
HAL Id: hal-03882594
https://hal.science/hal-03882594

Submitted on 2 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Call for Removing Variability
Mathieu Acher, Luc Lesoil, Georges Aaron Randrianaina, Xhevahire Tërnava,

Olivier Zendra

To cite this version:
Mathieu Acher, Luc Lesoil, Georges Aaron Randrianaina, Xhevahire Tërnava, Olivier Zendra. A Call
for Removing Variability. VaMoS 2023 - 17th International Working Conference on Variability Mod-
elling of Software-Intensive Systems, Jan 2023, Odense, Denmark. pp.3, �10.1145/3571788.3571801�.
�hal-03882594�

https://hal.science/hal-03882594
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Call for Removing Variability
Mathieu Acher

Univ Rennes, CNRS, Inria, IRISA
Institut Universitaire de France (IUF)
UMR 6074, F-35000 Rennes, France

mathieu.acher@irisa.fr

Luc Lesoil
Univ Rennes, CNRS, Inria, IRISA
UMR 6074, F-35000 Rennes, France

luc.lesoil@irisa.fr

Georges Aaron Randrianaina
Univ Rennes, CNRS, Inria, IRISA
UMR 6074, F-35000 Rennes, France
georges-aaron.randrianaina@irisa.fr

Xhevahire Tërnava∗
Univ Rennes, CNRS, Inria, IRISA
UMR 6074, F-35000 Rennes, France

xhevahire.ternava@irisa.fr

Olivier Zendra
Univ Rennes, CNRS, Inria, IRISA
UMR 6074, F-35000 Rennes, France

olivier.zendra@inria.fr

ABSTRACT
Software variability is largely accepted and explored in software
engineering and seems to have become a norm and a must, if only in
the context of product lines. Yet, the removal of superfluous or un-
needed software artefacts and functionalities is an inevitable trend.
It is frequently investigated in relation to software bloat. This paper
is essentially a call to the community on software variability to de-
vise methods and tools that will facilitate the removal of unneeded
variability from software systems. The advantages are expected to
be numerous in terms of functional and non-functional properties,
such as maintainability (lower complexity), security (smaller attack
surface), reliability, and performance (smaller binaries).

KEYWORDS
software variability, removing variability, software bloat

1 WHY REMOVING VARIABILITY?
To support and deliver values to a wide spectrum of users, today’s
software systems include an abundance of features that tend to
expand over time in real-world industrial contexts [9, 29]. For in-
stance, a highly complex system is the Linux kernel with more than
25 M lines of code and 20 K configuration options, and it keeps
growing [13, 17]. Current software development approaches also
strive for increasing variability in software systems. To enable ex-
panding features, significant progress is being made in the forward
and reverse engineering of software variability, which is frequently
mentioned in research on software reuse, software families, or soft-
ware product lines (SPL) (e.g., [3, 4, 6, 14, 19]). But, in the frame of
variability management and evolution, the need for a systematic
removal of superfluous or underutilized variability has received far
less to no attention from the community in software variability.

Since more support for usage context in a software system is
desirable, the removal of variability might look counter-intuitive.
Hence, the question is: how reducing variability can be a good idea?

The ultra-high amount of variability in software systems is ex-
ceeding human and even machine limits to deal with it, namely, to
manage, test, comprehend, or even be able to use every feature or
option ever [13, 17]. Xu et al. [34] show that up to 54.1% of configu-
ration options in a system are rarely set by any user. Some systems
are also completely avoided by users, who are overwhelmed by
∗This is the corresponding author. The authors’ names are in alphabetical order.

the too many choices available [16, 30]. More often, end-users lack
the expertise and time to configure the system to get the right
functional and non-functional properties for their usage context.

