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Highlights 

 A good fit against both short- and long-term volume evolutions as observed 

during in-situ tests is provided by the Munson-Dawson constitutive law.  

 Following a pressure change in a salt cavern, a long transient evolution is 

predicted even when the constitutive law predicts no transient evolution during 

a uniaxial test. 

 Transient evolutions of a salt cavern are due both to the transient behavior 

incorporated in the constitutive law and to the slow redistribution of stresses in 

the rock mass. 

 Reverse creep and onset of tensile effective stresses are observed following an 

abrupt pressure increase. 

 Volume loss rates are much larger when cavern pressure is cycled (rather than 

constant), especially when the Munson-Dawson constitutive law is selected. 

 The Marketos-Spiers constitutive law, which includes pressure solution creep in 

addition to dislocation creep, predicts very fast cavern-volume loss rates when 

the cavern is shallow. 

 When cavern growth during solution mining is taken into account, volume loss 

rate and stress distribution are significantly different from what they are when 

solution mining is described through a linearly decreasing pressure in a cavern 

with constant volume. 

Key Words 

Salt caverns; Closed-form solution; Reverse creep; Pressure-cycled salt cavern; 

Pressure-solution creep; Moving boundary. 
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Abstract 

The behavior of an idealized spherical cavern leached out from a salt formation can be 

described by a first-order integro-differential equation when the Poisson’s ratio is 0.5. 

Three constitutive laws are considered: Norton-Hoff (N-H), Munson-Dawson  

(M-D) and Marketos-Spiers (M-S). The parameters of the M-D law can be fitted against 

both short- and long-term field data. It is shown that, following a pressure change, a 

“geometrical” transient evolution of the cavern volume is observed even when the 

constitutive law includes no “rheological” transient behavior (N-H, M-S). Following a 

large pressure increase, geometrical reverse creep and onset of tensile effective 

stresses at the cavern wall are observed. In a cavern subject to cyclic pressure, volume 

loss rate is faster than in a cavern where the average cycle pressure is applied. The 

loss rate is not extremely sensitive to cycle period; it is much faster when the M-D law 

(rather than the N-H law) is adopted. The M-S law, which accounts for the effect of 

pressure solution creep at low deviatoric stresses (in addition to dislocation creep), 

predicts a higher volume-loss rate (than the N-H law) when caverns are more shallow. 

A simple solution of the leaching problem (in which cavern radius is a function of time) 

can be found. 

Introduction 

 The objective of this paper is to describe a simple numerical tool used to predict the 

behavior of hydrocarbon storage caverns leached out from salt formations. These 

caverns are known to shrink gradually when cavern pressure (Pc) is lower than 

geostatic pressure at cavern depth (Pꚙ), as salt can be characterized as a Non-

Newtonian fluid. Various constitutive laws have been suggested in the literature. For 

this problem, a couple of closed-form solutions are available — at least in the case of 

a spherical or cylindrical cavern when steady state has been reached [1-4]. A solution 

of the transient problem was obtained by Manivannan and Bérest [5] for an idealized 

cylindrical cavern in a Norton-Hoff medium. In the following, an idealized spherical 

shape is assumed. The behavior of the salt formation, both steady state and transient, 

is described by the Norton-Hoff or Munson-Dawson [6] laws. (The Marketos-Spiers law 

[7] is also considered.) The Poisson’s ratio equals 0.5   (i.e., salt is incompressible). 

The main drawback of such a tool is that the effects of cavern shape cannot be 

explored; they are known to be significant when the cavern is somewhat flat, for 
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instance. Its main advantage is that it provides insight in some special features of the 

behavior of salt caverns which result from the high non-linearity of the strain-rate vs 

stress relation describing salt behavior. 

Nomenclature 

 

Figure 1. Hollow sphere, main captions 

 

Nomenclature 

0a : internal radius of the hollow sphere (Fig. 1) 

*A : parameter of the Norton-Hoff power law 

0b : external radius of the hollow sphere (Fig. 1) 

:c  parameter of the Munson-Dawson law 

C : a constant 

D : salt grain size 

dij: strain rate tensor 

E : Young’s modulus 

H : cavern depth 

J2: second invariant of the stress tensor 

K0: parameter of the Munson-Dawson law 

( ) :cP t  internal cavern pressure at r = a 
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:P  external cavern pressure at r = b 

:cP
 cavern pressure before an abrupt pressure change 

:cP
 cavern pressure after an abrupt pressure change 

:av

cP  average cavern pressure during pressure cycles 

/ :Q R  parameter of the Norton-Hoff power law 

/ :pQ R  parameter of the Marketos-Spiers law 

, , :r    spherical coordinates (Fig. 1) 

, , :rrs s s   radial, hoop and orthoradial deviatoric stresses 

S = rr   : “deviator” 

Sss(r): steady-state value of S(r,t) 

t: time 

TR: absolute temperature of rock 

:v  radial displacement rate 

ΔV: Change in internal volume of the sphere 

V: volume of the sphere 

ˆ( ) :x t  internal radius of the cavern during leaching 

R : thermal expansion coefficient of the rock mass 

:w  parameter of the Munson-Dawson law 

:w  parameter of the Munson-Dawson law 

  : ratio ( / )a b  between internal and external radii of the sphere 

:  strain 

:t  rheological transient strain 

:el  elastic strain 

:s  steady-state strain 

:  internal parameter of the Munson-Dawson law 

µ: shear modulus 

 : Poisson’s ratio (  =0.5) 

, , :rr      radial, hoop and orthoradial Cauchy stresses (tension-positive) 
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1. Main equations    

 

1.1. Constitutive models      

The Munson-Dawson (M-D) [6, 8], Norton-Hoff (N-H) and Marketos-Spiers (M-S) [7] 

models can be defined by the following set of equations: 
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where E and v  are the Young’s modulus and the Poisson’s ratio, respectively; TR is 

the rock temperature; ij  is the Cauchy stress tensor (in tension-positive sign 

convention), , ,( ) / 2ij i j j id v v   is the strain-rate tensor; iv  is the rate of a material point; 

  is an internal parameter of the Munson-Dawson law; / 3ij ij kk ijs      is the 

deviatoric stress tensor, and 2 / 2ij jiJ s s  is its second invariant.  

