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We propose a stable element for the divergence operator that approximates the velocity by continuous linear polynomials plus piecewise constants and the pressure by piecewise constants. A uniform inf-sup condition is obtained for conforming meshes in two or three dimensions. The resulting method belongs to the class of enriched Galerkin methods, and is applied to the solution of a Stokes system. A priori error estimates in the energy norm and in the L 2 norm are derived. Extensions to the Navier-Stokes system are presented.

Introduction

It is well known that the numerical discretization of incompressible flow equations requires pairs of finite elements that are stable for the divergence. Indeed, the discrete spaces for the velocity and pressure have to satisfy a compatibility condition called "inf-sup condition" (also called Babuška-Brezzi condition), see Girault & Raviart [13]. This compatibility is inherent to the problem itself and is necessary whatever the choice of discretization.

The main contribution of this paper is to prove the stability of an element that approximates the pressure by piecewise constants and approximates the velocity in the space of continuous polynomials of degree one enriched with piecewise constants. We show that the resulting pair of spaces satisfies an inf-sup condition in 2D and 3D via Fortin's Lemma. We are interested in this pair of spaces because they can be applied to solve large problems. Indeed, they are fairly inexpensive as they are of order one; they are easily implemented, and easily included in existing industrial finite element codes.

Stable pairs of finite elements can be divided into two broad categories: those that use continuous discrete pressures and those that use discontinuous discrete pressures. Among the methods with continuous pressures, the most popular are the Taylor-Hood elements (cf. Hood & Taylor [START_REF] Hood | A numerical solution of the Navier-Stokes equations using the finite element technique[END_REF], or [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF]) where the globally continuous velocity is locally a polynomial of degree two, P 2 , and the globally continuous pressure is locally a polynomial of degree one, P 1 , and the MINI element [START_REF] Arnold | A stable finite element for the Stokes equations[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF] that has the same pressure space but the globally continuous velocity is locally a polynomial of degree one enriched by a bubble function. The advantage of these methods is their easy implementation; their disadvantage is that they are not locally mass-conservative.

Local mass conservation per cell can either be achieved by exactly preserving the divergence, regardless of the continuity or discontinuity of the pressure, or by using a discontinuous discrete pressure that vanishes outside any given cell. But preserving the divergence either calls for high degree polynomials, as in Scott & Vogelius [START_REF] Scott | Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials[END_REF], which are in general too expensive for solving very large problems, or calls for mixed methods see for instance [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF], whose implementation is too complex on a large scale. This leads us to consider the second category. If we restrict the discrete velocity to be globally continuous, then the least expensive stable element is the Bernardi-Raugel element [START_REF] Bernardi | Analysis of some finite elements for the Stokes problem[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF] where the globally continuous velocity is locally a polynomial of degree one enriched by a bubble function in the direction of the normal on each face, and the pressure is a constant per element. The Bernardi-Raugel element is rarely used because of its difficult implementation. Indeed the face bubble functions in the normal direction couple all components of the velocity, and if these face bubbles are removed (in which case the velocity reduces to a polynomial of degree one) then the element becomes unstable. It has been known for a long time that the P 1 -P 0 pair of finite elements on triangles and tetrahedra or the Q 1 -P 0 pair of finite elements on quadrilaterals and hexahedra, which otherwise would be very attractive, do not satisfy a uniform inf-sup condition, see for instance [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF], or Quin & Zhang [START_REF] Qin | Stability and approximability of the P1-P0 element for Stokes equations[END_REF]. This means that if we want a locally mass-conservative scheme with velocities of degree one, the continuity of the velocity must be slightly relaxed. Such is the case of the Crouzeix-Raviart element introduced in [START_REF] Crouzeix | Conforming and nonconforming finite element methods for solving the stationary Stokes equations[END_REF], where the velocities' degrees of freedom are located at the center of faces and required to be continuous at these points. Unfortunately, as is well-known, the Crouzeix-Raviart element is not unisolvent on squares or cubes, and its rotated version, introduced by Rannacher & Turek in [START_REF] Rannacher | Simple nonconforming quadrilateral Stokes element[END_REF], that uses incomplete polynomials of degree two, does not have optimal approximation properties on many non-uniform meshes. In a recent work by Kim et al. [START_REF] Kim | Stable cheapest nonconforming finite elements for the Stokes equations[END_REF], the Crouzeix-Raviart element on quadrilaterals is stabilized by a global construction of the discrete space. It has the advantage of requiring less degrees of freedom, but since the elements are not locally unisolvent (each component of the velocity must locally satisfy four constraints with only three degrees of freedom), its implementation on a large scale is difficult. We also mention the case of mixed elements, but as written above, their implementation is quite complex, in fact they present the same difficulty as the Bernardi-Raugel element since they couple the components of the velocity on each face. Thus, an interesting alternative on quadrilaterals and hexahedra consists in enriching a globally continuous discrete velocity with a constant velocity in each cell. This is the motivation of the present work.

When the continuity of the velocity is completely relaxed, as in discontinuous Galerkin methods, the elements become inf-sup stable, but they require many degrees of freedom and the additional integration of polynomials on faces. Therefore, simply adding a constant vector to the velocity in each cell is a good compromise that comparatively reduces the increase in computational cost: less degrees of freedom and no polynomial integration on faces. We also remark that the implementation of the proposed scheme is a small modification to the existing codes using continuous finite element methods and hence nodal unknowns. In this respect, it is more attractive than the Crouzeix-Raviart method on simplices that does not use nodal values. Furthermore, the velocity components are uncoupled, in contrast to the shortcoming of the Bernardi-Raugel element or mixed elements. The idea of adding piecewise constants to continuous finite element methods was first introduced by Becker et al. [START_REF] Becker | A Reduced P1-Discontinuous Galerkin Method[END_REF] and Sun & Liu [START_REF] Sun | A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method[END_REF] for solving elliptic problems. It was further studied by Lee et al. in [START_REF] Lee | A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems[END_REF] for solving parabolic problems and for solving geomechanics problems in [START_REF] Lee | Phase-field modeling of proppant-filled fractures in a poroelastic medium[END_REF][START_REF] Lee | Adaptive enriched Galerkin methods for miscible displacement problems with entropy residual stabilization[END_REF][START_REF] Lee | Enriched Galerkin methods for two-phase flow in porous media with capillary pressure[END_REF]. Following [START_REF] Sun | A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method[END_REF][START_REF] Lee | A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems[END_REF], we refer to the method as Enriched Galerkin (EG) method. EG methods are an interesting variant of discontinuous Galerkin methods obtained by locally enriching continuous Galerkin elements with a constant function in each cell.

An outline of the paper follows. The model problem is defined in Section 2. The next section contains the numerical method and a statement of the inf-sup condition. Theoretical proofs of stability and convergence are given in Section 4 and Section 5. This is followed by numerical results in Section 6 and to conclude a short discussion on an extension to the Navier-Stokes system in Section 7 and an extension to mixed Dirichlet-natural boundary conditions in Section 8.

Stokes problem

Notation

We first recall some notation. Let d ≥ 2 be the dimension. For any open domain O ⊂ R d , let (•, •) O denote the L 2 inner-product on O, and for any region , let | | denote its measure. Let C 0 (O) be the space of continuous functions defined in O. As usual, for 1 ≤ p < ∞, we define the Banach space

W 1,p (O) by W 1,p (O) = {v ∈ L p (O) ; ∇ v ∈ L p (O) d }, normed by |v| W 1,p (O) = ∇ v L p (O) , v W 1,p (O) = v p L p (O) + |v| p W 1,p (O) 1 p ,
with the usual modification when p = ∞. When p = 2, W 

v L 2 (O) ≤ C |v| H 1 (O) , ∀v ∈ H 1 0 (O).
For this reason, we choose the seminorm 

L 2 0 (O) = {q ∈ L 2 (O); O q = 0}.

Model problem

Let ⊂ R d , d = 2, 3 be a bounded, connected, Lipschitz domain. The fluid velocity u (with viscosity μ > 0) and pressure p satisfy the momentum and continuity equations in ,

-μ u + ∇ p = f , in , (1) 
∇ • u = 0, in .