Yet, Soto-Valero et al. [27] show that up to 75.1% of software
libraries that exist in a software system are not needed to com-
pile and run it. Still, they are packed in the system binaries. Quite
similarly, 75% of feature toggles, a temporary form of variability,
become unused after 49 weeks [10, 22]. It’s normal to imagine an
underutilized feature or library could be useful in the future, yet the
opposite is true. However, 89.2% of libraries as direct dependencies
that are unused today in a software system will likely never be
used [27]. These and similar findings show that today’s software
systems, ranging from small-scale size utilities in Unix [9, 18] to
large-scale size web browsers, such as Chromium [20], are bloated.

Discovering the unneeded variability in software systems is not
trivial and is a complex socio-technical task. So,why should someone
bother and remove variability from a codebase?

Removing unneeded or unused variability from software sys-
tems is very important first because it can negatively impact the
system security: the disabled or never used features in a software
system may contain security vulnerabilities that could be exploited,
threatening the whole system and its users. On the other hand, the
attacker can for example chain small code sequences called gadgets
and threaten the security of the system [20, 25]. The larger the
binary size of a software system, the larger its attack surface [2].

Another reason lies in the system’s reliability. Studies show that
many software failures arise from the misconfiguration of software
systems [24, 35]. In such cases finding the cause of a failure among
large sets of options is difficult. Moreover, unused variability can
introduce technical debt, for example, when a feature toggle has
served its purpose and needs to be removed from the codebase [22].

Poor configuration choices in a software system may also result
in bad or even its worst possible performance (see e.g., Hadoop [8]).
Assuming that the unused features may be among the poor choices
and will further degrade system performance is reasonable. More-
over, software systems and their variability grow whether or not
there is a rational need for them [9], and successful and widely
used software systems tend to become encrusted with dubious fea-
tures [18]. Some unnecessarily added features can even change the
primary purpose of a system and threaten its reliability. Last but
not least, attempting to use stale variability within a system has
the power to bankrupt the entire company, as in the often-cited



Acher et.al.,

case of the Knight Capital Group. It unintentionally did a poor use
of a stale feature toggle, causing it to lose more than 460 M dollars
in 45 minutes and go bankrupt [5, 28].

Thus, exploring methods and tools for removing underutilized
variability from software systems is vital and a realistic way to
reduce system complexity and testing burden, improving its com-
prehension, reliability, security, maintainability, and performance.

2 HOW TO REMOVE VARIABILITY
Why is removing variability not yet a major trend?

First, because removing code in general, including variability, is
not a rewarding activity for developers and product (line) managers,
since it does not bring any new functionality or feature.

The main challenge to stakeholders in removing variability is
the lack of automated or integrated technologies. In general, there
are limited studies, understanding, and expertise on removing vari-
ability, specifically how stakeholders (may) operate over software
artefacts in modern development workflows. To confirm our as-
sumption, we investigated all publications in the past 10 years in the
VaMoS 1 and SPLC 2 venues. Specifically, we searched the presence
of "remove", "reduce", "debloat", and "delete" keywords, including
their variations, in their title. It resulted that only 3 papers contain
the word "reducing", but they are about reducing feature models
or energy consumption, and not variability 3. The existing tech-
nologies for removing code, such as dead code, technical debt, or
software bloat, perhaps can be adapted to a certain extent. But, our
call is for removing variability, which is different from disabling it,
debloating system binaries [26, 33], or removing an unreachable
piece of code.

Thus this section elaborates on possible research directions to
support variability removal, discussing early attempts in literature.

Debloating variability. Software debloating has been recently
explored to reduce the size of deployed containers [23], or reduce
the attack surface of specific programs (e.g., [7, 11, 12, 21, 25, 26,
31, 32]). Often, proposed approaches debloat a system compiled
binaries [20, 33], remove its unused libraries [27], and rarely con-
figuration options [12]. Existing approaches are all heirs of existing
works in program specialization [15], so the idea of removing code
is not completely new. Yet, the proposed techniques do not cover
the plethora of variability units and mechanisms that can be subject
to removal and debloating, namely features, command-line options,
feature toggles, design patterns, and configuration files. For instance,
removing run-time options within the source code still is an inves-
tigation direction with many challenges: How to trace and locate
run-time options within the source code? How to remove a subset
of run-time options without breaking other options and core func-
tionality? How to guarantee that the removal is safe, that is, the
remaining functionalities are unaffected?

