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OPTIMAL GROWTH OF UPPER FREQUENTLY HYPERCYCLIC

FUNCTIONS FOR SOME WEIGHTED TAYLOR SHIFTS

A. MOUZE, V. MUNNIER

Abstract. We are interested in the optimal growth in terms of Lp-averages of hypercyclic and
U-frequently hypercyclic functions for some weighted Taylor shift operators acting on the space of
analytic function on the unit disc. We unify the results obtained by considering intermediate notions
of upper frequent hypercyclicity between the U-frequent hypercyclicity and the hypercyclicity.

1. Introduction

A linear operator on a Fréchet space X is said to be hypercyclic if there is a vector x ∈ X such
that for every non-empty open set U ⊂ X the set N(x,U) := {n ∈ N : T nx ∈ U} is infinite, where
(T n) is the sequence of iterates of T . In this situation, x is called a hypercyclic vector. Further there
are more precise and stringent notions that allow to quantify how often a hypercyclic vector visits
a non-empty open set. A linear operator on a Fréchet space X is said to be frequently hypercyclic
(resp. U-frequently hypercyclic) if there is a vector x ∈ X such that for every non-empty open
set U ⊂ X the set N(x,U) has positive lower (resp. upper) density, where the lower and upper
densities of a subset A ⊂ N are defined respectively as follows

d(A) = lim inf
n→+∞

#A ∩ {1, . . . , n}
n

and d(A) = lim sup
n→+∞

#A ∩ {1, . . . , n}
n

.

These notions were introduced by Bayart and Grivaux [1] and Shkarin [25]. The dynamics of linear
operators is a very active branch of research: we refer the reader to [2, 20] and the references
therein for background in linear dynamics. Clearly a frequently hypercyclic vector is U -frequently
hypercyclic and a U -frequently hypercyclic vector is hypercyclic. Classical examples of frequently
or U -frequently hypercyclic operators are given by suitable weighted shifts. As usual we denote
by D the open unit disc {z ∈ C : |z| < 1} of the complex plane and by H(D) the set of analytic
functions in D. It is well known that H(D) endowed with the topology of uniform convergence on
compact subsets is a Fréchet space. For α ∈ R, let w(α) = (wn(α)) be the weighted sequence of
nonzero complex numbers given by, for all n ≥ 1,

wn(α) =

(

1 +
1

n

)α

.

In the present paper, we consider the associated weighted Taylor shift:

Tα : H(D) → H(D) given by Tα(
∑

k≥0

akz
k) =

∑

k≥0

ak+1wk+1(α)z
k.

For α = 0, T0 is the classical Taylor shift operator. It is easy to check that for every real number
α, Tα is a frequently hypercyclic operator. For instance, we refer the reader to [4, 19, 24]. The
problem of determining possible rates of growth of frequently hypercyclic functions for Tα in terms
of Lp averages was studied in [24] (see [23] for the case α = 0 too). For 0 < r < 1 and f ∈ H(D),
we consider the classical integral means

Mp(f, r) =

(

1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

(1 ≤ p <∞) and M∞(f, r) = sup
0≤t≤2π

|f(reit)|.
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In the same way, for any holomorphic polynomial P let us define, for p ≥ 1,

‖P‖p =

(

1

2π

∫ 2π

0
|P (eiθ)|pdθ

)1/p

and ‖P‖∞ = sup
0≤t≤2π

|P (eit)|.

In the following, for all p > 1 q will stand for the exponent conjugate to p, i.e. 1
p+

1
q = 1 and we will

adopt the convention q = ∞ if p = 1. For 1 ≤ p ≤ ∞, the authors recently highlighted a critical
exponent, i.e. a value of the parameter α from which the Lp-growth of a frequently hypercyclic
function for Tα no longer has the same behavior. In the case of frequent hypercyclicity for Tα, the
critical exponent is equal to α = 1

max(2,q) . Indeed the authors obtained the following statements.

First for p > 1 they proved the following result.

Theorem 1.1. ([24, Theorem 1.2]) Let α ∈ R. The following assertions hold

(1) For any 1 < p < +∞ there is a frequently hypercyclic function f in H(D) for Tα satisfying
the following estimates: there exists C > 0 such that for every 0 < r < 1

Mp(f, r) ≤















C(1− r)
α− 1

max(2,q) if α < 1
max(2,q) ,

C| log(1− r)|
1
p if α = 1

max(2,q) ,

C if α > 1
max(2,q) .

These estimates are optimal: every frequently hypercyclic function f in H(D) for Tα is
bounded from below by the corresponding previous estimate depending on α.

(2) There is a frequently hypercyclic function f in H(D) for Tα satisfying the following esti-
mates: there exists C > 0 such that for every 0 < r < 1

M∞(f, r) ≤







C(1− r)α−
1
2 if α < 1/2,

C| log(1− r)| if α = 1/2,
C if α > 1/2.

For α 6= 1/2, these estimates are optimal: every frequently hypercyclic function f in H(D)
for Tα is bounded from below by the corresponding previous estimate depending on α.

For p = 1, the following result holds. For any positive integer ℓ ≥ 1, logℓ stands for log ◦ · · · ◦ log
where log appears ℓ times.

Theorem 1.2. ([24, Proposition 4.1 and Theorem 4.4]) For any ℓ ≥ 1, there is a frequently
hypercyclic function f in H(D) for Tα satisfying the following estimates: there exists C > 0 such
that for every 0 < r < 1 sufficiently large

M1(f, r) ≤







C(1− r)α logℓ(− log(1− r)) if α < 0,
C| log(1− r)| logℓ(− log(1− r)) if α = 0,
C if α > 0.

Moreover every frequently hypercyclic function f in H(D) for Tα satisfies the following estimates:

lim inf
r→1−

[

M1(f, r)(1− r)−α
]

> 0 if α < 0, lim inf
r→1−

[

M1(f, r)

− log(1− r)

]

> 0 if α = 0,

lim inf
r→1−

[M1(f, r)] > 0 if α > 0.

It should be noted that the study of the growth of hypercyclic or frequently hypercyclic functions
started with those related to the differentiation operator on H(C) (see for instance [6, 8, 17, 18]).
Here, as a first step, we obtain sharp results on the permissible rates of Lp-growth of hypercyclic
and U -frequently hypercyclic functions for Tα. On one hand, for hypercyclicity, for any 1 ≤ p ≤ ∞
we find that the rate of growth (1−r)min(α,0) turns out to be critical and hence, for any 1 ≤ p ≤ ∞,
α = 0 is the critical exponent. Observe that in this case the critical exponent does not depend
on p. We refer to Theorem 2.2. In particular this result states that for 1 ≤ p ≤ ∞ there is no
hypercyclic function f for Tα satisfying lim supr→1−((1 − r)−αMp(f, r)) < +∞ if α ≤ 0 while if
α > 0 there exist hypercyclic functions f for Tα such that the average Mp(f, r) is bounded. In
passing Theorem 2.2 gives a negative answer to a question of [24] which asked if for α < 0 there
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is a frequently hypercyclic function gα for Tα such that lim supr→1−((1 − r)−αM1(gα, r)) < +∞.
On the other hand, for U -frequent hypercyclicity, we find the same critical exponent α = 1

max(2,q)

as for frequent hypercyclicity. Therefore contrary to the previous case this exponent depends on
p. Moreover we show that the U -frequently hypercyclic functions and the frequently hypercyclic
functions for Tα share the same admissible (and optimal) Lp-growth when α is different from the
critical exponent, i.e. α 6= 1

max(2,q) . Concerning the case α = 1
max(2,q) with 1 ≤ p ≤ ∞, we prove

that every U -frequently hypercyclic vector f for Tα satisfies lim supr→1− Mp(f, r) = +∞, without
a priori additional information on the growth of the function. We refer to Theorems 3.3 and 3.4.
Nevertheless several questions remain and need to be addressed. The first question that comes to
mind is the following: what is the optimal boundary growth of U -frequently hypercyclic functions
for Tα when α is the critical exponent? Further if we go back to what was just said, we see that
for p = 1 the critical exponent is always equal to 0 for the hypercyclic case, the U -frequently
case and the frequently hypercyclic case. But surprisingly for p > 1 this critical exponent is
equal to 1

max(2,q) for the U -frequently or frequently hypercyclic cases and is equal to zero for the

hypercyclic case. We can wonder about what happens between U -frequent hypercyclicity and
hypercyclicity. Why does the critical exponent go from 1

max(2,q) to zero? In order to understand

this phenomenon, we introduce intermediate notions of linear dynamics between the U -frequent
hypercyclicity and the hypercyclicity: the Uβγ -frequent hypercyclicity related to notions of upper

weighted densities dβγ , with 0 ≤ γ ≤ 1 a continuous parameter, where we replace in the definition of

U -frequent hypercyclicity the natural upper density d by dβγ . Moreover for γ = 0 the Uβ0-frequent
hypercyclicity will be the frequent hypercyclicity and for γ = 1 the Uβ1-frequent hypercyclicity will
be the hypercyclicity. Further for any 0 ≤ γ ≤ γ′ ≤ 1 and for any subset E ⊂ N, the following chain
of inequalities d(E) ≤ dβγ (E) ≤ dβγ′ (E) ≤ dβ1(E) will show that the Uβγ -frequent hypercyclicity

for γ ∈ (0, 1) furnish refined notions of linear dynamics between the U -frequent hypercyclicity and
the hypercyclicity. We refer the reader to the beginning of Section 4 for the main definitions and
properties. Similar notions of weaker densities have been recently studied in the context of linear
dynamics (see for instance [5, 7, 11, 12, 13, 22] and the references therein). In the present paper,
we investigate the growth in terms of Lp-averages of Uβγ -frequently hypercyclic functions for Tα. In

particular, for 0 < γ < 1, and for p > 1 we find that the critical exponent is given by α = 1−γ
max(2,q) .

