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Abstract

The Fano resonance, as a phenomenon of wave scattering, is based on the interaction between
a “bright mode” and a “dark mode” giving rise to an asymmetric and ultrasharp spectral peak.
However, the Fano resonant frequency is sensitive to structural imperfections such as defects or
disorders, which will shift the resonant peak, or even damage the Fano line shape. Here, we harness
the coupling between the first-order and the higher-order topological insulators to overcome this
shortcoming. We construct a first-order topological edge state to serve as a bright mode, and a
second-order topological corner state to be the dark mode using the same base configuration. As
a result, a topological Fano resonance is expected to occur around the resonant frequency of the
dark mode. The robustness of the Fano resonance is verified by deliberately introducing various
types of imperfections into the system. Our findings may further enhance confidence in using
the resonance such as acoustic switching, refractive index sensing, high quality factor filters, and

accurate interferometers.
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1. Introduction

Fano resonance, originally discovered in quantum systems, is a wave scattering phenomenon
featuring asymmetric and ultra-sharp spectral peaks resulting from the interference between dis-
crete and continuum scattering channels. It is named after Ugo Fano, for his contribution to the
theoretical explanation for the scattering line shape of inelastic scattering between electrons and
helium atoms[1]. The wave interference is not exclusive of quantum mechanics, while it is a gen-
eral wave phenomenon and the occurrence of Fano resonance has been evidenced in other fields
such as photonic crystals [2, 3], plasmonic nanostructures [4, 5] and phononic crystals [6]. Two
ingredients, including a broadband “bright” mode serving as a background state and a narrowband
“dark” mode as an isolated state, are essential for the generation of Fano resonance in classical
systems [7]. Around the dark mode resonant frequency, the bright mode magnitude varies slowly
with frequency, while the dark mode changes abruptly both in magnitude and phase. When the
driven force passes through the resonant frequency, both the in-phase and out-of-phase interactions
between the two modes will take place within a very narrowband range. As a result, the construc-
tive and destructive interferences enable the transmittance to reach its maximum from the minimum
very quickly, which creates the asymmetric Fano-like profile.

Based on such a straightforward formulation, advances in theoretical and experimental demon-
strations of Fano resonance have been achieved in mechanical and acoustic systems [6, 8—14]. Be-
cause of the asymmetric and ultra-sharp properties, Fano resonances in phononic crystals possess a
variety of potential applications such as acoustic switching, refractive index sensing, high-quality
factor filters, and highly accurate interferometers. While the high sensitivity of the Fano resonance
requires precise control and accurate fabrication [15]. Additionally, structural imperfections such
as defects or disorder may shift the Fano resonant frequency, or even completely damage the Fano
line shape. The developments of topological insulators (TIs) [16, 17] and their classical analog in
optical [18-21], acoustical [22—28] and mechanical [29-40] systems may provide an elegant solu-
tion to this problem. TIs support unique edge states protected by the intrinsic bulk bands topology,
regardless of the local perturbations such as defects or disorders. Inspired by this preeminent fea-
ture, the ultra-sharp spectrum of Fano resonances can be guaranteed by topological protection in
1D acoustic/mechanical systems [15, 41]. In 2D systems, a topological waveguide and a trivial

cavity are proposed to serve as the bright and dark modes, respectively [42—44]. By placing a care-



fully designed cavity besides the topological waveguide, a coupler can be constructed to support
both constructive and destructive interferences between the two modes, which creates a topological
Fano resonance. However, only the robustness of the bright mode is guaranteed by the topological
protection, while the dark mode, i.e., the cavity mode, still remains trivial and less robust.

Here, we harness the very recently discovered higher-order topological insulators (HOTTs) [45—
59] to achieve a robust dark mode. Generally speaking, an n-order topological insulator in a d-
dimensional system can support (d — n) dimensional topological states, where the order n > 2
indicates a higher-order topology, while n = 1 refers to the conventional TIs [60]. Unlike the
conventional TTs with edge states, which has one lower dimension than that of the bulk, the HOTIs

host topological corner states whose dimension is at least two less than the bulk. Hence, we replace
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Figure 1: Illustration of the occurence of toplogical Fano resonance. (a) The schematic view of the 1st-order
topological edge state and its transmission spectrum, (b) The 2nd-order topological corner state and its transmission
spectrum, (c) the robust topological Fano resonance and its ultra-sharp and antisymmetric transmission line resulted

from the coupling between the topological edge and corner states.



the trivial cavity by the second-order topological insulators (SOTIs), which supports topologically
protected OD corner states. By integrating the 0D topological corner state and the 1D edge state in
a properly designed 2D phononic crystal structure, we realize a topological Fano resonance with
both topologically protected bright and dark modes. Specifically, as conceptually depicted in Fig.
1, we construct a first-order topological edge state to serve as a bright mode [Fig. 1(a)], and a
second-order topological corner state to be the dark mode [Fig. 1(b)]. The coupling of these two
modes can be achieved by a proper arrangement of regions occupied by the topological insulator
(TT) and the ordinary insulator (OI). As a result, a topological Fano resonance can be expected to
occur around the resonant frequency of the dark mode, as shown in Fig. 1(c).

The arrangement of the rest of this paper is outlined as follows: In Sec. 2, we introduce a
phononic crystal plate with breathing honeycomb unit cells, and show that the shrunken (type A)
and expanded (type B) lattices belong to distinct topological phases. In Sec. 3, we demonstrate the
existence of the first-order topological edge states confined at the domain wall formed by different
topological structures. We then show that these two edge states are in fact not gapless, further-
more, the edge state gap can be tuned by alternating the geometrical parameters. This is followed
by Sec. 4 in which we illustrate the second-order topological corner states that reside within the
edge state gap. In Sec. 5, we propose a compound lattice structure with two types of domain walls
that respectively supports topological edge states as well as the in-gap topological corner states at a
common frequency. We show that within an extremely narrow range around this specific frequency,
the topological edge and corner modes will undergo both constructive and destructive interferences,
resulting to an asymmetric and ultra-sharp transmission line, i.e., a Fano-like resonance. We further
illustrate in Sec. 6 that the topological Fano shape response can be preserved and the resonance fre-
quency shift is very small at the presence of various geometrical imperfections, including random

rotations or deformations. Finally, we summarize the main results of this paper in Sec. 7.

2. The bulk band structure and topology of the phononic plate

We consider the flexural wave propagation problem in a thin elastic plate attached by mass-
spring oscillators with a honeycomb arrangement as depicted in Fig. 2(a) and (b). The yellow
background and the white circles represent the homogeneous plate and the periodic oscillators, re-

spectively. Each unit cell comprises six identical resonators located at the vertices of a hexagon with
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Figure 2: Schematic view of the phononic plate. (a) Top view of the phononic plate in the Xy plane, each white circle
represents one oscillator. (b) The perspective view of one unit cell. (c) The first Brillouin zone of the honeycomb

lattice.

side length R, while the lattice constant is denoted by a. The phononic crystal plate is created by pe-
riodically repeating one unit cell along the lattice vectors a; = a(1,0) and a, = a(1/2, V3 /2). The
first Brillouin zone and the reciprocal lattice vectors b; = 27/a(1, -1/ \/§) and b, = 27/a(0,2/ \/§),
which satisfy the relation a; - b; = 2n6;;, are displayed in Fig. 2(c).

