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Abstract —Measuring the quantumness of a system can be done with a variety
of methods. In this article we compare different criteria, namely quantum
discord, Bell inequality violation and non-separability, for systems placed in
a Gaussian state. When the state is pure, these criteria are equivalent, while
we find that they do not necessarily coincide when decoherence takes place.
Finally, we prove that these criteria are essentially controlled by the semi-
minor axis of the ellipse representing the state’s Wigner function in phase

space.

Introduction. — The characterisation of
“classicality” and “quantumness” in quantum
systems has become a topic of major importance
in several branches of modern physics. Indeed,
maybe surprisingly, it is not always trivial to es-
tablish whether a system behaves “classically”
or “quantum-mechanically”. This question is es-
pecially important when one tries to understand
the nature of a physical phenomenon.

For instance, in cosmology, it is well-known
that primordial perturbations are very well re-
produced [20] by vacuum quantum fluctuations,
amplified by gravitational instability [8, 33, 35,
60,61, 75] during an early epoch of accelerated
expansion named inflation [5, 32, 46, 47, 69, 74].
However, the quantum origin of those primor-
dial perturbations has never been tested directly
and, in practice, they are mostly treated by as-

tronomers as classical, stochastic fluctuations.
The reason why this is possible is that, under pe-
culiar circumstances, and for certain observables,
a quantum system can be mimicked by a classical
one [45,51,53]. However, if a genuine quantum
signature could be detected in cosmological ob-
servables, that would shed light on fundamental
issues such as the need to quantise gravitational
degrees of freedom or the emergence of classical-
ity at cosmological scales [7,49, 55,59, 64, 78].

The same need to distinguish classical from
quantum processes appears in analogue grav-
ity, where phenomena involving gravitational
physics are mapped to condensed-matter sys-
tems. In these setups, particles can either be
created by quantum channels or by the classical
amplification of a thermal bath [12]. The latter
mechanism is always present when conducting

p-1



J. Martin et al.

experiments at finite temperature. A quantum
test is a way to tell the two populations apart
and to demonstrate the existence of a quantum
channel in these experiments [12, 40,68, 76].

In quantum technologies, the distinction be-
tween quantum and classical behaviours is also
central, since “quantumness” is a crucial re-
source e.g. in quantum computing [43] and quan-
tum cryptography [21,66].

This has led various notions of “quantum-
ness” to be put forward. One possible approach
is to comsider correlations between sub-parts of
a given system, and to determine whether or
not they can be reproduced by classical ran-
dom variables. This route gave rise to the
celebrated Bell inequalities [6, 18, 29], quantum
steering [83], different measures of entangle-
ment (non-separability [31], multipartite entan-
glement [38], entanglement witnesses [37], etc.),
quantum discord [11,36,063], etc..

Another possible approach, leading to a
second class of criteria, is to make use of
phase-space formulations of quantum mechan-
ics. For instance, the non-positivity of the
Wigner function [32] or the absence of the P-
representation [28,77] have been viewed as crite-
ria signalling the quantumness of a system [20,
80].

How these different criteria are related is a
non-trivial question. In pure states, it is known
that quantum discord reduces to entanglement
entropy [11], which only vanishes in separable
states, and that all non-separable states violate
a Bell inequality [81]. For mixed states however,
these relations become more elusive (for instance
non-separability is only a necessary condition for
Bell-inequality violation [81]).

In this article, our goal is to investigate the re-
lations between different criteria in a subclass of
quantum states where explicit calculations can
be performed. We want to determine in which
cases they lead to the same conclusion regarding
the quantumness of a system, and in which cases
they differ. In practice, we consider two con-
tinuous degrees of freedom placed in two-mode
squeezed thermal states and analyse the link be-

tween three quantum criteria: non-separability,
quantum discord and a Bell inequality.

Gaussian states. — Let us consider two
continuous degrees of freedom ¢; and g9, with
conjugated momenta p; and po, arranged into

~ A aoa AT
the phase-space vector Ry = (q1,p1, G2, P2)
with [g;, p;] = d;;. Their quantum state is rep-
resented by the density matrix p. For a given
quantum operator O, the Weyl transform

O(Rl/g) = /dul dus e~ iP1uI—ip2us

X <Q1 + %,% + %‘ @) ‘(h - %7(12 - %> (1)
yields a scalar function in phase space. The
Wigner function W is the Weyl transform of the
density matrix [16], W = p/(2m)?, and is such
that the expectation value of any quantum op-
erator A is given by the phase-space average of
its Weyl transform against the Wigner function,

<A> = /A (Rij2) W(Ri2)d'Ryyn. (2)

This is why the Wigner function is often referred
to as a “quasi-probability” distribution function.