Hence let us observe that this critical exponent:

(i) tends to 1
max(2,q) as γ tends to zero, i.e. tends to the critical exponent for the U -frequent

hypercyclicity case;
(ii) tends to 0 as γ tends to 1, i.e. tends to the critical exponent for the hypercyclicity case.

We also show that the estimates on the growth of Uβγ -frequently hypercyclic functions that we
obtained are optimal. To do this, we apply a method based on the use of Rudin-Shapiro polyno-
mials and inspired by a construction of frequently hypercyclic functions with optimal growth for
differentiation operator on H(C) due to Drasin and Saksman [8] and that has also been adapted
for the proofs of Theorems 1.1 and 1.2 in [23, 24]. For all these results, we refer the reader to
Theorems 4.5, 4.10 and 4.12. Finally let us return to the first question mentioned above. In the
last section, we answer it by showing that the optimal growth of U -frequently and Uβγ -frequently
hypercyclic functions for Tα coincides whenever α is the critical exponent: actually the Lp-growth
can be arbitrarily slow as in the hypercyclic case. We refer to Theorem 5.11.

The paper is organized as follows. In Sections 2 and 3 we establish the boundary behavior of
hypercyclic functions and U -frequently hypercyclic functions for Tα respectively. In Section 4 we
deal with the Uβγ -frequently hypercyclic functions for Tα. In Section 5 we turn our attention to
the specific case of critical exponent.

Throughout the paper, whenever A and B depend on some parameters, we will use the notation
A . B (resp. A & B) to mean A ≤ CB (resp. A ≥ CB) for some constant C > 0 that does not
depend on the involved parameters.
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2. Growth of hypercyclic functions

In this section, we are going to establish the rate of growth of hypercyclic functions with respect
to the weighted Taylor shift operator Tα. To do this, inspired by the proofs of [17, Theorem (A)]
and [3, Theorem 3], where the authors are interested in the rate of growth of hypercyclic functions
with respect to the Mac-Lane operator or the Dunkl operator respectively, we need an important
tool in linear dynamics: the Universality Criterion. Indeed a natural extension of the notion of
hypercyclicity is the concept of universality. A sequence of continuous linear mappings Ln : X → Y
between topological vector spaces X,Y is said to be universal whenever there exists a vector x ∈ X
such that the set {Lnx ; n ∈ N} is dense in Y . Such a vector x is called a universal vector for (Ln).
Observe that an operator T : X → X is hypercyclic if and only if the sequence (T n) is universal.
The following result which is known as the Universality Criterion furnishes a sufficient condition
for universality [16]. It is a refined version of Hypercyclicity Criterion [15, 21].

Theorem 2.1. (Universality Criterion) Assume that X and Y are topological vector spaces,
such that X is a Baire space and Y is separable and metrizable. Let Lj : X → Y be a sequence
of continuous linear mappings. Suppose that there are dense subsets X0 of X and Y0 of Y and
mappings Sj : Y0 → X such that

(i) for every x ∈ X0, Ljx→ 0,
(ii) for every y ∈ Y0, Sjy → 0,
(iii) for every y ∈ Y0, (LjSj)y → y.

Then (Lj) is universal and the set of universal vectors for (Lj) is residual in X.

Now we are ready to obtain the critical rate of growth for hypercyclic functions with respect to
the weighted Taylor shift operator Tα. The following statement holds.

Theorem 2.2. Let 1 ≤ p ≤ ∞.

(1) Let α ≤ 0.
(a) For any function ϕ : [0, 1) → R+ with ϕ(r) → ∞ as r → 1− there is a hypercyclic

function f for Tα with

Mp(f, r) . ϕ(r)(1 − r)α for 0 < r < 1 sufficiently close to 1.

(b) There is no hypercyclic function f for Tα that satisfies, for 0 < r < 1

Mp(f, r) ≤ C(1− r)α,

where C > 0.
(2) Let α > 0.

(a) There is a hypercyclic function f for Tα with

Mp(f, r) ≤ C

for some C > 0.
(b) For any function ϕ : [0, 1) → R+ with ϕ(r) → 0 as r → 1−, there is no hypercyclic

function f for Tα that satisfies, for 0 < r < 1

Mp(f, r) ≤ ϕ(r).

Proof. Since we have for 1 ≤ p ≤ l

Mp(f, r) ≤Ml(f, r), for 0 < r < 1,

it suffices to prove assertions (1a) and (2a) for M∞(f, r) and assertions (1b) and (2b) for M1(f, r).

(1) We begin by the case α ≤ 0.
First we can assume without loss of generality that the function ϕ is increasing and con-
tinuous with ϕ(0) > 0. Let us consider the space X of all functions f in H(D) with
f(z) =

∑

k≥0

akz
k satisfying for every n ≥ 0 ρn(f) < +∞ and ρn(f) → 0 as n→ +∞, where

ρn(f) = sup
|z|<1

{∣

∣

∣

∣

∣

+∞
∑

k=n

akz
k

∣

∣

∣

∣

∣

(1− |z|)−α[ϕ(|z|)]−1

}

.
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It is easy to check that X endowed with the norm ‖.‖ = supn ρn(.) is a Banach space.
Therefore (X, ‖.‖) is a Baire space. For all integer j, let Lj : X → H(D) be the operator
given by Ljf = T jf . Clearly (Lj) is a sequence of continuous linear operators. We choose
X0 = Y0 = P the set of polynomials. The set P is dense in H(D). Moreover, setting the

polynomial sN (f) =
∑N

k=0 akz
k we get

ρn(f − sN (f)) =

{

ρn(f) for n ≥ N + 1
ρN+1(f) for n ≤ N

which implies ‖f − sN (f)‖ = supn≥N+1 ρn(f) → 0 as N tends to infinity. Hence P is dense
in X. Then we define the operators Sj as follows

Sj : P → X, Sj(

n
∑

k=0

akz
k) =

n
∑

k=0

ak
(k + 1)α

(k + j + 1)α
zk+j.

Clearly we have, for all P ∈ P,

Lj(P ) → 0, as j → +∞, and LjSj(P ) = P.

Now we prove that, for all P ∈ P, Sj(P ) → 0, as j → +∞. Since Sj(z
k) = (k+1)αSj+k(1),

it suffices to show that Sj(1) → 0, as j → +∞. To do this, observe that

‖Sj(1)‖ = sup
0<r<1

rj(1− r)−α

(j + 1)αϕ(r)
.

Let us define hj : [0, 1) → R+ given by hj(r) =
rj(1−r)−α

ϕ(r) . We have hj(0) = 0 = lim
r→1−

hj(r).

Let 0 < rj < 1 with hj(rj) = sup0<r<1
rj(1−r)−α

ϕ(r) . If rj+1 < rj, we get

hj+1(rj+1) = rj+1hj(rj+1) < rjhj(rj+1) ≤ rjhj(rj) = hj+1(rj)

which gives a contradiction. Hence the sequence (rj) is increasing. If rj → γ with γ < 1,
then

‖Sj(1)‖ = (j + 1)−αhj(rj) ≤ (j + 1)−α γj

ϕ(0)
→ 0, as j → +∞.

Otherwise rj → 1 and

‖Sj(1)‖ ≤ (j + 1)−α

ϕ(rj)

(

j

j − α

)j (

1− j

j − α

)−α

→ 0, as j → +∞.

Thus we have ‖Sj(1)‖ → 0 as j tends to infinity. We apply the universality criterion to
obtain universal elements for the sequence (Lj) that are hypercyclic functions for Tα satis-
fying the growth condition required.

For assertion (1b), assume that f =
∑

k≥0

akz
k is a function in H(D) with, for all 0 < r < 1,

M1(f, r) ≤ C(1− r)α, for some C > 0. By Cauchy estimates we get

|an| ≤
M1(f, r)

rn
.

We obtain, for all n ≥ 0 and all 0 < r < 1,

|anw1(α) . . . wn(α)| ≤ C
|w1(α) . . . wn(α)|

rn
(1− r)α.

Hence we get for all n ≥ 0,

|an(n+ 1)α| ≤ C
(n+ 1)α

e−n/(n+1)
(1 − e−1/(n+1))α

which is bounded. Hence f cannot be hypercyclic for Tα.
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(2) Now let us consider the case α > 0.
First we can assume without loss of generality that the function ϕ is increasing and contin-
uous with ϕ(0) > 0. Let us consider the Banach space (H∞(D), ‖.‖)

H∞(D) =

{

f ∈ H(D) ; ‖f‖ := sup
0<r<1

M∞(f, r) <∞
}

which is continuously embedded in H(D). We set X the closure of the polynomials in
H∞(D). Let us define the sequences (Lj) and (Sj) of linear operators as in the previous
case. Clearly we have, for all P ∈ P, where P is the set of polynomials,

Lj(P ) → 0, as j → +∞, and LjSj(P ) = P.