 The N-H model, which includes no description of transient creep, is obtained 

when B = 0 and   1F   (Δ = 0 and δ = 0). 

 The M-D model is obtained when B = 0.  
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 The M-S model, which includes a description of pressure-solution creep and 

no description of transient creep, is obtained when 0B   and   1F  .  

 

Figure 2: Schematic representation of the Munson-Dawson and Norton-Hoff 

models 

 Schematically, in the case of a uniaxial test performed on a cylindrical sample (Fig. 2): 

a load increase (σ1) at t = 0 triggers both steady-state and transient creep (no transient 

creep in the case of the N-H model). Transient creep or ( )t t   is fast immediately after 

the load is applied, but exhausts itself after some time, until steady state is reached 

and 
*( )t tt   . A load decrease (to σ2) at 1 2

t
  leads to a long period during which the 

total (steady state + transient) strain rate is small (“hesitation”) before increasing slowly 

to the steady state value associated to the new stress level. A large load decrease 

triggers rheological reverse creep. (Sample height increases for a while, though the 

applied stress is compressive; reverse creep is not included in N-H or M-D models.) 

1.2. The case of a hollow sphere 

Taking into account spherical symmetry, ( , ) ( , ) ( , ) ,rr r rr t e e r t e e r t e e            

,    2( ) / 3,rr rrs     ( ) / 3,rrs s       and 2
2

3 3 / 2 ( ) ,rrij jiJ s s    
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23 rrJ    . It is convenient to set ( , ) ( , ) ( , ) ( ( , ) / ) / 2rr rrS r t r t r t r r t r         (the 

“deviator”), or 
2

3S J and 2
3 .3 / (2 ) /

rr
s J S S  In addition, the rate of a material point 

M can be written ( , ) ( , ) rv r t v r t e  ( v  is negative in most cases, Fig. 1). 

It is convenient to set 
1*( ( ) ( ) ) ( , )

n

R RI B T A T S F S S


  . The constitutive law (Eq. 2 and 

Eq. 3), the equilibrium condition (Eq. 4), the boundary conditions and the initial 

condition (Eq. 5), (Eq. 6), (Eq. 7) can be written as follows: 
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P  is the geostatic pressure at cavern depth. Strains and displacements are small. An 

isothermal problem is considered (except in Section 3.2.2). When 0.5   is assumed 

(elastic incompressibility), it can be inferred from Eq. (2) and Eq. (3) that 

2 2
0( , ) ( ) /v r t a a t r , and Eq. (3) can be rewritten: 
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Equation (8) can be divided by r  and integrated with respect to r  from 0r a  to 0r b . 

Taking into account 0( , ) /rr ca t t P     and 0( , ) / 0,rr b t t    
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Also, when combining Eq. (8) and Eq. (9), 
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and    

               *( , ) ( ( , ) 1) ( , )
n

r t A F r t S r t                                                                 (11)                                                                          

In addition to these equations, initial conditions and boundary conditions must be 

stipulated. The boundary condition results from the definition of ( , ) ( ( , ) / ) / 2rrS r t r r t r    : 

                                             0

0

2 ( , )b

c
a

S v t
dv P P

v
                                                          (12)                                                                                  

(The solution is a function of the difference cP P   only.) However, Eq. (12) implies 

that 2 ( , ) /  /
b

c
a

S v t t dv v P    , and, from Eq. (10) it is sufficient that Eq. (12) be satisfied at t 

= 0, for instance. In addition, initial conditions must be selected.  

An important output of the computations is the volume change rate:   

                                       0

0
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where 3

0 04 / 3V a  is the volume of the spherical cavern.  

A numerical solution of Eq. (10) and Eq. (11) is obtained as follows. The numerical 

discretization is obtained by choosing a mesh of spatial nodes distributed radially, 

starting at the internal wall of the cavern. The obtained system of non-linear ODEs for 

S(r,t) (coupled with non-linear ODEs for ( , )r t  in case of the M-D law) is solved using 

the 4th order Runge-Kutta method. For the examples in this paper, 3000 to 20,000 

spatial nodes were used.  

1.3. Steady state for Norton-Hoff and Munson-Dawson laws 

Note that steady state implies ( ) 0P t   and F = 1; the steady state solutions for the M-

D and N-H constitutive laws are identical. When steady state is reached, / 0S t   ; 

Eq. (10) implies that 3/

0 / )( ) (ss nS rr C a  where C  is a constant which can be computed 

using Eq. (12):  
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The steady-state solution for the M-S constitutive law is discussed in Section 5.                                          

1.4. Norton-Hoff law, the case of linear viscoelasticity 

This case is reached when B = 0, 1F   (N-H) and n = 1. Taking into account Eq. (12), 

Eq. (10) writes:   

           
* *

3

3
0
3

3 1
( ) (

1 2

( , )
 ( , ) ( ))c cS P t EA P P

aS r t
EA r t

t r 
 




  


                                     (15) 

the solution for which, when 0( ,0 )S r   , is 
3 3

03( / ) ( ) 1 ))( , ) ( ) / (2(cS a r P P tr t    , which 

is also an elastic stress distribution. (When (0 )cP P

 , (0 ) (0 )c cP P  , and ( 0 )cP t   is 

fixed, stress distribution is not a function of time, in sharp contrast with the non-linear 

case; volume loss rate is constant.) 

2. Fitting Munson-Dawson (M-D) law parameters against tests performed in 

an actual cavern 

Figure 3. Daily volumes of liquid expelled from the cavern in Hugout’s in-situ test 

(left), and volume loss obtained by modelling this test using the M-D law (right). 

 

In this section, it is shown that the Munson-Dawson model is able to capture both the 

transient and long-term features of actual cavern behavior. We use the data from two 

outflow tests performed by Hugout [9], in the 950-m-deep EZ53 cavern, where 

geostatic pressure is 20.9 MPa,P   in order to select the parameters for the M-D law. 