(

These equations are complemented by homogeneous Dirichlet boundary conditions for the velocity and a constraint on the pressure to ensure its uniqueness, u = 0, on ∂ ,

(3) p = 0. ( 4 
)
Under the assumption f ∈ H -1 ( ) d , there is a unique solution (u, p) ∈ H 1 0 ( ) d × L 2 0 ( ). However, since we plan to discretize (1)-( 3) with partially discontinuous functions, we shall take f ∈ L 2 ( ) d .

A crucial component of the theory is the exact inf-sup condition stating that there is a positive constant β such that the following holds:

inf

q∈L 2 0 ( ) sup v∈H 1 0 ( ) d -(∇ • v, q) ∇ v L 2 ( ) q L 2 ( ) ≥ β. (5) 
In the finite element set-up, the domain is partitioned into elements (triangles, quadrilaterals in 2D; hexahedra or tetrahedra in 3D). The parameter h denotes the maximum diameter of the elements and characterizes the coarseness of the mesh.

A finite element discretization of (1)-( 2) requires the construction of a pair of stable finite element spaces (X h , M h ), in the sense that there is a positive constant β independent of h, such that inf

q h ∈M h sup v h ∈X h -(∇ • v h , q h ) ∇ v h L 2 ( ) q h L 2 ( ) ≥ β.

Discretization

From now on, we assume that is a Lipschitz polyhedron in R 3 . We choose d = 3 to avoid particular cases, but all general notions below are written with the symbol d. Of course, the theory developed here adapts easily to two dimensions.

Spaces

Let E h be a family of tetrahedral or hexahedral meshes of , with planar faces. As is a polyhedron, it is reasonable to assume that no element has more than three faces on the boundary of . Let h denote the set of faces of all elements

E of E h ; we set b h = {γ ∈ h ; γ ⊂ ∂ } , i h = {γ ∈ h ; γ ⊂ }; thus h = b h ∪ i h .
For any given element E, h E denotes its diameter and ρ E the diameter of its inscribed ball if the element is a tetrahedron or the diameter of the largest ball contained in E, if it is an hexahedron. As usual, the mesh size is measured by h = Max h E for all E in E h . A family of simplicial meshes is assumed to be a regular (also called non-degenerate) family if there exists a positive real number ϕ, independent of h, such that, see Ciarlet [START_REF] Ciarlet | Basic error estimates for elliptic problems[END_REF] 

h E ρ E ≤ ϕ, ∀E ∈ E h . ( 6 
)
With this assumption, for each E, there exists a one-to-one affine mapping F E that maps the unit tetrahedron Ê onto E,

x = F E (x) ∈ E, ∀x ∈ Ê.
In the case of quadrilaterals or hexahedra, the relevant mapping is bilinear or trilinear and its Jacobian matrix and determinant, say D F E and J F , are not constant. While it is easy to check that

D F E L ∞ ( Ê) ≤ C h E , J F L ∞ ( Ê) ≤ C h d E ,
with a constant C independent of h and E, a sufficient condition for the uniform invertibility of D F E is more technical than [START_REF] Bondy | Graph Theory with Applications[END_REF]. Quadrilaterals are required to be strictly convex and such that each of their four subtriangles satisfies [START_REF] Bondy | Graph Theory with Applications[END_REF], see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF].

The situation of hexahedra is much more complex; according to Zhang [START_REF] Zhang | Subtetrahedral Test for the Positive Jacobian of Hexahedral Elements[END_REF], a sufficient condition is that the Jacobian of each of its 32 subtetrahedra satisfies [START_REF] Bondy | Graph Theory with Applications[END_REF], see Definition 4.1 in [START_REF] Zhang | Subtetrahedral Test for the Positive Jacobian of Hexahedral Elements[END_REF]. To avoid going into details, we make the following assumption on hexahedra:

In addition to [START_REF] Bondy | Graph Theory with Applications[END_REF], we assume that all hexahedral elements E are such that D F E is uniformly invertible with respect to h and there exists a constant c > 0, independent of h, such that

D -1 F E L ∞ (E) ≤ c 1 ρ E , J F -1 L ∞ (E) ≤ c 1 ρ d E , ∀E ∈ E h . ( 7 
)
If E is a tetrahedron, let

P 1 (E) = P 1 (E), ( 8 
)
the space of polynomials of total degree at most one, and if E is an hexahedron, let

P 1 (E) = {p = p • (F -1 E ) ; p ∈ Q1 ( Ê)}, (9) 
where Q1 is the space of polynomials of degree at most one in each variable. Let C 0 ( ) d denote the space of continuous functions over . We define the standard finite element spaces of continuous or discontinuous functions of degree one.

Y h = Y d h , Y h = {v h ∈ L 2 ( ) ; v h | E ∈ P 1 (E) ∀E ∈ E h }, (10) 
h = Y h ∩ C 0 ( ) d , h,0 = h ∩ H 1 0 ( ) d , ( 11 
)
and the space of piecewise constant functions

M h = {q h ∈ L 2 ( ) ; q h | E ∈ P 0 , ∀E ∈ E h }, M 0 h = M h ∩ L 2 0 ( ). ( 12 
)
In the enriched Galerkin method, the discrete pressure space is M 0 h and, if the boundary condition is weakly enforced by means of a penalty term on the faces of b h , the discrete velocity space is

X h = h + M d h , d = 2, 3. (13) 
But it will be

X h,0 = h,0 + M d h , ( 14 
)
if the velocity's boundary condition is enforced strongly. In practice, it is a matter of convenience for imposing the Dirichlet datum strongly or weakly, see Nitsche [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF]. This does not affect the global mass conservation, as is observed further on. With this notation, the finite element functions approximating the velocity are componentwise the sum of a constant function in each E and a globally continuous function that is P 1 in each E.

Since X h is a space of overall discontinuous functions, we must define the jumps and averages across faces. As usual, we attribute a unit normal vector n γ to each face γ ∈ h , with arbitrary but fixed orientation, and with the convention that n γ = n, the unit exterior normal to ∂ when γ ∈ b h . Then, let E -and E + be the two elements sharing a face γ in i h , such that n γ points from E -into E + . The average and jump of functions on γ are defined by

{v}| γ = 1 2 v| E -+ v| E + | γ , [v]| γ = v| E --v| E + | γ , γ ∈ i h .
On boundary faces γ ∈ b h , the average and jump of the function v are simply replaced by the trace of v on γ . With these notation, we choose for norm on X h

v X h = E∈E h ∇ v 2 L 2 (E) + γ ∈ h σ γ h γ [v] 2 L 2 (γ ) 1 2 , ( 15 
)
where h γ denotes the diameter of γ and σ γ > 0 is a stabilizing parameter bounded above and bounded away from zero, both uniformly with respect to h. The pressure space M 0 h is equipped with the L 2 norm:

q h M h = q h L 2 ( ) , ∀q h ∈ M 0 h .