For a specific geometrical configuration that R = a/3 (denoted by Ry), the lattice sustains
a fourfold degeneracy in the dispersion curves and a double Dirac cone occurs at the Brillouin
zone center due to the zone-folding mechanism [20]. By varying the ratio between R and a, the
switching between distinct topological phases can be achieved. Briefly speaking, for a shrunken
cell, i.e., R/a < 1/3, the corresponding band gap features a topologically trivial phase, while for
an expanded cell that R/a > 1/3, it is topologically nontrivial [20, 50], as we will describe below
later. It is worth noting that the above scheme to create topologically distinct phases was widely
used to achieve TIs by mimicking the quantum spin Hall effect [20, 25, 31, 61, 62] or to realize
recently proposed SOTIs [50, 52, 57, 63] in classical wave systems. Here we adopt this mechanism
to realize both the topological edge and corner states simultaneously at the same frequency, and

investigate their coupling effects and the resultant topologically protected robust Fano resonance.

2.1. Weak form for elastic wave equations in periodic systems

Weak forms are powerful mathematical tools to solve partial differential equations (PDEs),
especially in finite element formulations. To obtain the band structure and to discuss its bulk
topology of the proposed phononic crystal plate, we first deduce the weak form formulation for
three-dimensional elastodynamic equations in periodic systems. Its implementations to the flexural

wave problems in phononic plate structures will be discussed in the next section.
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For elastic waves in homogeneous and linear elastic materials, the equations of motion without
body forces expressed in terms of components with respect to a Cartesian coordinate system (x, y, z)
are

O'ij,j—pii,-=0 (1)

where p is the mass density, o; and u; (i, j = x,y, z) denote respectively the Cauchy stress tensor
and the displacement vector components, and ii; represents the second derivative of u; with respect
to time. Note that the comma in the subscript denotes partial differentiation, and that the summation
convention over a repeated subscript is adopted.

The Cauchy stress tensor o and the infinitesimal strain tensor € are related by the constitutive
equations, or known as Hooke’s law,

gij= Ci kIEKL (2)

where C;jy, is the four-order stiffness tensor, and the strain-displacement equations are
1
Eij = E(ui,j +uj;) 3)

The weak form for Eq. (1) can be derived by multiplying itself by a test function using variation
notation du;, and then integrating the result over the solution domain € [64]. The terms with
derivatives of stresses are treated by integrating by parts using Green’s theorem, which yields

f[péuiii,- + Ou; jori;ldV — f ou; - oyndS =0 “4)
Q a0
where 0Q = 0Q, U 0, denotes the boundary surface with the subscripts u and ¢ refer to the
boundaries with prescribed displacements and tractions respectively, n; is the j-th component of
the normal vector. The boundary integration term can be simplified by removing the essential
boundary condition part since 6u; = 0 is valid on d€,, and preserving only the natural boundary
condition part which is o;n; = f; with f; being the known traction on 0€2,.
According to the Bloch theorem, the displacement field u; = u;(x,y,z) in periodic structures

with lattice vectors a; has the following form
w; = i exp(ikix;) &)

where k; is the wave vector component, i; is the cell-periodic counterpart of the Bloch wave u;,

which has the same periodicity with the unit cell. We stress that the repeated subscript implies the
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summation convention. From Eq. (5), the derivatives of the displacement field can be expressed as
Uj; = (I:\l,‘,j + lk]ﬁ,) CXp(ik[X[) (6)

Consequently, the variation term ou; in Eq. (4) should be replaced by its complex conjugation 6u,
since the integration represents an inner product operation. Inserting Eq. (6) back into Eqgs. (2) —
(3), it can be seen that the stress and strain tensors are also Bloch functions, i.e., they have similar

expressions to Eq. (5),

g = 6’,‘] CXp(ikl.X[) (721)

8,'j = éij CXp(ikl.X[) (7b)

(@, j + ik;iy;) + (@Lj; + ik;ii )], and &5 = Cijuéw. Now inserting Egs. (5) — (7) back into

where &;; = %

Eq. (4) yields the weak form for wave equations in periodic structures as
f[p&itfﬁ,- + 5(éjj)é'ij]dV—f it} - fidS =0 ®)
Q 0y

in which the identity ou; jo;; = 6(g;;)07;; is used with the symmetry nature of the stress tensor being
taken into consideration. We stress again that ou; and ou; ; have been replaced by their complex
conjugations as required by the complex-valued inner product, and that an auxiliary function f; =
fiexp(—ik;x;) where f; = o;n; is introduced to make the expression of Eq. (8) remain compact.
The weak form Eq. (8) is applicable for Bloch modes in general 3D periodic solid materials,
which can be solved efficiently by using the weak form PDE module of COMSOL Multiphysics,
combined with periodic boundary conditions imposed on i;. Moreover, when considering the flexu-
ral waves in elastic plates whose thickness £ is very small compared with the other two dimensions,
additional assumptions regarding the behavior of such structures such as the Kirchhoff theory for
thin plates or the Reissner-Mindlin theory for thick plates, can further reduce the formulation from

complete three- to two-dimensional equations.

2.2. Weak form for flexural wave in phononic plates
In thin plate theory, the deformation is represented by a single variable w, the out-of-plane
displacement of the mid-plane of the plate. This displacement is governed by a four-order PDE

according to Kirchhoff’s assumption, which introduces second derivatives of w in the expressions



of strains. However, the requirement that both w and its derivatives need to be continuous brings
more difficulties in the finite element formulations. In contrast, it turns out that the thick plate
theory is simpler to implement in the finite element analysis, since only up to the first derivatives
of the dependent variables appear in the strain terms. According to the Reissner-Mindlin plate the-
ory, in which the transverse shear and rotary inertia are taken into consideration, the displacement

components for flexural motions are expressed in the forms [65]

u(x, Yy, Z) = _ng(x’ }’) (93)
v(x,y,2) = —z20y(x,y) (9b)
w(x,y,z) = w(x,y) (%¢)

where 6, and 6, are the local rotations of the normal to the mid-plane of the plate, with respect to
the x and y axis, respectively. The strains now can be separated into bending and transverse shear

parts as follows

Z

Exx = _Zex,xv Eyy = _Zey,ya Exy = _E(Qx,y + gy,x) (103)
1 1

Exz = 5(_9)( + W,x)’ &y, = 5(_9)1 + W,y) (10b)

Note that the comma in the subscript implies partial differentiation. The flexural motions of the
plate can be approximately regarded as a plane stress condition, thus the stresses corresponding to

the strains above are

Oxx = 1_—1/2(8” + ngy) (1a)
E

Ty = Ty + v (o)

o= pe;; (0 # jand i, j = x,y,2) (1)

where E, p and v are the Young’s modulus, shear modulus and Poisson’s ratio of the isotropic
plate material. Considering that the flexural wave propagates in the xy plane, the out-of-plane com-
ponent of the wave vector should be zero, i.e., k, = 0, while the other two are retained. Therefore,
according to Eq. (5) for the Bloch waves in three dimensions, the displacements in Eq. (9) can
also be expressed in a similar manner, for example, u = —z6, exp(ikxx + ikyy) with 0,(x, y) a peri-

odic function. Finally, substituting Eqgs. (9) — (11) into Eq. (8), and analytically performing the

9



through-thickness integration yields

f {Eph3((59;9x + 60°6,) + phow
A

1 3 A(0)xy A (0 A(0)xy A(0 A(0)x\ A(0
+ 5t [6E0FD) + 606 + 268060
+ 29H[0EYIGY + 5ED )] - 6" £}dA = 0 (12)
where A denotes the two-dimensional region of one unit cell, y = x%/12 is the correction factor
introduced to account for the fact that the shear stresses are not constant over the thickness [65], & is

the plate thickness, and the strain and stress terms with superscript - represent their z-independent

parts. The strain terms are given by

N A N A 1 4 N AN N

8D = by + ik,b,, é;(;) = Oy + ik, éfv(;) - E(Qx,y + ik + 0y + ik.6y) (13a)
1 . 1

80 = S0+, + ikow), &9 = 7Oty + ik, W) (13b)

and the stress terms can be subsequently obtained from Eq. (11).

