
HAL Id: hal-03882701
https://hal.science/hal-03882701v1

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constant Time Secure Embedded Systems Through
Hardware/Software Cooperation

Jean-Loup Hatchikian-Houdot

To cite this version:
Jean-Loup Hatchikian-Houdot. Constant Time Secure Embedded Systems Through Hard-
ware/Software Cooperation. RESSI 2022 - Rendez-vous de la Recherche et de l’Enseignement de
la Sécurité des Systèmes d’Information, May 2022, Chambon-sur-Lac, France. pp.1-3. �hal-03882701�

https://hal.science/hal-03882701v1
https://hal.archives-ouvertes.fr


Constant Time Secure Embedded Systems Through
Hardware/Software Cooperation

Jean-Loup Hatchikian-Houdot
Univ Rennes, Inria, CNRS, IRISA

Abstract—Side-channel attacks exploit power consumption,
execution time, or any other physical effect caused by an im-
plementation. Our work focuses on timing attacks (side-channel
attacks exploiting only execution time). There are already several
countermeasures to prevent or limit timing attacks, either on
the hardware part or on the software part. However, these
security mechanisms are working often separately from each
other. The software part only knows the functional behavior of
the hardware, but with little knowledge of the micro-architecture
details, and the hardware does not know the security expected
by the software. The goal of our Ph.D. is to establish a contract
between the hardware and the software. This contract would
allow cooperation between them to have better control regarding
timing security and achieve full resistance against timing attacks
at a minimal cost.

Index Terms—Side-channel attacks, Constant-time secure, ISA,
Compilation.

I. INTRODUCTION

Timing attacks are especially threatening because they can
be done remotely [1]. A malicious program running on the
target system, even with low privileges, can learn critical
secrets of a victim program running on the same system. The
attacker does not need physical access to the target system,
contrary to most attacks exploiting other side-channels like
EM-radiations or power consumption, which require physical
proximity with the targeted device.

Our Ph.D. started in October 2021 in the context of
the SCRATCHS project funded by the Labex CominLabs.
SCRATCHS is a collaboration between researchers in the
fields of formal methods (Celtique, Inria Rennes), security
(Cidre, CentraleSupélec Rennes), and hardware design (Lab-
STICC). The project’s goal is to co-design a RISC-V processor
and a compiler to ensure by construction that a security-
sensitive code is immune to timing side-channel attacks while
running at maximal speed. This work only considers mono-
core in-order processors typically used in Internet-of-Things
objects.

In the rest of this article, we first present a simple timing
vulnerability and define the fundamental concepts. Then we
describe some existing protections against these vulnerabilities
and their limitations. Finally, we explain how we expect to
achieve high-level security regarding timing attacks while
limiting the performance costs of the protections.

II. AN EXAMPLE OF TIMING VULNERABILITY

The function of Figure 1 computes modular exponentiation
be mod m. Some implementations of the RSA cryptographic

algorithm have been relying on this implementation of the
modular exponentiation (like GnuPG [2]), with the exponent
e being the secret key.

However, the exponent is used in the end condition of a
while loop and in a branching condition. This means that
the execution time will vary depending on the value of the
exponent. An attacker able to precisely measure the execution
time or to test which operations are executed could retrieve the
value of the exponent, thus breaking these RSA implementa-
tions. This kind of attack can be done if the attacker runs one
of his programs on the same device as this implementation of
RSA [3], [4]. In this case, the value of the exponent is leaking,
because it impacts a behavior observable by attackers.

function modular_exponentiation(b,e,m){
...
while (e>0)

//this leaks the secret e
if (e mod 2) == 1

result := (result * b) mod m
e := e >> 1
...

return result

Fig. 1. Vulnerable modular exponentiation

III. LEAKAGE AND NON-INTERFERENCE PROPERTY

We call leakage any data observable by attackers from side-
channels. In the attacker model we consider, all branching
choices and memory access indexes are observable through
timing side-channel.

The non-interference property states that the leakage of a
program must only depend on its public inputs, but not on
the secret ones. This implies that attackers cannot deduct any
secret from the leakage.

Fig. 2. Two executions of the same program with different inputs

For example, the program of Figure 2 respects the non-
interference property if pub1 = pub2 =⇒ leak1 = leak2.
Here, sec1 and sec2 are the confidential data. We also assume

https://project.inria.fr/scratchs/
https://project.inria.fr/scratchs/


that the value of pub1, pub2, leak1, leak2, and Prog can be
observed by anyone, including attackers.

The vulnerable implementation of Figure 1 does not respect
this property because two executions with the same public
input might have a different timing leakage, depending on the
secret value of the exponent.

IV. EXISTING COUNTERMEASURES

There are currently two main approaches to prevent timing
attacks: those implemented in hardware [5], [6], and those
implemented in software [7].