Discrete inf-sup condition

Let b(•, •) denote the standard DG bilinear form expressing the divergence of a vector-valued function v (see [START_REF] Rivière | Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation[END_REF])

b(v, q) = - E∈E h (q, ∇ • v) E + γ ∈ i h ([v] • n γ , {q}) γ + γ ∈ b h (v • n, q) γ , ( 16 
)
which is consistent with the divergence. This means that

b(v, q) = -(q, ∇ • v) , ∀q ∈ L 2 ( ), ∀v ∈ H 1 0 ( ) d . ( 17 
)
Indeed, if v belongs to H 1 0 ( ) d , then it does not jump at interfaces and its trace on boundary faces is zero. While it was proven that the form b satisfies the inf-sup condition for the pair (Y h , M h ), see for instance Girault et al. [START_REF] Girault | A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems[END_REF], we were unable to show in general that this form satisfies the inf-sup condition for the pair (X h , M h ), and numerical experiments we conducted exhibited instability. Therefore, we shall use instead a stabilized form b(•, •) obtained by adding a consistent

jump term, b(v, q) = b(v, q) + α γ ∈ i h ([v] • n γ , [q]) γ . ( 18 
)
Here α is a free parameter, but while this jump term is consistent whatever the value of α, we only proved the inf-sup condition for α = ± 1 2 . Numerical experiments confirmed the development of instabilities for some other values of α such as α = 1. Note that α = ± 1 2 lead to a simple expression; indeed, let γ ∈ i h be an interface shared by E -and E + , with n γ directed from E -to E + ; then

{q}| γ + 1 2 [q]| γ = q| E -, {q}| γ - 1 2 [q]| γ = q| E + . ( 19 
)
In other words, for the case α = 1 2 , we rewrite the form b as:

b(v, q) = - E∈E h (q, ∇ • v) E + γ ∈ i h ([v] • n γ , q| E -) γ + γ ∈ b h (v • n, q) γ . ( 20 
)
It is easy to see that this stabilized form is also consistent with the divergence,

b(v, q) = -(q, ∇ • v) , ∀q ∈ L 2 ( ), ∀v ∈ H 1 0 ( ) d . ( 21 
)
Moreover, if v is globally discontinuous, but belongs to

H 1 (E) in each element E, then b(v, q) = b(v, q), ∀q ∈ H 1 ( ). ( 22 
)
In addition, it follows from [START_REF] Lee | Adaptive enriched Galerkin methods for miscible displacement problems with entropy residual stabilization[END_REF] and an integration by parts in each cell that, regardless of the value of v on b h , b(v, 1) = 0, thus enforcing global mass conservation. Observe also that this additional jump term is not a penalty because its coefficient is neither large nor small and is independent of the discretization parameter h. The theory below will be done for α = 1 2 , but a very similar argument will apply to α = -1 2 .

In the next section, we shall establish the inf-sup condition for the discrete form b(•, •) with α = 1 2 as stated in the following theorem. [START_REF] Bondy | Graph Theory with Applications[END_REF] in the case of tetrahedra and the hypothesis [START_REF] Brenner | Poincaré-Friedrichs inequalities for piecewise H 1 functions[END_REF] in the case of hexahedra. Assume that no element has more than three interior normals, and in the case of hexahedra, suppose in addition, that if there are two or three interior normals, they are not located on opposite faces. Then there exists a constant β > 0, independent of h such that inf The above restriction on the normals' orientation is a consequence of Lemma 5 further on. It concerns only interior faces because the normal to ∂ always points outside the domain. It was checked in all our experiments and found to be satisfied without modification. In the case of a structured hexahedral mesh, i.e., where exactly eight faces meet at any interior node, it can be enforced by a simple algorithm. The situation is more complex when tetrahedral meshes are used because they are usually unstructured. Nevertheless, it follows from graph theory that a compatible choice of face normals is always possible. As this is outside the scope of this work, we refer to the book by Bondy [START_REF] Bondy | Graph Theory with Applications[END_REF].

Theorem 1. Let the family of triangulations satisfy

q h ∈M 0 h sup v h ∈X h,0 b(v h , q h ) v h X h q h L 2 ( ) ≥ β . (23)
In The proof of Theorem 1 is provided in Section 4. The proof of the discrete inf-sup condition is usually elusive because of its global character, unless it can be treated locally, or quasi-locally, see Boland & Nicolaides [START_REF] Boland | Stability of finite elements under divergence constraints[END_REF], Stenberg [START_REF] Stenberg | Analysis of finite element methods for the Stokes problem: a unified approach[END_REF], or [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF]. We shall see further on that, because of the jump terms, a quasi-local approach is not conclusive in the case of discontinuous velocities. Therefore, we shall use instead Fortin's Lemma, see Fortin [START_REF] Fortin | An analysis of the convergence of mixed finite element methods[END_REF] or [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF], that replaces the verification of the inf-sup condition by the construction of a suitable approximation operator preserving the discrete divergence. In the case of interest here, this operator will be constructed by stabilizing a standard approximation operator with constant vectors in each cell. To illustrate the main ideas, the construction is done in three dimensions on hexahedral meshes; the proof for tetrahedral meshes being simpler. Of course, similar results hold in two dimensions, with simpler proofs.

Scheme

We recall the discretization of the Laplace operator by the interior penalty discontinuous Galerkin form a(•, •),

a(w h ,v h ) = E∈E h (∇w h , ∇ v h ) E + γ ∈ h σ γ h γ ([w h ], [v h ]) γ - γ ∈ h ({∇w h } n γ , [v h ]) γ + γ ∈ h ({∇ v h } n γ , [w h ]) γ . ( 24 
)
The parameter is chosen in the set {1, 0, -1}. For = -1, (24) is symmetric; for = 0 or = 1 (24) is non-symmetric. In the DG literature, = -1 is associated with the symmetric interior penalty (SIPG) method, = 1 with the non-symmetric interior penalty (NIPG) method, and = 0 with the incomplete interior penalty (IIPG) method, see Riviere [START_REF] Rivière | Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation[END_REF].

With these spaces and forms, we propose the following enriched Galerkin discretization of the Stokes problem: find

(u h , p h ) ∈ X h × M 0 h such that μa(u h , v h ) + b(v h , p h ) = ( f , v h ) , ∀v h ∈ X h , (25) b(u h , q h ) = 0, ∀q h ∈ M 0 h . ( 26 
)
It is well-known that the numerical analysis of ( 25)-( 26) relies on two properties: the coercivity of the bilinear form a(•, •) and the inf-sup condition [START_REF] Lee | Phase-field modeling of proppant-filled fractures in a poroelastic medium[END_REF]. The coercivity of a(•, •) in X h follows from the following result; we refer the reader to [START_REF] Rivière | Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation[END_REF] for a proof.

Lemma 2. Assume that the penalty parameter σ γ is large enough when = 0 or = -1, and assume that σ γ ≥ 1 when = 1. There exists a positive constant κ such that

a(v h , v h ) ≥ κ v h 2 X h , ∀v h ∈ Y h . ( 27 
)
Note that ( 27) also holds in X h , which is a subspace of Y h . Strictly speaking, when = 1, ( 27) holds for any positive σ γ , but experience shows that better results can be obtained when σ γ is 1.

Remark 1.

Let n E denote the exterior normal to E. The numerical solution satisfies the following local mass conservation property

γ ∈∂ E γ u γ h • n E = 0, where u γ h = u h | E if n E = n γ , and u γ h = u h | E with γ = ∂ E ∩ ∂ E if n E = -n γ .
We must now establish the inf-sup condition.

Proof of the discrete inf-sup condition

It is very easy to prove that the restriction of ( 23) to a small patch of elements holds true, but extending this result to an arbitrary domain is not straightforward because the form b

(•, •) is not local. Indeed, if O 1 and O 2 are two adjacent patches (without overlap), b(•, •) restricted to O 1 is not independent of b(•, •) restricted to O 2 .
This phenomenon is solely due to the constant components of the velocity, and would not occur if the velocities were continuous. Considering this mishap, instead of using the macro-element argument of Boland & Nicolaides [START_REF] Boland | Stability of finite elements under divergence constraints[END_REF] or Stenberg [START_REF] Stenberg | Analysis of finite element methods for the Stokes problem: a unified approach[END_REF], we shall use Fortin's Lemma [START_REF] Fortin | An analysis of the convergence of mixed finite element methods[END_REF], based on the construction of an approximation operator that preserves the discrete divergence and is stable for the norm of X h . Let us recall this lemma. It is stated for this particular problem and discretization, but it applies to very general situations, provided the inf-sup condition (such as [START_REF] Boland | Stability of finite elements under divergence constraints[END_REF], in the present case) holds.

Lemma 3. The discrete condition (23) holds uniformly with respect to h if and only if there exists an approximation operator

P h ∈ L(H 1 0 ( ) d ; X h,0 ), such that for all v ∈ H 1 0 ( ) d b(P h (v) -v, q) = 0, ∀q ∈ M 0 h , ( 28 
) and P h (v) X h ≤ C |v| H 1 ( ) , ( 29 
)
with a constant C independent of h.