The weak form formulation Eq. (12) is deduced from the weak form of 3D elastodynamic
wave equations, with specific assumptions made on the displacement fields to describe the flexural
motions of thick plates. Considering the periodicity of phononic crystal plates, the displacements
are further regarded as Bloch waves, resulting in the emergence of their cell-periodic counterparts
and the wave vector (ky,k,) in the weak form expression. In this paper, Eq. (12) is solved for
various wave vectors by using the weak form PDE module of the finite element software COMSOL
Multiphysics with the eigenvalue solver in two dimensions. Then the dispersion curves can be
obtained from the eigenfrequencies solutions. It is worth noting that the surface traction in the last

term can be determined by the reaction forces from the oscillators as will be detailed below.

2.3. The band structure and the topological phase transition

Consider the phononic crystal plate shown in Fig. 2, with lattice constant @ = 50 mm, thickness
h = 0.5 mm and the material constants Young’s modulus £ = 70 GPa, Poisson’s ration v = 0.3 and
mass density p = 2700 kg/m>. We assume that each oscillator has only one degree of freedom, the
vertical displacement parallel to the z axis. The time-harmonic vibration of the resonators interacts

with the elastic plate through the connecting springs, which gives the reaction force as [39]

10



d wiw?
a
£r) = ) me—"——w(R,)O(r — Ry) (14)
w2 —w
a=1 a

where m,, k, and w, = Vk,/m, are respectively the mass, spring constant and the resonant fre-

quency of oscillator @, which locates at R,,. 6(r) denotes the Dirac delta function.
For simplification we also assume that the resonant frequencies of the oscillators are sufficiently
higher than the working frequency we are interested in, with the limiting case being that the masses
are rigidly connected to the plate surface. In other words, we let the spring constant x, — +oco0 and

set the mass to be a finite value, for example m, = 5pa’h. Consequently, the force term Eq. (14)

can be further simplified as
6
£r) = ) maw™w(ry)5(r - Ry) (15)

This treatment can keep our physical model rather simple without introducing additional res-
onant features, and in the meantime, it does not affect the demonstration of the topological Fano
resonance phenomenon or the physical mechanism behind it.

We first consider the geometrical configuration for R/Ry = 1 (notice that Ry = a/3), which
corresponds to a perfect honeycomb lattice, or a phononic analog of graphene. In this scenario,
the primitive unit cell (i.e., the smallest one) consists of only two oscillators, while the unit cell
shown in Fig. 2(b) is in fact a supercell. This specific selection of an enlarged unit cell allows the
formation of a double Dirac cone at I point due to a band folding mechanism. By solving Eq. (12),
the gapless band diagram for R = R, shown in Fig. 3(a) unambiguously reveals the occurrence of
a double Dirac cone at 331.7 Hz, which is again confirmed by the theoretically predicted results
by k - p method (blue solid lines) which show a very good correspondence with the finite element
method (FEM) results (white open circles). For the details of the implementation of k - p method,
please refer to Appendix B. The right panel shows the field distributions of the four-fold degenerate
modes, which are denoted by p., p,, d_,» and d,, according to their symmetries. For example,
the dipole-like modes p,(y) are antisymmetric about the x(y) axis, but symmetric about the y(x) axis.
While the quadruple-like modes d,2_y(d,,) are symmetric (antisymmetric) about both x and y axes.
Besides the mirror symmetries, under a 7, operation (180° rotation), the p-modes will flip their
sign while the d-modes remain unchanged. It is worth noting that these four degenerate modes

are generally hybridized in numerical calculations and therefore the aforementioned symmetries
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are usually broken and thus may need to be constructed by a combination of the degenerate eigen-
modes. To overcome this shortcoming, we present a scheme based on projection (see Appendix A)
to reconstruct the mode symmetries. We have also presented the phase map of these eigenmodes in
Fig. A.10 for a better visualization of the rotational eigenvalue of them.

For values of R # Ry, the translational symmetry of the above two-resonator “primitive cell” is
broken, and thus the band folding mechanism is no longer applicable, which breaks the four-fold
degeneracy and opens a complete band gap between the two-fold p modes and d modes. Fig. 3(b)
presents the varying of the upper and lower gap limits when R/R, takes different values. Starting

from R/Ry = 0.7, as we increase the value of R/R,, the band gap decreases gradually and closes

type type type type
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Figure 3: Bulk band structures and the topological transition. The band diagram for the critical configuration when
R; = Ry, where a double Dirac cone is formed. The open circles refer to the FEM simulations whereas blue curves are
the results of k - p theory (see Appendix B). The eigenvectors at the I' point are shown on the right. (b) the topological
phase transition as R; varies revealed by the lifting of the Dirac cone degeneracy. (c) and (d) the band structures and

eigenmodes at I and M point for configuration A” and B’, respectively.
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when reaching at the critical point R/Ry = 1. If R/Ry is further increased, the band gap will reopen
again but with the eigenmodes switched their orders, i.e., the p modes correspond to the two bands
above the gap while the d modes correspond to the two below. Such a band inversion is often
accompanied by a topological transition from a trivial phase to a nontrivial one. In the case for
time reversal symmetry preserved Cg, breathing lattices, for values of R/Ry, < 1 the band gap is
topologically trivial and for those R/Ry > 1 it is nontrivial [20, 50]. This can be explained by
checking the (pseudo) spin Chern numbers based on an effective Hamiltonian obtained by k - p
method (see Appendix B). To have a deeper understanding of these two topologically distinct
phases, we plot the band structures of two example cases for R/Ry = 0.9 (lattice A’) and R/Ry = 1.1
(lattice B’) in Fig. 3(c) and (d). Good agreements between the k- p predictions and the first principle
FEM results can be found around I' point for bands 2 — 5, indicating that we can use an effective
Hamiltonian to describe the band structure and its topological properties. Besides, there are 3 bands
below the complete band gap, and their corresponding eigenmodes at I' and M points are displayed
in the right panels of each figure. The sign + (or —) marked in the band diagrams indicates that the
corresponding eigenmode has an even (or odd) C, rotation symmetry, and #I'® (#M) is the number
of eigenmodes that have C, rotation eigenvalue +1 at I' (M) points for all the bands below the gap.

Based on these two integer numbers, the C, topological invariant is defined as [50, 51]
[M] = #M — #T® (16)

which is a measure of the difference between the subspaces spanned by the bands below the gap
at M and I points in the C, representation. Besides, a C5 topological invariant can also be defined
in a similar manner as [K] = #K — #I'®, where #K and I'® are the number of eigenmodes below
the gap that have Cj rotation eigenvalue +1 for K and I' points, respectively. Therefore, the bulk

topology of the band gap can be characterized by [50, 51]

x = (M],[K]) a7

For example, a zero-valued y implies that the k-dependent Hamiltonian can be continuously
deformed along the path that joins the high symmetric points M (or K) and I" without closing the
band gap or breaking the symmetry, rendering the bulk topology trivial [50]. In contrast, y # (0,0)

reveals a nontrivial topology because the low-frequency subspaces below the gap at these points are
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interfaces along the k, direction. The inset in (b) shows a zoom in view near the tiny topological edge band gap.

non-equivalent. In our case, by checking the parities of the eigenmodes at M and I" points shown
in Fig. 3(c) and (d), we can obtain [M] = O for the configuration that R < R, while [M] = -2 for
R > Ry. As for the C; invariant, [K] = 0 is valid for all ratios of R/Ry in our system. This indicates
that the configuration that R > Ry is in a nontrivial phase with y = (=2, 0) # (0, 0) and consequently
one can expect the observation of corner modes localized at the intersections of topological domain

walls [50].