(This cavern currently is considered for hosting a hydrogen pilot plant (HYPSTER 

project, supported by the European Community).) An outflow test consists of recording 

the brine expelled from the cavern when the wellhead is opened. This outflow rate is 

deemed to reflect the effect of cavern creep closure. The effects on brine outflow of 
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additional dissolution associated with pressure changes and cavern-brine warming are 

not discussed here (for a complete discussion, see [10]). The first in situ test includes 

a pressure drop from 11.4 MPacP   to 8 MPacP   on day 93 after the end of leaching. 

Figure 3 (left) shows the daily volumes of liquid expelled from the cavern during 

Hugout’s test; the transient-expelled flow was as high as 4500 liters/day before 

decreasing rapidly. The initial pressure, 11.4 MPa,cP   was restored on day 253 and 

kept constant for 13 years, after which the second in situ test was performed (Fig. 4). 

The expelled flow then was measured between 7 and 8 liters/day by Brouard, [11]. 

 

Figure 4. History of EZ53 outflow tests 

The M-D law was used to simulate the volume change due to the pressure schedule 

following Hugout’s test and the volume-loss rate observed 13 years later. The leaching 

phase was simulated by linearly decreasing the cavern pressure. The elastic moduli 

were set to E = 17,700 MPa and 𝜇 = 5,900 MPa, in order to fit cavern compressibility, 

as measured by Brouard [11]. For the parameters of the M-D law, the temperature was 

set to RT  = 318 K, and the power-law exponent was set to   3.1n  ; the rest of the involved 

parameters were selected according to Table 1.  
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Table 1. Parameters values used in the numerical examples 

Elastic  E = 17,000 MPa, / 2 /(1 )E v   5667 MPa (in Sections 3 - 6) 

or 

E = 17,700 MPa, / 2 /(1 )E v   5900 MPa (in Section 2) 

Norton-Hoff  * exp / ( )RA A Q RT    , A  = 0.64 /MPan-yr, /Q R  = 4100 K, 

 RT  = 318 K, or 
K

283.15 K
0 0 m

35

1 0R HT     

  3.1n  , or   3n   (in Sections 3.3.2, 4 and 5) 

Munson-Dawson    3m  , 
-7

0 7 10K   /MPa3, c  = 0.00902 /K, 13 2w .   , 7 738w . ,   0 58.   

Marketos-Spiers exp( / ( ))p p RB A Q RT  , 
1 33 1 1/ ( ) (MP3.76 1 a )0 sRp T DA   , /pQ R  = 

2946.8 K, 
K

283.15 K
0 0 m

35

1 0R HT   

 

The parameters for the Norton-Hoff law were taken following Brouard [11]. Parameters 

of the M-D law were taken following Munson [8]. The M-D model is able to capture the 

sudden significant increase in the volume loss rate in the few days after the pressure 

drop (Fig. 3, right). For the second outflow test, the modelling result for the volume loss 

rate 13 years after the end of leaching is 7.8 liters/day (in comparison to the measured 

rate between 7 and 8 liters/day). The M-D model provides good agreement with the 

measurements for both outflow tests, even when the cavern shape is idealized. (Note 

also that brine warming - which is responsible for a 100 liters/day outflow rate on day 

93, a 50 liters/day outflow rate on day 253 and a 0 liter/day during year 13 - is not taken 

into account in the computation.) The reason for this is that the M-D model is a kind of 

generalized Kelvin-Maxwell model, which is able to capture both transient and steady-

state creep; simpler models (for instance, Lemaitre’s model, which describes transient 

creep only) are less effective in this respect. Note that the M-D model, however, is not 

able to capture accurately the cavern reverse creep associated with the sudden 

pressure increase on day 254. (Rheological reverse creep should be incorporated in 

the model in order to capture it.) 
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3.  Effects of an abrupt pressure change 

 

 

Figure 5. Three schematic pressure changes in a cavern 

Three examples are discussed (Fig. 5). 

 

3.1. Effect of a cavern pressure drop from geostatic pressure, N-H law 

 

   

Figure 6. Evolutions of the transient volume loss rate and the deviator (N-H law) 

following a pressure drop from geostatic ( 20.9 MPa)P   to halmostatic ( 11.4 MPa)hP   

In this example, only the N-H law (B = 0 and 1F  ) is considered; no transient 

component is included in this law. Before t = 0, cavern pressure was equal to geostatic 

pressure, ( 0) ,cP t P   and ( , 0) 0S r t   . At t = 0, cavern pressure is decreased abruptly 

to halmostatic pressure, ( 0) 11.4c hP t P    MPa  (Fig. 5, left). The deviator at t = 0+ jumps 

to (Fig. 6, right): 

       3

3

3

3
)

1 2
( ,0 cP Pa

S r
r 

  


                                                                                     (16)                                                                                                                  
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which is the elastic response to a pressure change. From Eq. (10), the derivative of 

the deviator is: 

       
3 33

* 0 0

3 3 3 3

3 1
( ,0 )

2 (1 ) (1 )

n nn

c

n

P P a aS
r EA

t n r r



 

 
   

   
     

                                                        (17)                              

This derivative is not zero when 1n  ; after t = 0, cavern evolution is transient, even 

though the constitutive equation includes no transient component. Such a transient 

cavern evolution is said to be geometrical, as opposed to the rheological transient 

evolution, which results from the constitutive law. The geometrical transient creep is 

due to the slow redistribution of stresses in the rock mass from its initial elastic 

distribution to its final steady-state distribution (Fig. 6, right), an effect that does not 

exist when an idealized triaxial creep test is performed on a rock sample. (Stresses 

are uniform in the sample.) Note that the deviator decreases at the cavern wall 

0( ( ,0 ) / 0)S a t    and increases at a large distance from the cavern wall (

( ,0 ) / 0S r t    when 
1/(3 3)

3 3

0/ (1 ) / (1 )
n

nr a n 


     ). It slowly converges to the steady-

state distribution, Eq. (14). A dilatant criterion,  2 13 ,J a I or 2 3 cS a S P  (DeVries et 

al. [12], Van Sambeek et al. [13]) often is used to assess cavern integrity; I1 is the first 

invariant of the Cauchy stress tensor; a  is a constant. As / 2 3 cS S P  is an increasing 

function of S, and S(a0,t) is a decreasing function of time at the cavern wall, this 

criterion is more demanding immediately after cavern creation rather than later. 

