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Goal
The objective of this work is to separate the various signals recorded by the de-
tectors of a Bruker Tornado M4 µXRF analyzer. That device is dedicated to the
micro-imaging of the elements in solid samples. The work is conducted on a thin
section from the Saint Mélany deposit in the French Massif Central. That sample
hosts cassiterite and wolframite macro-crystals surrounded by quartz.

Introduction
XRF provides the elemental composition of a sample. The EDX detector used in
our setup records all X-rays emerging from the sample. XRF stricto sensu corre-
sponds to the specific emission lines of the atoms in the sample. However, the
sample can also scatter the signal from the X-ray tube itself. Three scattering sig-
nals occur: elastic and inelastic scattering of the specific emission lines of the tube
material, elastic and inelastic scattering of the bremsstrahlung and coherent elastic
scattering from the periodic atomic organization in crystals. The first scattering
manifests as extra peaks (Compton and Rayleigh) on the recorded spectrum, the
second as a baseline and the third as X-ray diffraction peaks. These spectra are
superimposed with XRF stricto sensu. Each of these four signals contain useful
geochemical information.

Baseline Processing
In order to extract the baseline part from a fluorescence spectrum, we used several
algorithms and selected the one providing the best fitting accuracy (Fig. 1).
The algorithms we used include ASPLS [6], IRSQ [1], SNIP [5], MORMOL [2],
PSALSA [4], and quantile regression [3].

Diffraction Peaks Processing
Once the baseline signal is removed, the diffraction peaks are processed using
two methods, both exploiting the signals captured by the two detectors of the
XRF analyzer. Method 1 estimates the position of the peaks in the spectrum
corresponding to the difference between the two measured signals. The peaks
that do not appear in one of the two original spectra (using a fixed threshold)
are then classified as diffraction peaks. Method 2 computes and compares all the
peak positions and widths appearing in the two recorded spectra to generate the
list of diffraction peaks. The second method is clearly more costly in computation
time than the first.

Conclusion
In this work we tested several methods for baseline extraction and compared the
results using clustering to determine how much information was retained in the
signal. We then moved on to the processing of diffraction peaks and evaluated
two methods to clean up the signal: the second method was much better than
the first but it is more costly. As a future work, we will focus on the Campton
and Rayleigh peaks working on a half drill core.
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Fig 1. composition of spectrum

Fig 2. Fitted diffraction peaks found by Method 1

Fig 3. Fitted diffraction peaks found by Method 2

(a) transmitted visible light (b) map made from the yellow diffrac-
tion peak on the sum spectrum

(c) minerals classified from XRF sig-
nal (blue peaks on the sum spec-
trum).

(d) proportion of each mineral in
the map

(e) map made from the inelastic scat-
tering peaks (part of the green peaks
on sum spectrum)

Fig 4.different maps showing the sample
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