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We propose a self-contained and accessible derivation of a formula for the n-point
correlation functions of the signal measured when continuously observing a quantum
system. The expression depends on the initial quantum state and on the Stochastic
Master Equation (SME) governing the dynamics. This derivation applies to both
jump and diffusive evolutions and takes into account common imperfections of realis-
tic measurement devices. We show how these correlations can be efficiently computed
numerically for commonly filtered and integrated signals available in practice.

1. INTRODUCTION

Experiments studying quantum systems generally fol-
low the prepare, evolve and measure pattern: the sys-
tem is first prepared in a known quantum state, then
it evolves unobserved for a certain period of time, and
finally a projective measurement is performed. How-
ever, it was discovered in the 1990s that certain ex-
perimental setups [1] allow to continuously measure
a quantum system while it evolves. Nowadays, con-
tinuous measurements are frequently used by experi-
menters, notably in superconducting quantum circuits
[2, 3]. In these experiments the observer continuously
acquires knowledge about the state of the system, and
the measurement back-action must be directly taken
into account in the description of the real-time system
dynamics. The evolution of such a continuously mea-
sured quantum system is modeled by the Stochastic
Master Equation (SME) formalism.

The quantum state and/or parameters can be recon-
structed from the measured signal via quantum filter-
ing [1], but this is usually computationally too expen-
sive. In practice, the experimenters have direct access
to the measurement record, and the n-point correlation
functions of the signal are trivial quantities to calcu-
late. These functions can be derived explicitly from the
SME modelling the system. Thus, albeit not optimal
from a Bayesian point of view, they are an alternative
and more practical approach than quantum filtering for
quantum state reconstruction or for parameter estima-
tion (see e.g. [4, 5]).

Various recent and older works calculate these func-
tions analytically in restricted cases [1, 6–9]. This pa-
per combines the general method developed in [10] to

derive n-point correlations for diffusive SME with their
discrete-time formulations presented in [11]. It pro-
vides explicit formulae of n-point correlations for both
jump and diffusive SME: formulae (49) and (50) for 2-
point; (51) and (52) for n-point. Computing these for-
mulae for realistic signals involve solutions of modified
Lindblad master equations as shown in equations (63)
to (66). As far as we know, such calculations are not
available in the literature, in particular for the jump
SME. Moreover we detail all the ingredients necessary
for the practical calculation of these n-point correla-
tion functions on arbitrary quantum systems, including
detector imperfections and for realistic (binned or fil-
tered) experimental data. For clarity, the presentation
focuses mainly on a single detector but we also give
the formulae for multiple detectors to derive n-point
correlations between diffusive and/or jump signals.

This paper is organized as follows. In section 2, we
recall the structure of continuous-time jump or diffu-
sive SMEs, and we present their discrete-time formu-
lations based on partial Kraus maps. In section 3, we
derive the general correlations formula from the under-
lying SME and classical post-filtering. This derivation
is almost straightforward in the discrete-time formula-
tion, and it directly provides explicit formulae in the
continuous-time SME formulation. In section 4 we de-
tail a novel numerical method for practically comput-
ing the correlation functions. Section 5 briefly intro-
duces an example application.

2. THE SME FORMALISM

A SME determines the evolution of the system density
matrix ρt at time t, conditioned on the detector mea-
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surement record. Different measurement schemes lead
to different types of evolution: ρt can evolve discon-
tinuously, with sudden jumps at random time, which
is modeled by a jump SME, or continuously which is
modeled by a diffusive SME. In quantum optics for in-
stance, the first situation corresponds to photon count-
ing schemes [12] and the second to homodyne or het-
erodyne detection schemes [13].

In this section, we first introduce the jump and diffusive
SMEs, then we give an equivalent discrete-time formu-
lation, and we conclude by explaining the relationship
between SMEs and the deterministic Lindblad master
equation describing unobserved quantum systems.

2.1. Jump SME

When the result of the measurement at time t is either
a detection event or a no-detection event, the system
density operator ρt jumps from one state to another
upon detection. The discrete-valued continuous-time
stochastic process driving the SME is the increment
dNt, taking the value 0 for no-detection and 1 for detec-
tion with probabilities depending on the system state
at time t:

P[dNt = 0] = 1 − P[dNt = 1] (1)
P[dNt = 1] =

(
θ + ηTr

[
LρtL

†]) dt, (2)

where L is an arbitrary operator characterising the de-
tector, θ ≥ 0 is the dark count rate and 0 < η ≤ 1 is
the detector efficiency.