Strictly speaking, Fortin's Lemma is stated for discrete functions in subspaces of H 1 0 ( ) d , which is not the case here. However, it is easily extended to spaces of discontinuous functions, as long as the form b(•, •) is consistent with the divergence, i.e., satisfies [START_REF] Lee | Enriched Galerkin methods for two-phase flow in porous media with capillary pressure[END_REF].

A standard way for constructing an operator P h satisfying ( 28) and ( 29) consists in choosing a good basic approximation operator h ∈ L(H 1 0 ( ) d ; h,0 ) (that satisfies [START_REF] Rivière | Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation[END_REF]) and correct it with constant vectors c in each E so as to satisfy [START_REF] Rannacher | Simple nonconforming quadrilateral Stokes element[END_REF] and [START_REF] Rivière | Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation[END_REF]. There is a wide choice of basic approximation operators h and there are cases when particular choices of h are crucial, see for instance the work of Girault & Scott in [START_REF] Girault | A quasi-local interpolation operator preserving the discrete divergence[END_REF]. But in the present case, it seems sufficient that h be quasi-local and of approximation order one, corresponding to the degree of P 1 . Hence the Scott & Zhang operator [START_REF] Scott | Finite element interpolation of nonsmooth functions satisfying boundary conditions[END_REF] is a good candidate for h . In the case of a regular family of meshes, it satisfies for all numbers 1 ≤ s ≤ 2, 1 ≤ p, q ≤ ∞, and integer m = 0 or 1 such that

W s,p ( ) ⊂ W m,q ( ), the following bound ∀v ∈ W s,p ( ) d , ∀E ∈ E h , | h (v) -v| W m,q (E) ≤ C 1 h s-m+d( 1 q -1 p ) E |v| W s,p ( E ) , ( 30 
)
where the constant C 1 is independent of h and E, and E is a suitable macro-element containing E, used in defining h (v).

Now, take an arbitrary function v in H 1 0 ( ) d and define P h (v) ∈ X h,0 by

P h (v) = h (v) + c(v), (31) 
where

c(v) ∈ R d in each E must satisfy b(c(v), q) = b(v -h (v), q), ∀q ∈ M 0 h . ( 32 
)
By [START_REF] Lee | Adaptive enriched Galerkin methods for miscible displacement problems with entropy residual stabilization[END_REF], this is equivalent to

γ ∈ i h ([c(v)] • n γ , q -) γ + γ ∈ b h (c(v) • n, q) γ = E∈E h (q, ∇ • ( h (v) -v)) E , ∀q ∈ M 0 h , ( 33 
)
where q -refers to q| E -, see [START_REF] Kim | Stable cheapest nonconforming finite elements for the Stokes equations[END_REF].

The first proposition shows that the mean-value restriction on the pressure can be lifted.

Proposition 4. For any choice of constant vectors c(v), formula [START_REF] Sun | A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method[END_REF] holds with q = 1 in .

Proof. Since both v and h (v) vanish on the boundary, it suffices to show that

γ ∈ i h γ [c(v)] • n γ + γ ∈ b h γ c(v) • n = 0. (34) 
Take any interior face γ shared by two elements E -and E + , with n γ directed from E -to E + . The contribution of γ to the sums in the left-hand side of (34) is

γ (c(v)| E --c(v)| E + ) • n γ . But n γ = -n E + = n E -,
where n E denotes the exterior normal to E. Therefore

γ (c(v)| E --c(v)| E + ) • n γ = γ (c(v)| E -• n E -+ c(v)| E + • n E + ).
Similarly, if γ is a boundary face and E is adjacent to γ , then n = n E , since n is the exterior normal to ∂ , and

γ c(v) • n = γ c(v)| E • n E .
Hence,

γ ∈ i h γ [c(v)] • n γ + γ ∈ b h γ c(v) • n = E∈E h ∂ E c(v)| E • n E = 0, because, since c(v) is a constant vector in each E, the fact that ∇ • c(v) = 0 in E implies that ∂ E c(v)| E • n E = 0, ∀E ∈ E h . 2 (35) 
Of course, the above result, that will simplify the proof of the next lemma, would not be possible without the discontinuous part of the velocity.

The next lemma gives a sufficient condition for [START_REF] Sun | A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method[END_REF] with any q in M h .

Lemma 5. Let E be any element of E h with faces γ i , 1 ≤ i ≤ 4 or 1 ≤ i ≤ 6, according that E is a tetrahedron or an hexahedron. Condition [START_REF] Sun | A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method[END_REF] holds if for all E ∈ E h , for all γ i such that n γ i points inside E, c(v)| E satisfies

γ i c(v)| E • n γ i = γ i (v -h (v)) • n γ i , ( 36 
)
and moreover c(v)| E = 0 if all normals to E are exterior to E.

Proof. The proof is written for hexahedra, the proof for tetrahedra being simpler. Consider an interior hexahedron, say E, with faces γ i and neighboring elements E i , adjacent to γ i , i = 1, . . . , 6, and let q = 1 in E, q = 0 elsewhere. There are seven cases to investigate, according to the number of interior normals to E. First, if E has no interior normal, then for this choice of q, (33) reduces to 6

i=1 γ i (c(v)| E -c(v)| E i ) • n E = E ∇ • ( h (v) -v) = 6 i=1 γ i ( h (v) -v) • n E . ( 37 
)
In view of ( 35), (37) brings no condition on c(v)| E . In this case, the following conditions are sufficient for (37):

γ i c(v)| E i • n E = γ i (v -h (v)) • n E , i = 1, . . . , 6, c(v)| E = 0, (38) 
and furthermore, this is not altered by taking other values of q in (33). Next, if E has one interior normal, say n γ 1 , then [START_REF] Sun | A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method[END_REF] gives

6 i=2 γ i (c(v)| E -c(v)| E i ) • n E = γ 1 (v -h (v)) • n γ 1 - 6 i=2 γ i (v -h (v)) • n E . But (35) implies that 6 i=2 γ i c(v)| E • n E = - γ 1 c(v)| E • n E = γ 1 c(v)| E • n γ 1 .
Hence

γ 1 c(v)| E • n γ 1 - 6 i=2 γ i c(v)| E i • n E = γ 1 (v -h (v)) • n γ 1 - 6 i=2 γ i (v -h (v)) • n E , ( 39 
)
and the following conditions are sufficient for (39):

γ i c(v)| E i • n E = γ i (v -h (v)) • n E , i = 2, . . . , 6, γ 1 c(v)| E • n γ 1 = γ 1 (v -h (v)) • n γ 1 . ( 40 
)
It is easy to check that no other condition on c(v)| E will be derived from [START_REF] Sun | A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method[END_REF] by choosing other values of q. Similarly, other values of q will not affect the above values of c(v)| E i • n E on γ i , for i = 2, . . . , 6.

The sufficient conditions (40) can be generalized. More precisely, if E has j interior normals, say n γ i , 1 ≤ i ≤ j, 2 ≤ j ≤ 5, then the above argument shows that the following conditions are sufficient for (39):

γ i c(v)| E • n γ i = γ i (v -h (v)) • n γ i , 1 ≤ i ≤ j, γ i c(v)| E i • n E = γ i (v -h (v)) • n E , j + 1 ≤ i ≤ 6. (41) 

Again, no other condition on c(v)| E or on c(v)| E i

• n E on γ i , j + 1 ≤ i ≤ 6, will be derived from [START_REF] Sun | A locally conservative finite element method based on piecewise constant enrichment of the continuous Galerkin method[END_REF] with other values of q.