Now we prove that, for all P ∈ P, Sj(P ) → 0, as j → +∞. To do this, it suffices to show
that Sj(1) → 0, as j → +∞. Since

‖Sj(1)‖ ≤ 1

(j + 1)α

and α > 0 we have ‖Sj(1)‖ → 0 as j tends to infinity. We apply the universality criterion
to obtain universal elements for the sequence (Lj). These universal vectors are clearly hy-
percyclic functions for Tα satisfying the growth condition required.

For assertion (2b), assume that f =
∑

k≥0

akz
k is a function in H(D) with, for all 0 < r < 1,

M1(f, r) ≤ ϕ(r), where ϕ : [0, 1) → R+ is a function such that ϕ(r) → 0 as r → 1−. We
obviously may assume that ϕ is continuous and decreasing. By Cauchy estimates we get

|an| ≤
ϕ(r)

rn
.

We obtain, for all n ≥ 0 and all 0 < r < 1,

|an(n + 1)α| ≤ (n+ 1)αϕ(r)

rn
.

Let us choose a sequence (rn) such that rn ≥ max(1− 1/n, ϕ−1 ((n+ 1)−α)). Hence we get
for all n ∈ N,

|an(n + 1)α| ≤ (n+ 1)αϕ(rn)

rnn
≤ e−n log(1−1/n)

which is bounded. Hence f cannot be hypercyclic for Tα.

�

Remark 2.3. For α < 0, Theorem 2.2 ensures that every hypercyclic function f for Tα satisfies

lim sup
r→1−

[

(1− r)−αM1(f, r)
]

= +∞.

Since a frequent hypercyclic function is necessarily hypercyclic, this observation gives a negative
answer to the first part of the question from Remark 4.5 of [24] which asked if for α < 0 there is a
frequently hypercyclic function gα for Tα such that lim sup

r→1−
((1− r)−αM1(gα, r)) < +∞.

3. Growth of U-frequently hypercyclic functions

In this section we are interested in the growth of U -frequently hypercyclic functions for Tα. First
of all, in the sequel we will need the following easy lemmas.
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Lemma 3.1. Let N ∈ N. Let AN be a subset of {1, . . . , N}. For all γ ∈ R \ {1} the following
estimate holds

∑

k∈AN

(k + 1)γ ≥



















(#AN + 1)γ+1 − 1

γ + 1
if γ ≥ 0,

(N + 2)γ+1

γ + 1

(

1−
(

1− #AN

N + 2

)γ+1
)

if γ < 0.

Proof. We begin by the case γ ≥ 0. We write

∑

k∈AN

(k + 1)γ ≥
#AN
∑

k=1

(k + 1)γ ≥
∫ #AN

0
(t+ 1)γdt,

which gives the announced result.
For γ < 0 with γ 6= −1, we obtain in an analogue way

∑

k∈AN

(k + 1)γ ≥
N
∑

k=N−#AN+1

(k + 1)γ ≥
∫ N+1

N−#AN+1
(t+ 1)γdt,

which allows to finish the proof. �

Lemma 3.2. Let (uk) and (vk) be two sequences of non-negative real numbers. Assume that (vk) is
decreasing. For any increasing sub-sequence (Nj) ⊂ N, the following inequality holds, for all l ≥ 1:

Nl
∑

k=1+N0

ukvk ≥ SNl
vNl

− SN0vN0 +
l
∑

j=1

SNj−1(vNj−1 − vNj
),

with SN =
N
∑

k=1

uk.

Proof. Observe that (SN ) is increasing and (vk) is decreasing. Thus by using a summation by parts
we derive

Nl
∑

k=1+N0

ukvk =

l
∑

j=1

Nj
∑

1+Nj−1

ukvk =

l
∑

j=1



SNj
vNj

− SNj−1vNj−1 +

Nj−1
∑

k=Nj−1

Sk(vk − vk+1)





= SNl
vNl

− SN0vN0 +

l
∑

j=1

Nj−1
∑

k=Nj−1

Sk(vk − vk+1)

≥ SNl
vNl

− SN0vN0 +

l
∑

j=1

SNj−1(vNj−1 − vNj
).

�

We are ready to establish the boundary behavior of U -frequently hypercyclic functions for Tα.
Actually we are going to prove that these functions share the same optimal growth as frequently
hypercyclic functions except in the case where α is the critical exponent, for which we will show in
Section 5 that the growth can be arbitrarily slow. We begin by the case p > 1.

Theorem 3.3. Let f be a U-frequently hypercyclic function for the operator Tα and 1 < p ≤ ∞.
Then the following estimates hold

lim sup
r→1−

(

(1− r)
1

max(2,q)
−α
Mp(f, r)

)

> 0, if α <
1

max(2, q)
,

lim sup
r→1−

(Mp(f, r)) = +∞, if α =
1

max(2, q)
,

lim sup
r→1−

Mp(f, r) > 0, if α >
1

max(2, q)
.
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For α 6= 1
max(2,q) , these results are optimal in the following sense: for all p > 1 there exists a

U-frequently hypercyclic function for Tα such that, for every 0 < r < 1,

Mp(f, r) .

{

(1− r)
α− 1

max(2,q) if α < 1
max(2,q)

1 if α > 1
max(2,q) .

Proof. We write f =
∑

k≥0

ak
(k+1)α z

k. Since f is U -frequently hypercyclic there exists an increasing

sub-sequence (nk) ⊂ N with positive upper density such that for all k ≥ 1

|T nk
α f(0)− 3/2| = |ank

− 3/2| < 1/2.

We get, for all k ≥ 1, |ank
| ≥ 1. Set I = ((nk)) and for all N ≥ 1, IN = I ∩ {1, . . . , N}. The

hypothesis d(I) > 0 ensures that there exist 0 < C < 1 and an increasing sequence (Nl) of positive
integers such that

(1) #INl
≥ CNl.

Up to take a sub-sequence, we can also assume that

(2) C(Nl+1 + 1) ≥ Nl + 1.

Let us consider, for all l ≥ 1, 1− 1
Nl−1 ≤ rl < 1− 1

Nl
. Thus we derive

(3) Nl − 1 ≤ 1

1− rl
< Nl.

(1) Case 2 ≤ p ≤ ∞:
Jensen’inequality and Parseval’s Theorem give

[Mp(f, rl)]
2 ≥ [M2(f, rl)]

2 =
∑

k≥0

|ak|2
(k + 1)2α

r2kl ≥
Nl
∑

k=1

|ak|2
(k + 1)2α

r2kl .

Thus we deduce

(4) [Mp(f, rl)]
2 ≥

(

1− 1

Nl − 1

)2Nl
Nl
∑

k=1

|ak|2
(k + 1)2α

&

Nl
∑

k=1

|ak|2
(k + 1)2α

and using the inequality |ak| ≥ 1 for k ∈ INl

(5) [Mp(f, rl)]
2 &

∑

k∈INl

1

(k + 1)2α
.

(a) Case α ≤ 0: Combining Lemma 3.1 with (1), (3) and (5) we get

[Mp(f, rl)]
2 & N−2α+1

l ≥ (1− rl)
2α−1.

(b) Case 0 < α < 1/2: using (5) and Lemma 3.1 again, we get

[Mp(f, rl)]
2 ≥ (2 +Nl)

−2α+1

−2α+ 1

(

1−
(

1− #INl

2 +Nl

)−2α+1
)

.

The inequality (1) ensures
(

1− #INl

2+Nl

)−2α+1
≤
(

1− CNl

2+Nl

)−2α+1
. We deduce by using

(1) and (3) again

[Mp(f, rl)]
2 & N−2α+1

l ≥ (1− rl)
2α−1.

Hence we conclude

lim sup
r→1−

(

(1− r)
1
2
−αMp(f, r)

)

> 0.
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(c) Case α = 1
2 : using (4), we know

[Mp(f, rl)]
2 &

l
∑

j=1

Nj
∑

k=1+Nj−1

|ak|2
k + 1

.

Hence applying Lemma 3.2 with uk = |ak|2/(k + 1), we get, for all l ≥ 1,

[Mp(f, rl)]
2 &

SNl

Nl + 1
− SN0

N0 + 1
+

l
∑

j=1

SNj−1

(

1

Nj−1 + 1
− 1

Nj + 1

)

.

By construction SNk−1
& Nk−1 + 1. Thus taking into account (2) we derive, for all

l ≥ 1, the inequality

[Mp(f, rl)]
2 &

l
∑

j=1

(

1− Nj−1 + 1

Nj + 1

)

& l,

that allows to obtain lim sup
r→1−

Mp(f, r) = +∞.

(2) Case 1 < p < 2:
From Hausdorff-Young inequality (see [9]) we get

[Mp(f, rl)]
q ≥

∑

k≥0

|ak|q
(k + 1)qα

rqkl ≥
Nl
∑

k=1

|ak|q
(k + 1)qα

rqkl .

Thus we deduce

[Mp(f, rl)]
q ≥

(

1− 1

Nl − 1

)qNl
Nl
∑

k=1

|ak|q
(k + 1)qα

&

Nl
∑

k=1

|ak|q
(k + 1)qα

.

Using the same strategy as in the case 2 ≤ p ≤ ∞, we obtain,

lim sup
r→1−

(

(1− r)
1
q
−αMp(f, r)

)

> 0, for α < 1/q,

lim sup
r→1−

(Mp(f, r)) = +∞, for α = 1/q.

Moreover, since a U -frequently hypercyclic function is necessarily hypercyclic, the assertion for
the case α > 1

max(2,q) of the statement is given by the assertion (2b) of Theorem 2.2.