The evolution of ρt is described by the jump SME:

dρt = − i[H, ρt]dt + D[L](ρt)dt

+ G[L](ρt)
(
dNt −

(
θ + ηTr

[
LρtL

†]) dt
)

,
(3)

where H is the system Hamiltonian and the superop-
erators D[L](·) and G[L](·) are defined by

D[L](ρ) = LρL† − 1
2L†Lρ − 1

2ρL†L (4)

G[L](ρ) = θρt + ηLρL†

θ + ηTr[LρL†] − ρ. (5)

The continuous-time signal measured by the detector
is It = dYt/dt, where dYt is directly defined as the
stochastic increment in the case of the jump SME:

dYt = dNt. (6)

An experiment corresponds to a specific realisation of
the stochastic process dNt, giving rise to a quantum
trajectory which describes the path followed by the
state of the quantum system over time. This trajectory
is conditioned on the measurement results: we can re-
place the stochastic term dNt by the measured signal
in (3), and thus reconstruct ρt from the measurement
record.

2.2. Diffusive SME

When the result of the measurement at time t takes a
continuous range of values, the system density matrix
evolves continuously in state space. The real-valued
continuous-time stochastic process driving the SME is
the Wiener process dWt, taking independent Gaussian
distributed increment.

The evolution of ρt is described by the diffusive SME
in Itô form [14]:

dρt = − i[H, ρt]dt + D[L](ρt)dt

+ √
ηM[L](ρt)dWt,

(7)

where the superoperator M[L](·) is defined by

M[L](ρ) = Lρ + ρL† − Tr
[
(L + L†)ρ

]
ρ. (8)

Similarly, the continous-time signal measured by the
detector It = dYt/dt verifies:

dYt = √
ηTr
[
(L + L†)ρt

]
dt + dWt. (9)

Sometimes the signal is defined with a different normal-
isation convention dY ′

t = dYt/(2√
η). The two forms

are equivalent as the important quantity from the ob-
server’s point of view is the signal-to-noise ratio, which
remains unchanged under this transformation.

As for the jump SME, an experiment corresponds to a
specific realisation of the stochastic process dWt, giving
rise to a quantum trajectory that can be reconstructed
from the signal.

2.3. Discrete time formulation

We can derive both SMEs by taking the limit of in-
finitely frequent and infinitely weak projective mea-
surements [15, 16]. We use such a discrete-time pic-
ture with a slightly different formulation as described
in [11].

In this formulation, the measurement operation is de-
scribed by a quantum instrument, which combines
a quantum measurement characterised by a positive
operator-valued measure (POVM) and a classical un-
certainty on the measurement result accounting for im-
perfections of the detector. A map depending on the
measurement result is applied at each small time step
dt:

ρk+1 =
Krk+1(ρk)

Tr
[
Krk+1(ρk)

] , (10)

where ρk is the state of the system at step k (at time
t = kdt), and Krk+1(·) is a linear map depending on
rk+1, the measurement result at step k + 1.
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For both SMEs, we define the corresponding quan-
tum instrument by specifying the linear map associ-
ated with each possible measurement result. The SME
continuous-time formulation is recovered by taking the
limit of infinitesimally small time step, and expanding
the expression ρk+1 − ρk ∼ ρt+dt − ρt = dρt to first
order in dt.

Jump SME – For the jump SME, the measurement
result is either 0 or 1, and the corresponding maps are:

K0(ρ) = (1 − θdt)M0ρM†
0 + (1 − η)M1ρM†

1 (11)

K1(ρ) = θdtM0ρM†
0 + ηM1ρM†

1 , (12)
with

M0 = I − iHdt − 1
2L†Ldt (13)

M1 = L
√

dt. (14)

The probability of obtaining the measurement result r
at step k + 1 depends only on the state ρk:

P[rk+1 = r | ρk] = Tr[Kr(ρk)]. (15)

We can evaluate the probability of obtaining the mea-
surement record {r1, r2} knowing the initial state ρ0:

P[r1, r2 | ρ0] = P[r1 | ρ0] × P[r2 | r1, ρ0].

The first term is given by (15): P[r1 | ρ0] = Tr[Kr1(ρ0)].
To evaluate the second term we use (10) to write the
state at step k = 1 conditioned on the measurement
result r1: ρ1 = Kr1(ρ0)/Tr[Kr1(ρ0)]. Then using (15)
again:

P[r2 | r1, ρ0] = Tr[Kr2(ρ1)]

= Tr
[
Kr2

(
Kr1(ρ0)

Tr[Kr1(ρ0)]

)]
.

