z(j) defined
by [14, 25]:

u=T
Z(j)=E [GXP </_0 judYu> ‘ po], (32)

where j is a smooth test function and 7' is a large time,
typically larger than any time involved in the correlation
functions we wish to evaluate. This generating functional
is defined analogously to the moment-generating function
M(t) = E[e!™] of a random variable X, whose n-th
derivative yields the n-th moment of X:

dn

]E[Xn] - dtn

M(t) (33)

=0

Sharp signal correlations — The functional derivative of
Z(j) with respect to j; for ¢ € [0, T'] reads:

dy, T
Thexp ( / ]udYu> \po]. (34)
0

Thus for t; < to < --- < t,, the sharp signal correlation
function can be expressed as:

1)
5 ()

] 0

Chyrity = "
fetn 6.7t1 6.715"

Z(5)

J=0

(35)

The correlation functions involving equal time contribu-
tions are not well defined for the sharp signal, because they
yield Dirac delta distribution. However, these contributions
should not be missed when evaluating the filtered signal
correlation functions.

Filtered signal correlations — The correlation functions of
the filtered signals Iy ,..., I are given by the standard
partial derivative of Z (a1 f1 + - - - + ay, frn) With respect to
Afy...,0p!

0
: 8anz(a1f1+' . +anfn)

Cf17~~~1fn = Doy

iy, =0

(36)

3.2. Derivation of the analytical formula

Our goal is to find an analytical formula for the generating
functional Z(j). In this subsection we give the proof for the
jump SME by using the discrete-time formulation, and ex-
plain how it extends to the diffusive SME. For a calculation
in the diffusive case relying only on continuous stochastic
calculus techniques without resorting to discretisation, see
[14].



In the discrete-time formulation we divide the time 71" in N
steps of duration dt = T'/N, Z(j) then reads:

exp <§: jm) ‘ P0]7

k=1

Z(j)=E (37

where jj, is the test function value at step k (at time ¢t =
kdt).

To evaluate the expectation value in Z(j), we need to av-
erage over all possible measurement records weighted by
their probability of occurrence. In the case of the jump
SME, the measurement result r; at step k is either 0 or 1,
so:

N
Z(j) =) Plri,.-.,rn | pol exp (Zjﬂk) . (3%

r,€{0,1} k=1

The probability of a specific measurement record is given
by (16): Plry,...,rn | po] = Tr[K;y ... Ky (po)]. Now
we split the exponential, reorder and regroup the terms to
get the final result:

N
Z(j) =Y Te[Kpy ... K (po)] [ [ explsrs)  (39)

rp€{0,1} k=1
T‘NG{O,l} (40)

> K e (Po)}
r1€{0,1}
=Tr[(Ko + K1e’V)... (Ko + K1e'")(po)] (41)
= Tr[® ... ©j, (po)]; (42)
with @, a linear map defined by:
D, (p) = (Ko + K1e’*)(p)

=p+ [L(p) + (e = 1) (Op + nLx(p))] dt,  (43)

where we defined the superoperator Ly (p) = LpLT.

By taking the limit of infinitesimally small time step, we

have:
T
T exp ( / .zjudu> (po)], (44)
0

with .Z;, identified from (43) as the generator of the evolu-
tion:

Z(j)=Tr

L, =L+ (e —1)(01+nLy). (45)
The calculations are very similar in the case of the diffusive
SME: replacing sums by integrals over the Gaussian mea-
sure (20) and using the partial Kraus map defined by (17)

and (18), we obtain the same formula for Z(j) where the
generator of the evolution .Z, is now:

- 2
%t - E + \/’ﬁth+ + jLI,

: (46)

where we defined the superoperator L (p) = Lp + pL.

Note that the expression of Z () depends only on the initial
state and on the SME describing the system.

3.3. Sharp signal correlation functions

In this subsection, we explain how to calculate the correla-
tion functions of the sharp signal using the analytical for-
mula for Z(j). The calculations for filtered signals are dis-
cussed in section 4.

We assume that the Lindbladian does not depend on time to
simplify the expressions (the extension to time-dependent
Lindbladian is straightforward). In the following calcula-
tions we also use the trace-preserving property of the Lind-
bladian evolution: Tr [e’“(p)] = Tr[p] = 1.

