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Paper and pens remain themost commonly used tools by systems engineers to

capture systemmodels. They improve productivity and foster collaboration and

creativity as the users do not need to conform to formal notations commonly

present in Computer-Aided Systems Engineering (CASE) tools for system

modeling. However, digitizing models sketched on a whiteboard into CASE

tools remains a difficult and error-prone activity that requires the knowledge of

tool experts. Over the past decade, switching from symbolic reasoning to

machine learning has been the natural choice in many domains to improve

the performance of software applications. The field of natural sketching and

online recognition is no exception to the rule and most of the existing sketch

recognizers rely on pre-trained sets of symbols to increase the confidence in

the outcome of the recognizers. However, that performance improvement

comes at the cost of trust. The lack of trust directly stems from the lack of

explainability of the outcomes of the neural networks, which hinders its

acceptance by systems engineering teams. A solution shall not only

combine the performance and robustness but shall also earn unreserved

support and trust from human users. While most of the works in the

literature tip the scale in favor of performance, there is a need to better

include studies on human perception into the equation to restore balance.

This study presents an approach and a Human-machine interface for natural

sketching that allows engineers to capture system models using interactive

whiteboards. The approach combines techniques from symbolic AI and

machine learning to improve performance while not compromising

explainability. The key concept of the approach is to use a trained neural

network to separate, upstream from the global recognition process,

handwritten text from geometrical symbols, and to use the suitable

technique (OCR or automated planning) to recognize text and symbols

individually. Key advantages of the approach are that it does not resort to

any other interaction modalities (e.g., virtual keyboards) to annotate model

elements with textual properties and that the explainability of the outcomes of

the modeling assistant is preserved. A user experiment validates the usability of

the interface.
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1 Introduction

Despite its proven modeling value in many engineering

domains, Computer-Aided Systems Engineering (CASE) tools

have only had moderate acceptance by system engineers and

architects to assist them in their day-to-day tasks [1]. The

complexity of creating, editing, and annotating models of

system engineering takes its root from different sources:

unsuitable representations, outdated interfaces, laborious

modifications, and difficult collaborations [2].

As a result, especially in early development phases, systems

architects tend to favor more traditional tools, such as

whiteboards, paper, and pencils over CASE tools to quickly

and easily sketch a problem and its solution. Among the

benefits of sticking to traditional tools, whiteboards foster

collaboration and creativity as the users do not need to

strictly conform to formal notations.

A common pitfall for using traditional tools, however, is that

human users are required to reproduce any sketched solutions

inside of formal tools when it comes to formalizing the models.

Modern post-WIMP1 interfaces (e.g., electronic whiteboards)

could help to automate this task by allowing users working on

a digital representation of the model, one that can be directly

exported, to be modified via modeling tools. Bridging the

informality of the working sketches captured on interactive

whiteboards with formal notations and representations has the

potential to lower the barrier of acceptance of CASE tools by

industry [3, 4]. This acceptance can be obtained by automatically

or semi-automatically translating informal sketches into their

corresponding formal elements using a specific and conventional

notation.

Natural sketch recognition aims at bridging the gap between

free-form modeling and formal representations using dedicated

graphical notations. A significant body of related work can be

found in the literature, spanning offline and online recognition

[5–13]. Offline recognition allows users to capture sketches using

pens and paper and to further digitizes them, while online

recognition relies on interactive digital displays such as

electronic whiteboards for user inputs [6]. With advances in

modern post-WIMP interfaces, recent pieces of work tend to

favor online sketch recognition systems over offline ones. Yet,

providing a robust online sketch recognition is still a hot research

topic and is not well-settled in systems engineering.

1.1 An early model recognition assistant

In our previous work [14, 15], we suggest the use of symbolic

Artificial Intelligence (AI) techniques to aid systems engineers to

design models in a freehand way using large multi-touch screens.

The heart of this approach lies in the use of goal recognition

techniques to translate user’s sketches into model elements. More

precisely, a modeling assistant identifies the most probable model

elements intended to be drawn by a user from an initial sketch,

even when partial. The outcome of the assistant is a list of

suggestions ordered by the probability that a complete model

element corresponds to the user’s intent. This probability is based

on the “distance” between the partial sketch and any possible

model elements that can be drawn from that partial sketch

measured in terms of the number of steps that would remain

to finish drawing the model element completely.

The main benefit of relying on symbolic AI rather than on

Machine Learning (ML) is explainability. “Explainability” is the

property of a system that provides an output that makes

understandable to the human user the reasons of an

algorithm’s choice. This is a condition needed by any process-

directed tool that allows users to evaluate the criteria behind a

choice to use the tool more efficiently [16]. Not only themodeling

assistant provides the user with a list of suggestions, but it also

details the remaining steps to draw the suggested model elements

completely. Our preliminary evaluation suggests that recognizing

complex shapes (e.g., an operational actor made of four straight

lines and one circle) using AI methods is suitable for online

incremental recognition. In the present study, we make the

following contributions:

1) We refine a part of the approach that no longer relies on

goal recognition alone, but rather on the combination of

symbolic AI and ML techniques. Handwritten text and

geometrical shapes composing model sketches require two

distinct recognition processing and, thus, must be

decoupled prior to the recognition process to occur. We

train a Neural Network (NN) to distinguish text from

geometrical shapes such that handwritten text can be

recognized using traditional Optical Character

Recognition (OCR) engines while geometrical shapes are

determined by our initial goal recognition algorithm to

identify the model elements. This approach allows us to

enhance our recognition process to identify model

elements annotated with text without resorting to virtual

keyboards or voice recognition. We present the extended

approach, describe a training platform we developed to

train the NN, and summarize the results of the training

process.1 Windows, mouse, and pointer interfaces.
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2) We reformulate the representation of the sketching

environment used by our shape recognition engine in

order to improve the speed and accuracy of the goal

recognition process, and to make it more tolerant to

drawing imprecision. This new representation,

expressed in the PDDL language proper to automated

planners, is lighter than the one previously used, hence

speeding up the recognition process. On the one hand, the

simplification of the planning representation comes at the

cost of more ambiguity when recognizing model elements

from (very) partial drawings. On the other hand, it led to

better results in real case scenarios, as completing a sketch

adds new constraints, thus removing most of the

ambiguity. In addition to these improvements, we

replace the previous search algorithm by the anytime

algorithm used in LAMA [17]. It results in a generation

of plans which is faster, and that in time provides plans

with increasing quality.

3) The refined approach and enhanced recognition algorithm

resulted in a modeling environment called BOARD-AI. It

consists in an electronic whiteboard interface coupled with

both shape and text recognition software, and an

automated planning algorithm that provides completion

suggestions for the sketch drawn by the users.

4) Finally, this study presents an early evaluation of the

human-machine interactions and of the usability of

BOARD-AI on two groups of users. These users

employed the modeling environment to design a system

engineering system before answering to a questionnaire

that we then evaluated. This study provides a first

assessment of the validity of our approach, and of the

trust that users are willing to place in an artificial

intelligence-based recommendation system. This

evaluation protocol eventually provided us with useful

indications on future improvements of the modeling

framework.

1.2 Paper structure

The rest of the study is structured as follows: Section 2

presents background concepts; Section 3 presents the

approach and describes the implementation of BOARD-AI;

Section 4 describes the user evaluation of BOARD-AI and the

conclusions we drew; Section 5 presents related work; and

Section 6 concludes.

2 Background

The term sketch has a very broad definition. It includes a

variety of freehand drawings made by amateurs or professionals,

such as doodles, clip-arts, caricatures [13], but also drawings used

in various engineering domains, e.g., electrical circuits. Natural

sketching is becoming more and more popular due to the

increased use of post-WIMP interfaces, including interactive

whiteboards, interactive walls, large multi-touch screens,

interactive pen displays, and personal tablets [9]. The

emergence of AI-enabled sketching tools such as Google

Autodraw also largely contributed to the digital revolution of

natural sketching from a very broad range of applications and use

cases.

The present study targets sketches used to capture models of

systems in a more natural way using traditional software and

systems engineering languages. Sketching tools offer an

alternative approach to traditional CASE tools to rapidly

design a model where users have more freedom and flexibility

as they are not required to learn how to use complex tools to

create the models desired [7]. However, sketching tools dedicated

to modeling differ frommore general-purpose sketching tools on

two fundamental aspects.

First, sketches vary in terms of representation, size, and style,

and general-purpose sketching tools have to handle a large

number of individual sketches. As such, recent work tends to

favor classification techniques and complex deep learning models

to handle such variation [13], for it relies on large sets of sketches

to train the recognizers. As opposed, diagrams in computer

science and systems engineering rely on relatively stable and

simple representations composed of simple geometrical shapes

(rectangles, circles, etc.).