Combining the two terms, we get:

P[r1, r2 | ρ0] = Tr[Kr2Kr1(ρ0)]. (16)

This result directly extends to the probability of ob-
taining the measurement record {r1, . . . , rN }:

P[r1, . . . , rN | ρ0] = Tr[KrN
. . . Kr1(ρ0)]. (17)

Diffusive SME – For the diffusive SME, the measure-
ment result takes a continuous range of values and the
map corresponding to the measurement result r is:

Kr(ρ) = MrρM†
r + (1 − η)LρL†dt, (18)

with

Mr = I − iHdt − 1
2L†Ldt + √

ηLr. (19)

The equivalent of (15) is given by the probability den-
sity to get a measurement result in [r, r + dr[ at step
k + 1 knowing the state ρk:

dP
[
rk+1 ∈ [r, r + dr[ | ρk

]
= dµ(r)Tr[Kr(ρk)], (20)

where dµ(r) is the Gaussian measure

dµ(r) = 1√
2πdt

exp
(

−r2

2dt

)
dr. (21)

The same calculations give the probability density to
get the measurement record {r1, . . . , rN }:

dP[r1, . . . , rN | ρ0] =
dµ(r1) . . . dµ(rN )Tr[KrN

. . . Kr1(ρ0)].
(22)

2.4. Unconditioned evolution

When the measurement results are unknown from the
observer, for example for purely dissipative process or
for unread measurement results, the dynamic of the
system is deterministic. The evolution of the uncondi-
tioned state ρt is recovered by averaging over all possi-
ble quantum trajectories — or equivalently over all pos-
sible measurement results — weighted by their proba-
bility of occurence:

ρt = E[ρt], (23)

where E denotes the statistical average over the
stochastic process driving the SME. Note that the un-
conditioned state does not depend on the stochastic
process averaged over (jump or diffusive): different
types of stochastic evolution lead to the same ensemble
average trajectory.

The evolution of ρt is then described by the determin-
istic Lindblad master equation [17]:

dρt

dt
= −i[H, ρt] + D[L](ρt) = L(ρt), (24)

where L(·) is the system Lindbladian, a superoperator
generating the evolution of the system when the ob-
server does not know the measured signal. For time
independent Lindbladian, the formal solution reads

ρt = etL(ρ0). (25)

For time dependent Lindbladian Lt(·), the solution is

ρt = T exp
(∫ u=t

u=0
Ludu

)
(ρ0), (26)

with T the time-ordering meta-operator.

This master equation has a discrete-time formulation
as well. The general evolution of an unobserved Marko-
vian open quantum system between two time steps is
characterised by a completely positive trace preserving
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(CPTP) linear map K(·) (also called quantum channel
or dynamical map):

ρk+1 = K(ρk). (27)

In this formulation, we also recover the unconditionned
evolution by averaging over all possible measurement
outcomes at each step:

ρk+1 = E[ρk+1 | ρk]. (28)

As in the continuum, we find the same CPTP map
K(·), that is the same unconditionned state dynamic,
when averaging over either of the stochastic process
(jump or diffusive):

K(ρ) = K0(ρ) + K1(ρ) =
∫ ∞

−∞
dµ(r)Kr(ρ). (29)

In the continuous-time limit we recover the evolution
generated by the system Lindbladian L(·).

3. CORRELATION FUNCTIONS

The statistics of the measured signal are fully charac-
terized by its correlation functions. The n-point corre-
lation function of the signal It is defined by:

Ct1,t2,...,tn = E[It1It2 . . . Itn | ρ0]. (30)

The 1-point correlation function is the signal mean,
and the 2-point correlation function is the signal auto-
correlation.

The signal It is a singular quantity, in the case of the
jump SME it can be loosely thought of as a series of
Dirac delta distributions at the times of detection, and
in the case of the diffusive SME as white noise with a
trend. This quantity is better defined when it is inte-
grated against a smooth test function:

If =
∫

ftdYt. (31)

In practice, the signal is obtained from a finite band-
width detection chain, and is therefore effectively fil-
tered. Experimentally, the smooth test function f then
corresponds to the transfer function of the detection
chain. In the following, we will refer to It as the sharp
signal, and to If as the filtered signal.