Signal mean — The one-point correlation function for the
jump SME reads:

Ct:(sijt

="Tr

T
T exp </ .Zjudu> eIt (01 +nLy)
t

Tm{fﬁﬂowﬂ

§=0
=0+nTr [Lxetﬁ(po)]. 47

And for the diffusive SME:
Cy = /iTr[Lie™ (po)]. (48)

Signal autocorrelation — For ¢; < t9, the two-point corre-
lation function for the jump SME reads:

_0 9
0jt, 0jt,
=Tr {(91 + L )e L0 + Ly )e“‘(po)}

Ctl,tz

Jj=0

(49)
+0n (Tr[Lxe™“(po)] + Tr[Lxe*(po)]) .

=024+ *Tr [LX ele=t)L etlc(po)}

And for the diffusive SME:

Cirey = 7Tt {L+e<t2*t1>£L+et1£(po)}. (50)

Multipoint correlation function — More generally for dis-
tinct times t; < --- < t,, the n-point correlation function



for the jump SME reads:
Cyn, =Tr {(91 + nLX)e(t”_t”*l)L .
(01 nLX)etlﬁ(po)}.

And for the diffusive SME:

(51

Otl,.u,t

n

_ nn/QTI. |:L+e(tn—tn—l)£ - L+€t1[’(p0):| .
(52)

The exact result is thus obtained by inserting specific super-
operators at the correlation times (61 + 1Ly for the jump
SME and /nL for the diffusive SME), and evolving the
system with the ensemble-averaged evolution in-between.

3.4. Generalisation to mixed jump-diffusive SME and
multiple detectors

We generalise the analytical formula of Z(j) to the case of
mixed jump-diffusive SME with multiple detectors, when
the quantum system is continuously measured by n,, detec-
tors with discrete-valued measurement results, resulting in
a jump-type evolution, and by n,, detector with continuous-
valued measurement results, resulting in a diffusive-type
evolution.

The general jump-diffusive SME with multiple detectors
reads:

dpe = —i[H, pi]dt + ) D[V,)(p)dt + > DL, (py)dt

+ > GWVul(pe) (AN,s — (B + 1, Tx [V,p Vi dt))

+ 3 VML (pr) AW, (53)

where dN, ; are independent stochastic increments and
dW, + are independent Wiener processes. The observer has
access to n, + n, signals:

dYL t dZu t
I,,=—* J,, = : 4
{ w,t dt aJ ,t dt } ) (5 )
pelln,]velln,]
with
dY, ;= dN,., (55)
dZ, = /i Tr[(Ly + L})pe|dt + dW, ;. (56)

The generating functional Z(j) has the same expression,
where j is now the set of test functions each associated with
a detector: j = {j;ujl/},ueﬂl,n“]Lye[[l’ny]]. The generator of
the evolution ., reads:

&, =L+ Z(ej“" = 1) (0.1 + 1,V %)
. (57)

. 2
+ Z (\/nujy,tLu,+ + 2 I) -

For example, the two-point correlation function for ¢; < g
between the jump-type detector indexed p and the diffusive-
type detector indexed v reads:

E[Iﬂ,tlJy,tQ] =Tr [\/ﬂjLuﬁ_e(Q*tl)C

(58)
(0,1 + 0, Vi e (po)].

4. PRACTICAL COMPUTATION FOR REALISTIC
DATA IN THE DIFFUSIVE CASE

In this section we detail a novel numerical method for prac-
tically computing analytical correlation functions on exper-
imental data. We use a simple but easily generalisable ex-
ample to explain the methodology.

In a common experimental setup, the detector consists of
a chain of finite bandwidth amplifiers concluded by an
analogue-to-digital converter (ADC), which converts the
analogue signal into a discrete signal. This amplified and
digitised output signal is usually integrated against a rect-
angular window of duration At much longer than the in-
verse of the ADC sampling rate. Thus from a practical point
of view, the discrete-time signal Ij, available to an experi-
menter is simply the integral of the continuous-time signal
1, against a rectangular window of duration At (a time bin):

(k+1)At
I, = / dY;.
kAt

(59)

Let us illustrate how to evaluate the two-point correlation
function of this integrated signal in a slightly more gen-
eral setting, when the integration windows partially overlap.
This example illustrates the importance of not missing the
equal time contributions when evaluating correlation func-
tions of the filtered signal. We consider the signals /; inte-
grated on some time interval {2, and I5 integrated on some
time interval {25 (see figure 1):

Im:/ dYt:/]lQm(t)dYt,
tEQm

where 1g, is the rectangular window defined by 1o (t) = 1
ift € Qand 1o(t) = 0 otherwise.