A Gaussian state is defined as a state whose
Wigner function is Gaussian. All information
about the state is then contained in the covari-
ance matrix

Yab = <{Raa Rb}> ) (3)

where Rg refers to the components of the vector
R, )5, {A, B} = AB+BA s the anti-commutator
and the Wigner function reads

W(R, /) = exp <—R1T/2’)’71R1/2) .

(4)

Let us also introduce the purity p = Tr(p?),
which determines whether the state is pure (p =
1) or mixed (p < 1). For a Gaussian state, the
purity is directly related to the determinant of
the covariance matrix [2]

P= e (5)

1
m2y/dety
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Two-mode squeezed vacuua (TMSV) are
Gaussian states whose covariance matrix depend
on two parameters only, 7 and ¢, respectively
called squeezing amplitude and squeezing angle,
and reads [9, 17, 70]

11 .12
TSV = <321 122> ) (6)

with

~M = ~?2 = cosh (2r)12,

(7)
and

cos 2¢p

12 _ .21 —
v =~ = —sinh2r (sin2g0

sin 2¢p
—cos2p /)
(8)

TMSV are ubiquitous in modern physics
they appear in quantum optics [9, 17, 70], cold
atoms [22,62] as well as in the study of infla-
tion [3,19,30,31] and Hawking radiation [4, 34].
Using Eq. (5) one can check that they are pure.
In general, TMSV may become mixed as an ef-
fect of decoherence [42,84,85]. We will consider
the class of two-mode squeezed thermal states
which are defined as Gaussian states with co-
variance matrices of the form

TMSV
VR

where one can check from Eq. (5) that p is in-
deed the purity of the state. These states arise
for instance for cosmological perturbations lin-
early coupled to an environment while preserv-
ing statistical homogeneity [15,50], or when an
initial TMSV interacts with two identical in-
dependent thermal baths [23, 48], or when the
modes are sent through a pure-loss or an addi-
tive Gaussian noise channel [25]. The two lat-
ter channels are described by simple transfor-
mations of the covariance matrix, respectively
given by v = nyT™SV 4 (1 — ) 1, where the ef-
ficiency parameter 0 < 1 < 1 encodes the level
of loss/damping experienced across the channel,
and v = y™SV £ A1, where A > 0 encodes the

~

v = 9)

level of noise. Both matrices can then be put in
the form (9), with effective squeezing and purity
parameters given in Egs. (66) and (70) of the
Appendix where these two channels are studied
in details.

In the following we work in terms of these
effective squeezing and purity parameters, such
that all setups mentioned above are encompassed
in the analysis. Decoherence is expected to play
a key role in the emergence of classicality, and
this simply parameterised class of states will al-
low us to study how different criteria respond to
it.

Under a canonical transformation, R — TR7
where T is a symplectic matrix (i.e. it preserves
commutation relations), the covariance matrix
changes according to v — T~T'T. This implies
that the covariance matrix depends on the set of
canonical variables used to describe a system.

For instance, there exists a partition Rp where
the covariance matrix is block diagonal,

1 OMSV 0
D Y
= — , 10
Y \/17 ( 0 7OMSV> (10)
with
OMSV _ Yaq  Yap 11

7 <'qu 'Vpp> (1)

and

Yqq = [cosh(2r) — cos(2¢) sinh(2r)], (12)

Ypg = Yqp = — sin(2¢) sinh(2r),
Ypp = [cosh(2r) 4 cos(2¢) sinh(27)],

such that the Wigner function factorises accord-
ing to WP(R") = W(qP,p?)W (g5, p¥). In this
basis, the quantum state is nothing but the prod-
uct of two identical and uncorrelated one-mode
squeezed (thermal) states. If p = 1 they are one-
mode squeezed vacuua (OMSV).