Second, text is omnipresent in traditional diagrams in

computer science or systems engineering to label model

elements. However, text and shapes do not rely on the same

training models to be efficiently recognized. The duality of

recognizing text and symbols individually has been explored

in the literature, e.g., in [11] and takes its source from traditional

text/non-text separation techniques in offline document analysis

[18]. While some work moved the problem aside by providing

users with alternative text editing capabilities (e.g. [19]), others

(e.g. [11, 20], provide seamless modeling capabilities, for it relies

on segmentation techniques to separate text and non-text before

starting to recognize shapes and text individually. In our previous

work [14, 15], we relied on alternative editing capabilities,

including virtual keyboard and voice recognition to annotate

model elements with text. Our present work adheres to this

second approach as it seems more natural for users to only rely

on a single modality to draw models.

2.1 Classification

One trend to recognize modeling elements is to rely on AI

tools and algorithms, more specifically, on ML techniques based

on NNs. This family of approaches typically involves two phases

[21]. During the training phase, algorithms are trained to

recognize elements based on pre-existing libraries. During the
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recognition phase, these algorithms can identify elements with a

certain degree of confidence.

NNs can learn and generalize from training data; they are

particularly fault and noise tolerant [22]. Thus, they are often

used in several domains for the classification of input data into

categories [23–25]. An essential element of NNs is the neuron. A

neuron is an information processing unit taking several inputs

and producing one output [26]. Each input has its own weight;

the neuron calculates the sum of the weighted inputs plus a bias

term (this term represents how easily the neuron fires).

Afterwards, this sum is passed trough an activation function

to obtain the output. The role of an activation function is to

introduce non-linearity into the output of a neuron. It also

determines whether and how much a neuron should be

activated, and its choice may improve or reduce the neuron’s

performance. Neurons connect to each other to form NNs; a

neuron’s output then provides the input to another neuron.

Most NNs are organized into multiple layers, and each layer

has a specific number of neurons. We can distinguish three types

of layers [27]: the input layer that provides data from the world to

the network (in our case, the extracted features from the user’s

drawing); hidden layers that compute and transfer information

from that input layer to the output layer; and the output layer that

corresponds to the output prediction of the network. Multiple

hidden layers can be stacked along each other. A network is called

fully connected if every node in each layer is connected to every

adjacent node in the adjacent forward layer.

NNs are widely used to classify data when a labeled dataset to

train it is provided (supervised learning). A NN classifier tries to

approximate a function that maps all of the elements in a space

(the elements to classify) to the elements in another space (the

categories of these elements). The network, by adjusting weights

and biases, tries to approximate this function as best as possible,

and then maps the elements to be classified to their respective

categories.

In this work, we implement these concepts to develop an NN

classifier able to find a function that maps collected data from

user’s drawings to one of two categories, either text or

geometrical shape. To do so, we represent the training data as

a label dataset consisting of a set of features (e.g. the number of

sharp corners, a bounding box ratio, etc. See Section 3.3) and a

target (the corresponding category, i.e., text or geometrical

shape).

2.2 Automated deterministic planning

AI planning [28] has been used to perform activity

recognition in the context of a system managed by human

operators whose currently pursued operational goal has yet to

be determined [29]. Several goal recognition [30] fields of

application have surfaced, including “operator modeling” to

improve the efficiency of man-machine systems. Early

applications of the approach failed because of the complexity

of plans, the issues due to evaluating actions that did not fit any

plan, or the issues from interleaving planning and execution.

Moreover, the work in goal recognition has historically

proceeded independently from the planning community, using

handcrafted libraries rather than planners [31].

An automated planning task can be represented as a directed

graph model, where the nodes correspond to the different

situations (or states) in which a system can be, and the edges

represent actions that drive the system from one situation to a

new one. Solving a planning problem consists in finding a

sequence of actions 〈a1, . . . , an〉, also called plan π, that

drive the system from an initial state to a desired goal, or a

final situation. The length |π| corresponds to the number of

actions in the plan π: the length of a plan is commonly considered

as a preference criterion to evaluate it.

To achieve automated deterministic planning, we adopt the

STRIPS formalism [32]. In STRIPS, a factored representation

represents states via a set of Boolean variables, interpreted as a

conjunction, and such that each state s is a complete

assignment of state variables. A planning problem is then

defined as a 4–tuple 〈F ,A, I ,G〉, where F is the set of state

variables (assuming Boolean values), A is the set of operators

(or actions), and I ,G ⊆ F 2 are two sets of variables describing

the initial state and the goal state(s), respectively. An action

a ∈ A is defined as the 3–tuple 〈 pre(a), add(a), del(a) 〉, where
pre(a) is the set of preconditions of a, add(a) and del(a) are the

sets of post-conditions of a, respectively defining the set of

propositions added and deleted from the state. The pre-

conditions determine in which state an action can be

applied, while post-conditions specify the changes to

variable assignments made by applying the action in a state.

In other words, an action a is applicable in state s iff pre(a) ⊆ s,

where the application of a in s is defined by the transition

function T (s, a) = (s/del(a)) ∪ add(a).

In order to solve these planning problems, we adopt in this

study an anytime approach. The planning algorithm first runs a

search in the graph, aimed at finding a solution as quickly as

possible. Once a plan is found, it searches for progressively better

solutions by running a series of more expensive searches (in

terms of computation time). The cost of the best known solution

is used for pruning the subsequent searches. The final result is a

set of solution, obtained at increasing time intervals but with

(hopefully) a better solution quality.

Anytime algorithms are usually based on Weighted A*: an

heuristic search algorithm that uses a weight to scale the heuristic

value of each node of the graph about to be visited [33]. The

underlying idea is to continue the search after the first obtained

solution, possibly adjusting search parameters like the weight or

pruning bound, and thus progressively find better solutions

[34–36].

In our previous work [15], we describe an approach based on

AI automated planning to recognize complex sketches
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representing model elements and to guide users in their

completion. For our preliminary sketching tool (see [15]), we

adopted a strategy that uses the planning framework for goal

recognition to perform the converse task of automated planning

[37], i.e., recognizing the most probable goal given an initial state

and a plan. Here, the task is to identify the shapes yet to be drawn

and their placement to create a meaningful system-engineering

sketch from an incomplete drawing. We use a goal library to

describe the possible solutions of a plan. Sketching is therefore

represented as a planning problem, where the initial state

corresponds to a partial drawing from the user and the goals

represent the different model elements the planner is able to

recognize. The actions represent the different operations a user or

a hypothetical drawing-agent would perform to complete an

initial sketch.

3 Materials and methods

Figure 1 is an overview of a preliminary implementation of

the modeling assistant. As soon as the user starts to draw some

shapes on the screen, the modeling assistant is able to propose

suggestions in terms of systems engineering sketched elements.

Suggestions are ordered based on the length of the plan π

calculated by the planer. Explainability is a central concern in

our implementation: suggestions of the final shape

form—calculated by the modeling assistant—is in direct

correlation with how much of the complete model element

sketch is left to draw.

One limitation of our initial implementation is that it does

not support handwritten text annotating model elements.

Automated planning is usually less fault-and-noise tolerant

than other techniques such as NNs. It is therefore not suitable

for text recognition, traditionally done through OCR. For our

preliminary sketching tool, we then relied on two other

interaction modalities. A user can annotate a model element

through a virtual keyboard, or through voice recognition. This

implies that the model element is first recognized before it can be

annotated.

In this study, we extend our initial approach with

handwritten text annotation support. The key concept is to

use a trained neural network upstream from the global

recognition process to separate handwritten text annotation

from geometrical shapes, and to use the suitable technique

(OCR or automated planning) to recognize text and shapes

individually.

3.1 Approach definition

An overview of the extended approach is illustrated in

Figure 2. The sketching work starts with a user’s drawing.

That drawing can be partial (i.e., it only represents a part of

an element to be recognized) or complete (it completely

represents the element to recognize). Compared to our

previous approach, the drawing can be annotated with

handwritten text. We assume in our approach that text and

geometrical shapes belong to two different classes of problems

FIGURE 1
A preliminary implementation of the modeling assistant [15]. The central area is an HTML5 Canvas where the user can sketch model elements.
The right sidebar shows suggestions to complete the sketch.

Frontiers in Physics frontiersin.org05

Castellanos-Paez et al. 10.3389/fphy.2022.944086

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.944086


requiring different techniques. Therefore, our process splits into

two sub-processes to recognize text and geometrical shapes,

respectively. Text recognition is performed via classical

components-off-the-shelf OCR algorithms, while geometrical

shape recognition is handled by our goal recognition

algorithm described in [15]. Our approach then reconciles the

outputs of both sub-processes once they terminate to reconstruct

the global model element annotated with textual properties.

3.1.1 Classification
We developed a data efficient neural network classifier to

distinguish the different elements composing the user’s drawing

into two categories: text and geometrical shapes. To address the

lack of data, we opted for a feature-based neural network instead

of an image-based NN since the former are lightweight and easy

to train. First, we analyzed several inputs to identify features of

detected geometrical shapes and text to be used in classifying a

user’s drawing. We then proposed a set of features to be

computed from the data acquired using a training interface

(see Section 3.3.1), and to use them in the classification. The

list of the features is detailed in Section 3.3.