The filtered signal If is the only quantity actually avail-
able to an experimenter. Thus, we are also interested
in calculating its correlation functions:

Cf1,f2,...,fn
= E[If1If2 . . . Ifn

| ρ0]. (32)

The objective of this section is to give an analytical
formula depending only on the SME for the correla-
tion functions of the sharp and filtered signal. We first

introduce the generating functional of the correlation
functions, allowing us to evaluate both Ct1,...,tn

and
Cf1,...,fn . We then deduce the formula for the correla-
tion functions using the discrete-time formulation and
its continuous limit. The remainder of the section is
devoted to examples of how to calculate basic correla-
tion functions using this general formula, and we finally
generalise the result to the case of multiple detectors
and mixed jump-diffusive SME.

3.1. Generating functional

The sharp and filtered signal correlation functions can
both be determined using the generating functional
Z(j) defined by [10, 18]:

Z(j) = E

[
exp

(∫ u=T

u=0
judYu

)∣∣∣ ρ0

]
, (33)

where j is a smooth test function and T is a large time,
typically larger than any time involved in the correla-
tion functions we wish to evaluate.

Sharp signal correlations – The functional deriva-
tive of Z(j) with respect to jt for t ∈ [0, T ] reads:

δ

δjt
Z(j) = E

[
dYt

dt
exp

(∫ T

0
judYu

)∣∣∣ ρ0

]
. (34)

Thus for t1 < t2 < · · · < tn, the sharp signal correla-
tion function can be expressed as:

Ct1,...,tn = δ

δjt1

· · · δ

δjtn

Z(j)
∣∣∣
j=0

. (35)

The correlation functions involving equal time contri-
butions are not well defined for the sharp signal, be-
cause they yield Dirac delta distribution. However,
these contributions should not be missed when evalu-
ating the filtered signal correlation functions.

Filtered signal correlations – The correlation func-
tions of the filtered signals If1 , . . . , Ifn are given by the
standard partial derivative of Z(α1f1+· · ·+αnfn) with
respect to α1, . . . , αn:

Cf1,...,fn
= ∂

∂α1
· · · ∂

∂αn
Z(α1f1+· · ·+αnfn)

∣∣∣
α1,...,αn=0

.

(36)

3.2. Derivation of the analytical formula

Our goal is to find an analytical formula for the gen-
erating functional Z(j). In this subsection we give the
proof for the jump SME by using the discrete-time
formulation, and explain how it extends to the diffu-
sive SME. For a calculation relying only on continuous
stochastic calculus techniques without resorting to dis-
cretization, see [10] (for the diffusive SME only).
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In the discrete-time formulation we divide the time T
in N steps of duration dt = T/N , Z(j) then reads:

Z(j) = E

[
exp

(
N∑

k=1
jkrk

)∣∣∣ ρ0

]
, (37)

where jk is the test function value at step k (at time
t = kdt).

To evaluate the expectation value in Z(j), we need to
average over all possible measurement results. In the
case of the jump SME, the measurement results rk are
either 0 or 1, so:

Z(j) =
∑

rk∈{0,1}

P[r1, . . . , rN | ρ0] exp
(

N∑
k=0

jkrk

)
. (38)

The probability of a specific measurement record is
given by (17): P[r1, . . . , rN | ρ0] = Tr[KrN

. . . Kr1(ρ0)].
Now we split the exponential, reorder and regroup the
terms to get the final result:

Z(j) =
∑

rk∈{0,1}

Tr[KrN
. . . Kr1(ρ0)]

N∏
k=0

exp(jkrk) (39)

= Tr
[ ∑

rN ∈{0,1}

KrN
ejN rN

 . . .

. . .

 ∑
r1∈{0,1}

Kr1ej1r1

 (ρ0)
] (40)

= Tr
[
(K0 + K1ejN ) . . . (K0 + K1ej1)(ρ0)

]
(41)

= Tr[ΦjN
. . . Φj1(ρ0)], (42)

with Φjk
(·) a linear map defined by:

Φjk
(ρ) = (K0 + K1ejk )(ρ)

= ρ +
[
L(ρ) + (ejk − 1) (θρ + ηL×(ρ))

]
dt, (43)

where L×(·) is the superoperator defined by
L×(ρ) = LρL†.