A. Timing Attacks Countermeasures in Hardware

Timing attacks often rely on resource sharing, especially
stateful resources like caches. In this case, the potential victim
first alters the content of a cache when using it. Then, this
content can impact the execution time of other programs,
potentially controlled by the attacker, making it a vector for
timing attacks [8].

Different hardware protections against timing attacks have
been proposed, such as cache randomization [5] or cache
partitioning [6]. For example, attackers cannot exploit such
vulnerabilities if the hardware strongly isolates each task and
does not allow them to share any resource.

Unfortunately, such hardware protections have a significant
impact on performance. For example, complete partitioning
would be too costly since resource sharing is a standard and
efficient optimization. A better solution would be to allow
sharing for every public data but to make a small requisition
of resources when a task is handling a secret (e.g., data used
in cryptographic operations).

B. Timing Attacks Countermeasures in Software

On the software side, the state-of-the-art defense against
timing attacks is to write programs that are Constant Time
Secure (CTS) [7].

Constant time programming achieves the non-interference
property. A CTS program never uses a secret value in a
branching condition or as a memory index. In practice, when
the program would need to branch on a condition depending
on a secret, it will instead execute both sides of the branching
and then ignore results from the unwanted branch. An attacker
observing timing leakage from such a program should not be
able to deduce any secrets, as the leakage does not depend on
any secret.

Modern compilers like GCC or Clang do not always pre-
serve the CTS of a program during its compilation. Indeed,
they implement aggressive optimizations, which could revert
the code to a non-CTS state. However, a specialized compiler
like Jasmin [9] or a modified version of CompCert [10]
preserves the constant time security of a program during its
compilation.

Non-interference property is sufficient to prove there is no
leakage. However, depending on how leakages are defined,
this property can be very restrictive. In the attacker model we
use, all branching choices and memory access indexes are in

the leakage, i.e., we consider attackers can infer which branch
the program takes at every branching point and the value of
memory indexes for every memory access.

Unfortunately, this attacker model is weaker than some
real attackers. Thus, respecting the non-interference property
for our leakage definition is not enough to prevent all tim-
ing attacks. The compiled program is executed with micro-
architecture instructions defined by the ISA (Instruction Set
Architecture). But this ISA only defines the functional be-
havior of the instructions, not their temporal behaviors. (e.g.,
some instructions like division take a variable amount of time
to execute, which depends on their operands). The micro-
architecture used to run software can introduce new timing
leakage that is not considered by our leakage model. Thus,
real attackers can exploit this vulnerability to deduct secrets,
despite constant time security on the software part [11].

C. Hardware / Software Cooperation

Both existing approaches prevent timing attacks, but they
both have limitations. Several previous works argue that a
contract between hardware and software is required. This
contract would restrict the behavior of the hardware such
that our current attacker model is sufficient to include every
possible timing attack. Thus, software and hardware both
respecting this contract could not leak a value unless it is
a branching condition or a memory access index).

Heiser et al. [12], [13] demonstrate that current processors
are still exposed to timing attacks because of this lack of
cooperation, hence the need for this contract to truly achieve
constant time security. But they do not propose an implemen-
tation of this contract.

Yu et al. [14] propose a Data Oblivious ISA (OISA) which
would not only design the intended functional behavior of
instructions, but also the security they provide regarding side-
channel leakage. This OISA would be sufficient for a software
programmer to make secure programs, without the need to
care about how this OISA is implemented in the underlying
hardware. They provide and implementation of this OISA for
an out-of-order RISC-V processor, but this adds restrictions
only on the hardware part.

V. OUR CONTRIBUTION

Our Ph.D. will focus on the software part of the solution.
We propose to define a secure ISA specification based on
the RISC-V instruction set. This contract will define several
requirements both on the hardware and software parts.

A. Hardware Requirement: Instruction Operands Safety

The OISA will define which instruction operands are safe
regarding timing leakages [14]. A compiler will then be able
to use the right instruction depending on the confidentiality of
the arguments. For example, consider a division. Depending
on the criticality level of the operands, a compiler would emit
either a classical division instruction (which leaks the value
of its operands) or a leak-free (but potentially slower) division
for sensitive input.



The execution time of an operation with safe operands (i.e.,
operands that do not interfere with the timing behavior of
the operation [14]) will probably be the worst-case execution
time of its unsafe version. So the compiler will use the unsafe
operation whenever this operation is done on public variables.

B. Hardware Requirement: Security Mechanisms for Re-
sources Management

A resource is any component used during the computation.
However, our primary concerns are storage components like
caches, prefetchers, or buffers. Such stateful components of a
computer are common targets of timing attacks. A critical task
must have mechanisms to protect its secret data from leaking
through timing side-channels. This mechanism could either be
via partitioning as previously discussed or via a reset at every
context switch.