Finally, since a frequently hypercyclic function is necessarily U -frequently hypercyclic, Theorem
1.1 ensures that the estimates we have proved are optimal when α 6= 1

max(2,q) . �

Now we deal with the case p = 1.

Theorem 3.4. Let f be a U-frequently hypercyclic function for the operator Tα. Then, the following
estimates hold

lim sup
r→1−

(

(1− r)−αM1(f, r)
)

= +∞, if α ≤ 0,

lim sup
r→1−

M1(f, r) > 0, if α > 0.

For α 6= 0, these results are optimal in the following sense: for any positive integer l ≥ 1, there exists
a U-frequently hypercyclic function for the operator Tα such that for every 0 < r < 1 sufficiently
large

M1(f, r) .

{

(1− r)α logl(− log(1− r)) if α < 0
1 if α > 0.

Proof. First since a U -frequently hypercyclic function is necessarily hypercyclic, the assertions (1a)
and (2b) of Theorem 2.2 ensures that,

lim sup
r→1−

(

(1− r)−αM1(f, r)
)

= +∞, if α ≤ 0, and lim sup
r→1−

M1(f, r) > 0, if α > 0.
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Moreover, since a frequently hypercyclic function is necessarily U -frequently hypercyclic, Theorem
1.2 shows that the previous estimates are optimal when α 6= 0. �

4. Between U-frequent hypercyclicity and hypercyclicity

Let 1 ≤ p ≤ ∞. In view of Theorems 1.1, 1.2, 3.3 and 3.4, the critical exponent related to the
Lp growth of frequently hypercyclic functions for Tα is the same as that related to the Lp growth
of U -frequently hypercyclic functions. It is equal to 1

max(2,q) . Nevertheless this critical exponent is

always equal to 0 in the case of hypercyclic functions and, hence it does not depend on p. In this
section we are interested in what happens between U -frequent hypercyclicity and hypercyclicity.
In particular, when p > 1, we will try to understand why and how the critical exponent goes
from 1

max(2,q) in the case of Lp-norm of U -frequent hypercyclic functions to 0 for the Lp-norm of

hypercyclic functions. To do this, we introduce intermediate notions of linear dynamics that link
U -frequent hypercyclicity and hypercyclicity. First of all, we need some definitions and results.

4.1. Some weighted densities. First we introduce a refined notion of upper densities.

Definition 4.1. Let β = (βn) be a non-decreasing sequence of positive real numbers tending to
infinity. For a subset E ⊂ N, its upper β-density is given by

dβ(E) = lim sup
n→+∞

∑n
k=1;k∈E βk
∑n

k=1 βk
.

These quantities enjoy all the classical properties of densities (see [12, 14]) and allow to define
dynamical notions of the same nature as hypercyclicity or U -frequent hypercyclicity.

Definition 4.2. Let β = (βn) be a non-decreasing sequence of positive real numbers tending to
infinity and let E be a subset of N. An operator T : X → X, where X is a Fréchet space, is said
to be Uβ-frequently hypercyclic if there exists x ∈ X such that for every non-empty open subset
U ⊂ X,

dβ({n ∈ N : T nx ∈ U}) > 0.

In the sequel, we are interested in densities given by the weighted sequence denoted by βγ and
defined by βγ = (en

γ
), where γ is a parameter with 0 ≤ γ ≤ 1. First of all, let us notice that:

(i) the density dβ0 coincides with the upper natural density d,

(ii) for any subset E ⊂ N, dβ1(E) > 0 if and only if E is infinite.

Moreover for 0 < γ < 1 an integral comparison test leads to the estimate

n
∑

k=1

ek
γ ∼ n1−γ

γ
en

γ

, as n tends to infinity,

that we will use regularly in the rest of the paper. In addition, according to Lemma 2.8 of [12] the
following inequalities hold.

Lemma 4.3. For any 0 ≤ γ1 ≤ γ2 ≤ 1 and for any subset E of N, we have

d(E) ≤ dβγ1 (E) ≤ dβγ2 (E) ≤ dβ1(E).

Therefore the densities dβγ can give very different notions of dynamics that are intermediate
between U -frequent hypercyclicity and hypercyclicity. In particular the following lemma holds.

Lemma 4.4. Let 0 < γ ≤ 1. There exists a subset Eγ ⊂ N such that, for any 0 ≤ γ′ < γ,

dβγ (E) > 0 and dβγ′ (E) = 0.

Proof. First observe that, for all 0 < t < 1,

(6)

∑2n−1

k=1 e
kt

∑2n

k=1 e
kt

∼ 2−(1−t)e−2nt(1−2−t) → 0 as n→ +∞.
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Let γ 6= 1. Set Eγ = N
⋂

(

⋃

n≥⌊ 1
γ
⌋+1

[

2n − ⌊2n(1−γ)⌋; 2n
]

)

. Clearly, for all n large enough, we have

(7)

2n
∑

k=1;k∈Eγ

ek
γ ≥

2n
∑

k=2n−⌊2n(1−γ)⌋+1

ek
γ

.

Moreover we get
∑2n

k=2n−⌊2n(1−γ)⌋+1 e
kγ

∑2n

k=1 e
kγ

= 1−
∑2n−⌊2n(1−γ)⌋

k=1 ek
γ

∑2n

k=1 e
kγ

.

But we compute

∑2n−⌊2n(1−γ)⌋
k=1 ek

γ

∑2n

k=1 e
kγ

∼
(

1− ⌊2n(1−γ)⌋
2n

)1−γ

e2
nγ ((1−2−n⌊2n(1−γ)⌋)γ−1) → e−γ as n→ +∞.

Taking into account (6) and (7), we deduce

dβγ (Eγ) > 0.

Now let 1 ≤ γ′ < γ. Clearly keeping in mind that

2n
∑

k=1;k∈Eγ

ek
γ′ ≤

2n−1
∑

k=1

ek
γ′

+

2n
∑

k=2n−⌊2n(1−γ)⌋

ek
γ′

and by using both γ′ − γ < 0, the estimate

∑2n−⌊2n(1−γ)⌋
k=1 ek

γ′

∑2n

k=1 e
kγ′

∼
(

1− ⌊2n(1−γ)⌋
2n

)1−γ′

e2
nγ′ ((1−2−n⌊2n(1−γ)⌋)γ

′
−1) → 1 as n→ +∞,

and (6) we derive

dβγ′ (Eγ) = 0.

Finally, for γ = 1, the lemma is easy to establish since a subset E ⊂ N satisfies dβ1(E) > 0 if and
only if E is infinite. This finishes the proof. �

In some sense, the densities dβγ , 0 ≤ γ ≤ 1, will us allow to interpolate the behavior of hypercyclic
vectors between the U -frequent hypercyclicity and the hypercyclicity.

4.2. Rate of growth of Uβγ -frequently hypercyclic functions. First we deal with the case
p > 1. We will discuss the case p = 1 at the end of the section. We are ready to state the result
that will allow us to highlight the continuous variation of the critical exponent of the growth (in
term of Lp averages) of a hypercyclic function for Tα which will depend on the frequency of visits
of non-empty open subsets by its orbits.

Theorem 4.5. Let 0 < γ < 1 and 1 < p ≤ ∞. Let f be a Uβγ -frequently hypercyclic function for
the operator Tα. Then, the following hold

if α <
1− γ

max(2, q)
, lim sup

r→1−

(

[1− r]
1−γ

max(2,q)
−α

Mp(f, r)
)

> 0,

if α =
1− γ

max(2, q)
, lim sup

r→1−
(Mp(f, r)) = +∞,

if α >
1− γ

max(2, q)
, lim sup

r→1−
(Mp(f, r)) > 0.

Proof. Let f be a Uβγ -frequently hypercyclic function for Tα. We write f =
∑

k≥0

ak
(k+1)α z

k. Since f

is Uβγ -frequently hypercyclic there exists an increasing sub-sequence (nk) ⊂ N with positive upper
βγ-density such that, for all k ≥ 1,

|T nk
α f(0)− 3/2| = |ank

− 3/2| < 1/2.
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We get, for all k ≥ 1, |ank
| ≥ 1. Set I = ((nk)) and for all N ≥ 1, IN = I ∩ {1, . . . , N}. The

hypothesis dβγ (I) > 0 ensures that there exist 0 < C < 1 and an increasing sequence (Nl) of
positive integers such that

(8)
∑

k∈INl

ek
γ ≥ C

N1−γ
l

γ
eN

γ
l .

Up to take a sub-sequence, we can suppose that

(9) C(Nk+1 + 1) ≥ Nk + 1.

Let us consider, for all l ≥ 1, a sequence (rl) with 1− 1
Nl−1 ≤ rl < 1− 1

Nl
. Observe that

(10) Nl − 1 ≤ 1

1− rl
< Nl.

(1) Case 2 ≤ p ≤ ∞:
Jensen’inequality and Parseval’s Theorem give

(11) [Mp(f, rl)]
2 ≥ [M2(f, rl)]

2 =
∑

k≥0

|ak|2
(k + 1)2α

r2kl ≥
Nl
∑

k=1

|ak|2
(k + 1)2α

r2kl &

Nl
∑

k=1

|ak|2
(k + 1)2α

.