By taking the limit of infinitesimally small time step,
we have

Z(j) = Tr
[

T exp
(∫ T

0
Lju

du

)
(ρ0)

]
, (44)

with Ljt
(·) identified from (43) as the generator of the

evolution:

Ljt = L + (ejt − 1) (θI + ηL×) . (45)

The calculations are very similar in the case of the
diffusive SME: replacing sums by integrals over the
Gaussian measure (21) and using the discretization

from (18) and (19), we get the same formula for Z(j)
where the generator Ljt(·) is now:

Ljt
= L + √

ηjtL+ + jt
2

2 I, (46)

with L+(·) the superoperator defined by
L+(ρ) = Lρ + ρL†.

Note that the expression of Z(j) only depends on the
initial state and the SME describing the system.

3.3. Sharp signal correlation functions

In this subsection, we explain how to calculate the cor-
relation functions of the sharp signal using the ana-
lytical formula for Z(j). The calculations for filtered
signals are discussed in section 4.

We assume that the Lindbladian does not depend on
time to simplify the expressions (the extension to time-
dependent Lindbladian is straightforward). In the fol-
lowing calculations we also use the trace-preserving
property of the Lindbladian evolution: Tr

[
etL(ρ)

]
= ρ.

Signal mean – The one-point correlation function for
the jump SME reads:

Ct = δ

δjt
Z(j)

∣∣∣
j=0

= Tr
[

T exp
(∫ T

t

Lju
du

)
ejt(θI + ηL×)

T exp
(∫ t

0
Lju

du

)]∣∣∣∣∣
j=0

= θ + ηTr
[
L×etL(ρ0)

]
. (47)

For the diffusive SME, it reads:

Ct = √
ηTr
[
L+etL(ρ0)

]
. (48)

Signal autocorrelation – For t1 < t2, the two-point
correlation function for the jump SME reads:

Ct1,t2 = δ

δjt1

δ

δjt2

Z(j)
∣∣∣
j=0

= Tr
[
(θI + ηL×)e(t2−t1)L(θI + ηL×)et1L(ρ0)

]
= θ2 + η2Tr

[
L×e(t2−t1)LL×et1L(ρ0)

]
(49)

+ θη
(
Tr
[
L×et1L(ρ0)

]
+ Tr

[
L×et2L(ρ0)

])
.

For the diffusive SME, it reads:

Ct1,t2 = ηTr
[
L+e(t2−t1)LL+et1L(ρ0)

]
. (50)
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Multipoint correlation function – More generally
for distinct times t1 < · · · < tn, the n-point correlation
function for the jump SME reads:

Ct1,...,tn
= Tr

[
(θI + ηL×)e(tn−tn−1)L . . .

. . . (θI + ηL×)et1L(ρ0)
]
.

(51)

For the diffusive SME, it reads:

Ct1,...,tn
= ηn/2Tr

[
L+e(tn−tn−1)L . . . L+et1L(ρ0)

]
.

(52)

3.4. Generalisation to mixed jump-diffusive
SME and multiple detectors

We generalise the analytical formula of Z(j) to the case
of mixed jump-diffusive SME with multiple detectors,
when the quantum system is continuously measured by
nµ detectors with discrete-valued measurement results,
producing a jump-type evolution, and by nν detector
with continuous-valued measurement results, produc-
ing a diffusive-type evolution.

The general jump-diffusive SME with multiple detec-
tors reads:

dρt = −i[H, ρt]dt +
∑

µ

D[Vµ](ρt)dt +
∑

ν

D[Lν ](ρt)dt

+
∑

µ

G[Vµ](ρt)
(
dNµ,t −

(
θµ + ηµTr

[
VµρtV

†
µ

]
dt
))

+
∑

ν

√
ηνM[Lν ](ρt)dWν,t, (53)

where dNµ,t are independent stochastic increments and
dWν,t are independent Wiener processes. The observer
has access to nµ + nν signals:{

Iµ,t = dYµ,t

dt
, Jν,t = dZν,t

dt

}
µ∈J1,nµK,ν∈J1,nνK

, (54)

with
dYµ,t = dNµ,t (55)
dZν,t = √

ηνTr
[
(Lν + L†

ν)ρt

]
dt + dWν,t. (56)

The generating functional Z(j) has the same expres-
sion, where j is now the set of test functions each as-
sociated with a detector: j = {jµ, jν}µ∈J1,nµK,ν∈J1,nνK.
The generator of the evolution Ljt(·) reads:

Ljt
= L +

∑
µ

(ejµ,t − 1) (θµI + ηµVµ,×)

+
∑

ν

(
√

ηνjν,tLν,+ + jν,t
2

2 I
)

.