This also implies that quantumness criteria,
which characterise the correlations between two
subsystems, obviously depend on the way the
system is partitioned (for instance, the way
quantum discord depends on the choice of parti-
tion has been studied in Refs. [50,52]).
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Fig. 1: Phase-space v/2-0 contour levels of the
Wigner function W. The pink circle corresponds to
a vacuum state (coherent state) with p = 1 and van-
ishing squeezing parameter » = 0. The green ellipse
represents a pure state p = 1, slightly squeezed r = 1
along the diagonal ¢ = 7/4. The blue ellipse rep-
resents a state with the same squeezing parameter
r = 1 but with purity p = e™* ~ 0.018 such that its
semi-minor axis is of the same size as in the vacuum
state.

In practice, their often exists a “preferred” ba-
sis of operators corresponding to separately mea-
surable physical degrees of freedom [56,57] The
factorised partition (10) is nonetheless useful as
it provides a simple geometric representation of
the quantum state: the contours of W are el-
lipses in the phase space (¢°,pP), as displayed
in Fig. 1. Their eccentricity is controlled by r, ¢
is the angle between the gP-axis and the semi-
minor axis, and the area contained in the ellipses
is proportional to 1/p.

Quantumness criteria. — Since the quan-
tum states we consider are fully characterised by
the three parameters r, ¢ and p, let us express
the three quantumness criteria in terms of these
parameters, in order to compare them.

Quantum Discord. A first way to characterise
the presence of quantum correlations between
two sub-parts of a system is by quantum dis-
cord [36,63]. The idea is to introduce two mea-
sures of correlation that coincide for classically
correlated setups thanks to Bayes’ theorem, but
that may differ for quantum systems. The first
measure is the so-called mutual information Z,
which is the sum between the von-Neumann en-
tropy of both reduced sub-systems, minus the
entropy of the entire system. The second mea-
sure J evaluates the difference between the en-
tropy contained in the first subsystem, and the
entropy contained in that same subsystem when
the second subsystem has been measured, where
an extremisation is performed over all possible
ways to “measure” the second subsystem. J can
be shown to be always less than Z. Quantum dis-
cord D is defined as the difference between these
two measures and is thus a positive quantity that
only vanishes for classical systems.

For Gaussian states, Z , J and D can be ex-
pressed in terms of the local symplectic invari-
ants of the covariance matrix [2].! It is shown
in [1,27,65] that, for covariance matrices of the
form (9), quantum discord depends on r and p
only and is given by

D(p,r) =fo(p,7)] —2f (pfl/z)

L [U(p,r)—i—p_l} 7

o(p,r)+1 (15)

where the function f(x) is defined for 2 > 1 by

r+1 o r+1
2 82\ T3

f(z)

1This means that quantum discord is invariant under
local symplectic transformations, i.e. those mixing g; with
pi but not with ¢; and p;. This explains why ¢ does
not appear in the final expression (15), since it can be
changed arbitrarily by performing phase-space rotations
in each sector.
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and
cosh(2r)
V.

Note that in the partition (10), where the co-
variance matrix is block-diagonal, the two sub-
systems are uncorrelated hence quantum discord
vanishes.

Bell Inequality. Another way to characterise
the presence of quantum correlations is via Bell
inequalities [10]. When violated, they allow
one to exclude classical and realistic local the-
ories [58]. Usually designed for discrete observ-
ables [18](such as spins), they can also be applied
to continuous variables by means of pseudo-spin
operators [6,29] or via projections on coherent
states [14]. In this paper we will use the pseudo-
spin operators introduced in Ref. [29]

a(p,r) = (17)

ol :/ sign(qi) [¢i) (g:| dg , (18)
&; = —i/ sign(q;) |¢:) (—qil dgi, (19)
ot== [l -l das. (20)

One can check that these operators satisfy the
SU(2) commutation relations
[67,,6)] = 2i€,r636" (21)
where €, is the totally anti-symmetric tensor.
From these operators we can build a Bell in-
equality [29,54]

(B) = 2\/(6162)% + (6162 <2, (22)
In order to compute the two-point correla-
tion functions of the operators 6, and &, one
can derive their Weyl transform and make use
of Eq. (2). Since &}L and Eri act on different
degrees of freedom, the Weyl transform of their

product factorises as

(23)

and in the appendix we show that

ol = —76(q:)d(pi), of =sgn(qi),  (24)

where ¢ stands for the Dirac distribution. To-
gether with Eq. (2), this leads to

(25)

(6L61) = —% arcsin [|cos(2¢)| tanh(2r)] . (26)

Inserting Eqs. (25) and (26) into Eq. (22) leads
to

(B) = 2\/p2 + % arcsin® [cos(2¢p) tanh(2r)] .
(27)

Compared to quantum discord given in Eq. (15),
one can see that the mean value of the Bell op-
erator <B> depends on the squeezing angle ¢ in
addition to the squeezing amplitude r and the
purity p. This is expected since the operators
given in Eq. (18) are not invariant under local
symplectic transformations.