3. The first-order topological edge states

According to the bulk-edge correspondence, it is known that there exist a pair of topological
edge states confined at the domain wall formed by the two topologically distinct lattices. As shown
in Fig. 4(a), we calculate the band structure of a supercell consisting of 16 layers of lattice B
sandwiched in between 8 layers of lattice A (or A”) on each side, by applying periodic boundary
conditions on both the left-right and top-bottom edge pairs. Note that the top and bottom termi-
nation can be viewed as they were sutured together due to the periodic boundary condition, which
eliminates the boundary modes and allows us to focus on the edge states confined at the domain
walls.

Let us first consider the edge states confined at A’/B interface, as shown in Fig. 4(b). Clearly,

14



two branches of bands (red and blue solid lines) emerge in the common frequency range of the bulk
band gaps of lattices A’ and B. Moreover, the corresponding eigenmodes of these two bands feature
very localized amplitude-distributions near the topological domain walls (not shown). However, we
would like to mention that these two edge states are not gapless, and that there exists a tiny gap be-
tween them. The reason is that the C¢ symmetry of the entire structure is not strictly preserved due
to the deviations between lattices at different sides of the domain wall [31]. It can be expected that
this tiny gap could even be extended to be sufficiently large if the configuration difference between
the two lattices is further enlarged. This is indeed the case for the result shown in Fig. 4(c), where
the lattice A’, with geometrical configuration R/Ry, = 0.9, has been replaced by lattice A which
has a smaller value of R/R, (= 0.7). Compared with Fig. 4(b), it is much more obvious that there
exists a band gap in between the blue and red branches of edge states, making the topological edge
states gapped themselves. One may notice that there is another band gap between the upper branch
of topological edge state and the bulk states, but the second order topological corner modes are
expected to reside inside the band gap of the first order topological edge states. We will show later
that the existence of in-gap topological second-order corner states is guaranteed by the topological

origin of this edge band gap.

4. The second-order topological corner states

It has been shown that inside the topologically nontrivial bulk band gaps there exist topological
edge states along the domain walls. Similarly, if the edge band gap mentioned above also possesses
nontrivial topological classification, a new type of topological states will emerge at the intersection
of two domain walls, namely the second-order topological corner states. The corner modes are
spatially very confined near the corners, and they are well isolated from the bulk and edge states in
the frequency spectrum.

To illustrate this point, we consider a hexagon-shaped crystal stacked by type A unit cells (col-
ored in blue) coated by a type B cells (red) which features a global Cg, symmetry that is compatible
with the symmetry of the unit cell, as depicted in Fig. 5(a). These two types of lattices possess
different topological invariants y, thatis y = (0, 0) for lattice A while y = (-2, 0) for lattice B, as we
have already stated. Each vertex of the inner hexagon region is the intersection of two 120°-angled

neighboring topological interfaces. Note that the 60°-angled interface corresponding to a triangular
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Figure 5: The second-order topological corner states. (a) The schematic view of the hexagonal structure and var-
ious lattice imperfections. (b) The normalized out-of-plane displacement distribution of the corner state. (c)-(f) The
eigenfrequency spectra of the lattice structure under various geometrical perturbations: (c) without any perturbations,

(d) with a cavity, or disorders introduced by randomly (e) rotating or (f) deforming several cells near each corner.

shape lattice A is not considered here for two reasons, the first reason is the lattice termination or
interfaces should be compatible with the unit cell symmetry [51], and the second reason is that
the corner states at obtuse-angled corners are topologically protected while those at acute-angled
corners are not [52]. Besides the perfect periodic structure, we also introduced three types of pertur-
bations on the crystal to demonstrate the robustness of the corner states with topological protection,
including a cavity by removing one resonator near the corner, or disorders induced by randomly
rotating or deforming seven-unit cells close to the corner, schematically shown in the right pan-
els in Fig. 5(a). The calculated eigenfrequency spectra for the perfect and perturbed crystals are
shown in Fig. 5(c) — (f), and a typical mode shape corresponding to one of the six corner states
highlighted by red dots in Fig. 5(c) for the perfect lattice is plotted in Fig. 5(b). The result in Fig.

5(c) again illustrates the existences of topological edge states (blue dots), and more importantly
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the in-gap topological second-order corner states (red dots, around 335 Hz), which are not directly
predictable from the edge-projected band diagrams. The spatial localization of the corner states is
unambiguously demonstrated by the eigenmode distribution, in which only a small region near the
corners has nonzero out-of-plane displacements.

Ensured by their topological origin, the in-gap topological second-order corner states are not
only frequency-isolated but also are robust against structure imperfections as long as the lattices on
both sides of the interface hold the topological classification. In other words, the corner-localized
modes will be preserved, and their corresponding eigenfrequencies won’t deviate too much from
the original values in the presence of various types of perturbations on the perfect lattice (without
closing the bulk gap), such as removing resonators, randomly rotating or deforming several unit
cells near the corners. The eigenfrequencies of the perturbed crystals for these three cases are
listed in Fig. 5(d) — (f). Comparing them with Fig. 5(c) reflects two important facts: the first one
is that the eigenfrequencies of the in-gap topological corner states almost remain unchanged, and
the second one is that inside the trivial gap, the trivial corner modes (green dots), however, either
appear or disappear under different circumstances. Even in the case of their presence, the trivial
corner modes may emerge at different frequencies or even come into multiple groups, completely
dependent on the specific perturbed crystal, which makes them much less useful when compared

with the robust topological corner modes.

5. Occurrence of topological Fano resonance

We propose a three-component phononic plate structure, as shown in Fig. 6(a), to investigate
the Fano resonances induced by the coupling between topological edge states and the second-order
corner states. This phononic crystal is composed of 11 layers of type A’ lattices (R/Ry = 0.9) on
the upper half, and 11 layers of type B lattices (R/Ry = 1.3) on the lower half but with a semi-
hexagon region replaced by type A lattices (R/Ry = 0.7). According to our previous discussions,
the A’/B interface supports nearly gapless topological edge states (termed as the bright mode),
and the A/B interfaces support the gapped edge states and the in-gap second-order corner states
(termed as the dark mode). One can anticipate that the bright mode and dark mode will undergo
very strong interactions around the resonant frequency, while at other frequencies their couplings

are negligible. Moreover, the phase variation of the bright mode is continuous and slow, but the
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Figure 6: The occurrence of topological Fano resonance. (a) schematic view of a sandwiched lattice with A’/B/A
configuration that supports the coupling between topological edge states and second-order corner modes. (b) The
normalized frequency response of the topological edge state. (c) and (d) the wave fields magnitudes [w(x, y)| at the dip-

and peak-frequency, respectively.

dark mode has a phase shift of & near the resonant frequency, leading to a transition from an
out-of-phase interference to an in-phase one, or vice versa. This abrupt change finally creates an
asymmetric lineshape in the frequency response within a very narrow band, which is a Fano-like
resonance with topological origins for both the bright and dark modes.