Let us choose j0 ∈ N such that the function t 7→ t−2αe−tγ is decreasing for t ≥ Nj0 . Thus
we can write, for all l ≥ j0 + 1,

[Mp(f, rl)]
2 &

l
∑

j=1+j0

Nj
∑

k=1+Nj−1

|ak|2
(k + 1)2α

ek
γ

e−kγ .

Then applying Lemma 3.2 with uk = |ak|2ek
γ
, we get

(12)

[Mp(f, rl)]
2 & SNl

(Nl + 1)−2αe−Nγ

l − SNj0
(Nj0 + 1)−2αe

−Nγ
j0

+
l
∑

j=1+j0

SNj−1

(

(Nj−1 + 1)−2αe−Nγ
j−1 − (Nj + 1)−2αe−Nγ

j

)

.

Since SNi
=
∑

k≤Ni

|ak|2ek
γ

, by construction and by (8), we get, for all i ≥ 1,

(13) SNi
≥
∑

k∈INi

ek
γ

& N1−γ
i eN

γ
i & (N1−γ

i + 1)eN
γ
i .

From (12) and (13) we deduce

(14)

[Mp(f, rl)]
2 & (Nl + 1)(1−γ)−2α

+

l
∑

j=1+j0

(Nj−1 + 1)1−γeN
γ
j−1

(

(Nj−1 + 1)−2αe−Nγ
j−1 − (Nj + 1)−2αe−Nγ

j

)

.

(a) Case α < 1−γ
2 : From (14) we get, for l large enough

(15) [Mp(f, rl)]
2 & (Nl + 1)(1−γ)−2α

Thanks to (10) and (15) we deduce

[Mp(f, rl)]
2 & (1− rl)

2α−(1−γ).

Hence we conclude

lim sup
r→1−

[

(1− r)−α+ 1−γ

2 Mp(f, r)
]

> 0.
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(b) Case α = 1−γ
2 : taking into consideration (14), we can write, for all l ≥ 1 + j0,

[Mp(f, rl)]
2 &

l
∑

j=1

(

1−
(

Nj−1 + 1

Nj + 1

)1−γ

eN
γ
j−1−Nγ

j

)

.

Thus taking into account (9) we derive, for all l ≥ 1+ j0, [Mp(f, rl)]
2 & l, which allows

to obtain

lim sup
r→1−

Mp(f, r) = +∞.

(c) Case α > 1−γ
2 : since f is hypercyclic, the conclusion is given by Theorem 2.2.

(2) Case 1 < p < 2:
It suffices to combine the arguments of the proof of the preceding case with those of the
proof of (2) of Theorem 3.3 to obtain the desired conclusions.

�

4.3. Optimal growth of Uβγ -frequently hypercyclic functions: a constructive proof. In
this subsection, we intend to prove that the estimates given by Theorem 4.5 whenever α is different
from the critical exponent, i.e. α 6= 1−γ

max(2,q) , are optimal. The case α = 1−γ
max(2,q) will be treated

separately in Section 5. Thus for all 0 < γ < 1 and for α 6= 1−γ
max(2,q) , we propose to build Uβγ -

frequently hypercyclic functions for Tα that have the required Lp growth and no more. To do
this, we follow the construction of frequently hypercyclic functions for Tα given in [24] which itself
was partly inspired by [8]. In particular we will need the so-called Rudin-Shapiro polynomials
(combined with the de la Vallée-Poussin polynomials), which have coefficients ±1 (or bounded by
1) and an optimal growth of Lp-norm. Let us recall the associated result in the form of Lemma 2.1
of [8] that summarized the result of Rudin-Shapiro [26].

Lemma 4.6. (1) For each N ≥ 1, there is a trigonometric polynomial pN =
∑N−1

k=0 εN,ke
ikθ

where εN,k = ±1 for all 0 ≤ k ≤ N − 1 with at least half of the coefficients being +1 and
with

‖pN‖p ≤ 5
√
N for p ∈ [2,+∞].

(2) For each N ≥ 1, there is a trigonometric polynomial p∗N =
∑N−1

k=0 aN,ke
ikθ where |aN,k| ≤ 1

for all 0 ≤ k ≤ N − 1 with at least ⌊N4 ⌋ coefficients being +1 and with

‖p∗N‖p ≤ 3N1/q for p ∈ [1, 2].

For any given polynomial q with q(z) =
∑d

j=0 bjz
j with bd 6= 0, we denote d = deg(q) and

‖q‖ℓ1 =

d
∑

j=0

|bj|. We set 2N =
⋃

k≥1

Ak where for any k ≥ 1, Ak =
{

2k(2j − 1); j ∈ N

}

. Denote by P

the countable set of polynomials with rational coefficients and let us also consider pairs (q, l) with
q ∈ P and l ∈ N satisfying ‖q‖ℓ1 ≤ l. Let us consider an enumeration (qk) of P and a sequence (lk)
tending to +∞ such that ‖qk‖ℓ1 ≤ lk. Clearly (qk) is a dense set in H(D). Hence, for any k ≥ 1,
we set dk = deg(qk) and we have

‖qk‖ℓ1 ≤ lk for every k ≥ 1.

For any α ∈ R, for any positive integer k ≥ 1, we set q̃k(z) =

dk
∑

j=0

(j + 1)αb
(k)
j zj

Let α be a real number and p ∈ (1,∞]. For all integer n ≥ 0, we set In = {2n, . . . , 2n+1 − 1}.
Next, for k ≥ 1, let us define the integers

αk = 1 +
⌊

max
(

l2k(1 + dk)
2max(α,0), dk +max(3, 3 + α)l2k +max(α, 0)lk log(1 + dk)

)⌋

and

α∗
k = 1 +

⌊

max
(

lqk(1 + dk)
qmax(α,0), dk +max(3, 3 + α)l2k +max(α, 0)lk log(1 + dk)

)⌋

.
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We set fα =
∑

n≥0

Pn,α where the blocks (Pn,α) are polynomials defined as follows, using Rudin-

Shapiro polynomials given by Lemma 4.6,

(16) Pn,α(z) =







0 if n is odd
0 if n ∈ Ak and 2n−1 < αk

z2
n
Qn(z) if n ∈ Ak and 2n−1 ≥ αk

with for n ∈ Ak,

Qn(z) =
∑

j∈In

(j + 1)−αc
(k)
j−2nz

j−2n

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial p

⌊ 2n(1−γ)

αk
⌋
(zαk)q̃k(z).

We also set f∗α =
∑

n≥0

P ∗
n,α where the blocks (P ∗

n,α) are polynomials defined as follows, using the

de la Vallée-Poussin polynomials given by Lemma 4.6,

(17) P ∗
n,α(z) =







0 if n is odd
0 if n ∈ Ak and 2n−1 < α∗

k

z2
n

Q∗
n(z) if n ∈ Ak and 2n−1 ≥ α∗

k,

with, for n ∈ Ak,

Q∗
n(z) =

∑

j∈In

(j + 1)−αc
(k)
j−2nz

j−2n

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial p∗

⌊ 2n(1−γ)

α∗
k

⌋
(zα

∗
k)q̃k(z).

A combination of Lemma 4.7 below with the triangle inequality shows that the function fα
(resp. f∗α) belongs to H(D). Observe that, if we denote the polynomial z 7→ p

⌊ 2n−1

αk
⌋
(zαk) (resp.

z 7→ p∗
⌊ 2n−1

αk
⌋
(zα

∗
k)) by gk (resp. g∗k), we have, for all 1 ≤ p ≤ +∞, ‖gk‖p = ‖p

⌊ 2n−1

αk
⌋
‖p (resp.

‖g∗k‖p = ‖p∗
⌊ 2n−1

α∗
k

⌋
‖p). Finally for any integer n, let us denote (φn(k)) the sequence defined as

follows

φn(k) =

{

(k + 1)−α if k ∈ In
0 otherwise.

Lemma 4.7. Let α ∈ R. The following estimates hold.

(i) For any 2 ≤ p ≤ +∞, any 0 < r < 1 and any n ∈ N, we have

Mp(Pn,α, r) . 2n(
1−γ

2
−α)r2

n

.

(ii) For any 1 < p < 2, any 0 < r < 1 and any n ∈ N, we have

Mp(P
∗
n,α, r) . 2

n( 1−γ

q
−α)

r2
n

.

Proof. (i) On one hand, we deal with the case 2 ≤ p < +∞. Let n be a positive integer. Without
loss of generality, we can assume that n belongs to the set Ak for some k ≥ 1. Let r be in
(0, 1). Since r 7→Mp(., f) is increasing, we get

Mp(Pn,α, r) ≤ r2
n‖Qn‖p.

Then, the polynomial Qn can be viewed as a trigonometric polynomial obtained by an abstract

convolution operator on T, given by (ck)k≥0 7→ (φn(j)c
(k)
j−2n)j≥0 (where (c

(k)
j ) denotes the

sequence of the coefficients of the polynomial p
⌊ 2n−1

αk
⌋
q̃k). Now, we are going to apply the

Marcinkiewicz Multiplier Theorem [10, Theorem 8.2 p.148]. To do this, observe that we have,
for any l ≥ 1,

sup
j∈Il

|φn(j)| ≤ sup
j∈In

|φn(j)| . 2−nα
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and

sup
l

∑

j∈Il

|φn(j + 1)− φn(j)| ≤
∑

j∈In

|φn(j + 1)− φn(j)| . 2−nα.