Non-separability. Finally we consider quan-
tum separability. A state is said to be separable
in a certain partition if its density matrix can
be written as a statistical mixture of products of
density matrices over the two sub-systems, i.e.

p=> aipi X b,
7

where «; are real coefficients. In general, prov-
ing that a state is separable is a non-trivial task,
yet, for Gaussian states, the so-called Peres-
Horodecki criterion was proven to be necessary
and sufficient [72]. In the appendix we show how
to evaluate this criterion for Gaussian states, in a
one-parameter family of partitions that contains
both Eq. (9) and Eq. (10). In the partition cor-
responding to Eq. (10), the state is, as expected,
always separable, while for Eq. (9) we find that
the state is separable if and only if

6727” Z \/Z—)*

(28)

(29)
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Fig. 2: Hyperbolic tangent of the quantum discord tanh D computed from Eq. (15) as a function of the
purity p and the hyperbolic tangent of the squeezing parameter tanhr. The dashed white (respectively
black) line represents the threshold of separability (respectively Bell inequality violation) defined as the

equality case in Eq. (29) [respectively Eq. (27)].

Results & Discussion. — Let us first make
connection with the phase-space approaches
mentioned in the introduction. We point out
that the thermal squeezed states considered here
always have a positive Wigner phase-space prob-
ability distribution, which could make them ap-
pear classical. Yet, as demonstrated, these states
can exhibit quantum features. We refer to
Refs. [24,419,67] for detailed discussions of this
point. Additionally, for these states, the absence
of a Glauber-Sudarshan P-representation, which
is considered as a sign of non-classicality, is ac-
tually equivalent to the non-separability of the
state [13,44] whose conditions has been com-
puted in Eq. (29).

We now compare the three different criteria
for deciding whether a system behaves quantum-
mechanically or not: the quantum discord (15),
the violation of Bell inequalities (27) and the
non-separability of the state (29). As mentioned
above, the squeezing angle ¢ can be adjusted
by rotating the measurement direction in phase

space. This is why, for the Bell inequality (27),
which is the only criterion depending on ¢, we
choose to optimise ¢ in order to get the maxi-
mal violation. It corresponds to setting ¢ = 0.
All three criteria thus depend on r and p only,
and are shown in Fig. 2. The colour encodes the
value of quantum discord as given by Eq. (15),
the black dashed line corresponds to the thresh-
old for Bell-inequality violation, Eq. (27), while
the white line stands for the non-separability cri-
terion as given in Eq. (29).

One can check that, for pure state (p = 1), all
criteria are equivalent: except from the vacuum
state (r = 0), all states have non-vanishing quan-
tum discord, are non separable and violate the
Bell inequality. In this sense, for a pure Gaussian
state, any correlation is quantum in nature. For
mixed states (p < 1), non-separability is a nec-
essary but non-sufficient condition for the Bell-
inequality violation [81] (i.e. the white line is be-
low the black line), and non-discordant states are
separable [11] (i.e. the dark blue region is below
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the white line).

These results also confirm that decoherence
(i.e. smaller value for p) is associated to the emer-
gence of classicality. Indeed, for a given squeez-
ing amplitude r, there always exists a value of
the purity parameter p below which the Bell in-
equality is not violated, the state is separable
and quantum discord is smaller than a given
threshold. The required amount of decoherence
(i.e. the critical value for the purity parameter
p), increases (decreases) with the squeezing am-
plitude. This is because, as r increases, the
two subsystems get more entangled, hence it
takes more decoherence to erase quantum fea-
tures. In [48], the authors had considered a sim-
ilar class of states and studied the robustness
of non-classicality measures against decoherence
induced by coupling to thermal baths. In this
special case it was also found that the state be-
comes classical in the sense that quantum discord
asymptotes zero at large decoherence, and that
separability vanishes once decoherence reaches a
certain finite threshold.