We then provided the NN classifier with a training data set of

the appropriate network behavior in the form of labeled data. The

training dataset consisted of a set of features (the extracted

features from each category of the user’s drawing) and a

target (the corresponding category, i.e., text or geometrical

shape). We used supervised learning where the network,

provided with inputs, adjusted its weights and biases to move

its outputs as close as possible to the targets.

3.1.2 Shape recognition and characterization
We use goal recognition to identify final geometrical shapes.

This involves two steps. The first step consists in recognizing and

characterizing primitive shapes with a simple shape detection

algorithm. As described in [15], the approach only focuses on two

primitive shapes: ellipses and straight lines. A polyline consists of

a series of connected straight line segments. When a polyline is

recognized, it is not characterized as a whole, but instead, each

segment composing it is characterized individually and

independently of the others. Circles are also recognized as a

specific case of ellipses where the two foci are on the same spot

(the center).

The rationale behind the algorithm’s minimalist recognition

strategy is twofold: first, this strategy reduces the time required to

perform this step, hence, speeding up the complete recognition

process. Second, most of the graphical elements employed in

standard modeling languages and used by systems engineers

can be simply expressed in terms of the two primitive shapes.

This strategy considerably reduces the complexity of our goal

recognition algorithm as its does not have to deal with multiple

alternative ways of drawing the same model element. It allows the

algorithm to deal with different drawing habits the same way. For

example, a user can draw a rectangle in a single-line drawing

(without lifting the pen from the surface of the screen) to represent

the outer frame of a UML class, while a second user can draw four

straight lines connected to their end-points.

Mathematically speaking, we consider the set S = (ellipse,

straight_line) as the set of primitive shapes recognized by the

algorithm. S is a minimal functionally complete set (by analogy

with mathematical logic) as all other geometrical shapes can be

expressed in terms of the two constituents of S.

Once primitive shapes are recognized, specific characteristics

are extracted from them. Ellipses are tagged as being circles or

not. A straight line is characterized by its four possible

orientations O such that O = (horizontal, vertical,

diagonal_left, diagonal_right). To compute straight line

orientations, the raw angle between the two end points of a

line is ‘smoothed’ to its closest remarkable iπ
4 -angle. Finer-grain

fractions can be chosen for smoothing angles, but they would be

less tolerant to drawing imperfections. For example, to sketch an

operational actor, left and right legs could be characterized as 45°

or 60° straight lines depending on the user’s talent for drawing.

After the recognition process, we compute the position of

every primitive shape relatively to their connection the other

shapes composing the same element. We distinguish if a

connection intersects a shape in the middle or at its end-

FIGURE 2
Overview of the recognition process.
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points. The set of possible intersections O is such that O =

(isConnectedEndPoints, isConnected).

The relation isConnected is bijective. It occurs when two

primitive shapes are intersecting at the center:

∀s1, s2 | s2 ∈ isConnected s1( ) 5 s1 ∈ isConnected s2( ) (1)

The relation isConnectedEndPoint implies that the two elements

are connected:

∀s1, s2 | s2 ∈ isConnectedEndPoint s1( )0s1 ∈ isConnected s2( )
(2)

and is bijective as well:

∀s1, s2 | s2 ∈ isConnectedEndPoint s1( ) 5 s1 ∈ isConnectedEndPoint s2( )
(3)

The output of the first step is a directed graph G = (V, E, lv, le)

where the set of vertices V corresponds to the set of primitive

shapes composing a sketch, and the set of edges E corresponds to

the connecting constraint between the vertices (see Figure 3). We

apply two labeling functions. The vertex labeling function,

lv: V → L2, decorates each vertex with a label denoting the

nature (ellipse or straight line) and the distinctive feature

(orientation for straight lines, nature for circles or not for

ellipses) of the primitive shape corresponding to the vertex.

The edge labeling function, le: E → L, decorates each edge

with the corresponding connecting relation (isConnected or

isConnectedEndPoints) that binds each pair of primitive shapes.

Listing 1: Predicates of the PDDL domain definition.

3.1.3 Translation into PDDL
The second step of the shape recognition sub-process consists

in translating the graph obtained during the previous step into the

Planning Domain Definition Language (PDDL) format [38].

PDDL is an attempt to formalise a standard to describe AI

planning problems that is shared by various components-off-

the-shelf AI planners [28, 39]. We use PDDL to formalize our

drawing problem, describe the initial sketch, and describe the list of

all the model elements deemed possible. This list constitutes the

goal library, i.e., the set of the possible goals that our framework

will consider when doing goal recognition. The PDDL domain

definition contains the formalization of the drawing problem.

Listings 1 and 2 are excerpts of the domain definition. It

describes predicates that accept variables of two different types:

blocks (made of polylines) and shapes (ellipses or straight lines).

The coding of the predicates follows the relations given earlier.

Listing 2: A PDDL example of connecting a block to another

one. Here, effects make use of conditions encoded with “when”:

Conditions are like preconditions, but if they do not hold in a

state, the actions are still executed, but the conditional effect that

does not hold will simply not be applied in the state.

The domain definition also contains actions that can be

performed by a user, or, more symbolically, by a drawing

agent, to complete a sketch. We define connect actions to

FIGURE 3
An actor being drawn (left side) and the resulting graph G (right side). Each edge is a relation between two primitive shapes connected at their
end points or intersecting. The orange node represents the head of the actor. Green nodes are straight lines whose orientations are indicated by the
node labels.
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complete an existing sketch with new shapes. For example, Listing

2 shows the definition of the connectEndPoint action to connect

two polylines. We also define actions in our plan to support quick

fixes [15]. A remove action consists in removing from a graph G a

node and the edges that connect that node to other nodes of the

graph. A remove action is interpreted as the primitive shape

(represented by that node) has been incorrectly drawn and

should not be considered as part of the sketch. Update actions

consist inmodifying a node or an edge of a graphG. An example of

a node update action is changing an eclipse into a circle, or

changing a straight line’s orientation (change-orientation).

Every action also implements collateral effects on the shapes

composing a sketch, according to the different relations formalized

in Section 3.1.2. For instance, if the block A is connected to block B,

then Bwill also be connected toA (Listing 2). We decided to encode

collateral effects in the effects of the actions rather than using

axioms2 [40] as it was the case in a previous work [15]. The

reason lies in the computing overhead that axioms yield, and in

the scarcely availability of automated planners implementing them.

Thus, the PDDL encoding of the sketching problem presented here

is an evolution of a former implementation that was modeling the

relative position between blocks in order to express their position on

the board (e.g. left-of, right-of etc.). We decided to model

the connections only between elements, as they are sufficient, along

with their shape, to define the model elements used in the sketches.

This simplification was dictated by the performances of the previous

version of themodel. The relative position between blocks needed to

be adjusted for all the drawn blocks (this was done by using axioms)

after any action. The current model is more compact, and produces

shorter plans for certainmodels, also because of choice of having the

property of bijectivity for the connections, as indicated in Eqs 1, 3. Of

course the degrees of liberty implied by this modeling yield some

ambiguity in the representations, but 1) some ambiguity would be

present for any modeling choice, 2) in the context of software

diagrams (e.g., UML), these modeling choices allow to represent all

the sketches without ambiguity.

The formalization of the drawing problem and the goal

library are generic and reused across different executions of

the recognition process. Only the formalization of the initial

sketch in PDDL is specific and is automatically generated from

the graph obtained in the previous step. Listing 3 shows an

example of a PDDL problem carrying the information of the

initial sketch and a possible goal to reach. The initial state (lines

7–25) is generated automatically on the basis of the sketch

currently drawn. The goal describes the positioning

constraints required to build an operational actor.

Listing 3: An example of a PDDL problem generated from our

approach. The mapping between the variables of the initial state

and the variables of the goal is automatically carried out by the

translation process.

Based on the three inputs, we run the planner for the sketch

being drawn by the user. To do it, we used the Fast Downward

planning system [41], running the version of LAMA Planner [17]

that participated in IPC 2011, and that has been integrated into

Fast Downward’s code. The anytime algorithm used in LAMA, to

the contrary of the previous algorithms discussed above, does not

continue the weighted A* search once it finds a solution. Instead,

it start a new weighted A*-based search from the initial state. The

planner then outputs several plans, with increasing quality

(measured in the number of actions in the plan). Each plan is

an ordered list of possible matches between the sketch being

drawn by the user and the goals denoting the different model

elements that could be recognized. The set of possible matches is

ordered based on the degree of confidence of the match regarding

the element currently drawn. The degree depends on the distance

(in the plan) between the current sketch and the possible goal,

i.e., the number of steps that would remain to finish drawing the

element completely.