3.2. Effect of a pressure decrease 

3.2.1. Comparison between the N-H and M-D laws 

 In the second example, geostatic pressure 20.9P   MPa  is applied at r = b0. A constant 

inner pressure, 0 10P   MPa , was maintained at the cavern wall during a very long period 

of time before t = 0. At t = 0-, steady state (Eq. 14) was reached. 
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Figure 7. Transient volume rate after abrupt pressure decrease from 10 MPacP   

to 5 MPa.cP   

 

Figure 8. Behavior of S(r,t) obtained with N-H law or M-D law after an abrupt 
pressure decrease from 10 MPacP   to 5cP   MPa.  

 At t = 0+, the internal pressure is decreased abruptly from 10 MPacP   to 5 MPacP   

(Fig. 5, middle), and the deviator experiences an elastic jump by 

                   3

3

3

3 1
( )

1 2
c cS P P

a

r 

  





                                                                          (18)                 

After t = 0+, Eqs. (10) and (11) are used. The parameters were taken from the 

simulations of the in situ tests performed on Cavern EZ53 (Section 2, Table 1), except 

that the elastic moduli were set in this example to E = 17,000 MPa and 𝜇 = 5667 MPa. 
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The results were computed using 11,144 spatial nodes. Figure 7 shows the evolution 

of the relative cavern-volume rate, scaled by the initial cavern volume, V0. The most 

striking fact is that, as in the first example, a long transient evolution (more than one 

century — much longer than the transient creep observed during a laboratory test on 

a salt sample) is observed in both models (M-D and N-H). The steady-state volume-

loss rate before the abrupt pressure drop was 4 1

0/ 4.2 10 yrssV V     . The steady-state 

volume-loss rate at large time after the pressure drop, 3 1

0/ 1.35 10 yr ,ssV V      is not 

reached until a century after the pressure drop. Here again, the transient behavior in 

the Norton-Hoff law results from the slow redistribution of stresses in the rock mass, 

the so-called geometrical transient behavior. However, the volume rates obtained with 

the N-H law and with the M-D law become approximately the same about 5 years after 

the pressure drop — i.e., the largest part of the rheological transient creep in the 

simulation with the M-D law occurs soon after the pressure drop, while the transient 

behavior can be attributed to the geometrical creep for times much longer than about 

5 years after the pressure drop.  

Figure 8 shows the deviator, ( , ) ( , ) ( , )rrS r t r t r t   , for both models. At the cavern wall, 

the deviator stress decreases ( ( , ) / 0)S r t t    to reach its steady-state value slowly. At 

the cavern wall, the deviator equals the opposite of the effective stress, 

0 0( , ) ( , )cS a t P a t    (see Section 3.3.3). When the cavern pressure is decreased 

suddenly from 10 MPacP   to 5 MPacP   at t = 0+, the deviator at the cavern wall jumps 

from 5.3 MPa to 12.8 MPa, as predicted by Eq. (18). For t > 0, the effective stress 

changes much faster in the M-D model than in the N-H model. In the M-D model, the 

deviator at the cavern wall drops from 12.8 MPa to 9.4 MPa within a day after the 

sudden pressure decrease, and then to 8.6 MPa within 100 days. In the N-H model, 

there is almost no change in the deviator within a day after the sudden pressure 

decrease, and it drops slowly from 12.8 MPa to 9.5 MPa within 100 days. Due to the 

much faster transient-stress evolution after the pressure drop, the M-D law predicts a 

much higher volume-loss rate (by two orders of magnitude) in the first few days after 

the pressure drop, in comparison to the N-H law (Fig. 7).  
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3.2.2. Thermal stresses 

Especially in the case of the N-H law, during several days after the initial abrupt 

pressure drop, rock mass response is almost perfectly elastic. Viscoplastic strains can 

be disregarded. Moreover, in the case of a gas-filled cavern, gas experiences a severe 

temperature drop during a rapid (a few days) depressurization, as gas heat capacity is 

low (much lower than brine’s, for instance). Rock temperature change rate during the 

depressurization period can be written ( , ) 0.r t   Onset of thermal stresses must be 

taken into account and rock mass response during this period is linear thermo-elastic, 

  .EL THS S S
 

  
          

ELS



    is the response to the cavern pressure change when ( , ) 0r t  . For simplicity, 

0b    ( 0)   is assumed:   

                                                     

3

3

3( )

2

EL c cP P
S

a

r

 





                                  (19) 

THS



    is the rock mass response to cavern temperature change when 0( ) 0TH

rr a  , 

0( ) 0TH

rr b     and 3 ( ) 0THr v r   when r  . For this problem, Eq. (2) and Eq. (3) must 

be rewritten: 

                                                    
TH TH

R

v S

r E
 


 

   (20) 

                                                  2

TH TH

R

v S

r E
                                                           (21)     

Where R  is the thermal expansion coefficient of the rock mass. Eq. (21) can be 

subtracted from Eq. (20), the resulting equation can be divided by r  and integrated 

with respect to r  between 0r a  and 0r b    leading to 
0

( ) / 3 ( ) / (4 ) 0TH TH

rr a
v r r r E



    , 

from which 0 0( ) / 0THv a a   (thermal stresses generate no cavern volume change). 

Integrating Eq. (21) with respect to time from the beginning to the end of the 

depressurization period leads to:  

                                                  0 0( ) 2 ( )TH

RS a E a 
 


                                                       (22) 

And  
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                          0 0 0 0

3
( ) ( ) ( ) ( ) )2 (

2

EL TH

Rc cS a S a S a P E aP  
  

  

                                          (23) 

The first quantity is positive, the second quantity is negative. The overall deviator at 

cavern wall is negative (the effective stress is tensile and thermal fractures can be 

created) when thermal stresses are large enough, i.e., when the thermodynamic 

evolution is fast enough, as explained in Bérest et al. [14]. 