The compiler will have to choose the appropriate mecha-
nism for each case. The partitioning would have a memory
space overhead, and a reset at every context switch would
increase execution time.

Other resources will also need protection. Stateful resources
are the primary target of known attacks, but stateless resources
like transfer or computation resources could also leak data :

The availability of a stateless resource can reflect how and
when it is used by other processes [15]. This can leak data
about these other processes if their resources usage depends
on variables.

We will investigate potential vulnerabilities in these compo-
nents during this thesis, and security solutions when needed.

These data protection mechanisms must have a constant
execution time (their execution time must not depend on the
protected data). Otherwise, this would defeat their purpose.

C. Software Requirements

The contract will also dictate prerequisites that the software
needs to satisfy to get a security guarantee. A simple example
could be on a memory load. Currently, memory loads expose
the memory index to side-channel attacks. As a result, a CTS
program must never perform a memory load using a secret
value as an index. This memory index can leak because a
memory load is not performed in constant time. For example,
if the data fetched in memory is already present in a cache,
the memory load will be faster. A naive solution could be
a constant time load with no optimizations, but this would
severely reduce the program’s efficiency. Our contract could
establish a protocol for safe memory loads: the software must
signal what load it intends to do in advance and if it wants it
to be constant time.

Of course, this software will have to be written in a CTS
way and compiled with a specialized compiler. One of the
main objectives of our Ph.D. will be to upgrade CompCert so
it can compile code complying with this contract. We will also
have to prove that the produced version of CompCert works
as intended. We are considering using Coq proof assistant for
this last part.

VI. CONCLUSION

Timing attacks, which can be done remotely, are a signif-
icant threat to confidentiality. There are already countermea-
sures for the hardware and software parts, but the lack of
cooperation between hardware and software results in costly
and imperfect protection.

Our project is to establish a contract between both sides
to achieve non-interference property while minimizing the
impact on the performances. A program should achieve non-
interference, thus be immune to timing attacks if it respects
the following requirements. It must be written in a Constant
Time Secure way, compiled by a compiler complying with our
contract, and executed on a hardware device complying with
the same contract.

Our objective is to modify CompCert [10] to implement
this contract. The first step would be to specify the safety
of operands for each instruction of the ISA and to use this
specification in CompCert.

REFERENCES

[1] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Comput. Networks, 2005.

[2] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, l3 cache Side-Channel attack,” in USENIX Security 14, 2014.

[3] W. Schindler, “A timing attack against RSA with the chinese remainder
theorem,” in CHES (Ç. K. Koç and C. Paar, eds.), 2000.

[4] P. C. Kocher, “Cryptanalysis of diffie-hellman, rsa, dss, and other
systems using timing attacks (extended abstract),” in Advances in cryp-
tology, CRYPTO ’95: 15th Annual International Cryptology Conference,
Springer-Verlag, 1995.

[5] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic analysis
of randomization-based protected cache architectures,” in 42nd IEEE
Symposium on Security and Privacy, 2021.

[6] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” 2005.

[7] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying Constant-Time implementations,” in 25th USENIX Security
Symposium, 2016.

[8] C. Su and Q. Zeng, “Survey of CPU cache-based side-channel attacks:
Systematic analysis, security models, and countermeasures,” Secur.
Commun. Networks, 2021.

[9] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P. Strub, “Jasmin: High-
assurance and high-speed cryptography,” in CCS (B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, eds.), ACM, 2017.

[10] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, and
A. Trieu, “Formal verification of a constant-time preserving C compiler,”
Proc. ACM Program. Lang., 2020.

[11] O. Aciiçmez, J. Seifert, and Ç. K. Koç, “Micro-architectural cryptanal-
ysis,” IEEE Secur. Priv., 2007.

[12] Q. Ge, Y. Yarom, and G. Heiser, “No security without time protection:
We need a new hardware-software contract,” in APSys, ACM, 2018.

[13] G. Heiser, “For safety’s sake: We need a new hardware-software
contract!,” IEEE Des. Test, 2018.

[14] J. Yu, L. Hsiung, M. E. Hajj, and C. W. Fletcher, “Data oblivious ISA
extensions for side channel-resistant and high performance computing,”
in NDSS, The Internet Society, 2019.

[15] M. Tan, J. Wan, Z. Zhou, and Z. Li, “Invisible probe: Timing attacks with
pcie congestion side-channel,” in 42nd IEEE Symposium on Security and
Privacy, 2021.


	Introduction
	An Example of Timing Vulnerability
	Leakage and Non-Interference Property
	Existing Countermeasures
	Timing Attacks Countermeasures in Hardware
	Timing Attacks Countermeasures in Software
	Hardware / Software Cooperation

	Our Contribution
	Hardware Requirement: Instruction Operands Safety
	Hardware Requirement: Security Mechanisms for Resources Management
	Software Requirements

	Conclusion
	References