(57)

For example, the two-point correlation function for
t1 < t2 between the jump-type detector indexed µ and
the diffusive-type detector indexed ν reads:

E[Iµ,t1Jν,t2 ] = Tr
[√

ηνLν,+e(t2−t1)L

(θµI + ηµVµ,×)et1L(ρ0)
]
.

(58)

4. PRACTICAL COMPUTATION FOR RE-
ALISTIC DATA IN THE DIFFUSIVE
CASE

In this section we detail a novel numerical method for
practically computing analytical correlation functions
on experimental data. We use a simple but easily gen-
eralisable example to explain the methodology.

In a common experimental setup, the detector con-
sists of a chain of finite bandwidth amplifiers concluded
by an analogue-to-digital converter (ADC), which con-
verts the analogue signal into a discrete signal. This
output signal is usually integrated against a rectangu-
lar window of duration ∆t much longer than the inverse
of the ADC sampling rate. Thus from a practical point
of view, the discrete-time signal Ik available to an ex-
perimenter is simply the integral of the continuous-time
signal It against a rectangular window of duration ∆t
(a time bin):

Ik =
∫ (k+1)∆t

k∆t

dYt. (59)

Let us illustrate how to evaluate the two-point correla-
tion function of this integrated signal in a slightly more
general setting, when the integration windows partially
overlap. This example illustrates the importance of not
missing the equal time contributions when evaluating
correlation functions of the filtered signal. We consider
the signals I1 integrated on some time interval Ω1 and
I2 integrated on some time interval Ω2 (see figure 1):

Ij =
∫

t∈Ωj

dYt =
∫
1Ωj (t)dYt, (60)

where 1Ω is the rectangular window defined by 1Ω(t) =
1 if t ∈ Ω and 1Ω(t) = 0 otherwise.

t = 0 time

Ω1 Ω2

Figure 1: Overlapping integration windows

We consider a system whose evolution is described by
a diffusive SME, and for simplicity we assume that the
Lindbladian does not depend on time.

It is tempting to evaluate the two-point correlation
function naively by taking partial derivatives of the
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generating functional explicitly:

CI1,I2 = ∂α1∂α2Z(α11Ω1 + α21Ω2)
∣∣∣
α1=α2=0

=
∫

Ω1∩ Ω2

dt

+ η

∫∫
Ω1,Ω2,t1≤t2

dt1dt2Tr
[
L+e(t2−t1)LL+et1L(ρ0)

]
+ η

∫∫
Ω1,Ω2,t1>t2

dt1dt2Tr
[
L+e(t1−t2)LL+et2L(ρ0)

]
,

where we use the abbreviated notation ∂α = ∂
∂α for

the partial derivative. Note the overlapping term for
t ∈ Ω1 ∩ Ω2 coming from the equal time contributions
of the sharp signal. One could then evaluate this ex-
pression numerically by i) discretizing the double inte-
grals ii) evaluating the trace integrand at each quadra-
ture point (e.g. by diagonalizing L and evaluating the
exponentials exactly). This is prohibitively expensive
for large Hilbert space dimensions and correlation func-
tions involving more than two points.

We propose a faster way to compute such correlation
functions, which requires no discretization when the fil-
ter is a simple binning as we assume here. We go back
to the generating functional and pull the derivatives
inside the trace:

CI1,I2 = ∂α1∂α2Tr
[

T exp
(∫ T

0
Lju

du

)
(ρ0)

]∣∣∣∣∣
α1,α2=0

= Tr
[
∂α1∂α2ρj

T

∣∣∣
α1,α2=0

]
= Tr

[
ρ

(1,2)
T

]
(61)

where j = α11Ω1 + α21Ω2 and ρj
t is the solution to

the ordinary differential equation (ODE) dρj
t /dt =

Ljt(ρ
j
t ). To compute the derivatives of ρj

T with re-
spect to α1, α2, we simply (forward) differentiate the
ODE:

d
dt

ρ
(1,2)
t = ∂α1∂α2

(
Ljt

(ρj
t )
)∣∣∣

α1,α2=0
. (62)

Introducing the partial derivatives

ρ
(1)
t = ∂α1ρj

t

∣∣∣
α1,α2=0

and ρ
(2)
t = ∂α2ρj

t

∣∣∣
α1,α2=0

,

and using the explicit expression of Ljt from (46), we
obtain the system of coupled linear ODEs describing
the evolution of four fictitious states ρt, ρ