 

3.3. Effect of a cavern pressure increase: reverse creep, tensile effective stress 

 

Figure 9. Transient volume rate after abrupt pressure increase from 10 MPacP   

to 15 MPa.cP   

3.3.1. An example 

In this section, the N-H law and the M-D law are used to simulate the case of an abrupt 

pressure increase (Fig. 5, right). The geostatic pressure is 20.9P   MPa . The initial 

conditions and the parameters of the simulations are the same as described in Section 

3.2.1, except that at t = 0+ in the present case, the internal pressure is increased 

abruptly from 10 MPacP   to 15cP   MPa.   

Figure 9 shows the rate of the cavern volume, scaled by the initial cavern volume, V0. 

The steady-state volume-loss rate before the abrupt pressure change was 

4 1

0/ 4.2 10 yrssV V     . The steady-state volume-loss rate occurring a long time after 

the pressure increase is 5 1

0/ 6.3 10 yrssV V     . Here, again, a long transient evolution 

(more than one century) is observed in both models. After the cavern pressure is 
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increased from 10 MPacP   to 15 MPa,cP   volume loss rate (which is negative) 

increases first (its absolute value becomes smaller) before finally decreasing. In the N-

H model, volume loss rate starts to decrease after 10 years; this occurs after 30 years 

in the M-D model. However, even after 100 years, the steady state creep-closure rate, 

5 1

0/ 6.3 10 yrssV V     , is not reached.  

3.3.2. Geometrical reverse creep 

 

Figure 10. Volume rate immediately after an abrupt pressure increase (or 
decrease) from 10 MPacP   to .cP  Reverse creep is observed when 16cP   MPa . 

The results are obtained with the N-H law, 3.1n  . 

 Note, also, in the example above, volume loss rate remained negative (cavern volume 

decreased) after the abrupt pressure increase. In fact, it can become positive when the 

pressure increase is sufficiently large. An example of this in a real cavern was 

described by Denzau and Rudolph [15]. Indeed, Fig. 10 shows the volume rate 

immediately after the abrupt pressure jump from 10 MPacP   to the values of 
cP  

belonging to the 5 20 MPacP   domain. The results were computed using the N-H law, 

and similar results have been obtained using the M-D law. It is seen that for a large 

enough pressure increase (approximately, 16 MPacP   in this example), the volume 

rate becomes positive right after the pressure increase. Immediately after an abrupt 

(and large) pressure increase, reverse transient volume loss is observed: the cavern 

volume increases for a while, even though the cavern pressure is lower than the 
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geostatic pressure. (This is remarkable, as neither M-D nor N-H laws are able to 

describe rheological reverse creep (see Fig. 2); this behavior can be attributed to 

geometrical reverse creep.) 

In the case of the N-H law, this result can be proved in a more general way, as follows. 

(It is assumed that steady state was reached at t = 0, ;c cP P  at t = 0, pressure is 

changed abruptly from 
c cP P  to ,c cP P c cP P P 

  . An integer value of n (the 

exponent of the power law) is selected, n = 3. Immediately after the pressure change, 

from Eq. (14) and Eq. (18): 

                                
3 _

0 0

3 3

( ) 3( )
 

2(1 ) 2(1 )
( ,0 )   c c cP P P P

S
a a

r
r r 

 
   


 

                                            (24)                           

When setting ( ) / ( )c c cX P P P P  

   , integration of Eq. (13) leads to the following result 

(in which 0  is set for simplicity),              

2 3
* 3

0

(0 ) 9 1 9 27 3
( )

16 3 5 7 1
c

V X X X
A P P

V






 
      

 

                             (25) 

where 0 > X > -1. Note that at t = 0- , ,c cP P   X = 0, and (0 ) 0.V    When X = -1 (i.e., 

),cP P

  

                                                 * 3

0

(0 ) 9 8
( ) 0

2 3 5 7
c

V
A P P

V




  
 

                                       (26)                                

i.e., cavern volume increases when cP  is close enough to (but smaller than) .P  

3.3.3. Onset of tensile effective stresses 
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Figure 11. Behavior of S(r,t) obtained with the N-H law or the M-D law after abrupt 
cavern pressure increase from 10 MPacP   to 15 MPa.cP    

At the cavern wall, the deviator equals the opposite of the effective stress. Immediately 

after the pressure change:  

                 0 0 3/ 3

3
( ,0 ) ( ,0 )

2 (1 ) (1 )

c c c
c n

P P P P
S a P a

n


 

  
   

  
    

  
                                                         (27) 

This becomes negative when 
3 3/( ) (1 )( ) / (1 ) ,n

c c cP P P P n   


       a condition that is 

met easily when n is large enough (typically, n = 3 to 6). In the example shown on 

Fig.11, effective stress is tensile at cavern wall immediately after the pressure jump 

and remains tensile for a long period. (There is a risk of fracturing, an idea mentioned 

by Wallner [16] or Wawersik and Stone [17]). This result is similar to that for the 

cylindrical cavity (Fig. 7 in Bérest and Manivannan [18]).  