The FEM-based method in previous sections are suitable for band structure (eigenproblmes)
calculations, while hereafter we turn to utilize the computationally efficient multiple scattering
method (MST) [29] (see Appendix E for details) to simulate the wave field distributions and fre-
quency response of the proposed lattice under a specific source excitation. Note that even the MST
based on the Kirchhoff-Love plate theory is valid only for low frequencies and long wavelength
limit, the MST simulated results show good correspondence with the FEM calculated bandgaps
(see Fig. 4 and Fig. C.11 for comparison). Fig. 6(b) shows the MST simulated frequency re-

sponse with respect to its maximum. Here the frequency response is defined as the ratio between
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the detected displacement signal and the excited source signal. In the calculation, we have set
d = 3dy where dy = \/ga/ 2 is the height of each unit cell, and the wave field is excited by a
unit-magnitude point source. Around the resonant frequency of corner modes (~ 335 Hz), we can
clearly see the resultant asymmetric and ultra-sharp Fano line. It reaches the maximum very quickly
at 5 = 335.3870 Hz from the minimum at f; = 335.3640 Hz, and the ratio between the maximum
and the minimum is 1/(3.557 x 1073) = 281. The Q-factor for the Fano resonance is given by the
ratio between the average frequency and the frequency difference of the peak and dip value [66],
based on which we found the Fano resonance here has an ultrahigh value that Q = fy/Af = 14582.
The out-of-plane displacement distributions exited by a unit-magnitude point source at f; and f> are
shown in Fig. 6(c) and (d), respectively, which vividly demonstrate the forbidden and pass states
due to the destructive and constructive interference between the bright and dark modes. This ultra-
sensitive switching phenomenon may provide potential applications in acoustic sensors or switches.
Moreover, because both the bright and dark modes, the fundamental ingredients to create the Fano
resonance, have the topological protection features, this particular type of Fano resonance may
stand out from its conventional counterparts as it is more robust against structural imperfections.

The lattice configurations for other values of d will affect the peak- and dip-value of the Fano
resonance, but the resonant frequency, as well as the ultra-sharp and asymmetric features of the
response curve will be preserved. The frequency responses of the topological edge states coupled
with the corner modes at different values of d are shown in Fig. 7(b)-(e). As a reference, the edge
states frequency response without edge-corner couplings are also displayed in Fig. 7(a), which is
in fact a zoom-in view of Fig. C.11(d). The main profile of the frequency response in Fig. 7(a),
especially the two large broad peaks around 333 and 335 Hz, are maintained even in the presence
of the edge-corner couplings. The significant result of the edge-corner coupling is the emergence
of the Fano resonance. In addition, by comparing Fig. 7(c)-(e), it can be concluded that larger
values of d means weaker coupling strengths, which will decrease the ratio between the peak- and
dip- values, making the Fano resonance less observable. Note that around the Fano resonance, the
response changes abruptly, thus a very fine frequency sweep are needed, as shown in the insets.

It is also worth noting that for d = 2d,, the edge-corner distance is too close such that the
response is affected strongly by the corner modes, and presents a different behavior with other

cases. To qualitatively explain this, we simplify the topological lattice system into a 3 degree-
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Figure 7: Fano lineshapes in the MST simulated frequency responses for various edge/corner distances. (a) The
frequency response for the A’/B edge states. (b)-(d) correspond to d = 2d, to 5d, with dy the height of one unit
cell. The insets show sufficient fine sweep of the response spectra near the Fano resonant frequency in the numerical
calculations. (f) The schematic view of the lattice configuration that supports edge-corner couplings. (g) The simplified
discrete 3 degree-of-freedom (DOF) mass-spring system. (h)-(1) The frequency response for the 3-DOF system in (g)
for various values of coupling strengths &. The dimensionless parameters are k; = 1,m; = 1,¢; = 03,ky = 4,m; =

l,co =0.01,k3 = 1.1kp,m3 = my, c3 = c3,mp = 0.5, and £ is the tuning parameter.

of-freedom (DOF) system as shown in Fig. 7(f)-(g). Since the both corners states are isolated
modes, thus they can be viewed as a 1-DOF oscillator with very small damping ratio, while the
broad band topological edge states span over a broad spectrum, thus an oscillator with a large
damping ratio is needed to exhibit a similar behavior (see the particular parameters we chose in
Fig. 7). Next, we apply a force F(2) on m; and record its displacement response X(Q2) and
obtain the frequency response function H(Q) = X(Q)/F(Q) where Q is the dimensionless angular
frequency. The amplitudes of H(C2) for various values of & are plotted in Fig. 7(h)-(1). Here
¢ denotes the coupling strength between m; and m, 3, directly mimicking the couplings between

the topological edge and corners. If we ignore the first peak in Fig. 7(a)-(e), it can be seen that
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our simplified 3-DOF system matches well with the real topological edge/corner coupling lattice
by comparing the frequency responses of both systems. Note that the two corner modes are not
completely degenerate, thus we have let k3 slightly deviates from k,. Through the calculation on
the 3-DOF system, we found that there are in fact always two Fano resonant peaks [see Fig.7(i)],
corresponding the two corners. The competition between edge-corner coupling () and the corner-
corner coupling (77) determines which one of the two Fano profiles is dominant. For ¢ = 47, both
Fano profiles are observable, which explains Fig.7(a). As the coupling strength & decreases shown
in Fig.7(j)-(1), both Fano resonances decrease quickly and only one of them is detectable, which

explains Fig.7(c)-(e).

6. Robustness of topological Fano resonance

In this section, we investigate the robustness of the topological Fano resonance when various
types of structural imperfections are deliberately introduced into the system. From the discussions
in the previous sections, we know that the Fano resonance occurs around the resonant frequency of
the dark mode, i.e., the topological second-order corner mode. So, it is natural to consider that the
corner mode influences the Fano resonance more significantly, therefore we focus on the variations
of the frequency response for the structural imperfections acting on the corners.

As a first example, we consider the rotational perturbations by assigning random rotational
angles (schematically illustrated in Fig. 5(a)) independently for each of the seven cells around the
corners. For simplification, both corners are set to be under exactly the same perturbation. The

random angles are given with an increasing of the angle magnitudes, from |f] < 5° to |f] < 10°.
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Figure 8: The robustness of the topological Fano resonance when different random rotational angles are intro-

duced for (a) |A6] < 5°, (b) |A] < 8° and (c) |Af] < 10° when d = 3d.
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For each perturbative level, we generate 3 different groups of the random angles and repeat the
calculation for each of them. From the results listed in Fig. 8, we can conclude that the Fano shape
response is always preserved even though the resonant frequency may deviate slightly from the
original point. As the magnitudes of the angles increase, the frequency shift of the Fano resonance
tends to take a larger value. However, even for the case that || < 10°, we can see the largest relative
frequency shift is approximately estimated as |333 — 335|/335 = 0.6%, which is very small.

Then we investigate the influences of the deformations by assigning independent random res-
onator to centroid distances on the same seven cells considered above. Similar to the case of
rotational perturbations, here we also consider different magnitudes of the distances in an increas-
ing manner from |AR/Ry| < 5% to |AR/R| < 10%, and for each level we also generate 3 groups of
geometrical configurations, upon which the calculation is repeated. The results shown in Fig. 9 are
very similar to those shown in Fig. 8 for the rotational cases, from which we can conclude again
that the Fano lineshape response is always preserved, and the frequency shift is comparatively small
even we impose the maximum value of 10% geometrical perturbations.