Revisiting the reverse engineering of variability. Numerous works
have been conducted on the reverse engineering of variability and
to specifically create variability representations of artefacts in other

1VaMoS proceedings: https://dl.acm.org/conference/vamos/proceedings
2SPLC proceedings: https://dl.acm.org/conference/splc/proceedings
3The list of resulting papers: https://doi.org/10.5281/zenodo.7360593

forms or at higher levels of abstraction. Feature extraction and lo-
cation have for example been subject to intensive research [1]. In
our case, removing unused variability in existing systems requires
locating and tracing variability that can cross-cut numerous func-
tions, classes, modules, or files. Reverse engineering approaches
have been proposed to support the maintenance and re-engineering
of legacy variability-rich systems; most of the literature aims to
add features and create new variants with richer functionalities.
We make the point that reverse engineering techniques should be
revisited in light of a new objective, that is, of removing the un-
needed variability from legacy software systems while expecting
novel and more precise variability location methods and metrics.

Designing for variability removal. We argue that, when develop-
ing software variability, developers should also pursue the objective
of easing the removal of variability. Developers should thus find it
gratifying to remove features and quantify its benefits. Any newly
devised approach should support the removal of different variability
units, be they features, configuration options, settings, or feature
toggles. To this end, we see two complementary paths. First, the
development of automated tools and methods to address a legacy,
existing codebase, so that with limited effort developers can pilot
tools to remove specific variability in a software system. A second
and unexplored direction is to design, by construction, variability-
rich systems that are "variability removal friendly". Extensibility
and modularity, two key principles of software engineering, have
been subject to intensive inquiry; we argue that similar research
should be conducted now to ease variability removal. In both cases,
the technical process should also include the removal of all other
artefacts bound to a variability unit, such as tests or comments. Ide-
ally, the remained system after removing some variability should
not only be compilable and functional but also well formatted.

Developers’ workflow for removing variability. Currently, there
are very few proposedmethodologies to support variability removal
and quantifying its benefits. A notable case is the semi-automated
approach of Piranha to remove stale feature toggles in Uber appli-
cations realized in Java, Swift, and Object-C [22]. In general, we
are missing studies that observe how developers remove code and
specifically variability-related code. We ignore what are the difficul-
ties of removing variability. Characterizing and understanding such
difficulties could help to design tools supporting their activities.
There also exists little quantification of the human cost of removing
variability. Another open question is how to integrate variability re-
moval as part of modern development workflows (i.e., code reviews,
continuous integration, issues, ticketing systems, etc.).

Removing variability: application or domain engineering? SPL en-
gineering usually distinguishes two complementary phases: domain
engineering and application engineering [19]. Removing variability
can occur within application engineering when concrete products
are derived using the common and reusable artefacts developed in
domain engineering. The issue is that tailoring a product to remove
unneeded variability can be very specific (i.e., to the product) and
not reusable for other products. In a sense, the effort of removing
variability would be one-shot and hard to replay in the long run, for
instance, when software evolves. Hence, another possibility is to lift
the removal of variability as part of domain engineering. It would

https://dl.acm.org/conference/vamos/proceedings
https://dl.acm.org/conference/splc/proceedings
https://doi.org/10.5281/zenodo.7360593


A Call for Removing Variability

allow developers to then systematically configure what variability
can be easily removed in the future for any product. If not designed
for removal, the counterpart is that this lifting has arguably a de-
velopment cost. Overall, it is an open question of where to position
the removal of variability as part of SPL engineering.

Scenarios for removing variability. One possible scenario is to
remove all variability (a.k.a., based on a usage profile), for example,
fixing a configuration once and for all and forbidding any recon-
figuration at run-time. This scenario is extreme and not applicable
in many contexts, since users would lack the needed flexibility for
their systems [33]. Another scenario is to find the unused variabil-
ity units (e.g., stale feature toggles) and remove them. In a sense,
the variability space is specialized and gradually reduced. Ideally,
developers should have the power to control what variability can
be removed and kept.