Hence, taking into account the choice of αk and Lemma 4.6, we get

‖Qn‖p . 2−nα‖p
⌊ 2n(1−γ)

αk
⌋
‖p‖q̃k‖∞

. 2−nα
√

2n(1−γ)

αk
lk(1 + dk)

max(α,0)

. 2n(
1−γ

2
−α).

Finally, we obtain the desired estimate

Mp(Pn,α, r) . 2n(
1−γ

2
−α)r2

n

.

On the other hand we deal with the case p = ∞. Let us recall that Pn,α(z) = 0 or z2
n
Qn(z)

with Qn(z) =
∑

j∈In

(j + 1)−αc
(k)
j−2nz

j−2n where (c
(k)
j ) denotes the sequence of the coefficients of

the polynomial p
⌊ 2n(1−γ)

αk
⌋
(zαk)q̃k(z). First, assume that α ≤ 0. We write

M∞(Pn,α, r) . r2
n‖Qn‖∞.

Using the form of Qn, as in the proof of Lemma 3.6 of [24] we apply a fractional Bernstein’s
inequality to obtain, taking into consideration Lemma 4.6,

M∞(Pn,α, r) . r2
n

2−nα‖Qn‖∞ . 2−nα‖p
⌊ 2n(1−γ)

αk
⌋
‖∞‖q̃k‖∞ . 2−nα

√

⌊2
n(1−γ)

αk
⌋lk.

Thanks to the choice of αk, we have, for α ≤ 0,

M∞(Pn,α, r) . 2n(
1−γ

2
−α).

To conclude it suffices to mimic the induction of the proof of Lemma 3.7 of [24]
(ii) The proof is similar as that of the case 2 ≤ p < +∞ by applying Lemma 4.6 for 1 < p < 2.

�

Now we are ready to obtain the rate of growth of the aforementioned functions fα and f∗α. We
refer to Lemmas 3.4, 3.5 and 3.8 of [24] with obvious modifications.

Lemma 4.8. (1) Let 2 ≤ p ≤ +∞. For all 0 < r < 1, the following estimates hold

Mp(fα, r) .

{

(1− r)α−
1−γ

2 if α < 1−γ
2 ,

1 if α > 1−γ
2

(2) Let 1 < p < 2. For all 0 < r < 1, the following estimates hold

Mp(f
∗
α, r) .

{

(1− r)
α− 1−γ

q if α < 1−γ
q ,

1 if α > 1−γ
q

Now we are going to prove that the functions fα and f∗α are Uβγ -frequently hypercyclic for Tα.

Proposition 4.9. For p ≥ 2 (resp. 1 < p < 2), the function fα (resp. f∗α) is a Uβγ -frequently
hypercyclic vector for the operator Tα.

Proof. We only prove the frequent hypercyclicity of fα for the operator Tα. We do not repeat the
details for f∗α: it will be enough to make the appropriate modifications.

Let k be a large enough integer. Let us consider n ∈ Ak such that 2n−1 ≥ αk. We consider Bn

the set of s in In such that the coefficient zs in the polynomial z2
n
p
⌊ 2n(1−γ)

αk
⌋
(zαk) is equal to 1 and

we denote by Tk =
{

s : s ∈ Bn, n ∈ Ak, 2
n−1 ≥ αk

}

.
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Observe that max(Bn) ≤ 2n+ ⌊2n(1−γ)⌋ and since at least half of the coefficients of p
⌊ 2n(1−γ)

αk
⌋
being

+1, we get

(18)

∑

j≤max(Bn);
j∈Tk

ej
γ

∑

j≤max(Bn)

ejγ
≥

2n+2−1⌊2n(1−γ)⌋
∑

j=2n
ej

γ

2n+⌊2n(1−γ)⌋
∑

j=1
ejγ

=

2n+2−1⌊2n(1−γ)⌋
∑

j=1
ej

γ

2n+⌊2n(1−γ)⌋
∑

j=1
ejγ

−

2n−1
∑

j=1
ej

γ

2n+⌊2n(1−γ)⌋
∑

j=1
ejγ

.

Clearly we have
(

2n +
⌊2n(1−γ)⌋

2

)γ

−
(

2n + ⌊2n(1−γ)⌋
)γ

→ −γ
2

and

(2n − 1)γ −
(

2n + ⌊2n(1−γ)⌋
)γ

→ −γ,

which implies, using similar estimations as those of the proof of Lemma 4.4,

2n+2−1⌊2n(1−γ)⌋
∑

j=1
ej

γ

2n+⌊2n(1−γ)⌋
∑

j=1
ej

γ

→ e−γ/2 and

2n−1
∑

j=1
ej

γ

2n+⌊2n(1−γ)⌋
∑

j=1
ej

γ

→ e−γ , as n→ +∞.

Hence the inequality (18) ensures that

dβγ (Tk) > 0.

Then let α be a real number and let k ∈ N. Let us consider s ∈ Bn with n ∈ Ak satisfying
2n−1 ≥ αk. As in the proof of Lemma 3.9 of [24] with easy modifications, we can prove that

sup
|z|=1− 1

lk

|T s
α(fα)(z)− qk(z)| .

1

lk
,

provided that k is chosen large enough. This allows to obtain the frequent hypercyclicity of fα. �

In summary, Lemma 4.8 and Proposition 4.9 leads to the following result, which shows that the
statement of Theorem 4.5 is optimal whenever α is not the critical exponent.

Theorem 4.10. Let 0 < γ < 1 and 1 < p ≤ ∞.

(1) for α < 1−γ
max(2,q) there exists a Uβγ -frequently hypercyclic function for the operator Tα such

that

Mp(f, r) . (1− r)
α− 1−γ

max(2,q) ;

(2) for α > 1−γ
max(2,q) there exists a Uβγ -frequently hypercyclic function for the operator Tα such

that

Mp(f, r) . 1.

Remark 4.11. Let 0 < γ < 1. It seems important to note that the functions constructed for the
proof of Theorem 4.10 are Uβγ -frequently hypercyclic for Tα but neither Uβγ′ -frequently hypercyclic

for 0 < γ′ < γ nor U -frequently hypercyclic, since they don’t satisfy the estimates given by Theorem
4.5 or Theorem 3.3.

Finally let us say some words for the case p = 1. As in the proof of Theorem 3.4, observe
that a Uβγ -frequently hypercyclic function is necessarily hypercyclic and a U -frequently hypercyclic
function is necessarily Uβγ -frequently hypercyclic. This leads to the following statement.
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Theorem 4.12. Let 0 < γ < 1. Let f be a Uβγ -frequently hypercyclic function for the operator Tα.
Then, the following assertions hold

lim sup
r→1−

(

(1− r)−αM1(f, r)
)

= +∞, if α ≤ 0,

lim sup
r→1−

M1(f, r) > 0, if α > 0.

These results are optimal in the following sense: for any positive integer l ≥ 1, there exists a
Uβγ -frequently hypercyclic function for the operator Tα such that for every 0 < r < 1 sufficiently
large

M1(f, r) .

{

(1− r)α logl(− log(1− r)) if α < 0
1 if α > 0.

5. Optimal estimates: the case of the critical exponent

In this section, we are going to show that the growth of U -frequently or Uβγ -frequently hypercyclic
functions for Tα can be arbitrarily slow when α is the critical exponent. The situation will therefore
be similar to the hypercyclic case for which for all 1 ≤ p ≤ ∞ the critical exponent is α = 0 and,
according Theorem 2.2, the two following properties hold: for all hypercyclic function f for Tα,
lim supr→1− Mp(f, r) = +∞ and for any function ϕ : [0, 1) → R+ tending to infinity as r tends to
1, there is a hypercyclic function f such that Mp(f, r) ≤ ϕ(r). For this, we are going to adapt the
constructive method used in Section 4.3. Before we start, we establish a lemma that will be useful
in the following.

Lemma 5.1. Let (wn) be an increasing sequence of positive integers such that wn+1

wn
→ +∞ as n

tends to infinity. Let (an) be a bounded sequence of positive real numbers such that
∑

an = +∞.
If we denote by h : R+ → R+ a continuous increasing function with, for all n ∈ N, h(n) = wn, the
following estimate holds

∑

n≥0

anr
wn ∼ (θa ◦ h−1)

(

1

1− r

)

as r → 1−,

where for all x ∈ R+, θa(x) =
∑

n≤x
an.

Proof. By hypothesis the power series S(x) :=
∑

n≥0
anx

n has radius of convergence 1. For all j ≥ 2,

we denote by nj the only positive integer satisfying

wnj+1 > j and wnj
≤ j.

Then we write

(19) S

(

1− 1

j

)

=

nj+1
∑

n=0

an

(

1− 1

j

)wn

+

+∞
∑

n=nj+2

an

(

1− 1

j

)wn

.

On one hand, we get, thanks to the choice of j and using the inequality 1− t ≤ e−t,
+∞
∑

n=nj+2

an

(

1− 1

j

)wn

≤
+∞
∑

n=nj+2

ane
−wn

j ≤M

+∞
∑

k=2

e
−

wnj+k

j ≤M

+∞
∑

k=2

e
−

wnj+k

wnj+1 ,

where M = sup |an|. Moreover, up to take j large enough, since wn+1

wn
tends to infinity, we have,

for all k ≥ 2,
wnj+k

wnj+1
≥ 2k−1, which implies

(20)
+∞
∑

n=nj+2

an

(

1− 1

j

)wn

≤M
+∞
∑

k=2

e−2k−1
.