Finally, when E has no exterior normal, (33) yields 0 =

6 i=1 γ i (v -h (v)) • n γ i . ( 42 
)
In view of ( 35), (42) can also be written as

6 i=1 γ i c(v)| E • n γ i = 6 i=1 γ i (v -h (v)) • n γ i ,
whence the sufficient conditions

γ i c(v)| E • n γ i = γ i (v -h (v)) • n γ i , i = 1, . . . , 6. (43) 
The above conditions (38), ( 40), (41), and (43), are consistent with (36). Of course, neither (43) nor (42) are true in general, but they are consistent with each other. Now, we turn to boundary elements; recall that no element has more than three faces on the boundary. Let E be adjacent to the boundary and again, let q = 1 in E, q = 0 elsewhere. By defining c(v) = 0 outside and recalling that n γ = n E on each boundary face of E, (33) yields

γ ⊂∂ E ([c(v)] • n γ , q -) γ = γ ⊂∂ E γ (v -h (v)) • n E , ( 44 
)
and note that the sum in the right-hand side runs only on the interior faces of E. Thus the situation is similar to that of an interior element. By arguing as above, we easily derive the following sufficient conditions when all interior faces γ i of E

have their normals pointing outside E:

γ i c(v)| E i • n E = γ i (v -h (v)) • n E , c(v)| E = 0. (45) 
Otherwise, in the general case, we recover the sufficient conditions,

γ i c(v)| E • n γ i = γ i (v -h (v)) • n γ i , ( 46 
)
on all interior faces γ i with an interior pointing normal, and

γ i c(v)| E i • n E = γ i (v -h (v)) • n E , ( 47 
)
on all interior faces γ i with an exterior pointing normal. 2

It stems from (42) that a tetrahedron with four interior normals cannot be allowed because the expression in the righthand side does not vanish in general. In the hexahedral case, we shall see below that an hexahedron with four interior normals is not allowed, and furthermore, no two interior normals can be located on opposite faces. In practice, this restriction on the choice of the normal vectors can be checked once the mesh has been entered in the data structure. As written in the previous section, a compatible choice of face normals can be enforced by a simple algorithm in the case of a structured hexahedral mesh or a structured tetrahedral mesh. In all the examples that we ran, the face normals satisfied this condition. Remark 2. A consequence of Lemma 5 is that equation [START_REF] Rannacher | Simple nonconforming quadrilateral Stokes element[END_REF] holds for all q ∈ M h , i.e.,

b(P

h (v) -v, q) = 0, ∀q ∈ M h , ∀v ∈ H 1 0 ( ) d . ( 48 
)
From Lemma 5, we deduce the proof of the inf-sup condition.

Proof of Theorem 1. By construction, the operator P h defined as

P h (v) = h (v) + c(v), ( 49 
)
with c(v) satisfying (36), fulfills [START_REF] Rannacher | Simple nonconforming quadrilateral Stokes element[END_REF]. It remains to check that c(v) can be defined so that v → c(v) is linear and uniformly stable in the X h norm. For this, we use Lemma 5 and argue on the number of interior normals to an element E.

1) If E has no interior normal, then c(v)| E = 0 for all v and is trivially linear and uniformly stable.

2) If E has only one interior normal, say on γ 1 , then c(v)| E must satisfy only one condition and we choose

c(v) = 1 |γ 1 | γ 1 (v -h (v)), (50) 
which is linear since v → h (v) is linear. The euclidean norm of c(v) satisfies the bound

|c(v)| ≤ |γ 1 | -1 2 v -h (v) L 2 (γ 1 ) . ( 51 
)
Let Ê be the reference unit tetrahedron or unit cube, according to the shape of E. A standard scaling argument and a trace theorem yield

|c(v)| ≤ Ĉ v -h (v) H 1 ( Ê) , ( 52 
)
where here and below Ĉ denote various constants independent of E and h.

3) Let us postpone for the moment the case of two interior normals. If E is a tetrahedron or an hexahedron and has exactly three interior normals, say on γ i , i = 1, 2, 3, then c(v) must satisfy the conditions

c(v) • n γ i = 1 |γ i | γ i (v -h (v)) • n γ i , i = 1, 2, 3.
They can be expressed in matrix form as

N c(v) = b,

where N denotes the 3 × 3 matrix with rows n T γ i , i = 1, 2, 3, and b the vector with components

1 |γ i | γ i (v -h (v)) • n γ i , i = 1, 2, 3.
As the normals are unit vectors, the norm of N is uniformly bounded and since the mesh is regular, and since the γ i are adjacent faces and not opposite faces in the case of an hexahedron, the determinant of N = n γ 1 • n γ 2 × n γ 3 is uniformly bounded away from 0. Therefore N is non-singular and the norm of its inverse is also uniformly bounded. The euclidean norm of c(v) satisfies the bound

|c(v)| ≤ N -1 2 3 i=1 |γ i | -1 v -h (v) 2 L 2 (γ i ) 1 2 , ( 53 
)
where • 2 denotes the matrix norm subordinated to the euclidean norm. Therefore

|c(v)| ≤ Ĉ N -1 2 v -h (v) H 1 ( Ê) . ( 54 
)
4) Now, we revert to the case of two interior normals. If E is a tetrahedron or an hexahedron and has exactly two interior normals, say on γ 1 and γ 2 , adjacent faces in the case of an hexahedron, then c(v) must satisfy the conditions

c(v) • n γ i = 1 |γ i | γ i (v -h (v)) • n γ i , i = 1, 2.
This case can be treated as a particular case of the previous one by complementing these two conditions with the third trivial linear condition

c(v) • n γ 3 = 0.
Then, by arguing as above, we obtain the same bound (54).

Now, let us bound the X h norm of P h (v). The definition (15) implies

P h (v) X h = E∈E h ∇ h (v) 2 L 2 (E) + γ ∈ h σ γ h γ [c(v)] 2 L 2 (γ ) 1 2 .
In the case of tetrahedra, a scaling argument and ( 30) with m = 0, 1, s = 1, and

p = q = 2 give v -h (v) H 1 ( Ê) ≤ Ĉ|E| -1 2 h E |v| H 1 ( E ) .
In the case of hexahedra, the scaling argument is more complex because the Jacobian matrix and determinant are not constant. However, when the family of meshes is regular, the end result is the same because the Jacobian matrix and determinant scale with respect to h as if the mapping were affine, see [START_REF] Brenner | Poincaré-Friedrichs inequalities for piecewise H 1 functions[END_REF]. Thus all estimates in this proof are also valid for hexahedra. Now, consider a boundary face γ ∈ b h and let E be adjacent to γ . Then

[c(v)] γ L 2 (γ ) = c(v)| E L 2 (γ ) ≤ Ĉ |γ | |E| 1 2 h E |v| H 1 ( E ) . Hence σ γ h γ [c(v)] 2 L 2 (γ ) ≤ Ĉ h E h γ |v| 2 H 1 ( E ) ≤ Ĉ|v| 2 H 1 ( E ) , ( 55 
)
where we have used the regularity of E h and

|γ | |E| ≤ Ĉ h E
, an inequality that is independent of the dimension. The argument for an interior face γ ∈ i h is much the same. Let E 1 and E 2 denote the two elements adjacent to γ ; then

[c(v)] L 2 (γ ) = c(v)| E 1 -c(v)| E 2 L 2 (γ ) ≤ c(v)| E 1 L 2 (γ ) + c(v)| E 2 L 2 (γ ) ,
and we have the analogue of ( 55)

σ γ h γ [c(v)] 2 L 2 (γ ) ≤ Ĉ|v| 2 H 1 ( E 1 ∪ E 2 ) . ( 56 
)
Of course, another application of ( 30) with m = s = 1 and p = q = 2 yields

| h (v)| H 1 (E) ≤ Ĉ|v| H 1 ( E ) .
Then by collecting these bounds, summing over all E ∈ E h and γ ∈ h , and using again the regularity of E h that limits the number of repetitions of a given E i in the macro-elements E j , we deduce (29),

P h (v) X h ≤ Ĉ|v| H 1 ( ) .
Hence Theorem 1 is proved. 2

The argument in the above proof also applies to estimate the error of P h in the L 2 norm or in the X h norm when v belongs to H s ( ) d with 1 ≤ s ≤ 2.

Proposition 6. Under the assumptions of Theorem 1, the operator P h defined in (49) satisfies:

v -P h (v) X h ≤ Ĉh|v| H 2 ( ) , ∀v ∈ H 2 ( ) d , ( 57 
)
and for s = 1, 2, v -P h (v) L 2 ( ) ≤ Ĉh s |v| H s ( ) , ∀v ∈ H s ( ) d . ( 58 
)
Proof. Since v has no jumps, we can write

v -P h (v) X h = E∈E h ∇(v -h (v)) 2 L 2 (E) + γ ∈ h σ γ h γ [c(v)] 2 L 2 (γ ) 1 2 .
In this case, [START_REF] Scott | Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials[END_REF] with m = 0, 1, s = 2, and

p = q = 2 gives v -h (v) H 1 ( Ê) ≤ Ĉ|E| -1 2 h 2 E |v| H 2 ( E ) ,
and

|v -h (v)| H 1 (E) ≤ Ĉh E |v| H 2 ( E ) . ( 59 
)
In view of (54), this implies (57).