3.2 Implementation

Figure 4 pictures the BOARD-AI main interface. The

interface is developed using Web technologies (HTML, CSS,

and JavaScript) so it can be used remotely and it can be run on

any interactive pen display devices, ranging from tablets to large

screens equipped with stylus. We adopted a minimalist style

where the entirety of the screen can be used to draw a model so

that users can fully focus on the sketching activity without being

disturbed by an overloaded interface. The main area is an

HTML5 Canvas for drawing model elements. A toolbar

provides some useful features, such as undo/redo, page

management, different edition modes (drawing, erasing, and

2 Axioms are specific actions applicable to a state, but they do not
contribute to the evaluation of the distance between the current state
and a goal.
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selection), and two options to customize the thickness and the

color of the drawing. The toolbar can be collapsed to maximize

the drawing area. Besides these features, a chalk effect is applied

to replicate the writing on a blackboard.

Two distinct interaction modalities are used to interact

with the screen. Drawing is only possible using the stylus

while touch gestures enable the user to navigate across the

interface. Zooming in and out is achieved by pinching the

screen. Single finger panning can also be used to navigate

within the Canvas when it is scaled up. When the interface is

scaled up, an outline at the bottom right of the screen shows

the visible area.

When the user starts drawing, the recognition process is

performed. Under the hood, the recognition engine consecutively

identifies and characterizes the primitive shapes drawn by the

user, invokes the classifier, and performs text or shape

recognition according to the output of the classifier. Visual

hints are given in the shape of bubbles accompanying the

elements to recognize. Clicking on a visual hint results in

converting the partial drawing into the suggested model

element or text. If the partial drawing is updated by the user,

the suggestions are updated as well.

Multiple shapes and/or textual annotations can be

recognized at the same time. Hints to geometrical shapes are

provided by the Fast Downward planning system and are

updated according to the anytime algorithm used. A limit of

the three best suggestions is kept and displayed along with the

partial drawing. Recognizing textual annotation is done using

third-party OCR engines. Our implementation currently

supports both MyScript Interactive Ink SDK (iink SDK) and

Tesseract OCR engines. When using iink SDK, multiple

suggestions are provided and displayed to the user. A metric

distance is then applied to reconcile model elements with textual

annotation. As an example illustrated in Figure 4, textual

annotations will be respectively converted into class or actor

names.

FIGURE 4
Screenshot of the BOARD-AI interface running on a Samsung Galaxy S6 Lite. Its minimalist interface features a wide area to sketch model
elements, a collapsible toolbar, and an outline. Blue bubbles along with drawn sketches provide hints about the model elements to recognize.

FIGURE 5
Overview of the BOARD-AI architecture.
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Figure 5 describes the architecture of BOARD-AI. It follows a

client-server architecture where the back-end (in Python) is

responsible for calling the different services for shape

recognition. It consists of three main modules. The handler

module makes the link with the interface. It starts a Web-

socket server to communicate with the front-end. Shape

recognition being incremental, the web-socket communication

is used to update the interface every-time a more optimized plan

is found. A Classifiermodule built on top of numpy distinguishes

geometrical shapes from textual annotations. The planner

module is responsible for translating sketched elements into

PDDL as discussed in Section 3.1.3. Models elements to be

recognized are structured as JSON objects (see Listing. 4 as an

example) and stored in separate files. When the planner module

starts, it first loads the different files and then translates each

JSON object into PDDL problem templates as shown in

Listing 33.

Listing 4: An example of the definition of the goal in JSON for

recognizing a UML class.

Upon requesting a recognition of a sketched elements, the

following actions are executed. First, the classifiermodule starts

by classifying the sketched element as text or shape elements. If

a sketched element is classified as text, text recognition is

performed by an OCR engine. Depending on the selected

OCR engine used (being Tesseract or iink SDK), text

recognition is performed by the back-end or the front-end.

However, if the sketched element is classified as a geometrical

shape, shape recognition is performed by the planner module.

This module translates the sketched elements into PDDL and

invokes multiple instances of Fast Downward as parallel sub-

processes. As soon as a plan is generated by one sub-process, it

is broadcast to the front-end interface through the handler

module.

Running multiple instances of Fast Downward in parallel

speeds up the recognition process as suggestions of shapes are

provided in the interface as soon as they arrive. In our tests,

recognizing multiple model elements (mixing geometrical shapes

and text annotations) as the one pictured in Figure 4 takes

between 500 milliseconds and 1 s. However, it is

computationally heavy and requires a proper server

architecture to reduce the computational time.

3.3 Model training

This section describes the training of the NN classifier we

used. We chose to set up a NN based on specific features rather

than on exploiting images as the first solution is more cost-

effective and requires less data than the second one. The section

first details the training interface we developed, then it discusses

the data acquisition and the features that were extracted to

correctly train the classifier. Finally, it presents the validation

of the training.

3.3.1 Training interface
Figure 6 is an overview of the training interface. It has been

used to train the NN to learn how to differentiate geometrical

shapes and text. The interface shares several similarities with

the interface of BOARD-AI. It was developed using the same

technologies (HTML, CSS, and JavaScript) and relies on the

two same interaction modalities. We chose to separate the two

interaction modalities so as not to lead to a bias during the

training. Finger drawing may result in a bad training of the

NN. Besides, styli seem to be the most natural way of drawing

onto a screen and provide a nicer user experience for text

annotation than finger drawing. During the experiment, we

observed that the participants naturally use one hand to hold

the stylus while using the second one to navigate within the

HTML5 Canvas.

The training interface contains three areas. The main area is

an HTML5 Canvas for drawing model elements, as it is done in

the interface of BOARD-AI. Both sidebars contain indications for

the user to understand how to use the training interface. The

interface has been used as an experimental platform to collect

users’ drawing data so as to train neural networks to predict

which parts of a drawing relate to text and which parts relate to
3 The templates are later filled with the missing part describing the initial

state of the problem.
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FIGURE 7
Upon completing a sketch, participants are asked to select (using a Lasso Tool) the text only. Sharp corners are shown in yellow. They turn blue
once they have been selected.

FIGURE 6
Overview of the training interface. It is used to train the neural network. The left sidenav shows indications to guide participants through the
training. The right sidenav shows the progress of the participant. The main central area accepts pointer events to draw and touch events to navigate
within the HTML5 Canvas.
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geometrical shapes. Using the interface, users are invited to

perform two successive steps: drawing and text selection.

Drawing

During the first step, users are invited to draw graphical

model elements as they appear on the top left corner of the

interface. Each drawing is stored as a set of paths. A path starts

when the user touches the screen with the pen and ends when the

pen is lifted from the surface of the screen. A path is a collection

of points acquired by the device during this timeframe. A point

corresponds to a pixel drawn on the screen. It contains a xy-

coordinate on the screen. The frequency rate of events fired to

detect that a point is drawn on the screen is device-specific and

depends on the hardware implementation of the tablet [42]. In

addition to its xy-coordinate on the screen, a point also contains

various metadata collected from the stylus. Specifically, we

collected the pressure applied on the stylus, the plane angles

tiltX and tiltY between the stylus and the surface, and the

timestamp when the pixel is drawn on the screen. We decided

to keep several pieces of metadata to find which ones are relevant

to efficiently train the neural network, but also for being able to

precisely and accurately replicate the experiments offline, and to

understand the user’s habits in terms of drawings. This

understanding will lead to new experiments in the future.

Text selection

Once the user completes his/her drawing, a line recognition

algorithm detects sharp corners. Sharp corners are particular

points of a path denoting marked directional changes. This step is

used by our algorithm to transform a path into multiple straight

lines. During the second step, users are invited to select sharp

corners belonging to any textual part of the drawing using a Lasso

tool (see Figure 7). This second step is important for the

classification process to distinguish text from geometrical shapes.

3.3.2 Data acquisition
We used the interface to collect data to train the NN. Each

participant was asked to draw ten times, four graphical elements

composed of one of four chosen elements coming from UML

(class, actor, lifeline, and pseudo-state) and a randomly chosen

English word. In practice, this represents, for each participant, a

total of eighty training samples for the network (forty for each

class, text or shape).

We took different measures so as not to introduce any bias in

the experiment. All experiments were performed on the same

device, a Samsung Galaxy S6 Lite tablet equipped with an active

pen stylus. Finger drawing was disabled. Random words were

chosen from a dataset of the most commonly used English words

to add variability in the training process. We developed a flip

mode for left-handed users where both sidebars are flipped. This

mode has been developed so that the drawing directives always

appear on the opposite side of the hand holding the stylus and are

not covered by the hand. As a final measure, the four types of

model elements were presented to the participants in a random

order to prevent “muscle memory”.

3.3.3 Feature design
The data acquired using the training interface described

above was pre-processed and analysed in order to keep only

the relevant pieces of information. To use our NN classifier, we

identified the features to be passed as inputs to the network.

Features were chosen to be independent of the writing speed and

also scale independent, i.e., independent of the size of the user’s

drawing. For these reasons, data such as the number of points

(depending both on the acquisition capabilities of the tablet and

on the speed of the user’s writing) were removed. Other data such

as the length and the width of the bounding box was not used

directly but computed to form new measures relevant to the

network. After conducting the analysis on the data, the chosen

features are:

• the number of sharp corners. We can imagine that this

number is greater for text.