Our findings also prompt some reservations
about the physical relevance of the numerical
value of quantum discord. Discord is measured
in information bits and, a priori, one may think
that it is an extensive quantity, namely the larger
the discord the more “quantum” the state. How-
ever, one notices in Fig. 2 that the value of quan-
tum discord at which the separability or Bell cri-
teria are crossed may be small or large, depend-
ing on the squeezing amplitude. For instance, if
the state is almost pure p ~ 1 and the squeez-
ing weak r < 1, then one can achieve a non-
separable state and/or a Bell inequality violation
while keeping a small quantum discord, see point
“A”; or for large squeezing and small purity we
can both have a large quantum discord and still
satisfy the Bell inequality, see point “B”. This
suggests that the numerical value of discord itself
has no clear interpretation, at least in this setup
and in terms of the other quantumness criteria.

The behaviour of these three criteria can be
further understood in the phase-space represen-
tation. Ignoring the orientation ¢ (which we

have set to its optimal value ¢ = 0 for Bell
inequality violation), the ellipses of Fig. 1 have
been parameterised so far using their area, via p,
and their eccentricity, via r. Alternatively, one
can describe them by means of their semi-major,
a, and semi-minor, b, axes, related to r and p by

a= erp—1/4 ,

b=eTp V4, (30)
In particular, we expect b, the size of semi-minor
axis, to play a physical role since it encodes the
presence or absence of a sub-fluctuant direction
in phase space with respect to the vacuum.

Using Eq. (30) all criteria can be expressed in
terms of a and b. The non-separability criterion
assumes an extremely simple form as Eq. (29)
is straightforwardly recast to b > 1. The fact
that the state is non-separable is then equiva-
lent to the existence of a sub-fluctuant direction
in phase space (for instance, in Fig. | the state
represented by the green ellipse is non-separable
while the one represented by the blue ellipse is
separable). The expression of quantum discord
and the Bell operator in terms of a and b is
not particularly illuminating but in the large-
squeezing and small-purity limit, i.e. a > b >
1/a, in the appendix we show that the discord
also becomes a function of b only (i.e. of the sub-
fluctuant mode), namely

D(a,b) — g (1 + 2b2) + log, (1 + 2;) , (31)
where g(x) is bounded and defined in Eq. (64).

All criteria are displayed as a function of @ and
b in Fig. 3, where one can check that (B) and D
become independent of a in the large-squeezing
limit.

Conclusions. — In this letter, we compared
three different criteria, quantum discord, Bell in-
equality violation and non-separability, aimed at
assessing whether a system behaves quantum-
mechanically or not. We have found that, even
in a simple class of Gaussian states, these criteria
are inequivalent, i.e. a state can be, at the same
time, “quantum” according to one criterion and
“classical” according to another one. However,
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Fig. 3: Same criteria as in Fig. 2, as a function of the semi-major a and semi-minor b axes of the phase-space
ellipses depicted in Fig. 1. The solid black lines are contour levels of quantum discord. The white region
corresponds to either a < b or p > 1, which are both non physical. In the large squeezing limit, b < a,
(B) = 2 (black dashed line) is equivalent to b = [r/(8a%)]*/°.

in the large squeezing limit these criteria were REFERENCES
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This analysis could be extended to non-
Gaussian states [79], which are known to behave
differently under quantum criteria (for instance,
according to Hudson theorem [39] their Wigner
functions are necessarily non-positive if they are
pure).
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Appendix. — In the two first sections of this appendix we present the technical details relevant
for computing the expectation value of the Bell operator and the separability criterion for Gaussian
states. In the third section, we show that, in the limit » > 1 and p < 1, quantum discord is
only controlled by b, the size of the semi-minor axis introduced in the main text. In the last
section we analyse the effect of two specific Gaussian noisy channels, namely the pure-loss and the
additive-noise channels, on the non-classicality of a TMSV using the criteria identified in the text.