Regarding the error in L 2 , when v belongs to H s ( ) d , ( 54) and ( 30) lead to

|c(v)| E | ≤ Ĉ|E| -1 2 h s E |v| H s (E) . Therefore c(v)| E L 2 (E) ≤ Ĉh s E |v| H s (E) ,
and (58) follows from another application of (30). 2

In the sequel, for smooth v , we shall also need to bound the second derivatives of v -P h (v) in each E, which amounts to bound the second derivatives of vh (v). In the case of tetrahedra, as h (v) has degree one, all second derivatives of h (v) vanish and

∇ 2 (v -h (v)) L 2 (E) = |v| H 2 (E) , ( 60 
)
but this is not true in hexahedra. In this case, we write

∇ 2 (v -h (v)) = ∇ 2 (v -I h (v)) + ∇ 2 (I h (v) -h (v)),
where I h stands for the standard Lagrange interpolant in E, which is well defined for smooth v . On a regular hexahedral mesh,

I h satisfies ∇ 2 (v -I h (v)) L 2 (E) ≤ Ĉ|v| H 2 (E) .
Regarding the difference of the operators, since it is in finite dimension, it can be treated by a local inverse inequality in the reference element Ê. Indeed, setting

w h = ∇(I h (v) -h (v)), we write ∇ 2 (I h (v) -h (v)) L 2 (E) = |w h | H 1 (E) ≤ Ĉ |E| 1 2 h E | ŵ| H 1 ( Ê) ≤ Ĉ |E| 1 2 h E ŵ L 2 ( Ê) ≤ Ĉ h E |I h (v) -h (v)| H 1 (E) ≤ Ĉ|v| H 2 ( E ) , (61) 
using the regularity of E h , an equivalence of norms in finite dimensions on Ê, the local approximation properties of I h , and

An immediate consequence of Lemma 2 and Theorem 1 is the solvability of the enriched Galerkin scheme ( 25)-( 26).

Corollary 7.

Under the assumptions of Lemma 2 and Theorem 1, the scheme (25)-( 26) has one and only one solution.

Proof. Since ( 25)-( 26) is a square linear system of equations in finite dimension, it suffices to show that f = 0 implies u h = 0 and p h = 0. The first property is derived by choosing v h = u h in [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF], q h = p h in (26) and applying Lemma 2. Then b(v h , p h ) = 0 for all v h in X h and Theorem 1 shows that p h = 0. 2

A priori error estimates

The analysis of the scheme ( 25)-( 26) proceeds by using standard estimates [START_REF] Rivière | Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation[END_REF], in addition to the approximation properties of the operator P h constructed in Section 4. Therefore the results below are derived under the assumptions of Lemma 2 and Theorem 1, and of course the regularity of the mesh. We could have applied the semi a posteriori technique developed in Badia et al. [START_REF] Badia | Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity[END_REF] and derived an error inequality valid for a solution in H 1 ( ) d × L 2 ( ), i.e., with minimal regularity. With some modifications, this approach applies to the present problem, but since this is not our primary purpose, we have not used this technique.

Theorem 8. Assume that the exact solution (u, p) belongs to H

2 ( ) d × H 1 ( ). Then the finite element solution (u h , p h ) satisfies u -u h X h ≤ Ch |u| H 2 ( ) + 1 μ |p| H 1 ( ) ,
where the constant C is independent of h and μ.

Proof. We approximate u by P h (u), which is well defined since u belongs to H 1 0 ( ) d , and p by h (p), defined in each E by

h (p)| E = 1 |E| E p. ( 62 
) Note that P h (u) ∈ X h,0 and h (p) ∈ M 0 h . Denote the errors χ = u h -P h (u), ζ = p h -h (p).
They satisfy the error equations

μa(χ , v) + b(v, ζ ) = μa(u -P h (u), v) + b(v, p -h (p)), ∀v ∈ X h , (63) b(χ , q) = b(u -P h (u), q) = 0, ∀q ∈ M 0 h , (64) 
the last equality holding owing to [START_REF] Rannacher | Simple nonconforming quadrilateral Stokes element[END_REF]. The choice v = χ in (63) and q = ζ in (64) reduce to

a(χ , χ ) = a(u -P h (u), χ ) + 1 μ b(χ , p -h (p)).
Then the coercivity (27

) of a(•, •) yields κ χ 2 X h ≤ a(u -P h (u), χ ) + 1 μ b(χ , p -h (p)).
The expansion [START_REF] Lee | Adaptive enriched Galerkin methods for miscible displacement problems with entropy residual stabilization[END_REF] of the first term reads

a(u -P h (u), χ ) = E∈E h E ∇(u -P h (u)) : ∇χ - γ ∈ h γ {∇(u -P h (u))}n γ • [χ ] + γ ∈ h γ {∇χ }n γ • [u -P h (u)] + γ ∈ h σ γ h γ γ [u -P h (u)] • [χ ].
Of course, the first and last terms have an obvious bound,

E∈E h E ∇(u -P h (u)) : ∇χ + γ ∈ h σ γ h γ γ [u -P h (u)] • [χ ] ≤ u -P h (u) X h χ X h .
The second term, say T 2 , is bounded by

T 2 ≤ γ ∈ h σ γ h γ [χ ] 2 L 2 (γ ) 1 2 γ ∈ h h γ σ γ {∇(u -P h (u))}n γ 2 L 2 (γ ) 1 2 .
Consider an interior face γ , the case of a boundary face being simpler. Let E be one of the two elements adjacent to γ and set w = ∇(u -P h (u)) on E. A trace inequality in the reference element Ê gives

wn γ L 2 (γ ) ≤ C |γ | 1 2 ŵ 2 L 2 ( Ê) + | ŵ| 2 H 1 ( Ê) 1 2 .
Then, by reverting to E and applying (59) and ( 60) or (61), we obtain

∇(u -P h (u))| E n γ L 2 (γ ) ≤ Ĉ |γ | |E| 1 2 h E |u| H 2 ( E ) . Therefore γ ∈ h γ {∇(u -P h (u))}n γ • [χ ] ≤ C h χ X h |u| H 2 ( ) .
For the third term, to evaluate {∇ χ}n γ L 2 (γ ) , consider again an interior face γ , one of the elements E adjacent to γ , and set w = ∇ χ in E. An equivalence of norms in Ê gives

wn γ L 2 (γ ) ≤ Ĉ|γ | 1 2 ŵ L 2 ( γ ) ≤ Ĉ|γ | 1 2 ŵ L 2 ( Ê) ≤ Ĉ |γ | |E| 1 2 w L 2 (E) . Thus γ ∈ h γ {∇χ }n γ • [u -P h (u)] ≤ C h χ X h |u| H 2 ( ) .
Then, by collecting these estimates and applying (57), we infer that

|a(u -P h (u), χ )| ≤ C h χ X h |u| H 2 ( ) . (65) 
Now, we turn to b(•, •). By expanding (20), we have

1 μ b(χ , p -h (p)) = - 1 μ E∈E h E (p -h (p))∇ • χ + 1 μ γ ∈ i h γ (p -h (p))| E -[χ ] • n γ + 1 μ γ ∈ b h γ (p -h (p)) χ • n.
In the case of tetrahedra, ∇ • χ is a constant in each E and hence 1 μ

E∈E h E (p -h (p))∇ • χ = 0.
But again, this is not true for hexahedra, and we have in this case,

1 μ E∈E h E (p -h (p))∇ • χ ≤ 1 μ C h χ X h |p| H 1 ( ) ,
using the standard approximation properties of h . The other two terms have analogous bounds and it suffices to bound the first one. Again, we write

γ ∈ i h γ (p -h (p))| E -[χ ] • n γ ≤ χ X h γ ∈ i h h γ σ γ (p -h (p))| E -2 L 2 (γ ) 1 2 .
Here, a trace inequality in the reference element gives

(p -h (p))| E -L 2 (γ ) ≤ Ĉ|γ | 1 2 p -ˆ ( p) H 1 ( Ê) ≤ Ĉ|γ | 1 2 | p| H 1 ( Ê) ≤ Ĉ |γ | |E -| 1 2 h E -|p| H 1 (E -) . Thus 1 μ γ ∈ i h γ (p -h (p))| E -[χ ] • n γ ≤ 1 μ C h χ X h |p| H 1 ( ) .
By combining these three bounds, we derive

| 1 μ b(χ , p -h (p))| ≤ 1 μ C h χ X h |p| H 1 ( ) . ( 66 
)
The final result is obtained by collecting (65) and (66), applying Young's inequality with a suitable parameter, and using the triangle inequality. 2

Before deriving an error estimate for the pressure, we recall another corollary of Theorem 1 (see Chapter I, section 4 in [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF] for a more abstract setting).