• the bounding box ratio: It is computed as the ratio between

the width and height of the bounding box. The bounding

box is the smallest rectangle encompassing all points. We

can imagine that text would tend to have horizontal boxes

and shapes more vertical boxes.

• the longest segment ratio: It is computed as the longest

corner segment divided by the longest side of the bounding

box. A segment is defined as a line between two consecutive

points, and a corner segment is defined as a segment

between two consecutive corners. We can imagine that

we are more prone to find longer segments in geometrical

shapes e.g. boxes, arrows, actors rather than in text.

• the total segment ratio: It is computed as the sum of all

corner segments divided by the longest side of the

bounding box. We can expect that text will tend to have

a greater ratio.

• the minimum angle corner: It corresponds to the

minimum angle computed among all angles found

between two corner segments. We can expect that shape

will tend to have a greater minimum angle.

3.3.4 Network design
The starting proposed structure for the NN classifier

corresponds to a multilayer fully connected network, and it is

composed of:

• one input layer of size five since we have five features.

• one output layer that represents one of the categories; it

must be one or zero for each geometrical shape or text,

respectively.

• one to three hidden layers between the input and the

output layers. Besides these three layers, the size of each

layer varies from five to ten neurons.
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On the one side, the rectified linear unit function [43, 44] was

chosen as an activation function for the hidden layers. On the

other side, to guarantee that our network output is between 0 and

1, we used a Sigmoid activation function for the output layer.

The final structure of the network was chosen after the

training and validation step. It is described in the following

section.

3.3.5 Training and validation
Our dataset is composed of 1,342 entries (after removing

18 invalid entries) coming from 17 different users who

participated in the user experiment described earlier. The

dataset was divided between 67% training and 33% validation.

Training a network consists in finding the best set of weights

to map the elements to be classified to their respective categories.

To evaluate a set of weights, we must specify a loss function. This

function is used by an optimization algorithm to estimate the loss

of the model, update weights and reduce the loss on the next

evaluation.

To train our network, we used the Adam optimization

algorithm and we use cross-entropy as the loss function for

our binary classification problem. This process was run for

150 epochs (the number of iterations through the dataset) and

a batch size of 10 (number of training data considered per epoch).

To tune the hyperparameters (number of hidden layers,

number of neurons for each hidden layer) we conducted

500 experiments. For each experiment, the number of hidden

layers was randomly chosen between one and three and for each

hidden layer, the number of neurons was randomly chosen

between five and ten. The final structure network showing the

best results was composed of two hidden layers of sizes eight and

five nodes respectively. Figure 8 present the performance of the

network over time during training. On the one hand, we can

observe that the model loss has comparable performance on both

datasets. On the other hand, the model accuracy plateaus indicate

that the model did not underfit and that the validation accuracy

did not diverge from the training accuracy, indicating that the

model did not overfit. The validation stage showed that the final

structured network has a good performance and a 99.77%

prediction accuracy.

In future work, we would like to consider if training on

a subset of the available shapes of our training data would

still allow for good classification performance even on unseen

shapes.

4 Evaluation

4.1 Aims and research questions

BOARD-AI was designed to facilitate sketching system

engineering models. For its implementation, BOARD-AI was

trained using data collected from human draws and annotations

(see Section 3.3). We present now the results of evaluating

FIGURE 8
Model loss and accuracy on training and validation data for the final structure network.

FIGURE 9
Exploratory Study Design and data gathering techniques.
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BOARD-AI with final users. This evaluation permits to

understand how BOARD-AI supports engineers in sketching

system models, and allows us to identify future improvements of

the tool. Specifically, four research questions drove the

evaluation:

RQ 1. Does BOARD-AI facilitate the modeling process

compared with traditional methods?

RQ 2. How helpful are the tips and shape suggestions

provided to the users, so as to support sketching system

models?

RQ 3. Would a false positive in recognizing a geometrical

symbol or a textual label affect the user the same way?

RQ 4. How usable is the BOARD-AI tool?

4.2 Methodology and data collection

To address the research questions proposed for the

evaluation, we conducted an exploratory study. This is the

recommended methodology for studying a phenomenon when

there is insufficient prior research to establish concrete

hypotheses. In this case, we wanted to study the effects of

using BOARD-AI in supporting engineers on sketching their

system engineering models compared with other existing more

traditional methods. For this purpose, we prepared two different

protocols for two groups of users (Group_1 and Group_2). Both

protocols consisted in a sequence of two activities that

participants had to follow:

• Activity Traditional Sketching: Users are asked to sketch a

system model using paper and pencil or whatever tool of

their choice they usually use for sketching models.

• Activity BOARD-AI Sketching: Users are asked to sketch

the same system model using BOARD-AI.

The first group of participants (Group_1) started with the

Activity Traditional Sketching and continued with the Activity

BOARD-AI Sketching, whereas the second group (Group_2) of

participants performed these activities in the reverse order.

Combining the use of traditional sketching methods and

BOARD-AI allowed the users to be able to compare the two

methods for conducting similar activities and, while having two

different groups isolated the effect of the novelty of using

BOARD-AI in such an activity. Figure 9 shows a schema of

the experimental procedure conducted.

Different data gathering techniques were used to collect data

about the two activities at different moments. First, the

participants were asked to fill in a consent form for

participating in the experiment. Then, a researcher facilitated

them with a document explaining the activities to be conducted

and how to access the BOARD-AI tool. Then, the participants

completed the two activities with no time limitations. Finally, the

participants answered a final questionnaire containing

22 questions.

The first three questions are dedicated to determine the

profile of the participants and their experience in the

modeling domain. The next 10 questions (from question one

to question 10) correspond to the SUS standardized

questionnaire [45], designed to measure the usability of the

tool. Then, questions 11 and 12 are dedicated to compare

BOARD-AI with other traditional methods; questions 13 to

17 refer to aspects related with the tips and graphical help

offered by BOARD-AI, and questions 19 and 20 (the latter is

a supplementary question for non expert users only) ask about

which aspects of the tool are considered the best, and what are

those that should be improved. Except questions 19 and 20,

which are open questions, the rest follow a Likert scale from 1 to

5, were 1 is “completely disagree”, and five is “completely agree”.

Table 1 shows the different data gathering techniques that were

employed as well as the links to the instruments used.

4.3 Participants and analytical methods

As a sampling method, we decided to follow convenience

sampling for selecting participants. In this case, 12 participants

from the University of Grenoble Alpes, engineers, experts and

TABLE 1 Data gathering instruments.

Data gathering technique Description References

Questionnaire Questionnaire with 22 questions. This questionnaire is composed of 3 preliminary questions about the user’s
background, the Usability Scale (SUS) [45] translated to French, i.e. 10 closed questions, plus 7 closed and 2 open
questions inquiring the user about the functionalities of the tool

https://osf.io/
v45c8/

Participants Consent Form Consent form to be signed before participating in the experimental study https://osf.io/
v45c8/

Protocol Document Activity
Group_1

Document facilitated to the Group_1, which started sketching using a traditional method, and then using
BOARD-AI

https://osf.io/
qutx3/

Protocol Document Activity
Group_2

Document facilitated to the Group_1, which started sketching using BOARD-AI, and then a traditional method https://osf.io/
g36rz/
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non experts in software and/or system modeling design, were

invited via e-mail and all accepted the invitation. Six participants

were randomly assigned to Group_1 and the other six to

Group_2. All participants received an e-mail indicating the

place and the time for participating in the study. Participation

was voluntary and no reward was proposed.

Coverage/representativeness of the user base being an

important concern in any user experiment, the 12 participants

have been invited to have a sample representative of the

population interested in using sketch-based tools. All

participants but one had previous practical experience in

modeling or had been taught modeling during their academic

courses. Although all participants shared the same affiliation at

the time of the user experiment, their profiles presented several

variations, in terms of experience in modeling, CASE tools/

sketch tools they are comfortable with, employment situations,

age groups, and origins. Figure 10 details the different

participants.

For answering the RQ1 about how BOARD-AI facilitates the

modeling process compared with traditional methods we

analyzed the answers to questions 11 and 12 in the

Questionnaire. For answering RQ2 about how helpful the tips

and shape suggestions of BOARD-AI are, we analyzed the

answers to questions 13 to 16 in the Questionnaire (both

included). For answering RQ3 about whether a faulty text

recognition is less important than an incorrect shape

recognition, we analyzed the answers to question

17 specifically. In all cases, we calculated the percentage of

answers given by the participants of the experiment between

1 and 2 (badly evaluated), 3 (neutral) and 4–5 (well evaluated).

Questions 1 to 10 (corresponding to the SUS questionnaire) were

analyzed following the instructions provided in its design for

answering RQ4 regarding the usability of the tool. Finally, we

qualitatively analyzed the answers given by the participants to

improve the tool, and classified them according to the different

emergent topics. These answers were used to complement the

data collected through the questionnaire.

4.4 Results

The participants were asked to perform similar tasks using

two sketching methods. Comparing BOARD-AI to more

traditional methods and to engineers habits permits to assess

the usability of the tool, its performance, and eventually the trust

that users are willing to put in an AI-based tool.