On the other hand, we have, for all n = 0, . . . , nj − 1,

(

1− 1

j

)wn

≥
(

1− 1

j

)wnj−1

=

(

1− 1

j

)wnj

wnj−1

wnj ≥
(

1− 1

j

)j
wnj−1

wnj
.
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From this, we derive the following inequality

nj+1
∑

n=0

an

(

1− 1

j

)wn

≥
(

1− 1

j

)j
wnj−1

wnj

nj−1
∑

n=0

an.

Thus, we obtain

(

1− 1

j

)j
wnj−1

wnj θa(nj − 1)

θa(nj)
≤

nj+1
∑

n=0
an

(

1− 1
j

)wn

θa(nj)
≤ θa(nj + 1)

θa(nj)
.

Since an
θa(n)

= 1− θa(n−1)
θa(n)

→ 0 and
wnj−1

wnj
→ 0, we obtain

nj+1
∑

n=0

an

(

1− 1

j

)wn

∼ θa(nj), as j → +∞,

which gives, thanks to (19) and (20),

(21) S

(

1− 1

j

)

∼ θa(nj) as j → +∞.

By construction the sequence (nj) satisfies nj ≤ h−1(j) < nj + 1. Thus, combining this inequality

with (21) and the hypothesis θa(n+1)
θa(n)

→ 1 again, we get

(22) S

(

1− 1

j

)

∼ θa(h
−1(j)), as j → +∞.

Let 0 < r < 1 large enough with 1− 1
j ≤ r < 1− 1

j+1 , i.e j ≤ 1
1−r < j + 1. Clearly we have

(23) S

(

1− 1

j

)

≤ S(r) ≤ S

(

1− 1

j + 1

)

and h−1(j) ≤ h−1

(

1

1− r

)

≤ h−1(j + 1).

Let us recall that nj was chosen so that nj ≤ h−1(j) < nj+1. Assume that h−1(j)+1 < h−1(j+1).
Therefore

wnj
≤ j < wnj+1 ≤ h(h−1(j) + 1) < h(h−1(j + 1)) = j + 1,

which gives a contradiction since wnj+1 is a positive integer. We deduce h−1(j + 1) ≤ h−1(j) + 1
and by (23)

(24) h−1(j) ≤ h−1

(

1

1− r

)

≤ h−1(j) + 1.

Thanks to (22), (23) and (24), we conclude

∑

n≥0

anr
wn ∼ (θa ◦ h−1)

(

1

1− r

)

, as r → 1−.

�

5.1. The U-frequently hypercyclic case. We keep the definitions and the notations of Subsec-
tion 4.3. Let us also consider an increasing function h : R+ → R+ tending to infinity such that, for
any n ∈ N, h(n) := un ∈ N and un+1 − un → +∞ as n tends to infinity. Let α be a real number.

For all integer n ≥ 0, we set I
(u)
n = {2un , . . . , 2un+1 − 1}. Next, for k ≥ 1, we keep the definition

of integers αk and α∗
k given in Subsection 4.3. We set f (u)α =

∑

n≥0

P (u)
n,α where the blocks (P

(u)
n,α) are

polynomials defined as follows, using Rudin-Shapiro polynomials given by Lemma 4.6,

(25) P (u)
n,α(z) =







0 if n is odd
0 if n ∈ Ak and 2un−1 < αk

z2
un
Qn(z) if n ∈ Ak and 2un−1 ≥ αk
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with for n ∈ Ak,

Q(u)
n (z) =

∑

j∈I
(u)
n

(j + 1)−αc
(k)
j−2unz

j−2un

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial p⌊ 2un

αk
⌋(z

αk)q̃k(z).

We also set f∗(u)α =
∑

n≥0

P ∗(u)
n,α where the blocks (P

∗(u)
n,α ) are polynomials defined as follows, using

polynomials given by Lemma 4.6,

(26) P ∗(u)
n,α (z) =







0 if n is odd
0 if n ∈ Ak and 2un−1 < α∗

k

z2
un
Q∗(u)

n (z) if n ∈ Ak and 2un−1 ≥ α∗
k,

with, for n ∈ Ak,

Q∗(u)
n (z) =

∑

j∈I
(u)
n

(j + 1)−αc
(k)
j−2un z

j−2un

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial p∗

⌊ 2un
α∗
k
⌋
(zα

∗
k)q̃k(z).

For 1 ≤ p ≤ ∞, we denote by αc the critical exponent αc =
1

max(2,q) .

Lemma 5.2. We have, for any 0 < r < 1,

Mp(P
(u)
n,αc

, r) . r2
un

if 2 ≤ p ≤ ∞, Mp(P
∗(u)
n,αc

, r) . r2
un

if 1 < p < 2,

and M1(P
∗(u)
n,0 , r) . r2

un
lk.

Proof. For p > 1, it suffices to argue along the same lines as the proof of Lemma 4.7 replacing the
sequence (2n) by (2un).
Now let us consider the case p = 1 (hence αc = 0). We can write, keeping in mind thatqk = q̃k for
α = 0,

M1(P
∗(u)
n,0 , r) ≤ r2

un

2π

∫ 2π

0

∣

∣

∣
Q∗(u)

n (reit)
∣

∣

∣
dt

≤ r2
un

2π

∫ 2π

0
|
∑

j∈I
(u)
n

c
(k)
j−2un (re

it)j−2un |dt

≤ r2
un

2π

∫ 2π

0

∣

∣

∣

∣

p∗
⌊ 2un

α∗
k
⌋
((reit)α

∗
k)q̃k(re

it)

∣

∣

∣

∣

dt

≤ r2
un‖p∗

⌊ 2un
α∗
k
⌋
‖1‖qk‖∞

. r2
un
lk.

�

From Lemma 5.1 and 5.2, we deduce the rate of growth of the functions f
(u)
αc and f

∗(u)
αc .We begin

by the case p 6= 1.

Lemma 5.3. Let 1 < p ≤ ∞. Under the preceding definitions and assumptions, the following
estimates hold: for all 0 < r < 1,

Mp(f
(u)
αc
, r) . h−1

(− log(1− r)

log(2)

)

if 2 ≤ p ≤ ∞

and Mp(f
∗(u)
αc

, r) . h−1

(− log(1− r)

log(2)

)

if 1 < p < 2.

Proof. Let 2 ≤ p ≤ ∞. Combining Lemma 5.2 with triangle inequality, we get

Mp(f
(u)
αc
, r) .

∑

n≥0

r2
un
.



20 A. MOUZE, V. MUNNIER

By hypothesis 2un+1−un → +∞ as n tends to infinity. We apply Lemma 5.1 with wn = 2un and
an = 1 and we obtain, for 0 < r < 1,

Mp(f
(u)
αc
, r) . h−1

(− log(1− r)

log(2)

)

.

For the case 1 < p < 2, the proof works along the same lines. �

Now we are interested in the specific case p = 1.

Lemma 5.4. There is a function of the form f
∗(u)
0 such that

M1(f
∗(u)
0 , r) .

(

h−1

(− log(1− r)

log(2)

))2

.

Proof. Without loss of generality we can assume that α∗
k > 1 + ⌊mk⌋ where mk is the least real

number such that g(log(α∗
k)/ log(2)) > lk. Observe that, for all k ≥ 1, for any n ∈ Ak with

2un−1 ≥ α∗
k, we have h−1(un) ≥ h−1(un−1) ≥ h−1(log(α∗

k)/ log(2)). Taking into account Lemma

5.2 and the inequality 1− t ≤ e−t, we get, for any 1− 1
2uj

≤ r < 1− 1
2uj+1 , (j ≥ 1)

M1(f
∗(u)
0 , r) ≤

∑

n≥1

M1(P
∗(u)
n,0 , r)

.
∑

k

∑

n∈Ak ;2un−1≥α∗
k

(

1− 1

2uj+1

)2un

lk

.
∑

k

∑

n∈Ak ;2un−1≥α∗
k

e−2un−uj+1
lk

h−1(un)

h−1(log(α∗
k)/ log(2))

.

j+1
∑

n=1

e−2un−uj+1
h−1(un)

. (j + 1)h−1(uj+1) = (j + 1)2.

Since 2uj ≤ 1
1−r < 2uj+1 , we find j ≤ h−1(− log(1−r)

log(2) ) and we get

M1(f
∗(u)
0 , r) .

(

h−1

(− log(1− r)

log(2)

))2

.

�

Now we are going to prove that the functions f
(u)
αc and f

∗(u)
αc are U -frequently hypercyclic for Tαc .

Proposition 5.5. For p ≥ 2 (resp. 1 ≤ p < 2), the function f
(u)
αc (resp. f

∗(u)
αc ) is a U-frequently

hypercyclic vector for the operator Tαc .

Proof. We only prove the frequent hypercyclicity of f
(u)
αc for the operator Tαc . We do not repeat

the details for f
∗(u)
αc : it will be enough to make the appropriate modifications.

Let k be a large enough integer. Let us consider n ∈ Ak such that 2un−1 ≥ αk. We consider Bn

the set of s in I
(u)
n such that the coefficient zs in the polynomial z2

un
p⌊ 2un

αk
⌋(z

αk) is equal to 1 and

we denote by Tk = {s : s ∈ Bn, n ∈ Ak, 2
un−1 ≥ αk} .