Weyl transform of spin operators and expectation value of Bell operator. We start by present-
ing the computation of the Weyl transform of the spin operators defined in Eq. (18). The Weyl
transform of an operator has been defined in Eq. (1). We apply this formula to 6%, the spin operator
of the " subsystem along z

o) = [ e (o 2(( [0 telar) o - B ay (32)
/ w‘/ qz+f—x)5<qi—g+x)dxdy (33)

5 (2q.) / iy (34)
5

(35)

= —70 (g

which is the formula given in Eq. (24). This readily gives Eq. (25). Proceeding similarly for the
spin operator along x we get

)= [ e (Y] (- / O;sign @)} (alde) o~ Tyay @0
= [ e [ s (ar §-a) (v -a §) oty o

= [m ePi¥ sign (qZ - %) 0 (y)dy (38)

= sign () , (39)

which is the (second) formula given in Eq (24). Using Eq. (2) and the Gaussian Wigner function (4),
the expectation value of 5162 can then be obtained as

142\ _ sign (q1) sign (g2) T _—1
(6202) = / 22\ /dety exp (*R1/2’Y R1/2) dg; dp; dgz dpo (40)

. . 2 2
_ / sign (g1) sien (¢2) | (6 +62)” (6112 92)" | 441 dgs (41)
T\/YaaVpp 2Y4q “Yop
2 5(2 inh(2
= ——arctan cos(2¢) sinh(2r) ‘ (42)
\/1 + sin? (2¢) sinh (2r)
2
= —— arcsin [|cos(2¢)| tanh(27)] , (43)
T

where in the second line we have performed the integration over p; and po, and in the third line
over ¢; and ¢o after having inserted the expression of 7,4 and +y,, given by Eqgs.(12) and (14). The
last result is nothing but Eq. (26).
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Separability criterion. In this section we derive Eq. (29) of the main text, i.e. the condition
for a Gaussian state to be separable. In the partition leading to Eq. (9), the result is known, see
for instance [15]. Here we extend this result to the one-parameter family of partitions considered
in Ref. [50]: starting from Rp, it is obtained by performing the canonical transformation Rp —
S(0)Rp where S(6) is the symplectic matrix

cos 0 0 0 sin ¢
0 cos 6 —sinf 0
sinfsin(20)  sin@cos(20) coscos(20) — cosBsin(26)
—sinfcos(20) sinfsin(20) cosfsin(20)  cos 6 cos(26)

5(0) = (44)

This class of partitions is parameterised by the angle . The partition (9) corresponds to § = —7 /4,
while the factorised partition, i.e. the one leading to Eq. (10), corresponds to § = 0. For arbitrary
0 the covariance matrix reads

—_ (’YA WC) ’ (45)
Yc B
with
(71 c0s? 0 + 2 sin” 0 12 cos(26) (46)
A= 12 cos(20) a9 cos? 0 + 11 sin? 6 )’
’YB|11 VB \12
_ 7 47
B (’YB|21 7322) (47)
1 . 9 1 . 1 . . 9
5(’}/11 — 792) sin“(20) + 5712 sin(46) —1('}/11 — 22) sin(460) + 12 sin”(26)
e = 1 . . 1 . 1 . ’
—1(711 — Ya2) sin(46) + 12 sm2(29) —5(711 — Y22) sm2(26) — 5712 sin(46)
(48)

and where the components of vg are given by

1 1 1 .
vBl11 = 5711 + 5722 + 5(711 — 722) cos(26) cos(460) — 12 cos(26) sin(46), (49)
1 .
vBl12 = YBl21 = Y12 c0s(20) cos(46) + 5(’)/11 — Ya2) cos(26) sin(40), (50)
1 1 1 .
VBl22 = 5711 + 5722 — 5(711 — 792) c0s(26) cos(460) + 12 cos(26) sin(46). (51)

For a general covariance matrix the Peres-Horodecki criterion for separability can be written
as [73]

dety4 detyp + (| det ye| — 1)* — Tr ['YAJ(D'YCf](l)'YBJ(l)'YgJ(l)} > detya + detyp, (52)

where the matrix J) is defined by J1) = ( 0 1). Using the above expressions, straightforward

-1 0
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manipulations lead to

1 1
detya = detyp = » [cosh?(2r) — cos?(20) sinh®(2r)] = i detyc, (53)
1
detyo = > sinh?(2r) sin?(26), (54)
1
Tr [7,4J(l)VCJ(l)VBJ(l)'ng(l)] = —2detv¢ <p — det W’C) . (55)

Combining the above results, the general criterion (52) can be written as a condition on det (y¢)
only, which is always negative as can be seen in Eq. (54). One obtains