First, regarding RQ1, the answers to the questions 11 and

12 underlined the simplicity of using BOARD-AI. 83.4% of the

FIGURE 10
Overview of the participants in terms of professional situation (A), experience in modeling (B), origins (C), and age groups (D).
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participants (scores 3–5) considered that sketching with

BOARD-AI was easier (or of the same difficulty) than

traditional methods. This result is supported by the answers

to question 12 about the confidence they had in the sketch they

made: 75% of the participants considered that using BOARD-AI

the resulting sketch was less or equally prone to contain mistakes

or errors than using the other method—66,7% answered that

they trusted the BOARD-AI sketch more in avoiding potential

errors.

Second, and regarding RQ2, participants’ answers to the

questionnaire suggest that the support provided by BOARD-

AI through tips and shape suggestions are positive and valued by

the end-users. On the one hand, results from analyzing questions

13 and 14 indicate that no participant said that the tips, the shape

suggestions, and the toolbar provided by the modeling interface

were improper (that would have been scores 1–2). 75% of the

participants gave high scores [4, 5] to the suitability of the

suggested outline to the sketch being drawn, while 41.7%

approved with similar scores the proposed toolbar. On the

other hand, the analysis shows that users see in the

suggestions an element of trust in the tool that facilitated

their modeling process and their confidence on the result.

This is supported by data collected from questions 12 and 15,

which shows that all but two participants trusted the suggestions,

that were judged appropriate. Even more, 2/3 of the participants

indicated that the completion suggestions were appropriate to

their intentions, easing and quickening the sketching job. These

results are also supported by the qualitative data collected, which

indicates that participants appreciated the shape and text

recognition as a mechanism that could facilitate collaborative

work: “Text recognition is new feature - the tool will help team to

be collaborative” (Participant 11). Also, the analysis shows that

suggestions on graphic elements helped them to create their

models: 83.4% of the participants said that including the AI-

suggested graphic elements in their final sketch helped them

greatly to complete the task (scores 4–5) (Question 16).

Third, and regarding RQ3, participants were asked to answer

to a specific question to see whether faulty text recognition had

less impact than faulty shape recognition. However, there is not a

preferred mechanism for suggesting among the participants.

41.6% of the participants expressed a clear preference for

trusting a system that has a good accuracy in recognizing

drawn shapes, while 41.6% prefer trusting systems that

perform a good text recognition (Question 17). This indicates

that a widely accepted AI-based tool should progress on both

aspects.

Questions 1 to 10 were used to determine the SUS score

associated with the BOARD-AI user interface. The results of the

SUS score in our study was 65.2%. This indicates anOK rating for

BOARD-AI, as it is currently designed. However, this score varies

depending on the experience of the participants. We noted that

the mean of the SUS for less experienced participants (students)

is 61.7%, and for more experienced participants (engineers, MSc,

post-docs) it raises at a value of 68.75%. Thus, experienced

system engineers gave an evaluation of the BOARD-AI

interface and usability more towards a Good rating than less

experienced participants. This can depend on the easiness to

adapt to a new modeling interface for experienced users, who

used other tools in the past, on the contrary of students, that are

still learning to master more traditional tools. This result is

complemented by the qualitative data collected. Participants

found BOARD-AI easy to understand and to use. Participants

especially value its simplicity, i.e. “It is simple to use” (Participant

4), or “Easy to separate colors of different concepts”

(Participant 4).

However, and despite of the positive aspects of the tool,

participants identified three main aspects to be improved. First,

they highlighted that the tool is slow responding to the text and

shape recognition, which could be improved if the tool is

uploaded to a high performance server, and by other

implementation adjustments. Second, participants indicated

that the text recognition engine needs some improvement.

They found that not all the texts were correctly identified.

Since BOARD-AI relies on a third-party software for the text

recognition, this is something that could not be controlled in this

first evaluation. However, future work will analyze other possible

solutions that could improve the text recognition process. And

third, the participants identified that the deletion and help

options were not enough intuitive and should be improved.

This will be considered in future development of the UI.

4.5 Threats to validity

We identified several threats to validity we list below. First,

the low number of participants and their shared affiliation to the

same institute at the time of the user experiment can affect the

validity of the results. Nevertheless, as mentioned above, we

believe that the participants represent a sample representative of

the population interested in using sketching tools and each

participant differs from each other with respect to his/her

personal background (experience in modeling, tools used

during his/her past experiences, employment situation), origin,

and age group.

Another limitation of the present study relates to the alphabet

used. The NN has only been trained with models using the

Roman alphabet, hence limiting the broad applicability of the

approach. Regarding the user experiment, all participants were

proficient in writing using the Roman alphabet and use it daily at

their professional workplace, although half of the participants

were native to other writing systems. However, it is worth noting

that we did not observe any variation in the results of the user

experiment based on this criterion, and that no participant

stressed out this point when filling the questionnaire.

Finally, RQ3 relied on the hypothesis that a faulty recognition

when recognizing text has less impact on the users’ confidence
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than an incorrect interpretation of the modeling intent. The

hypothesis is based on the fact that quick corrective actions can

be taken in the event of incorrect text recognition (e.g., resorting

to virtual keyboards to correct only the fragments of text

incorrectly recognized). However, no strong agreement to this

question came out, as half of the participants agreed or strongly

agreed while half of the participant disagreed or strongly

disagreed. One possible interpretation of this result was that,

at the time of the user experiment, we did not provide

participants with the aforementioned corrective actions to

quickly fix faulty text recognition. Providing such corrective

actions (with the help of virtual keyboards, physical

keyboards, or speech recognition) could have tip the scale in

favor to a good shape recognition accuracy over than a good text

recognition one.

5 Related work

Different attempts have been done to design and implement

robust online sketch recognition algorithms (see Table 2) [5]

designed a online recognizer based on a segmentation algorithm

for hand drawn UML diagrams sketched on electronic

whiteboards. We followed the same principle of image

acquisition where points are collected from the instrumented

drawing surface and are converted into strokes and straight lines.

However, timing information are used for the segmentation

process while we chose not to use this data as it is highly

dependent on the user and his/her drawing habits. Besides,

the approach addresses the recognition of UML symbols and

characters using the same segmentation technique. In our

approach, we assume that both text and geometrical shapes

belong to two different classes of problems and therefore

require two different processings. Relying on goal recognition

also preserves explainability as the user is not left clueless when

the recognizer’s outcomes do not correspond to the user’s intent.

Bresler et al. [10, 11] propose a recognition method to

recognizing flowcharts and finite automata. They use a

segmentation and classification approach to separate text and

symbols. We share the same rationale in our approach as text and

shapes need separate techniques to be recognized. Text

recognition relies on Microsoft. Recognizers.Text, a module of

the NET framework ecosystem. Experiments conducted by the

authors show that the recognition is fast and accurate. The

approach can be generalized to any diagram consisting of

symbols connected by arrows, but it requires large amount of

data to train the classifier.

Tahuti [7] also addresses online recognition of UML

diagrams. We share the same approach of expressing complex

sketches in terms of geometrical properties and of primitive

TABLE 2 Existing approaches for natural sketching.

MyScript Diagram OctoUML Bresler et al.
[10, 11]

FlexiSketch Lank et al. [5] Tahuti [7]

Platform Web and Desktop Web .NET frameworka Android Desktop Desktop

Open source 7 ✓ 7 7 7 7

Recognition

Scope Flowcharts, organizational
charts, mindmaps

Class diagram only Flowcharts, automata Adaptable through type
promotion

UML class,
sequence, usecase

UML class

Algorithm Proprietary Geometrical shape
detectionb

classifier and
segmenter

Geometrical shape
detectionc

classifier and
segmenter

Geometrical shape
detection

Sktech recognition Basic geometrical shapes Basic geometrical
shapes

Flowcharts and
automata symbols

Complex geometrical
shapes

UML glyphs Basic geometrical
shapes

Bulk recognition ✓ ✓d ✓ 7 ✓ ✓
Handwritten text
recognition

✓ 7 ✓ 7 ✓e ✓e

Incremental
recognition

✓ ✓ 7 ✓ 7 ✓

Explainable results 7 7 7 7 7 7

Performance

Accuracy Relatively accurate Relatively accurate Accurate Relatively accurate Unknown Unknown

Speed Relatively slow Moderately fast Fast Relatively fast Unknown Unknown

✓ = available 7 = not available.
aExperiments have been implemented in C# but there is no mention of any implementation.
bBased on PaleoSketch [9].
cBased on a Levenshtein distance algorithm.
dWith some restrictions.
eIn both work descreibd in [5, 7], text is identified but not recognized. The use of third-party tools, e.g., OCR, engines is suggested.
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shapes it contains. Like Tahuti, we strictly reduce the set of

primitive shapes we use to a set sufficient to express anymodeling

elements for common modeling languages. Tahuti focuses on

UML class diagrams. We tend to be more generic with our goal

recognition approach where we can define library of goals to

describe the model elements of various modeling languages.