3 CONCLUSION
As we are already aware, we are surrounded by variability in our
software world. The ability of a software system to be efficiently
extended, changed, and customized for use in a particular context
is precisely what makes software "soft" and adaptable. Hence, al-
though not new in the software world, the idea of removing software
variability might sound counter-intuitive at first.

But there is evidence that software systems are bloated with
variability units (i.e., features and options). Removing variability
is a missing piece in the research landscape in software variability.
In this paper, we call for developing approaches and tools by our
community which will facilitate the removal of variability and bloat
from software systems, as a way to improve their security, perfor-
mance, reliability, comprehension, maintainability, and testing.

REFERENCES
[1] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R

Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. EMSE 22, 6 (2017), 2972–3016.

[2] Michael D Brown and Santosh Pande. 2019. Is less really more? towards bet-
ter metrics for measuring security improvements realized through software
debloating. In 12th USENIX Workshop on CSET 19. USENIX, ., 1–9.

[3] Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. 2013. Systems and software
variability management. Concepts Tools and Experiences 10 (2013), 2517766.

[4] Rafael Capilla, Barbara Gallina, Carlos Cetina, and John Favaro. 2019. Opportu-
nities for software reuse in an uncertain world: From past to emerging trends.
Journal of software: Evolution and process 31, 8 (2019), e2217.

[5] Knight Capital. 2013. SEC Charges Knight Capital With Violations of Market
Access Rule. https://martinfowler.com/articles/feature-toggles.html.

[6] Paul Clements and Linda Northrop. 2002. Software product lines. A-W, Boston.
[7] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effec-

tive program debloating via reinforcement learning. In Conf. on Computer and
Communications Security. ACM, NY, 380–394.

[8] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System for
Big Data Analytics. In Cidr, Vol. 11. cse.fau.edu, California, 261–272.

[9] Gerard J. Holzmann. 2015. Code inflation. http://spinroot.com/gerard/pdf/Code_
Inflation.pdf. Accessed: 2022-10-01.

[10] Juan Hoyos, Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Albeiro Es-
pinosa Bedoya. 2021. On the Removal of Feature Toggles. EMSE 26, 2 (2021),

1–26.
[11] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019.

Configuration-driven software debloating. In 12th EuroSec. ACM, NY, 1–6.
[12] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020. Set the

configuration for the heart of the OS: On the practicality of operating system
kernel debloating. POMACS 4, 1 (2020), 1–27.

[13] Hugo Martin, Mathieu Acher, Juliana Alves Pereira, Luc Lesoil, Jean-Marc
Jézéquel, and Djamel Eddine Khelladi. 2021. Transfer learning across variants
and versions: The case of linux kernel size. TSE 48, 11 (2021), 4274–4290.

[14] M. Douglas McIlroy. 1968. Mass-Produced Software Components. In NATO in
SE, J. M. Buxton, Peter Naur, and Brian Randell (Eds.). NATO, Garmisch, 88–98.

[15] Dylan McNamee, Jonathan Walpole, Calton Pu, Crispin Cowan, Charles Krasic,
Ashvin Goel, Perry Wagle, Charles Consel, Gilles Muller, and Renauld Marlet.
2001. Specialization tools and techniques for systematic optimization of system
software. TOCS 19, 2 (2001), 217–251.

[16] Katherine Noyes. 2010. Does Linux Offer Too Much Choice? https://www.
linuxinsider.com/story/does-linux-offer-too-much-choice-70806.html.

[17] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wą-
sowski, Krzysztof Czarnecki, Paulo Borba, and Jianmei Guo. 2016. Coevolution of
variability models and related software artifacts. EMSE 21, 4 (2016), 1744–1793.

[18] Rob Pike and Brian Kernighan. 1984. Program design in the UNIX environment.
AT&T Bell Laboratories Technical Journal 63, 8 (1984), 1595–1605.

[19] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. 2005. Software product
line engineering. Vol. 10. Springer, Springer.