(60)

92

T T T T T -
time

Figure 1: Overlapping integration windows

We consider a system whose evolution is described by a
diffusive SME, and for simplicity we assume that the Lind-
bladian does not depend on time.

It is tempting to evaluate the two-point correlation function
naively by taking partial derivatives of the generating func-



tional explicitly as in (36):

Cr1,,1, = 00,00, Z(a11q, + aslgq,)

- / at
Q1N Qo

+ 77// dt,dtoTr {L+e(t2*t1)LL+et1£(po)}
Q1,Q2,t1 <t2

041,042:0

+n//Q . dtldthﬁr{LJre(tl_t?)LLJret?ﬁ(po)},
1,822,t1 >t2

where we use the abbreviated notation 9, = 8% for the par-
tial derivative. Note the overlapping term for t € Q; N Qs
coming from the equal time contributions of the sharp sig-
nal. One could then evaluate this expression numerically by
1) discretising the double integrals ii) evaluating the trace
integrand at each quadrature point (e.g. by diagonalising
L and evaluating the exponentials exactly). This is pro-
hibitively expensive for large Hilbert space dimensions and
correlation functions involving more than two points.

We propose a faster way to compute such correlation func-
tions, which requires no discretisation when the filter is a
simple binning as we assume here. We go back to the gen-
erating functional and pull the derivatives inside the trace:

T
Cn.1, = 0oy 0o, Tr |:Texp </ ‘iﬁjudu) (PO)}
0

— o),
al,a2—0:| pT

where j = a11lq, + aslq, and p{ is the solution to the
ordinary differential equation (ODE) dp]/dt = .Z},(p]).
To compute the derivatives of pgp with respect to o, ag, we
simply (forward) differentiate the ODE:

al,aQ:O

T {ama@ o ©1)

d a2 ]
G =0t (LD)| @
Introducing the partial derivatives
1 j 2 j
/)E )= Do, P and ,0§ ) = Doz} )
ay,a2=0 ay,a2=0

and using the explicit expression of ., from (46), we ob-

tain the system of coupled linear ODEs describing the evo-
1 (2

lution of four fictitious states p¢, p; *, p;~ and pgl’Q):
o= 2,(0l) = L(ps) (63)
dt Je\Ft 01,0220 )
d a_ j
apt - aal ("%t(f%)) .02 =0
= L(pi") + Lo, (VAL (p0), (64)
d @) _ o
G =0 (LeD)|
= L(p{) + Lo, ()0 ViL+ (pr), (65)

d

S = 00,00, (L 01))

ay,a2=0

= L(pt"?) + Lo, ()4 (p17)
+ Lo, () yiL+ (p) + Layn o, (e

(66)

To obtain p(T1 ’2), we solve this system linear ODE (which

we see simply as a larger linear ODE) with initial condition
pr=o = po and p(y = pZy = p(L7) = 0 from time 0 t0 7.
This is particularly economical numerically, because the
generator of the linear ODE is piecewise constant. We may
thus obtain the final state by four successive exponentiation
of the generator, corresponding to the evolution before €24,
on 21\Qs, on 1 N Q5 and finally on 25\ (the evolution
for times after (25 is trace-preserving and thus does not need
to be computed).

For large Hilbert space dimensions, one does not need to
compute the exponential explicitly, but simply its action on
the initial state. This can be done efficiently using Krylov
subspace methods. We propose an example implementa-
tion in an elementary Julia script available at [26] using the
QuantumOptics.jl library [27] and the KrylovKit.jl library
[28].

For more general filters, when the generator is not piece-
wise constant, our method remains practical and one may
simply solve the time-dependent ODEs (63) to (66) with a
high-order Runge-Kutta discretisation.

5. APPLICATION

The main practical application of these calculations is to
infer, from n-point correlations given by experimental mea-
surement data, some key parameters appearing in the mod-
elling SME (e.g. typical transition frequency in the Hamil-
tonian H, detection efficiency 7 or dark count rate 6).

Our formulation enables efficient fitting and optimisation
algorithms, based for example on gradient computations via
adjoint methods. Moreover, imperfections of the detection
chain can be directly included in the model via the filter
function f. In the end, this makes the estimation of param-
eters from realistic experimental correlation functions prac-
tical, even for Hilbert space dimensions ~ 100 typically
arising in bosonic problems.
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