Observe that max(Bn) ≤ 2un+1 and since at least half of the coefficients of p⌊ 2un
αk

⌋ being +1, we get

(27)
#{j ≤ max(Bn); j ∈ Tk}

max(Bn)
≥ 2un−1

2un+1
=

1

4
,

which implies

d(Tk) > 0.
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Then let α be a real number and let k be in N. Now let us consider s ∈ Bn with n ∈ Ak satisfying
2un−1 ≥ αk. As in Proposition 4.9, by construction we get

sup
|z|=1− 1

lk

|T s
αc
(f (u)αc

)(z) − qk(z)| .
1

lk
,

provided that k is chosen large enough. This allows to obtain the frequent hypercyclicity of f
(u)
αc . �

Combining Lemma 5.3 with Proposition 5.5 we obtain the following result.

Theorem 5.6. Let 1 ≤ p ≤ ∞ and αc = 1
max(2,q) . Then, for any function ϕ : [0, 1) → R+ with

ϕ(r) → +∞ as r → 1−, there is a function f in H(D) with

Mp(f, r) . ϕ(r), for 0 < r < 1 sufficiently close to 1,

that is U-frequently hypercyclic for Tαc .

Proof. We begin by the case p > 1. Without loss of generality, we can assume that the function ϕ

is a continuous increasing function that can be written, for all 0 < r < 1, ϕ(r) = ψ
(

1
1−r

)

where ψ

is a continuous increasing function with, for all n ∈ N, un := ψ−1(n) ∈ N and un+1 − un → +∞.
Thus Lemma 5.3 and Proposition 5.5 ensure that, for all 1 < p ≤ ∞, there is a function f in H(D)
with

Mp(f, r) . ψ

(− log(1− r)

log(2)

)

. ψ

(

1

1− r

)

= ϕ(r)

that is U -frequently hypercyclic for Tαc .

Now we deal with the case p = 1. Without loss of generality, we can assume that ϕ is a continuous

increasing function that can be written, for all 0 < r < 1, ϕ(r) =
(

ψ
(

1
1−r

))2
where ψ is a

continuous and increasing function such that, for all n ∈ N, un := ψ−1(n) ∈ N and un+1−un → +∞.
Applying Lemma 5.4 and Proposition 5.5, we find a function f ∈ H(D) with

M1(f, r) .

(

ψ

(− log(1− r)

log(2)

))2

.

(

ψ

(

1

1− r

))2

= ϕ(r)

that is U -frequently hypercyclic for T0.
The proof is complete. �

5.2. The Uβγ -frequently hypercyclic case. We keep the definitions and the notations of Sub-

section 5.1. We modify the definitions of polynomials P
(u)
n,α and P

∗(u)
n,α as follows:

(28) P (u)
n,α(z) =







0 if n is odd
0 if n ∈ Ak and 2un−1 < αk

z2
un
Qn(z) if n ∈ Ak and 2un−1 ≥ αk

with for n ∈ Ak,

Q(u)
n (z) =

∑

j∈I
(u)
n

(j + 1)−αc
(k)
j−2unz

j−2un

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial p

⌊ 2un(1−γ)

αk
⌋
(zαk)q̃k(z).

(29) P ∗(u)
n,α (z) =







0 if n is odd
0 if n ∈ Ak and 2un−1 < α∗

k

z2
un
Q∗(u)

n (z) if n ∈ Ak and 2un−1 ≥ α∗
k,

with, for n ∈ Ak,

Q∗(u)
n (z) =

∑

j∈I
(u)
n

(j + 1)−αc
(k)
j−2un z

j−2un

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial p∗

⌊ 2un(1−γ)

α∗
k

⌋
(zα

∗
k)q̃k(z).
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Let 1 < p ≤ ∞. Set αc =
1−γ

max(2,q) .

Lemma 5.7. We have, for any 0 < r < 1 and all n ∈ N,

Mp(P
(u)
n,αc

, r) . r2
un

if 2 ≤ p ≤ ∞ and Mp(P
∗(u)
n,αc

, r) . r2
un

if 1 < p < 2.

Proof. It suffices to argue along the same lines as the proof of Lemma 4.7 replacing the sequence
(2n) by (2un). �

From Lemma 5.1 and 5.7, we deduce the rate of growth of the functions f
(u)
αc and f

∗(u)
αc .

Lemma 5.8. Let 1 < p ≤ ∞ and αc =
1−γ

max(2,q) . Then, for all 0 < r < 1,

Mp(f
(u)
αc
, r) . h−1

(− log(1− r)

log(2)

)

if 2 ≤ p ≤ ∞,

and

Mp(f
∗(u)
αc

, r) . h−1

(− log(1− r)

log(2)

)

if 1 < p < 2.

Now we are going to prove that the functions f
(u)
αc and f

∗(u)
αc are Uβγ -frequently hypercyclic for

Tαc .

Proposition 5.9. For p ≥ 2 (resp. 1 < p < 2), the function f
(u)
αc (resp. f

∗(u)
αc ) is a Uβγ -frequently

hypercyclic vector for the operator Tαc .

Proof. We only prove the frequent hypercyclicity of f
(u)
αc for the operator Tαc . We do not repeat

the details for f
∗(u)
αc : it will be enough to make the appropriate modifications.

Let k be a large enough integer. Let us consider n ∈ Ak such that 2un−1 ≥ αk. We consider Bn

the set of s in I
(u)
n such that the coefficient zs in the polynomial z2

un
p
⌊ 2un(1−γ)

αk
⌋
(zαk) is equal to 1

and we denote by Tk = {s : s ∈ Bn, n ∈ Ak, 2
un−1 ≥ αk} .

Observe that max(Bn) ≤ 2un + ⌊2un(1−γ)⌋ and since at least half of the coefficients of p
⌊ 2un(1−γ)

αk
⌋

being +1, we get

(30)

∑

j≤max(Bn);
j∈Tk

ej
γ

∑

j≤max(Bn)

ej
γ ≥

2un+2−1⌊2un(1−γ)⌋
∑

j=2un
ej

γ

2un+⌊2un(1−γ)⌋
∑

j=1
ejγ

=

2un+2−1⌊2un(1−γ)⌋
∑

j=1
ej

γ

2un+⌊2un(1−γ)⌋
∑

j=1
ejγ

−

2un−1
∑

j=1
ej

γ

2un+⌊2un(1−γ)⌋
∑

j=1
ejγ

.

Clearly we have
(

2un +
⌊2un(1−γ)⌋

2

)γ

−
(

2un + ⌊2un(1−γ)⌋
)γ

→ −γ
2
,

(2un − 1)γ −
(

2un + ⌊2un(1−γ)⌋
)γ

→ −γ,

which implies, using similar estimations as those of the proof of Lemma 4.4,

2un+2−1⌊2un(1−γ)⌋
∑

j=1
ej

γ

2un+⌊2un(1−γ)⌋
∑

j=1
ejγ

−

2un−1
∑

j=1
ej

γ

2un+⌊2un(1−γ)⌋
∑

j=1
ejγ

→ e−γ/2(1− e−γ/2), as n→ +∞.

Hence the inequality (30) ensures that

dβγ (Tk) > 0.
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Then let α be a real number and let k be in N. Now for s ∈ Bn with n ∈ Ak satisfying 2un−1 ≥ αk,
as in Proposition 4.9, by construction we get

sup
|z|=1− 1

lk

|T s
αc
(f (u)αc

)(z) − qk(z)| .
1

lk
,

provided that k is chosen large enough. This allows to obtain the frequent hypercyclicity of f
(u)
αc .

�

Combining Lemma 5.8 with Proposition 5.9 we obtain the following result.

Theorem 5.10. Let 0 < γ < 1. Let 1 ≤ p ≤ ∞ and αc = 1−γ
max(2,q) . Then, for any function

ϕ : [0, 1) → R+, with ϕ(r) → +∞ as r → 1−, there is a function f in H(D) with

Mp(f, r) . ϕ(r), for 0 < r < 1 sufficiently close to 1,

that is Uβγ -frequently hypercyclic for Tαc .

Proof. For p = 1, we have αc = 0 and the result is given by Theorem 5.6. Now let p > 1.
Without loss of generality, we can assume that the ϕ is a continuous increasing function such that,

for all 0 < r < 1, ϕ(r) = ψ
(

1
1−r

)

where ψ is continuous and increasing with, for all n ∈ N,

un := ψ−1(n) ∈ N and un+1 −un → +∞. Thus Lemma 5.8 and Proposition 5.9 ensure that, for all
1 < p ≤ ∞, there is a function f in H(D) with

Mp(f, r) . ψ

(− log(1− r)

log(2)

)

. ϕ(r)

that is Uβγ -frequently hypercyclic for Tαc . The proof is complete. �

From Theorems 2.2, 5.6 and 5.10, we can state the following result that unifies what happens
in the critical case, given by the critical exponent, for the Lp growth of Uβγ -frequently hypercyclic
functions for Tα, when γ belongs to [0, 1].

Theorem 5.11. Let 0 ≤ γ ≤ 1 and 1 ≤ p ≤ ∞. Then, for any function ϕ : [0, 1) → R+, with
ϕ(r) → +∞ as r → 1−, there is a function f in H(D) with Mp(f, r) . ϕ(r) that is Uβγ -frequently

hypercyclic for Tαc where αc =
1−γ

max(2,q) .

Concluding remark. In summary, thanks to Theorems 4.10, 4.12, 5.6 and 5.10, the results given
by Theorems 3.3, 3.4 and 4.5 are optimal.
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