Note that if we remove one resonator around the corner as we did in Fig. 5(a), we can expect
that the influence on the Fano resonance is also neglectable (not shown) since the eigenfrequency
spectrum in Fig. 5(d) reveals that the topological corner modes are very robust. We compare the
topological corner states and trivial defects with disorders in Appendix D, which indicates that
the frequency of the topological corner states still remains in the gap of edge states and are only
perturbed slightly, while the trivial point defect with disorders will suffer a huge shift across the

whole bandgap of the bulk states. This unambiguously reflects the robustness of the topological
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Figure 9: The robustness of the topological Fano resonance when different random resonator-centroid distances

are introduced for (a) |AR/Ry| < 5%, (b) |AR/Ry| < 8% and (c) |AR/Ry| < 10% when d = 3d,.
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corner modes and topological Fano resonance.

7. Discussions and Conclusions

In conclusion, we have investigated the topological Fano resonance induced by the interference
between the first-order topological edge states and the second-order topological corner modes by
taking an elastic phononic crystal plate as an example object. The breathing honeycomb lattice un-
der consideration in this work is capable of hosting simultaneous topological edge states and corner
states, which can be achieved simply by tuning the geometrical parameters. When both topologi-
cal states are integrated into the same platform, they can have the possibility to couple with each
other. Hence, the constructive and destructive interferences between them result in the ultra-sharp
and asymmetric Fano resonance. Because both of the bright and dark modes are topologically pro-
tected, the resultant Fano resonance features a unique advantage of robustness against various kinds
of geometrical imperfections, which is also quantitively confirmed by our numerical calculations.

We also demonstrated that the coupling strength between the topological edge and corner modes
has a significant influence on the Fano-like spectrum. As the distance between the edge and corners
increasing, the coupling strength decreases gradually, weakening the resultant topological Fano
resonance. By qualitatively simplify the elastic continuum structure into a 3-DOF system, we found
that if the two corner modes are not rigorously degenerate, there are in fact two Fano resonant
profiles. The relative magnitudes of these two Fanos depends on the competition between the
edge/corner and corner/corner couplings. In our case, only for d = 2d, could we observe two
Fano resonance, while once d > dj, one of them almost disappears and becomes not detectable.
Furthermore, we found that if two corners are placed with unequal distances from the topological
edge, two nested ultra-sharp peak-dip pairs will also emerge.

It is worth noting that the lossless phononic plate attached with mass-spring resonators proposed
here is a prototype design. For practical considerations, We discussed in Appendix G the effects of
dissipation and concluded that the increasing of the loss coefficient will gradually flatten the ultra-
sharp Fano line-shape and the large peak-dip discrepancy. If the loss coefficient is large enough, the
asymmetric Fano line will be eased out and the Q factor decreases quickly. For the experimental
realization of the proposed robust Fano resonance, we suggest a more physically accessible way to

model the mass-spring resonators by using elastic pillars in the future experimental works, such as
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on-chip micromechanical phononic plates with pillars etched on silicon chips [33, 56], or similar
arrangements on the macroscale phononic crystals by using 3D printing [67] or other techniques
[57, 68]. Our findings may find applications in highly sensitive and accurate filters, sensors, and
switches.

During the submission of this paper, we became aware of Ref. [69] which also utilized the SO-
TIs to realize the robust dark modes to construct a topological Fano resonance in photonic crystals.
We would like to note that Ref. [69] adopted both armchair and zigzag topological interfaces to re-
alize gapless topological edge states and in-gap corner modes with common frequencies to further
guarantee the Fano interaction, while in our work it is simply realized by independently tuning the
geometrical configurations of unit cells in different regions of the phononic crystal, and only one

type of topological interface is needed.
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Appendix A. Symmetry reconstruction of degenerate eigenmodes

The Bloch modes usually exhibit certain symmetries at high-symmetric point in the reciprocal
space. But for degenerate modes, these symmetries might be hidden because of mode hybridization,
which is very common in numerical simulations. In this section we demonstrate how to recover
the symmetry of the modes from the hybridized ones, which is very useful for topological index
analysis and effective Hamiltonian deduction.

As shown in Fig. A.10, (i = 1,2,3,4) are four degenerate eigenmodes at the double Dirac
cone, which are clearly hybridized due to the indetermination resulting from numerical calculation
in FEM analysis. Our strategy is as follows: first, to find some linear combination of ¥; such
that the new modes ¢; can be grouped into two categories (¢, ¢,) and (@3, ¢4), depending on their
corresponding eigenvalues of 7, operation (rotating 180° about the origin), as depicted in the second
row of Fig. A.10. Similarly, the second step is to find some linear combination of (¢, ¢;), such that

the new modes (¢, ¢,) can be distinguished by their parities, and the same for (¢3, ¢4), as shown in
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the last row of Fig. A.10. The key of these two steps is to find the mentioned linear combinations.
Below we demonstrate how to fulfill it by taking the first step as an example.

Suppose the four modes ¥; (i = 1,2, 3,4) satisfy the following eigenvalue problem,

Hy; = W, (A.T)
And the rotation operator 7, commutes with H, which means

F2H = Hy (A.2)
Now let H act on 7,i;, we have

Hywi = P HY; = () = A7) (A.3)
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Figure A.10: The reconstruction of the symmetric eigenmodes from the hybridized modes. The phases of these modes

are also shown to illustrate their rational eigenvalues.
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which unambiguously reveals that 7,i; is also an eigenvector of H, corresponding to the same

eigenvalue A. Therefore, 7,y; must lies in the subspace spanned by ¥;(i = 1,2,3,4),
4
g = > S (A4)
=1
in which §;; represent some expansion coefficients that can be identified as
Sij = Pais ) (A.5)
Once the 4 X 4 matrix S is obtained, we consider the following eigenvalue problem
STv=nv (A.6)

in which 1 and v are the eigenvalue and eigenvector of §T. Now let v be the coordinate of some

vector in span{y;}, denoted as ¢, which means
o= vt (A7)

Therefore, 7,¢ can be evaluated as follows,

4 4
Fap = Zvlrzw, ZV,ZS,]wJ Z%ZV,S Z%U"J (A.8)

j=1 i=1 j=1
We find that ¢ is an eigenvector of 7,, with the corresponding eigenvalue being 1. This reveals
that ¢ defined in Eq. (A.7) is symmetric under the operation 7.
The aforementioned procedure indeed helps us to transform i; to ¢;, as shown in the second
row of Fig. A.10. By applying similar method, we can finally obtain the four modes listed in the

third row of Fig. A.10, with well recovered symmetries.

Appendix B. The effective Hamiltonian by k - p method

In this section we give the explicit form of the reduced effective Hamiltonian of the continuum
elastic system by using the k - p perturbation method. We start from a group of eigenfrequencies
wyk, and their corresponding eigenmodes w, at ko point, which can be numerically obtained by the
method illustrated in Sec. 2 and Appendix A. With these eigen-solutions at hand, the eigenmodes

at ko + Ak are supposed to be the linear superposition of w,,, and are inserted back into the
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equation of motion, which gives rise up to a small matrix eigenvalue problem, i.e., the effective
Hamiltonian H. By taking the symmetry properties of the eigenmodes w,, into consideration, it is
demonstrated that the explicit form of the effective Hamiltonian can be obtained without explicitly
solving the eigenvalue problem. Furthermore, by analytically solving the eigenvalue, the results
show good agreements with that from the FEM simulations for small |Ak|, as shown in Fig 3.