Tahuti supports handwritten text annotation with some

limitations. Text is merely identified but not recognized. Its

identification depends on positioning constraints that are

specific to class diagrams. Text should be contained in the

class or appear next to it. Our approach based on NN does

not constrain the positioning of the text with regards to the

model elements it annotates and tends to be more generic. Yet,

once the classifier classifies a drawing as text, its positioning

relative to the model element it annotates is expressed at the

conceptual level and is part of the goal library.

SketchREAD [8] is a multi-domain sketch recognition engine

using Bayesian networks to improve the recognition process.

SketchREAD also reasons in terms of geometrical abstractions of

a user’s drawings and decompose complex sketches into strokes.

It does not require any training data and only needs the

description of the sketches in terms of subshapes and

constraints between them. Therefore, it tends to be more

generic than Tahuti, as it can be adapted to various domains.

Our goal recognition approach shares the same philosophy,

based on the definition of various libraries of goals, depending

on the targeted modeling language. One major objective of using

goal recognition is to preserve explainability of the outcomes of

the modeling assistant to the user. Besides, SketchREAD does not

seem to support handwritten text annotation as we do in the

present study.

MyScript [20] is a leading company in the domain of

handwriting recognition. It features MyScript Diagram, a

natural sketching tool used to create various kinds of charts

from flowcharts to mindmaps. Ten primitive shapes and

connectors are recognized, and text recognition is supported

in multiple languages. MyScript runs on desktops or in the cloud.

The recognition algorithm remains proprietary and recognition

can be done remotely (on a subscription basis) or on-device.

Compared to the other solutions, MyScript Diagram does not

need to rely on other interaction modalities (such as voice

recognition or virtual keyboard) to recognize shapes and text

in a simultaneous way.

OctoUML [12, 46] is the prototype of a modeling

environment that captures UML models in a free-form

modeling fashion and in a collaborative way. It can be used

on various devices, including desktop computers and large

interactive whiteboards. Sketches are then converted into a

graphical UML notation. OctoUML supports class and

sequence diagrams. It uses a selective recognition algorithm to

support an incremental formalization.

OctoUML relies on PaleoSketch [9], a recognition algorithm

capable of recognizing eight primitive shapes (lines, polylines,

circles, ellipses, arcs, curves, spirals, and helixes) and more

complex shapes as a combination of these primitive ones. By

recognizing more primitive shapes than other low-level

recognizers, PaleoSketch intends to recognize domain-specific

shapes that could be indescribable using other methods. The

drawback is that it consumes time to recognize more primitive

shapes. In our tests, we observed that recognizing shapes takes on

average 500 ms and up to 1 s, both of which are noticeable to the

user. Besides this condition, the rationale behind recognizing

more elementary shapes is elusive as some shapes (helixes, waves,

spirals, etc.) are never used in modeling languages, specifically in

systems engineering. In our approach, we took the opposite

stance by choosing to recognize only a few primitive shapes

(lines, circles, and ellipses) and to use plan recognition to identify

model elements as any combination of these primitive shapes.

The three primitive shapes are indeed sufficient in Model-Based

System Engineering (MBSE) to recognize most modeling

elements drawn in the most common modeling languages and

to reduce the number of primitive shapes that need to be

recognized to speed up the recognition process. In our tests,

recognizing complex shapes (e.g., an operational actor made of

four straight lines and one circle) fell under 100 ms, which is

barely noticeable to the user.

FlexiSketch [19] is a diagram modeling tool available on

Android platforms. In FlexiSketch, a user can sketch model

elements and later promote them as types than can be easily

re-used. Once a graphical sketch has been associated with a

model element, similar sketches are automatically recognized.

This allows for adapting FlexiSketch to new graph-based

modeling languages. The FlexiSketch’s recognizer relies on an

adapted version of a Levenshtein string-distance algorithm. The

recognition is relatively fast and accurate.

We note that among the different solutions, only MyScript

Diagram and the recognition of Bresler et al. [10, 11], provide

seamless handwritten text annotation recognition capabilities. In

[5, 7], the use of OCR engines is suggested but not seamlessly

integrated into the respective tools. OctoUML allows the users to

add textual properties through a physical keyboard or via voice

recognition which requires the users to first recognize and

formalize the model elements before adding text. In

FlexiSketch, textual properties of model elements are only set

using the Android virtual keyboard. In our previous work [47],

text annotation could also be attached to model elements after

they have been recognized like in OctoUML, through a draggable

virtual keyboard and voice recognition. Providing a support for

mixed text and geometrical sketch recognition is an objective of

the present study.

Finally, none of the aforementioned solutions provide

explainable outputs. Some work such as FlexiSketch provide

alternative suggestions, and MyScript Diagram can provide

word suggestions during text recognition. But none of these

solutions can explain why an element has been recognized in the

first place. In our approach, the output of the recognizer is
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completely explainable. The user is informed of which part of a

modeling language is being recognized (the primitive shapes

composing the modeling elements), and what remains to be

drawn using visual feedback.

6 Conclusion

This study presents an approach for sketch recognition of

systems engineering model elements combining the benefits of

Machine Learning (ML) and Automated Planning. Compared to

existing ones, this approach is able to recognize model elements

annotated with text supports while preserving the explainability

of the outcomes of the sketch recognizer. To achieve this result,

the approach relies on ML and on a trained Neural Network

(NN) to separate, upstream from the global recognition process,

handwritten text annotations from geometrical shapes, as the two

belong to two different classes of problems and require different

recognition techniques. Component-off-the-shelf Optical

Character Recognition (OCR) engines are indeed well suited

for text recognition while plan and goal recognition techniques

permit our system to recognize a sketched element even from a

partial drawing.

In our previous work [14, 15], we detailed the adaptation of

plan and goal recognition techniques for sketch recognition. In

the present study: 1) we complemented the approach withML, 2)

we integrated two OCR engines (namely Tesseract and iink SDK)

to seamlessly recognizing text annotations in model elements; 3)

we improved our original implementation; and 4) we

reformulated the planning domain to be lighter while

adopting an anytime algorithm to produce faster plans with

incremental quality.

It resulted in the definition and the implementation of a

Human-machine interface named board-ai, which, compared to

our initial prototype [15], now supports incremental recognition

of multiple sketches in parallel mixing geometrical shapes and

textual annotations. The validation stage used to classify the

sketches gave us good results for the NN and a prediction

accuracy of 99.77%.

We finally assessed the usability of the Human-machine

interface for Systems Engineering modeling. Thus, results

from the human data permitted an evaluation that helped us

to understand how BOARD-AI supports and facilitates the work

of system engineers, and whether an AI-based modeling

environment is trusted and deemed usable by its users. The

study we’ve conducted provide very encouraging results about

usability, and AI-assisted sketching. We acknowledge that

providing tips and suggestions to the users alongside an

explanation on why this suggestion is well evaluated by the

AI, increased both a faster adaptation and an increased

confidence in using BOARD-AI.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary materials, further

inquiries can be directed to the corresponding author.

Author contributions

SC-P has developed and validated the Neural Network (NN)

classifier, contributed to the design of the NN training interface

and designed the data acquisition process to train the NN

classifier; NH has led the writing of the paper and

coordinated the different contributions, he has developed the

BOARD-AI Human-Machine modeling interface, and integrated

the different software modules; AA has modeled the planning

problem, integrated the planner, and analyzed the evaluation;

MP-S has participated in the experimental design for the

assessment of BOARD-AI with final users, and performed the

analysis of the assessment.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Robertson B, Radcliffe D. Impact of CAD tools on creative problem solving in
engineering design. Computer-Aided Des (2009) 41:136–46. doi:10.1016/j.cad.2008.06.007

2. Rudin C. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat Mach Intell (2019) 1:206–15.
doi:10.1038/s42256-019-0048-x

3. Botre R, Sandbhor S. Using interactive workspaces for construction data
utilization and coordination. Int J Construction Eng Management (2013) 2:62–9.

4. Alblawi A, Nawab M, Alsayyari A. A system engineering approach in orienting
traditional engineering towards modern engineering. 2019 IEEE Global
Engineering Education Conference (EDUCON). IEEE (2019). p. 1559–67.

Frontiers in Physics frontiersin.org19

Castellanos-Paez et al. 10.3389/fphy.2022.944086

https://doi.org/10.1016/j.cad.2008.06.007
https://doi.org/10.1038/s42256-019-0048-x
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.944086


5. Lank E, Thorley J, Chen S. An interactive system for recognizing hand drawn
UML diagrams. Proceedings of the 2000 conference of the Centre for Advanced
Studies on Collaborative research (2000), 7. doi:10.1145/782034.782041

6. NotowidigdoM,Miller RC.Off-line sketch interpretation. Arlington, VA: AAAI
fall symposium (2004). p. 120–6.

7. Hammond T, Tahuti DR. A geometrical sketch recognition system for UML
class diagrams. SIGGRAPH Courses (ACM) (2006) 25.