Lemma 9.

Let q h ∈ M 0 h . Then there exists a unique vh ∈ X h,0 such that b( vh

, q h ) = -q h 2 L 2 ( ) , vh X h ≤ 1 β q h L 2 ( ) .
An optimal estimate for the pressure in the L 2 norm now follows.

Theorem 10. Under the assumptions of Theorem 8, there exists a constant C independent of the mesh size h and viscosity μ such that pp h L 2 ( ) ≤ Ch(μ|u| H 2 ( ) + |p| H 1 ( ) ).

Proof. We rewrite the error equation as follows, with h (p) defined by (62).

a(u h -u, v h ) + 1 μ b(v h , p h -h (p)) = 1 μ b(v h , p -h (p)), ∀v h ∈ X h . ( 67 
)
By applying Lemma 9 to p hh (p), there exists vh ∈ X h,0 such that b( vh

, p h -h (p)) = -p h -h (p) 2 L 2 ( ) , vh X h ≤ 1 β * p h -h (p) L 2 ( ) . ( 68 
)
With the choice v h = vh , equation (67) becomes

1 μ p h -h (p) 2 L 2 ( ) = a(u -u, vh ) - 1 μ b( vh , p -h (p)).
It suffices to bound the right-hand side

a(u h -u, vh ) - 1 μ b( vh , p -h (p)) ≤ Ch |u| H 2 ( ) + 1 μ |p| H 1 ( ) vh X h .
This is done by using standard DG arguments as in the proof of Theorem 8. The final result is then a consequence of (68), the triangle inequality and the estimates above. 2

We now obtain a priori error estimates for the velocity in the L 2 norm. From Brenner [START_REF] Brenner | Poincaré-Friedrichs inequalities for piecewise H 1 functions[END_REF], there is a constant C , independent of h, such that

∀v ∈ H 1 ( ) d , ∀v h ∈ X h , v -v h L 2 ( ) ≤ C v -v h X h .
Therefore we immediately have the bound

u -u h L 2 ( ) ≤ Ch |u| H 2 ( ) + 1 μ |p| H 1 ( ) ,
but this is one order less than an interpolation error. For the SIPG method ( = -1), we can recover optimal rates with the Aubin-Nitsche technique. Define the dual problem:

-μ φ + ∇ζ = g, ∇ • φ = 0, in , φ = 0, on ∂ .

(69) 

+ 1 μ ζ H 1 ( ) ≤ C μ g L 2 ( ) . ( 70 
)
Theorem 11. Assume is convex and = -1, then under the hypotheses of Theorem 8, there exists a constant C independent of h and μ such that

u -u h L 2 ( ) ≤ Ch 2 |u| H 2 ( ) + 1 μ |p| H 1 ( ) .
(71)

Proof. We choose g = u hu in the dual problem (69), multiply by u hu and use Green theorem's to obtain

u h -u 2 L 2 ( ) = E∈E h E μ∇(u h -u) : ∇φ - E∈E h ∂ E (μ∇φn E ) • (u h -u) - E∈E h E ζ ∇ • (u h -u) + E∈E h ∂ E ζ n E • (u h -u).
From the regularity of φ and ζ , in view of [START_REF] Lee | A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems[END_REF], we deduce

u h -u 2 L 2 ( ) = E∈E h E μ∇(u h -u) : ∇φ - e∈ h γ {μ∇φ}n γ • [u h -u] + b(u h -u, ζ ),
and the consistency of b(•, •) yields

u h -u 2 L 2 ( ) = E∈E h E μ∇(u h -u) : ∇φ - e∈ h γ {μ∇φ}n γ • [u h -u] + b(u h -u, ζ -h (ζ )). ( 72 
)
Now, take v h = P h (φ); then u hu satisfies the error equation (with = -1),

μa(u h -u, P h (φ)) -b(P h (φ), p -h (p)) = 0, (73) 
where we have used the properties of P h and the consistency [START_REF] Lee | A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems[END_REF]. Then taking the difference between ( 72) and (73), we obtain

u h -u 2 L 2 ( ) = μa(u h -u, φ -P h (φ)) + b(u h -u, ζ -h (ζ )) -b(φ -P h (φ), p -h (p)). ( 74 
)
Considering (70), an easy variant of (65) and (66), leads to (71). 2

Remark 3. Theorem 11 establishes optimal L 2 error estimates for the velocity in the case of the SIPG method; otherwise, as in the case of usual DG methods, the estimates are suboptimal.

Implementation and numerical results

The implementation of the proposed scheme ( 25)-( 26) is done by a simple modification of a continuous finite element code. For instance, if element meshes are simplices, one needs to add appropriate constants to the usual FEM matrices. To see this, we assume that the Dirichlet boundary condition is imposed weakly and write

u h = u c h + u 0 h , v h = v c h + v 0 h , where u c h , v c h ∈ h and u 0 h , v 0 h ∈ M d h . The scheme becomes μ(∇u c h , ∇ v c h ) -(p h , ∇ • v c h ) + S 1 + B 1 = ( f , v c h ) + S 2 , ∀v h = v c h + v 0 h ∈ X h , -(q h , ∇ • v c h ) + S 3 + B 2 = 0, ∀q h ∈ M 0
h , where the terms S i do not involve integrations of the unknowns, but are simply sums of constants:

S 1 = μ γ ∈ i h |γ | σ γ h γ [u 0 h ] • [v 0 h ] -[v 0 h ] • {∇u c h }n γ + [u 0 h ] • {∇ v c h }n γ + γ ∈ i h |γ |p h | E-[v 0 h ] • n γ , S 2 = E∈E h v 0 h • E f , S 3 = γ ∈ i h |γ |[u 0 h ] • n γ q h | E -,
and the terms B 1 and B 2 correspond to the weak imposition of Dirichlet datum:

B 1 = μ γ ∈∂ σ γ h γ γ u h • v h -μ γ ∈∂ γ (∇u h n • v h -∇ v h n • u h ) + γ ∈∂ v h • n p h , B 2 = γ ∈∂ γ u h • n q h .
The integrands in B 1 and B 2 reduce to constants on each face if the homogeneous Dirichlet boundary condition is prescribed strongly.

Next, we use the method of manufactured solutions and obtain the numerical approximation of the following exact solution in the unit square: We first compute the numerical errors and their corresponding rates for the choice α = 1 2 . Table 1 shows that our theoretical error estimates are confirmed by the numerical results. Both velocity and pressure converge with order one for the energy norm and L 2 norm respectively. In addition, the velocity converges with order two in the L 2 norm. We repeat the numerical study for the choice α = -1 2 , which also yields a convergent method. Table 2 shows similar optimal rates. Next we show in Table 3 that the choice α = 0 yields a non-convergent method. Finally, we compare the computational cost of EG and DG (P 1 -P 0 element) methods by computing the degrees of freedom required by both methods for the uniform triangular meshes used above. We summarize the results in Table 4. We only show the degrees of freedom for the velocity since the pressure spaces for the EG and DG methods are the same. We observe that the DG method becomes more expensive as we refine the mesh with a ratio approaching three. This gap gets even larger when non-uniform meshes are used and/or we are dealing with a three dimensional problem.