1 2 1 1
(p — det *yc) + (detye + 1) + 2det y¢ <p — det fyg) >2 <p — det 7@) . (56)
Using Eq. (54) the above reduces to
1 2
— ——+1+4detyc >0. (57)
p p

Using Eq. (54) again, one finds

1 2 . 19 . 9
(\/]7 — \/]7> > 4sinh”(2r) sin®(26) . (58)

In the partition leading to Eq. (9), the above expression can be evaluated with § = —m /4, a value
for which the previous formula reduces to

1 ? 1 2
)
(ﬁ - \/ﬁ) > (ezr e ) , (59)
Given that both ,/p’ and e~?" are smaller than one, and since y — y — 1/y is a strictly increasing
function, this finally leads to

(60)

which corresponds to Eq. (29).

Quantum discord in the large-squeezing limit.  Using Eqs. (30), we can re-write the expres-
sion (15) of the quantum discord in terms of the lengths of the semi-major, a, and semi-minor axis,
b. Eq. (15) only depends on the quantity o, defined by Eq. (17), and p. Therefore, we need to
express these two quantities in terms of a and b and one obtains

1, 1
== b =—. 61
o 2(a+),pa2b2 (61)
Combining Eq. (15) and the two above formula, we get the following expression for the quantum
discord as a function of a and b only

D(a,b) = f [1 (a® +b2)} — 2f (ab) +f(

; (62)

a? + b% + 2a2b?
a?4+b%2+2
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Under this form the quantum discord is expressed as a sum of terms which have no definite sign
and are unbounded. In order to see that D is only controlled by b in the large-squeezing (i.e. a > b)
and small-purity (i.e. ab=1/,/p > 1) limit, we rewrite the above as

1 a® + b% + 2a2b? (a® + b?)(a® + b? + 2a%b?)
D(a,b) =g |= (a® + %) |—2g (ab — | +1
(a,5) 9[2 (a"+ )] 9(a Hg( a2 +2 > 2{ @tz |
where we have defined the function g(x) by
T 1
g9(z) = f(z) — log, (5) BTCR (64)

The function g(x) is defined as the difference between f(x) and its asymptotic value at large
argument. One can check that g(x) is a negative, strictly increasing function, which is bounded by
its limits lim, .1+ g(z) = —1/In2+ 1 ~ —0.44 and lim,_, - g(x) = 0. The large-squeezing regime
corresponds to b > a. Since ab > 1 for the purity to be smaller than one, large squeezing requires
a > 1, i.e. the semi-major axis must be much larger than its vacuum value. The first term in
Eq. (63) therefore vanishes in this limit. In addition, for small purity ab = 1/,/p > 1, the second
term vanishes as well. We are thus left with the last two terms, which, in this limit, read

D(a,b) = g (1 + 2b*) + log, (1 + 21b2) : (65)

Therefore, the value of the discord only depends on the size of the semi-minor axis b as can be seen
in the lower-right corner of Fig. 3. Note that asymptotic expression behaves as expected in the
limit of a large semi-minor axis, b > 1, where D goes to 0. In the opposite limit, namely, b < 1,
the first term goes to a finite value while the second one vanishes.

Pure-loss and additive-noise channels.  Consider now the effect of a pure-loss channel of effi-
ciency n on a TMSV whose covariance matrix is given by Eq. (6). The resulting covariance matrix,

ny™SV 4 (1 — ) 14, can be recast in the form of Eq. (9) using the following effective squeezing
parameters and purity
1 nsinh (2r) 1
r’ = —arctanh . Y =¢, p= _ 66
2 ncosh(2r)+1—n LA + 4sinh? (r)n (1 —n) (66)

We check that, in the limit 7 — 1 (no loss), the rescaled squeezing parameters coincide with
the original ones and p = 1. Using this mapping we can express the quantum discord, the non-
separability and the Bell violation criteria with the help of the formulas derived in the main text.
We plot these three criteria in Fig. 4, where we set ¢ = 0 to optimise for the violation of the Bell
inequality.

First, we notice that, at fixed value of 7, the discord increases with 7, which is intuitive since
we expect the quantumness of the state to be more and more preserved as the loss decreases. Of
course, on the other hand, at fixed efficiency, the discord increases as r increases.