We consider the bands in the vicinity of I" point (ky = 0), by first expanding the cell-periodic

counterpart of the Bloch wave at k = Ak in terms of those at I,
Wak(r) = " Au()ivr(r) (B.1)
]

where A is the k-dependent expansion coefficient. Inserting this expression back into Eq. (5)) we
have

Wak(r) = explik - 1) > Au(k)wir(r) (B.2)
l

For simplification and compactness, from hereafter, we adopt the biharmonic equation for flex-

ural wave in which the field w,;(r) is governed as
DV [V, (r)] = phe*w(r) = f.(r) (B.3)
Similar to our previous work [39], by substituting Eq. (B.2) into Eq. (B.3), we have
D" Al |4Dk - (VY2 = p' h(wy — 0lp) | wir(r) = 0 (B.4)
[

in which the higher order of |k| has been neglected, and the effective mass density p’ is expressed

as

1 6
pr=p+y > mé(r - R)) (B.5)
j=1

in which m and R; are the mass and location of the attached resonator, and 6(r) is the Dirac-delta

function. Considering the orthogonality of the Bloch functions,

f P W OWr(dr = 6,, (B.6)
cell

we arrive at the final eigenvalue problem

D ke pu = (@l = @3)6n| Au =0 (B.7)
1
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where
pu = 4D f wip - iV(Vwr)dr (B.8)
cell

As we are interested in the dispersion around the double Dirac cone, and the other bands are
far away from the Dirac frequency (Fig. 3), the infinite summation in Eqgs. (B.4) and (B.7) can
be truncated and only the fourfold degenerate modes are conserved. Therefore, p is reduced into
a 4 X 4 matrix in which each entry itself is a two-dimensional vector. The reduced Hamiltonian is
given by

Hij=k-pij (B.9)

Now let us take the symmetry of the eigenmodes into consideration to simplify the above ex-
pression. As demonstrated in Fig. 3, the p and d modes have different mirror symmetries along two
coordinate axes. These four modes are arranged in the order of p,, py,d,>_,» and d,,. Therefore, the
calculation of p;; require us to calculate p; and iV(V?p,). To be brief, the parity of all the terms
that are involved in the calculation of py; is listed in Table B.1, in which the sign + (or —) represent
the certain term is even (or odd) with respective to the corresponding axis. For example, the signs
of the first column in Table B.1 indicate that p, is odd and even with respect to the x and y axis,

respectively. The rest entries can be understood in the same way.

Table B.1: The parity of each term needed in the calculation of py;

pr i0.(V2py) i0,(VPpy) pi-id(VPpy) pi-idy(VPpy)

x - + - - +

y + + - + -

According to the last two columns of Table B.1, one can conclude that

f Pt i0 (Vi podr =0 (B.10a)

cell

f p-i0,(Vip)dr =0 (B.10b)
cell

Hence, p;; = (0,0).
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After analyzing all the term of p;; in the similar way, the matrix form of p is collected as follows

(0,00 (0,00 (B*,0) (0,B"]
0,0) (0,0) (0.B) (B0
p4x4=( ) (0,00 (0,B) ( ) (B.11)
(B,0) (0,B") (0,0) (0,0)

(0,B) (B,0) (0,0) (0,0)

in which B is a pure imaginary number which need to be further numerically calculated. Substitut-

ing Eq. (B.11) back into Eq. (B.7), we obtain the following eigenvalue problem,

[0 0 Bk Bk
0 0 Bk Bk,
Bk, Bk, 0 0
Bk, Bk, 0 0 |

A = [0 - diag(w), w}, 0, )| A (B.12)

If we denote p. = (px % ip,)/ V2, du = (de_y + idy)/ V2, W) = (W) + @))/2, and A =

(w] — w})/2, we arrive at the final eigenvalue problem

HD = 1 (B.13)

in which the eigenvalue is 1 = w?

- w%, with the corresponding eigenvector @ to be the linear
superposition of the expanding coeflicients A according to the above base-transformation, and the

effective Hamiltonian is given by

[_A—ak? Bk
Bk, A + ak?

H = (B.14)

_A—ak® Bk,

Bk_ A+ ozkz_

where k = |k|, k. = k, % ik, and @ = |BI*/2A. The eigenvalues of H are analytically obtained as

w? — w3 = £ (A + ak?)? + |BPK? (B.15)

which can well describe the real behavior of the band structures in the vicinity of I" point, as shown

in Fig. 3(a), (c) and (d).
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Appendix C. The frequency responses for topological edge states

To provide more insights on the topological edge states and the aforementioned tiny gap, we
present the frequency response spectrum for the phononic crystal constructed from topologically
distinct lattices in Fig. C.11. As schematically illustrated in Fig. C.11(a), the upper half of the
presented phononic crystal, being type A (or A’) lattice, consists of more than 20 unit cells along
the x direction and 8 layers along the y axis, while the lower half made of type B lattice consists of
the exact same number of cells, forming a topological interface near the horizontal line y = 0. A
time-harmonic point source (marked by a star) is placed at the lattice center to excite the flexural
waves, and the multiple scattering method calculated out-of-plane displacement near the right outlet
is recorded and plotted in Fig. C.11(d) and (e) for A’/B and A/B interfaces, respectively. From Fig.
C.11(d) we can clearly see that in the case for A’/B interface, the responses are relatively large in
the bulk band gap, meaning the emergence of topological edge states. Fig. C.11(b) shows a typical

example of the out-of-plane displacement fields of the exited topological edge states at 335 Hz,

() (d) R
type A (or A) - A’/ B interface
— g — 1
3% e edge states
source probe % 1.0 - ) fie. (b
type B S tiny gap e ®
o
(0] ™
(b)10 0.5
ftype A’ g
§YPC A siessnsiianiany Z 0.0 : : , :
S e SN :
= 09 EE Hol 250 300 350 400 450 500
(e) A/B interface
~10 : : : o 1.5
Z edge states
(c)10 3 e 2T
g 1.0 tiny gap fig. (c)
s o -
= 07 €05
:
_10 T T T Z 00 T ' ! ! !
10 0 10 250 300 350 400 450 500
x/a Frequency (Hz)

Figure C.11: The frequency responses for topological edge states of A’/B and A/B interfaces. (a) The illustration
of the lattice configuration. (b) and (c) The wave field distributions for A’/B and A/B lattices at a common frequency
marked by black arrows in (d) and (e). (d) and (e) The calculated frequency responses for A’/B and A/B interfaces,

respectively.
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which is clearly localized near the domain wall. Note that a very tiny gap around 330 Hz can be
carefully detected inside the range of the edge states, as predicted by the band structure in Fig 4(b).
This tiny gap will become more visible if we enlarge the discrepancy between the two types of
lattices, as shown in Fig. C.11(e). In this case, the above excitation frequency lies into the band
gap and therefore the corresponding excited wave field shown in Fig. C.11(c) is forbidden to travel

along the domain wall.