Extension to Navier-Stokes equations

The steady-state Navier-Stokes equations differ only from the Stokes equations by the additional convection term u • ∇ u.

The treatment of this term by DG schemes has been extensively studied in [START_REF] Girault | A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems[END_REF][START_REF] Dipietro | Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations[END_REF], for instance. It is often desirable that this term be upwinded (see for example Lesaint & Raviart [24] or Pironneau [START_REF] Pironneau | Finite Element Methods for Fluids[END_REF]), but this is not possible in a continuous approximation of the velocity. The discontinuous constants in X h can be used here to upwind the convection term, as in [START_REF] Girault | A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems[END_REF]. For a given element E, let

∂ -E = {x ∈ ∂ E ; u(x) • n E (x) < 0}.
Then the convection term is approximated in the variational formulation by

E∈E h (u h • ∇u h , v h ) E + 1 2 E∈E h (∇ • u h , u h • v h ) E + E∈E h γ ∈ ∂ -E γ {u h } • n E [u E h ] • v h | E - 1 2 γ ∈ h γ [u h ] • n γ {u h • v h }, (75) 
where exceptionally, [u E h ] stands for the jump in the direction of n E , the exterior normal to E. The analysis of the corresponding scheme relies on the Sobolev inequalities, valid for all real r ≥ 2 when d = 2 and 2 ≤ r ≤ 6, when d = 3,

∀v h ∈ X h , v h L r ( ) ≤ r v h X h . ( 76 
)
This inequality holds on any broken spaces of polynomials or images of polynomials, see for example Girault et al. [START_REF] Girault | Strong convergence of discrete DG solutions of the heat equation[END_REF].

Then all results established in [START_REF] Girault | A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems[END_REF] carry over to the pair of spaces X h , M 0 h . From here we derive the existence of discrete solutions, uniqueness under suitable conditions on the data and error estimates of the same order as for the Stokes problem when the exact solution is sufficiently smooth.

Extension of the inf-sup stability to mixed Dirichlet-natural boundary conditions

In this section, we show briefly that the inf-sup stability of the discrete spaces studied in Section 4 extends to the case when Dirichlet boundary conditions are prescribed on part of the boundary, say D , and natural boundary conditions on the remaining part, say N , i. Thus the inf-sup condition between the spaces X and M reads inf

q∈M sup v∈X -(∇ • v, q) ∇ v L 2 ( ) q L 2 ( ) ≥ β. (77) 
As ( 5) holds for all q in L 2 0 ( ) with v ∈ H 1 0 ( ) d , the proof of (77) follows easily by constructing a velocity v b ∈ X such that

∇ • v b = 1,
in other words, that is associated with q = 1 in , and combining linearly v b with v by the technique of [START_REF] Boland | Stability of finite elements under divergence constraints[END_REF] and [START_REF] Stenberg | Analysis of finite element methods for the Stokes problem: a unified approach[END_REF], see also [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[END_REF].

As expected, the same approach can be used in the discrete case. Since q = 1 belongs to the space M h defined by [START_REF] Fortin | An analysis of the convergence of mixed finite element methods[END_REF], it suffices to construct a velocity v h,b in h,D , where

h,D = h ∩ X, such that ∇ • v h,b = 1, (78) 
and

∇ v h,b L 2 ( ) ≤ C , ( 79 
)
here and below, all constants are independent of h. Note that there is no need to stabilize v h,b with additional constants since q has only one degree of freedom in the entire domain; hence the standard finite element space of globally continuous functions h,D is sufficient.

As the construction of such a function v h,b is fairly easy and does not use enriched spaces, let us sketch how v h,b is used to prove the discrete inf-sup condition, inf

q h ∈M h sup v h ∈X h,D b(v h , q h ) v h X h q h L 2 ( ) ≥ β , ( 80 
)
where X h,D = h,D + M d h .

Any arbitrary element q h of M h is split into q h = qh + qh , where qh = 1 | | q h , so that qh belongs to M 0 h . Then, owing to Theorem 1, there exists ṽh in X h,0 such that

∀r h ∈ M 0 h , b( ṽh , r h ) = (q h , r h ), (81) 
and ṽh X h ≤ C qh L 2 ( ) .

(
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With v h,b and the above ṽh , take

v h = ṽh + α qh v h,b ,
where α is a positive parameter to be chosen below. Then b(v h , q h ) = α qh b(v h,b , qh ) + qh b( ṽh , 1) + α qh b(v h,b , qh ) + b( ṽh , qh ).

In view of (78), ( 21), [START_REF] Lee | A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems[END_REF], and (81), we readily infer b(v h , q h ) =α q2 The choice α = 1 C 2 , Young's inequality, and (82) lead to b(v h , q h ) ≥

1 2
Min( 1

C 2 , 1) q h 2 L 2 ( ) , v h X h ≤ C q h L 2 ( ) , (83) 
thus implying (80).
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 1 Fig. 1. Illustration of some choices of the normal vectors for a given element E: cases (a) and (c) meet the assumptions and cases (b) and (d) are not permitted. (For interpretation of the colors in the figure, the reader is referred to the web version of this article.)

Fig. 1 ,

 1 we illustrate examples of elements with different choices of normal vectors. The interior normals are plotted in red and the exterior ones in blue. The normal vectors of the examples provided in the top left and bottom left satisfy the conditions of Theorem 1. The choice of the normal vectors provided in the top right example does not satisfy the conditions since we have more than three interior normals. The example given in the bottom right does not satisfy the conditions as well, since two interior normals are located on opposite faces.

  e., ∂ = D ∪ N , D ∩ N = ∅.Again, we consider the case of a Lipschitz polyhedron, and we assume that the boundary of each part is polygonal. For the sake of simplicity, we assume that | D | > 0. Since the natural boundary conditions have the form-μ ∇ u • n + p n = g,p is not defined up to an additive constant, and the relevant spaces areX = H 1 0, D ( ) d = {v ∈ H 1 ( ) ; v| D = 0} d , M = L 2 ( ).

h + 0 2 L 2 ( ) ≥ α q2 h + qh 2 L 2

 02222 + α qh b(v h,b , qh ) + qh ( ) -α C |q h | qh L 2 ( ) .

  | • | H 1 (O) as norm on H 1 0 (O) and denote by H -1 (O) its dual space with respect to this norm. Finally, we shall use the space of functions with zero mean value,

  belongs to H 2 ( ) d × H 1 ( ) with continuous dependence on g (seeKellogg & Osborn [18] if d = 2 or Dauge[START_REF] Dauge | Stationary Stokes and Navier-Stokes systems on two-and three-dimensional domains with corners. Part 1: Linearized equations[END_REF] if d = 3), i.e.

	If g ∈ L 2 ( ) d and	is convex (recall that	is a polygon or a polyhedron), the convexity of the domain implies that
	the solution (φ, ζ )		

φ H 2 ( )

Table 1

 1 Numerical errors and convergence rates for the Stokes velocity and pressure with α =1 Rate ||∇ h (uu h )|| L 2 ( )

	2 .

Table 2

 2 Numerical errors and convergence rates for the Stokes velocity and pressure with α = -1

	2 .

Table 3

 3 Numerical errors and convergence rates for the Stokes velocity and pressure with α = 0.

	Rate	||p -p h || L 2 ( )	Rate

h ||uu h || L 2 ( ) Rate ||∇ h (uu h )|| L 2 ( )

Table 4

 4 Number of degrees of freedom of the velocity space for DG and EG methods.

	h	# deg. freedom for DG	# deg. freedom for EG	Ratio
	1/5	150	61	2.45
	1/10	600	221	2.71
	1/15	1350	481	2.80
	1/20	2800	841	2.85
	1/25	3750	1301	2.88
	1/30	5400	1861	2.90
	1 2	e x+2 y )		

u(x, y) = (cos(y 3 ) + e x+2 y , -T , p(x, y) = sin(x + y).