Second, the criterion for separability (52), expressed in terms of r and 7, reads

— 1692 sinh®(r) [1 + 7 (2 — n) sinh*(r)] >0, (67)

which can only be satisfied if » = 0. This means that, after having gone through the loss channel, an
initial non-separable state will always remain non-separable irrespective of its efficiency as expected
for such pure damping [71].
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Third, in Fig. 4, we have also represented the threshold for violation of Bell inequality, see the
black dashed line. In terms of r and n, it is given by the following expression,

(B) =2 L 5 + % arcsin? [ nsinh (2r)
[1+4sinb® ()n1—n)] 7 neosh(2r) +1—n

This threshold is discontinuous at » = 0. Indeed, for » = 0, the system is in the vacuum which

1

: (68)

does not violate the Bell inequality <B> = 2. For small but non-vanishing value of the squeezing

parameter, we can expand the expression of (B),

<B>~2+8r277[(:2+1)77—1} , (69)

and, as a consequence, the threshold of violation for the Bell inequality corresponds to n >
(1+ 27r_2)_1 ~ 0.83, which is independent of the squeezing parameter r. We now consider the
large r behaviour of the threshold. The figure shows that for large initial squeezing the level of loss
required to prevent the violation of the Bell inequality decreases. This is consistent with the results
of [41] where the authors consider a TMSV interacting with two thermal baths, and showed that
the violation of the Bell inequality considered in [6] decreases with the initial squeezing. Since a
large squeezing also implies stronger correlation, and larger value of the Bell operator initially, this
fact might appear surprising at first. However, this picture overlooks that the decoherence caused
this pure-channel is more efficient for strongly squeezed states. Indeed, Eq. (66) shows that for a
channel with fixed efficiency 7, increasing the initial squeezing r of the TMSV will exponentially
suppress its purity p after the channel. This decoherence is suppressing the first term in Eq. (68),
while the stronger correlation increase the second term. The fact that the threshold of Bell inequal-
ity violation goes to 7 = 1 shows that this increase is not sufficient to compensate the decoherence
encoded in the first term. We can check this behaviour by approximating the curve (B) =2in
the vicinity of 7 > 1 and 7 ~ 1. One finds n ~ 1 — (7/8)%/°¢=67/5 see the white dashed line in
Fig. 4. This confirms the above described behaviour, which illustrates the “fragility” of a strongly
squeezed state.

Finally, we repeat the same analyses for the additive-noise channel whose covariance matrix, as
already mentioned above, is given by v = y™SV 4 Al,, where A > 0 represents the noise level.
Using the following parameters

sinh (2r) ;o B 1
cosh(2r)+ A |’ 7Y PTIIOA cosh(2r) + A%’
it can also be put under the form of Eq. (9). Of course, we check that, when A — 0, ' =71, ¢’ = ¢
and p = 1. The exact expressions of the quantum discord, the average value of the Bell operator

and the non-separability threshold can be obtained using this mapping. Starting from Eq. (29),
one can check that the state is separable if and only if

A>1—e2, (71)

1
r = §arctanh [ (70)

The expressions of the Bell violation threshold and the quantum discord can also be derived but
are involved and not very enlightening. We do not reproduce them here. We only want to point
out that a phenomenon similar to that observed in the pure-loss channel for large initial squeezing
also happens for the additive-noise channel. Namely, as squeezing gets large, the amount of noise
required to destroy the violation of the Bell inequality is reduced. All these results are summarised
in Fig. 5.
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Fig. 4: Hyperbolic tangent of the quantum discord tanh D computed from Eq. (15) as a function of the
efficiency 7 and the hyperbolic tangent of the initial squeezing parameter tanhr. The dashed black line
represents the threshold of separability Bell inequality violation defined as the equality case in Eq. (27).
The vertical piece overlaps and follow the line r = 0 and is represented shifted towards a non-vanishing
value of r to be visible. The dashed white line shows the approximation for the threshold valid for r» > 1,

plotted for » > 1.
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Fig. 5: Hyperbolic tangent of the quantum discord tanh D computed from Eq. (15) as a function of the noise
A and the hyperbolic tangent of the initial squeezing parameter tanhr. The dashed white (respectively
black) line represents the threshold of separability (respectively Bell inequality violation) defined as the
equality case in Eq. (29) [respectively Eq. (27)].
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