 

3.3.4. The Pressure Observation Test 

A Pressure Observation Test (also called Pressure Vessel Test, or PV Test) consists 

of increasing cavern pressure from halmostatic to the Maximum Operating Pressure 

through brine injection in the shut-in cavern; and monitoring further pressure evolution 

(Bérest et al. [19]). A fast pressure decrease is deemed to be a clear sign of a leak. In 

fact, evolution of pressure in a shut-in cavern is governed by creep closure, brine 

thermal expansion and leaks [10]. Brine mass conservation can be written 

( )b b b leakd V Q    where brine state equation is ( ),b b b c b cP T     42.7 10 /MPab
   is the 

brine compressibility, 44.4 10 /°Cb
  is the thermal expansion coefficient of brine, Qleak 
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are the brine leaks through the cavern wall or the wellbore, and Vb = V is the volume 

of brine in the cavern. In the following, only the effect of creep closure is considered 

and 0/ 0b cP V V   . Taking into account Eq. (13): 

                            0
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Figure 12. Pressure evolution in a 950-m deep shut-in cavern after cavern 

pressure is increased from 11.4 MPa to 18 MPa (a Pressure Observation Test) 

In the M-S case, the independent non-dimensional variables in Eq. (29) are 0/r a , 

* 1 1

0 ( ) )  / ( nP PEt A  

  ,  n , 0  (  )/ P PS   , * 1

0 ( )  )/ ( nP PB A 

  , 31 9 / (4 ).bE    Note that in 

the case of the M-D law (B = 0) or the N-H law (B = 0, F = 1), a change in A* is 

equivalent to a change in the unit of time. As βb is a given physical constant, and   is 

exceedingly small, the non-dimensional solution of Eq. (29) mainly depends on n, 

0 ,P P   E, B / A*, and, in the case of the M-D law, on the parameters involved in the 

definition of F. 
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An example is provided in Fig. 12. The M-D law is considered. Geostatic pressure is 

20.9 MPa.P   Pressure is increased abruptly at t = 0 from 11.4 MPa to 18 MPa before 

plugging the well. During an 8-year long period, cavern pressure is below the initial 

pressure even when no actual leak is considered.  

 

4. Volume loss during pressure cycles  

 

4.1. An example 

Figure 13. Volume change for a cavern under cyclic pressure, 
( ) 10 sin(2 / )cP P t P t T

    MPa . Results are computed with the N-H law or the M-

D law for several sets of cycle amplitude ΔP and period T.  

In this section, the M-D and N-H laws are used to simulate the case of a cyclic pressure 

change. The elastic moduli are set to E = 17,000 MPa and 𝜇 = 5667 MPa. The 
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parameters of the M-D and N-H laws are taken from the simulations of the in situ tests 

performed on Cavern EZ53 (Section 2), except that the power law exponent n is set to 

n = 3 in these examples. A constant pressure difference, 10 MPacP P

   , was 

maintained at the cavern wall over a long period of time before t = 0, such that steady 

state was reached at t = 0-. At t = 0+, the cavern pressure is cycled according to 

( ) sin(2 / ),av

c cP P t P P P t T

       where 
av

c cP P  (average cavern pressure during the 

cycles), ΔP (amplitude of the cycles) and T (period of the cycles) are three constants. 

On Fig. 13 (upper left), the M-D law, short cycle periods (1 day and 1 week) and two 

cycle amplitudes (ΔP = 3 MPa and 6 MPa) are considered; the average pressure 

difference is 10av

cP P   MPa . The steady-state volume evolution (when cavern 

pressure equals average pressure) is drawn for comparison. Volume loss is more than 

doubled when cycle amplitude is doubled, reflecting the non-linearity of the creep law. 

Influence of the period is more discreet. Figure 13 (upper right) illustrates the difference 

between the N-H and M-D (more realistic) creep laws. Volume loss is considerably 

larger when the M-D law is selected; this is expected, as the M-D law takes into account 

the rheological transient behavior of salt, which is activated during pressure cycles. 

Longer periods are considered in the lower pictures (a one-year period is typical of the 

historical operation mode of natural gas caverns). Lessons are similar to those drawn 

when the cycle period is shorter: volume loss is much larger when the M-D law is 

selected; the influence of the cycle period (1 month and 1 year) is relatively minor. 

(Note, however, that more time is left to restore cavern volume when cavern pressure 

is higher.)  

4.2. A simplified model 

These facts suggest a possible simplified model. The N-H law (B = 0, 1)F  is selected. 

Deviator evolution can be described roughly as the sum of the elastic response to 

pressure cycles,   

                                     
3

0
max3 3

3
( , ) sin(2 / ) sin(2 / )

2(1 )

el ela
S r t P t T S t T

r
 


    


                   (30) 

and an average response ( , )S r t  which varies very slowly during a cycle,  
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max( , ) ( , ) sin(2 / )elS r t S r t S t T                                           (31)                                   

where ( , ) /T S r t t S  . During one period, ( , ) ( )S r t S r  is almost constant. The 

equations become simpler when the exponent of the power law is an integer (for 

instance, n = 3). In this case, averaging Eq. (10) for /S t   over one cycle leads to the 

following integro-differential equation for ( , )S r t  (this method was used in Lestringant et 

al. [20]): 
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                  (32)  

In addition, averaging Eq. (13) over one cycle leads to 
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From Eq. (32) and Eq. (33), it is seen that the average response depends on cycle 

amplitude — not on the period of the pressure cycle — in agreement with Fig. 13 (lower 

left). In the very long term, ( , ) / 0S r t t    and 3 2 3

max 03( ) / 2 ( / ) ,elS S C a rS   where C is a 

constant that can be determined numerically through Eq. (12), 0

0

2 ( , ) /
b

av

c
a

S v t dv v P P  . 

Finally, from Eq. (33), the volume-loss rate averaged over large time periods can be 

approximated by 

                                            *

0

3
-

2
 A C

V

V
                                                                        (34) 

Again, constant C depends on cycle amplitude and the average cavern pressure; it 

does not depend on the period of the pressure cycles.  

Figure 14 shows the results obtained using Eq. (34) — namely, the average volume- 

loss rate as a function of cycle amplitude. As discussed in [20], this large time 

approximation cannot be mathematically exact, but it can provide an estimate for the 

volume-loss rate at large periods of time. Indeed, Fig. 15 shows the evolution of the 
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relative volume (left) and relative average-volume rate (right) for a cavern subject to 

the cyclic pressure with 10av

cP P   MPa , 3 6P  or MPa , and T = 1 year. The transient 

results are computed with the N-H law. It is seen that the large time approximation, 

obtained from Eq. (34), provides a reasonable estimate for the volume-loss rate after 

about 20 years of pressure cycles (in this example).    

 

Figure 14: Relative average volume-loss rate for a cavern under cyclic pressure, 
as a function of cycle amplitude. Results are computed with the N-H law by using 
the large-time approximation [Eq. (34)]. 