8. Alvarado C, Davis R. SketchREAD: A multi-domain sketch recognition engine,
34. San Diego, CA: ACM SIGGRAPH 2007 courses (2007).

9. Paulson B, Hammond T. PaleoSketch: Accurate primitive sketch recognition
and beautification. Proc 13th Int Conf Intell user Inter (2008) 1–10.

10. Bresler M, Van Phan T, Prusa D, Nakagawa M, Hlavác V. Recognition system
for on-line sketched diagrams. 2014 14th International Conference on Frontiers in
Handwriting Recognition (2014), 563–8. doi:10.1109/ICFHR.2014.100

11. Bresler M, Prusa D, Hlaváác V. Online recognition of sketched arrow-
connected diagrams. Int J Doc Anal Recognit (2016) 19:253–67. doi:10.1007/
s10032-016-0269-z

12. Vesin B, Jolak R, Chaudron MR. Octouml: An environment for exploratory
and collaborative software design. 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C). IEEE (2017). p. 7–10.

13. Zhang X, Li X, Liu Y, Feng F. A survey on freehand sketch recognition and
retrieval. Image Vis Comput (2019) 89:67–87. doi:10.1016/j.imavis.2019.06.010

14. Albore A, Hili N. From informal sketches to system engineering models using
AI plan recognition: Opportunities and challenges. AAAI 2020 Spring Symposium
Series (2020).

15. Hili N, Albore A, Baclet J. From informal sketches to systems engineering models
using AI plan recognition. In: Lawless WF, Mittu R, Sofge DA, Shortell T, McDermott T,
editors. Systems engineering and artificial intelligence. Springer (2021). p. 451–69.

16. Rosenfeld A, Richardson A. Explainability in human-agent systems. Auton.
Agents Multi-Agent Syst. (2019) 33 (6):673–705. doi:10.1613/jair.2972

17. Richter S, Westphal M. The LAMA planner: Guiding cost-based anytime
planning with landmarks. J Artif Intell Res (2010) 39:127–77. doi:10.1613/jair.2972

18. Bhowmik S, Sarkar R, Nasipuri M, Doermann D. Text and non-text
separation in offline document images: A survey. Int J Doc Anal Recognit (2018)
21:1–20. doi:10.1007/s10032-018-0296-z

19. Wüest D, Seyff N, Glinz M. Flexisketch: A mobile sketching tool for software
modeling. In: International conference on mobile computing, applications, and
services. Springer (2012). p. 225–44.

20. MyScript. Myscript home page (2020). Available at: https://www.myscript.
com/(Accessed 05 13, 2022).

21. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and
prospects. Science (2015) 349:255–60. doi:10.1126/science.aaa8415

22. Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: A tutorial.
Computer (1996) 29:31–44. doi:10.1109/2.485891

23. Sordo M. Introduction to neural networks in healthcare. In: Open clinical:
Knowledge management for medical care (2002).

24. McNelis PD. Neural networks in finance: Gaining predictive edge in the
market. Academic Press (2005).

25. Haddadi F, Khanchi S, Shetabi M, Derhami V. Intrusion detection and attack
classification using feed-forward neural network. 2010 Second international
conference on computer and network technology. IEEE (2010). p. 262–6.

26. Anderson JA. An introduction to neural networks. MIT press (1995).

27. Goldberg Y. Neural network methods for natural language processing.
Synth lectures Hum Lang Tech (2017) 10:1–309. doi:10.2200/
s00762ed1v01y201703hlt037

28. Ghallab M, Nau D, Traverso P. Automated planning: Theory and practice.
Elsevier (2004).

29. Hollnagel E. Plan recognition in modelling of users. Reliability Eng Syst Saf
(1988) 22:129–36. doi:10.1016/0951-8320(88)90070-1

30. Kautz HA, Allen JF. Generalized plan recognition. Proc Fifth AAAI Natl Conf
Artif Intelligence (1986) 86:32–7.

31. Avrahami-Zilberbrand D, Kaminka G, Zarosim H. Fast and complete
symbolic plan recognition: Allowing for duration, interleaved execution, and
lossy observations. Proc. of the AAAI Workshop on Modeling Others from
Observations. Edinburgh, Scotland, United Kingdom: MOO (2005).

32. Fikes RE, Nilsson NJ. Strips: A new approach to the application of theorem
proving to problem solving. Artif intelligence (1971) 2:189–208. doi:10.1016/0004-
3702(71)90010-5

33. Hansen EA, Zhou R. Anytime heuristic search. J Artif Intell Res (2007) 28:
267–97. doi:10.1613/jair.2096

34. Thayer JT, Ruml W. Faster than Weighted A*: An optimistic approach to
bounded suboptimal search. ICAPS (2008) 355–62.

35. Likhachev M, Ferguson D, Gordon G, Stentz A, Thrun S. Anytime search in
dynamic graphs. Artif Intelligence (2008) 172:1613–43. doi:10.1016/j.artint.2007.
11.009

36. Bhatia A, Svegliato J, Zilberstein S. On the benefits of randomly adjusting
anytime weighted a. Proc Int Symp Comb Search (2021) 12:116–20.

37. Ramírez M, Geffner H. Plan recognition as planning. In: Twenty-first
international joint conference on artificial intelligence (2009).

38. McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso M, et al.
PDDL-the planning domain definition language (1998).

39. Edelkamp S, Hoffmann J. PDDL2.2: The language for the classical part of the
4th international planning competition. Tech. rep.. Freiburg im Breisgau, Germany:
University of Freiburg (2004). p. 195.

40. Thiébaux S, Hoffmann J, Nebel B. In defense of PDDL axioms. Artif
Intelligence (2005) 168:38–69. doi:10.1016/j.artint.2005.05.004

41. Helmert M. The fast downward planning system. J Artif Intell Res (2006) 26:
191–246. doi:10.1613/jair.1705

42. MDN Web Docs. Pointer events. Available at: https://developer.mozilla.org/
en-US/docs/Web/API/Pointer_events (2021). Accessed: 2021-03-31.

43. Nair V, Hinton GE. In: Fürnkranz J Joachims T, editors. Rectified linear
units improve restricted Boltzmann machines. Haifa, Israel: ICML
(Omnipress) (2010). p. 807–14.

44. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In:
Gordon G, Dunson D, Dudík M, editors. Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 15. Fort Lauderdale, FL, USA:
PMLR (2011). p. 315–23.

45. Brooke J. SUS: A quick and dirty usability scale. Usability Eval industry
(1996) 189.

46. Jolak R, Vesin B, Isaksson M, Chaudron MR. Towards a new generation of
software design environments: Supporting the use of informal and formal notations
with octouml. In: HuFaMo@ MoDELS (2016). p. 3–10.

47. Hili N, Farail P. BabyMOD, a collaborative model editor for mastering model
complexity in MBSE. International Workshop on Model-Based Space Systems and
Software Engineering (2020), 1–4.

Frontiers in Physics frontiersin.org20

Castellanos-Paez et al. 10.3389/fphy.2022.944086

https://doi.org/10.1145/782034.782041
https://doi.org/10.1109/ICFHR.2014.100
https://doi.org/10.1007/s10032-016-0269-z
https://doi.org/10.1007/s10032-016-0269-z
https://doi.org/10.1016/j.imavis.2019.06.010
https://doi.org/10.1613/jair.2972
https://doi.org/10.1613/jair.2972
https://doi.org/10.1007/s10032-018-0296-z
https://www.myscript.com/
https://www.myscript.com/
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1109/2.485891
https://doi.org/10.2200/s00762ed1v01y201703hlt037
https://doi.org/10.2200/s00762ed1v01y201703hlt037
https://doi.org/10.1016/0951-8320(88)90070-1
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1613/jair.2096
https://doi.org/10.1016/j.artint.2007.11.009
https://doi.org/10.1016/j.artint.2007.11.009
https://doi.org/10.1016/j.artint.2005.05.004
https://doi.org/10.1613/jair.1705
https://developer.mozilla.org/en-US/docs/Web/API/Pointer_events
https://developer.mozilla.org/en-US/docs/Web/API/Pointer_events
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.944086

	BOARD-AI: A goal-aware modeling interface for systems engineering, combining machine learning and plan recognition
	1 Introduction
	1.1 An early model recognition assistant
	1.2 Paper structure

	2 Background
	2.1 Classification
	2.2 Automated deterministic planning

	3 Materials and methods
	3.1 Approach definition
	3.1.1 Classification
	3.1.2 Shape recognition and characterization
	3.1.3 Translation into PDDL

	3.2 Implementation
	3.3 Model training
	3.3.1 Training interface
	Drawing
	Text selection
	3.3.2 Data acquisition
	3.3.3 Feature design
	3.3.4 Network design
	3.3.5 Training and validation


	4 Evaluation
	4.1 Aims and research questions
	4.2 Methodology and data collection
	4.3 Participants and analytical methods
	4.4 Results
	4.5 Threats to validity

	5 Related work
	6 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