[20] Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.
2020. Slimium: debloating the chromium browser with feature subsetting. In
SIGSAC CCS20. ACM, NY, 461–476.

[21] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating software through
piece-wise compilation and loading. In 27th Sec. Symposium. USENIX, ., 869–886.

[22] Murali Krishna Ramanathan, Lazaro Clapp, Rajkishore Barik, and Manu Srid-
haran. 2020. Piranha: Reducing feature flag debt at Uber. In ICSE. ACM, NY,
221–230.

[23] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: Automatically debloating containers. In 11th Joint
Meeting on Foundations of SE. ACM, NY, 476–486.

[24] Mohammed Sayagh, Noureddine Kerzazi, Bram Adams, and Fabio Petrillo. 2018.
Software configuration engineering in practice interviews, survey, and systematic
literature review. TSE 46, 6 (2018), 646–673.

[25] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.
TRIMMER: Application specialization for code debloating. In ASE. ACM, NY,
329–339.

[26] César Soto-Valero. 2021. Software debloating papers. https://www.
cesarsotovalero.net/software-debloating-papers.

[27] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2021.
A comprehensive study of bloated dependencies in the maven ecosystem. EMSE
26, 3 (2021), 1–44.

[28] Bishr Tabbaa. 2018. The Rise and Fall of Knight Capital - Buy High, Sell Low.
Rinse and Repeat. https://medium.com/dataseries/the-rise-and-fall-of-knight-
capital-buy-high-sell-low-rinse-and-repeat-ae17fae780f6.

[29] Xhevahire Tërnava, Luc Lesoil, Georges Aaron Randrianaina, Djamel Eddine
Khelladi, and Mathieu Acher. 2022. On the Interaction of Feature Toggles. In
VaMoS. ACM, NY, 1–5.

[30] Linus Torvalds. 2020. Fragmentation is Why Linux Hasn’t Succeeded on Desktop.
https://itsfoss.com/desktop-linux-torvalds/.

[31] Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. 2020. Program
debloating via stochastic optimization. In 42nd ICSE: NIER. ACM, NY, 65–68.

[32] Qi Xin, Myeongsoo Kim, Qirun Zhang, and Alessandro Orso. 2020. Subdomain-
based generality-aware debloating. In 35th ASE. ACM, NY, 224–236.

[33] Qi Xin, Qirun Zhang, and Alex Orso. 2022. Studying and Understanding the
Tradeoffs Between Generality and Reduction in Software Debloating. ASE 1, 1
(2022), 1–13.

[34] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, you have given me too many knobs!: Under-
standing and dealing with over-designed configuration in system software. In
Proceedings of the 2015 10th Joint Meeting on Foundations of SE. ACM, NY, 307–
319.

[35] Zuoning Yin, XiaoMa, Jing Zheng, Yuanyuan Zhou, Lakshmi N Bairavasundaram,
and Shankar Pasupathy. 2011. An empirical study on configuration errors in
commercial and open source systems. In 23rd ACM SOSP. ACM, NY, 159–172.

https://martinfowler.com/articles/feature-toggles.html
http://spinroot.com/gerard/pdf/Code_Inflation.pdf
http://spinroot.com/gerard/pdf/Code_Inflation.pdf
https://www.linuxinsider.com/story/does-linux-offer-too-much-choice-70806.html
https://www.linuxinsider.com/story/does-linux-offer-too-much-choice-70806.html
https://www.cesarsotovalero.net/software-debloating-papers
https://www.cesarsotovalero.net/software-debloating-papers
https://medium.com/dataseries/the-rise-and-fall-of-knight-capital-buy-high-sell-low-rinse-and-repeat-ae17fae780f6
https://medium.com/dataseries/the-rise-and-fall-of-knight-capital-buy-high-sell-low-rinse-and-repeat-ae17fae780f6
https://itsfoss.com/desktop-linux-torvalds/

	Abstract
	1 Why removing variability?
	2 How to remove variability
	3 Conclusion
	References