Figure 15. Relative volume (left) and relative average volume rate (right) for a 
cavern under cyclic pressure as a function of time. Results are computed with 
the N-H law. 
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5. The Marketos-Spiers law predicts much faster volume loss rate than the N-H 

law when cavern depth is shallower; steady state is reached faster. 

 

It long has been suspected ([21], [22]) that, in the small deviatoric stress 

domain (σ < 3 MPa, typically), the governing mechanism for salt creep is 

pressure solution rather than dislocation creep. A consequence of this 

should be that the creep rate in this domain is much faster — by several 

orders of magnitude — than that extrapolated from tests performed in the 

high stress domain, a view confirmed by creep tests on natural salt 

performed in the range σ < 4.5 MPa ([23], [24]). Various attempts were made 

to take into account both pressure solution and dislocation displacements, which are 

the governing creep mechanisms in the small (respectively, large) deviatoric stress 

domains ([25], [7], [3], [4], [5], [18], [26]). The Marketos-Spiers (M-S) law, described 

above *

2 2( 3 3 )
n

B J A J   , is a simple such attempt. In this section, the exponent of 

the non-linear term in the M-S law and in the N-H law is set to n = 3. For this case, 

the steady-state solution for the M-S law is obtained semi-analytically. Constants *A  

and B are functions of temperature; in addition, B is proportional to 3 ,D where D  is 

the grain diameter of salt ([21], [7]).  Constants *A  and B are selected according to 

Table 1. The choice for B corresponds to the mean values of the involved parameters 

( pA , )pQ  given by Spiers et al. [21] and Marketos et al. [7]. Here, the authors use 

grain diameter 7D   mm . For constant *A , the values of the involved parameters ( A , 

Q ) are taken from the in-situ tests performed on Cavern EZ53 (Section 2). The 

values of both *A  and B in this example take into account the temperature 

dependence on depth, 283.15 (K) (K) /1000(m) (35 m)R HT    (rock temperature is smaller 

when the cavern is shallower). It can be expected that the addition of the pressure 

solution term is especially significant when deviatoric stresses in the rock mass are 

small — i.e., when cavern pressure is high or in the case of a shallow cavern. 

However, in this last case, this effect may be counterbalanced by the effect of lower 

rock temperature on creep rate.  

We consider first the steady-state solution as a function of the cavern depth H. 

Steady state is defined by / 0S t    in Eq. (10), or 
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From this, since S S  when :cP P    

              * 3( ) ( ) '/( )ss ss ss nr S S r C rI B r A                                                                            (36) 

This algebraic equation can be solved numerically, ( , '),ss ssS S r C  and C’ is determined 

through the condition 
0

0

2 ( ) /
b

ss

c
a

S v dv v P P  , Eq. (12). (For n = 3, the solution ( , ')ss ssS S r C  

is found analytically from the cubic Eq. (36).)  
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Figure 16. Left figures: scaled stress deviator / ( )cS P P  , computed using the N-

H law and the M-S law for cavern depths: H  = 200, 500, 1000, 1500, 2000 m. Right 

figures: ratio of the steady-state volume rate for the M-S law to the steady-state 

volume rate for the N-H law, as a function of cavern depth H . The results, 

obtained with the M-S law, correspond to grain size 7D   mm . The results were 

obtained assuming either fixed temperature 318 K (upper figures), or 

temperature variation with depth (lower figures). 

Geostatic pressure is ,RP H   0.022R   MPa/m,  and cavern pressure is ,c bP H  

0.012 MPa/m.b   Figure 16 (left) shows the stress deviator obtained for several cavern 

depths: H = 200, 500, 1000, 1500, 2000 m. To show the effect of temperature variation 

with depth onto the obtained values, the results are shown for either a constant 

temperature 318 KRT   (upper figures), or for a temperature varying with depth 

283.15 (K) (K) /1000(m) (35 m)R HT    (lower figures). The ratio of the volume rate for the  

M-S law to the rate for the N-H law is larger for shallower depths in both cases, see 

Fig. 16 (right). It is more than 30 for a very shallow depth (H = 200 m, and .290.15 K)RT   
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Figure 17. Behavior of S(r,t) (left) and transient volume rate (right) after an abrupt 

pressure drop.  Cavern depth is H = 250 m. The black dashed lines (right) show 

the steady-state volume rate at large time. 

 

We then consider a shallow cavern, H = 250 m, in which the geostatic pressure is  

5.5RP H    MPa , and the temperature is 291.9 KRT  . Before t = 0, steady state was 

reached with cavern pressure 3 MPa.cP   At t = 0, the cavern pressure is dropped 

abruptly to 2.5 MPa.cP   Figure 17 (left) shows the behavior of the deviator near the 

cavern wall after the pressure drop. For the M-S law, the steady-state solution is 

reached much faster than for the N-H law (when *

23
n

A J  is much smaller than 23 ,B J  

cavern behavior is close to linear visco-elastic, and stress distribution remains almost 

constant, see Section 1.4). Indeed, the solution at t = 9 years for the M-S law is closer 

to the corresponding steady-state solution than the solution at t = 100 years for the N-

H law. Figure 17 (right) shows that the volume-loss rate, obtained with the M-S law, is 

much higher than that for the N-H law — roughly by one order of magnitude. The 

volume-loss rate at 10 years after the pressure drop for the M-S law can be 

approximated well by the corresponding steady-state rate. 
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6. Solution mining (a moving boundary problem) 

 

6.1. Introduction 

 

Figure 18. Three descriptions of the leaching phase. 

 

Salt caverns are created through solution mining. A wellbore is tapped to the salt 

formation. Water is injected in the wellbore through a central string, brine is withdrawn 

from the annulus between the string and the casing, and the cavity grows until its final 

shape is reached. Brine pressure is applied to the cavern walls. The cavern wall is a 

moving boundary. There are different possible methods (see Fig.18) to describe the 

solution-mining phase: cavern pressure abruptly decreases from geostatic pressure,

,RP H   to halmostatic pressure, ,c bP H  (method A); pressure decreases linearly 

(method B, often adopted when performing numerical computations); and the cavern 

is created progressively. The stress distribution obtained when using methods A or B 

cannot be exact, as there is a competition between stress redistribution due to creep 

closure and cavern growth due to solution mining, an effect that is not accounted for in 

these two methods.  