(1)
t , ρ

(2)
t and

ρ
(1,2)
t :

d
dt

ρt = Ljt
(ρj

t )
∣∣∣
α1,α2=0

= L(ρt) (63)

d
dt

ρ
(1)
t = ∂α1

(
Ljt

(ρj
t )
)∣∣∣

α1,α2=0

= L(ρ(1)
t ) + 1Ω1(t)√ηL+(ρt) (64)

d
dt

ρ
(2)
t = ∂α2

(
Ljt

(ρj
t )
)∣∣∣

α1,α2=0

= L(ρ(2)
t ) + 1Ω2(t)√ηL+(ρt) (65)

d
dt

ρ
(1,2)
t = ∂α1∂α2

(
Ljt

(ρj
t )
)∣∣∣

α1,α2=0

= L(ρ(1,2)
t ) + 1Ω1(t)√ηL+(ρ(2)

t ) (66)

+ 1Ω2(t)√ηL+(ρ(1)
t ) + 1Ω1∩ Ω2(t)ρt.

To obtain ρ
(1,2)
T , we solve this system linear ODE

(which we see simply as a larger linear ODE) with ini-
tial condition ρt=0 = ρ0 and ρ

(1)
t=0 = ρ

(2)
t=0 = ρ

(1,2)
t=0 = 0

from time 0 to T .

This is particularly economical numerically, because
the generator of the linear ODE is piecewise constant.
We may thus obtain the final state by four successive
exponentiation of the generator, corresponding to the
evolution before Ω1, on Ω1\Ω2, on Ω1 ∩ Ω2 and finally
on Ω2\Ω1 (the evolution for times after Ω2 is trace-
preserving and thus need not be computed).

For large Hilbert space dimensions, one does not need
to compute the exponential explicitly, but simply its
action on the initial state. This can be done efficiently
using Krylov subspace methods. We propose an exam-
ple implementation in an elementary Julia script avail-
able at [19] using the QuantumOptics.jl library [20] and
the KrylovKit.jl library [21].

For more general filters, when the generator is not
piecewise constant, our method remains practical and
one may simply solve the time dependent ODEs (63)
to (66) with a high-order Runge-Kutta discretization.

5. APPLICATION

The main practical application of these calculations is
to infer, from n-point correlations given by experimen-
tal measurement data, some key parameters appearing
in the modelling SME (e.g. typical transition frequency
in the Hamiltonian H, detection efficiency η or dark
count rate θ).

Our formulation enables efficient fitting and optimiza-
tion algorithms, based for example on gradient com-
putations via adjoint methods. Moreover, imperfec-
tions of the detection chain can be directly included
in the model via the filter function f . In the end,
this makes the estimation of parameters from realis-
tic experimental correlation functions practical, even
for Hilbert space dimensions ∼ 100 typically arising in
bosonic problems.
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[7] Lajos Diósi. Structural features of sequential
weak measurements. Physical Review A, 94.1
(2016).

[8] N Foroozani, M Naghiloo, D Tan, K Mølmer, and
KW Murch. Correlations of the time dependent
signal and the state of a continuously monitored
quantum system. Physical review letters, 116.11
(2016).

[9] Juan Atalaya, Shay Hacohen-Gourgy, Leigh S
Martin, Irfan Siddiqi, and Alexander N Ko-
rotkov. Multitime correlators in continuous mea-

surement of qubit observables. Physical Review
A, 97.2 (2018).

[10] Antoine Tilloy. Exact signal correlators in con-
tinuous quantum measurements. Physical Review
A, 98.1 (2018).

[11] Pierre Rouchon. A tutorial introduction to quan-
tum stochastic master equations based on the
qubit/photon system. Annual Reviews in Con-
trol, 54 (2022).

[12] Crispin Gardiner, Peter Zoller, and Peter Zoller.
Quantum noise: a handbook of Markovian
and non-Markovian quantum stochastic methods
with applications to quantum optics. Springer
Science & Business Media (2004).

[13] Howard M Wiseman and Gerard J Milburn.
Quantum theory of field-quadrature measure-
ments. Physical review A, 47.1 (1993).

[14] Kurt Jacobs and Daniel A Steck. A straightfor-
ward introduction to continuous quantum mea-
surement. Contemporary Physics, 47.5 (2006).
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