Appendix D. Comparison between the topological corner and trivial cavity modes

In this section we calculated the eigenfrequency spectrums for the topological corner modes and

the trivial cavity modes with/without introducing geometrical defects. As shown in Fig. D.12 (a),

(a) (b)
360 360 - W
g é\ «mTopological corner
= 340 - = 340
5‘ 5 «® (perturbed)
S 320 - 5
=
£ g
B~ 300 <2
280
0
(©) (d)
500 A
g 450 - g
&' 400 A )
(] [}
= =
g 350 A g
= 23 o )
000 T 300 Nt e
25( T T 25( e T
0 50 100 150 200 0 50 100 150 200
Solution number Solution number

Figure D.12: Comparison between the robust topological corner modes and the trivial cavity modes. The eigen-
frequency spectrum of the topological corner states (a) with and (b) without perturbations, and the eigenfrequency
spectrum of the trivial cavity modes (c) with and (d) without perturbations. The corner modes are highlighted by blue

dots. The insets in each figure show a zoom-in view of the corner/cavity of the corresponding structure configurations.
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the topological corner is constructed in the same way as shown in Fig. 5(a), and the perturbation
on topological corner is realized by removing one resonator near the corner [white dots in the inset
of Fig. D.12 (b)]. While the trivial cavity is created by removing one resonator in a single phase
lattice (R/Ry = 1.3) as shown in the inset of Fig. D.12 (c), and the perturbation is achieved by
removing an additional resonator marked by white dots shown in the inset of Fig. D.12 (d).

It can be seen from Fig. D.12 (a) and (b) that a defect on the topological corner only slightly
perturb the frequency of the topological corner states, changing from 330 Hz to 333 Hz (blue dots).
While for the trivial cavity, it is evident from Fig. D.12 (c) and (d) that a defect will strongly
affect the trivial corner states such that the frequency change from 280 Hz to 483 Hz (blue dots).
Therefore, it can be concluded that the topological corner modes are more robust than the trivial

cavity modes.

Appendix E. The multiple scattering method for flexural wave in thin plates

In this section we briefly introduce the MST method following Ref.[29] for the total wave field
simulations under arbitrary incident wave fields, which is used in this paper for the calculation of

wave field distributions and the spectrum response curve. We can rewrite Eq. (B.3) as
Viw(r) — Kw(r) = Z 1. w(R)S(r — Ry), (E.1)

where k = (phw?/D)"* is the wave number in the homogeneous plate, a is a label of the resonators,

and 7, measures the resonant strength, which is given by

mey (,()2

ty = D (E.2)

For truncated finite clusters of resonators, the total wave field distribution under an external

incident wave can be semi-analytically solved using MST method: each resonator acts like a point
source and radiates a cylindrical wave. The total field is thus the superposition of all the scattered

fields and external incident field,
W(r) = win(r) + ) 1,w(R)G(r; R,), (E.3)

where wi,.(r) is the incident field which is known beforehand, and G(r; R,) = i/ (SKZ)[H(()I)(KV -

R,)) + 2i/nKy(k|r — R,|)] is the Green’s function which satisfies V*w(r) — k*w(r) = 6(r — R,) [29].
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Considering the total field at an arbitrary resonator’s position r = Rg, from Eq.(E.3) we have the

linear system

D (60 = 1G(Ry; R) | W(Ro) = Winc(Rp), (E.4)

(2

from which we can derive the displacement of each resonator. The total field can then be con-
structed by using Eq.(E.3). This semi-analytical method by using Green’s function constitutes an
efficient approach for the calculations of the total wave field response under any given incident

wave.

Appendix F. Double asymmetric Fano profiles by two different waveguide-corner coupling

strengths

In this section we consider the case when the distances between the edge and the two corners
are different, in which the frequency spectrum exhibits a double Fano-like ultrasharp profiles. Note
that we have demonstrated the influence of different values of d on the Fano-line profile in Fig. 7.
Since the Fano profile is almost not noticeable for d > 5dy, here we study the effects of different
coupling strengths by considering d; = 3d, and d» = 4d, as shown in Fig. F.13(a). Again, a
source and a detector are placed near the left and right port of the A’/B domain wall. The MST
calculated frequency response (solid red curve) is plotted in Fig. F.13(b) and the result for d; = 3d
and d, = 3d, (dashed blue curve) is also shown for comparison. It can be clearly seen from
Fig. F.13(b) that the ultrasharp asymmetric Fano-line profile still exists, the magnitude of which
reaches from almost zero to nearly unit very quickly, except the frequency has been slightly shift
compared with the case for two identical coupling strengths. The different point is that besides
this giant asymmetric Fano-line (denoted as Fano 1), we can observe another asymmetric spectrum
curve resides into the frequency interval of Fano 1, which we denote as Fano 2 [see the inset
of Fig. F.13(b)]. This phenomenon behaves like a hierarchy of Fano resonances. The Fano 2
also experiences an abrupt change in response magnitudes versus frequency, though the change of
magnitudes is very small. This can be ascribed to the weaker coupling strength for d, = 4d,. We
have further increased the value of d, such that d; = 3d, and d; = 5d,, in which case we found
the Fano 2 disappears and can be not be detected even we adopted a finer frequency sweeping step

(thus the result is not shown here).
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Figure F.13: Double asymmetric Fano profiles by two different waveguide-corner coupling strengths. (a)
schematic view of a sandwiched lattice with A’/B/A configuration that supports two different waveguide-corner cou-
pling strengths. (b) The normalized frequency response of the topological waveguide. (c) and (d) the wave fields
magnitudes [w(x, y)| at the dip- and peak-frequency for the giant Fano-line profile (Fano 1), respectively. (e) and (f)
the wave fields magnitudes |w(x, y)| at the dip- and peak-frequency for the tiny Fano-line profile (Fano 2), respectively.
Note that the frequency sweeping step is fine enough in the calculation to ensure the ultrasharp Fano-line profiles are

obtained correctly.

We have also shown the wave field distributions for the dip and peak frequencies for both Fano
1 and Fano 2. At the dip frequency of Fano 1, the detected signal at the right port is almost zero,

which is further confirmed by Fig. F.13(c), in which the topological edge state is not excited while
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only one corner mode has a large magnitude. As for the peak of Fano 2, we can see topological
edge state and both corner modes are excited. In the case for Fano 2, both at the dip and peak
frequencies the two corner modes are excited, and the edge mode discrepancy between the dip and

peak is not as evident as that for Fano 1.

Appendix G. The loss effects on the Fano resonance

In practical situations, the loss effects of the dissipation should be taken into consideration.
We consider again the three-component phononic crystal illustrated in Fig. 6(a). The geometrical
parameters remain the same as the lossless case, and the only difference is that we introduced a
complex-valued Young’s modulus such that E’ = Ey(1 + in) where E; is the modulus without
loss and the parameter 7 is a coefficient to account for the loss effects. A harmonic point source is
applied on the topological waveguide near the left port, and the simulated out-of-plane displacement
on the waveguide near the right port is recorded. The magnitude of the frequency response, i.e.,
the ratio between the detected signal and the source signal, is plotted below for various choices
of . Note that the lossless case [Fig. 6(b)] is also shown by dashed blue line for reference. We
can clearly see that as the loss coefficient 7 increases, the ultrasharp Fano line-shape and the large
peak-dip are flattened gradually. If the loss coefficient is large enough, the asymmetric Fano line

will be eased out and the Q factor decreases quickly.

1.0 =

O T

084 — N =0.01% A

& n =0.02%

2064 — n=0.03%

g‘ \
o e
3 1

§ 0.2 S
z N

0.0 . M
3353 3354 335.5
Frequency (Hz)

Figure G.14: The influence of the loss effects on the Fano line-shape spectrum response. The loss is introduced by
using a complex-valued Young’s modulus E” = Ey(1+in) for the plate material. The calculated displacement responses

for all cases are normalized with respect to the same factor, i.e., the maximum of the lossless response spectrum.
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Fano resonance features a unique advantage of robustness against geometrical imperfections
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