The equations describing the moving boundary method are discussed below. Only 

small strains and displacements of material points are considered. All results in this 

section were obtained using the M-D law. The sphere’s external radius, 
0b , is fixed and 

submitted to a constant external pressure, P  (geostatic pressure). For the spherical 
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cavern, methods A and B are based on the assumption that the cavern is created 

instantaneously with its final radius, 
0a . For the moving boundary method, evolution of 

the cavern radius, ˆ ˆ( )x x t , results from a physical assumption. For instance, wellbore 

creation is described as follows: at t = 0, Pc(t) experiences a jump from P  to Pc; ˆ(0)x

is very small when the initial jump is performed. Later on, solution mining is performed 

in such a way that cavern growth rate is constant, or 3 3

0
ˆ ˆ 3 ,x x Kt   0 < t < t1, where K 

is a constant, and 
2ˆ ˆx x K . For t > t1, ˆ( )x t  is constant, 1 1

ˆ ˆ( ) .x t t x    

Equations (2) to (7) still hold, except for Eq. (5). That equation must be replaced by: 

                                       
ˆ( ( )) ( )rr cx t P t                                                                                          (37) 

The Poisson’s ratio is assumed to be 0.5;   from Eqs. (2) and (3),   2 3

0, ( )v r t r b b t r

(where 
0( ) ( , )b t v b t  is the displacement rate at the external wall of the hollow sphere). 

Using Eq. (4), equation (3) can be rewritten as 

 

           
2 2

3 2 2

( ) ( , ) 1 ( , )

4 2
rrb b I It r tr S r t

E r t E tr


  

 
 

  
                                                       (38)     

                          

Equation (38) can be divided by r  and integrated with respect to r  from ˆr x  to r b . 

Taking into account ( , ) / 0,rr b t t     

          
ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) 2 ( , )

ˆ
ˆ

rr rr rr rr
c

d x t x t x t x t xS x t
x P

dt t r t x

     
     

  
                                  (39) 
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3
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ˆ

1 1
( 1 ) -

ˆ3 2

ˆ ˆ ˆ( ) 2 ( , ) /( )
 ( , )

4

b
c

x

b

b x

P t S x t x xb t dv
I v t

E v
 


                                   (40)                                

When combining Eq. (38) and Eq. (40):   

     
0

3 3 3 3

0
ˆ

1 1 3 3
( , )  +

ˆ 2

ˆ ˆ ˆ( ) 2 ( , ) /( , )
 ( , )

b
c

x
EI r t E

b x r r

P t S x t x xS r t dv
I v t

t v

  
    

  


 

                          (41) 

From this, ( , ),S r t  ( , )ˆ /S t rx   and ( , ) / ( , ) / ( ,ˆ ˆ /ˆ ˆ )rr rr rrd t dt t xt rx x x t         can be 

computed. 
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The rate (creep closure rate) of material point x , which coincides with ˆ( )x t  at time t, 

is 

                                             
3

2 2( ) ( ) ( , )
2

b
x x t b b t I b t                                                          (42)                             

6.2. Examples 

 

Figure 19. Top-left: Volume rate after leaching phase (x-axis shows time from 

start of leaching). Top-right: Deviator at 0.5 year after start of leaching. Bottom-

left: Deviator 1 year after start of leaching. Bottom-right: Deviator at 2 years after 

start of leaching. 

The values of the elastic constants and the parameters of the M-D law are the  

same as in Section 3.2.1. As the first example, we consider a cavern (V = 200,000 m3) 

leached out in one year. The geostatic pressure is P∞ = 20.9 MPa. At t = 0, the initial 

cavern of radius 0x̂  = 0.1 m is created, and the pressure at the cavern wall drops to 

halmostatic pressure, Pc = 11.4 MPa. The final cavern radius after the leaching phase 

is 1x̂  = 36.3 m. Figure 19 shows the evolution of the volume-loss rate after the leaching 

phase, and the deviator computed at times t = 0.5 year (half-way through the leaching 

phase), t = 1 year (at the end of leaching), and t = 2 years (one year after the end of 

leaching). It is seen that during the leaching phase, methods A and B are not able to 

capture the behavior of the stress deviator obtained using the moving boundary 
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formulation. At the end of the leaching phase, method B provides an acceptable 

approximation for the deviator, but the volume rate is still about twice larger than that 

obtained with the moving boundary. Soon after the leaching phase is completed, 

method B provides an acceptable approximation for the volume-loss rate as well (in 

this example, from 1.2 years after the start of leaching). On the contrary, there is a 

notable difference between the solutions for the stress deviator obtained with method 

A and with the moving boundary method — even 2 years after the start of leaching. It 

also takes a longer time for the volume-loss rate obtained with method A to converge 

to the result of the moving boundary formulation. 

In the second example, the results are compared for a 200,000-m3 cavern leached out 

quickly (in 1 year) or slowly (in 3 years). Figure 20 shows the evolution of the volume-

loss rate after the leaching phase. At time t = 3 years, the volume rate for the case of 

slow leaching is more than twice larger than the volume rate for the case of fast 

leaching. The volume rates converge after about 5 to 6 years from the start of leaching. 

 

Figure 20. Volume rate after leaching phase, for a 200,000-m3 cavern leached out 

in 1 year or 3 years.  

 

Conclusion 

A first-order integro-differential equation allows computing stress distribution in the salt 

mass and cavern-volume rate when the Poisson’s ratio is assumed to be 0.5 and when 

an idealized spherical shape is considered. This equation allows prediction of several 

characteristic features of salt cavern behavior: long geometrical transient evolution; 
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onset of reverse creep and effective tensile stresses; large volume-loss rates when 

cavern pressure is cycled or when the effect of pressure solution is taken into account; 

and effects of cavern growth during solution mining. It also sheds some light on the 

mathematical origin of these features. 
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