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stract

e Fano resonance, as a phenomenon of wave scattering, is based on the interaction betwee

bright mode” and a “dark mode” giving rise to an asymmetric and ultrasharp spectral pea

wever, the Fano resonant frequency is sensitive to structural imperfections such as defects

orders, which will shift the resonant peak, or even damage the Fano line shape. Here, we harne

coupling between the first-order and the higher-order topological insulators to overcome th

ortcoming. We construct a first-order topological edge state to serve as a bright mode, and

ond-order topological corner state to be the dark mode using the same base configuration. A

esult, a topological Fano resonance is expected to occur around the resonant frequency of th

rk mode. The robustness of the Fano resonance is verified by deliberately introducing variou

es of imperfections into the system. Our findings may further enhance confidence in usin

resonance such as acoustic switching, refractive index sensing, high quality factor filters, an

curate interferometers.

ywords: Topological edge states, second order corner modes, Fano resonance, ultrahigh Q

tor
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Introduction

Fano resonance, originally discovered in quantum systems, is a wave scattering phenomeno

turing asymmetric and ultra-sharp spectral peaks resulting from the interference between di

te and continuum scattering channels. It is named after Ugo Fano, for his contribution to th

oretical explanation for the scattering line shape of inelastic scattering between electrons an

lium atoms[1]. The wave interference is not exclusive of quantum mechanics, while it is a ge

l wave phenomenon and the occurrence of Fano resonance has been evidenced in other field

ch as photonic crystals [2, 3], plasmonic nanostructures [4, 5] and phononic crystals [6]. Tw

redients, including a broadband “bright” mode serving as a background state and a narrowban

ark” mode as an isolated state, are essential for the generation of Fano resonance in classic

stems [7]. Around the dark mode resonant frequency, the bright mode magnitude varies slow

th frequency, while the dark mode changes abruptly both in magnitude and phase. When th

ven force passes through the resonant frequency, both the in-phase and out-of-phase interaction

tween the two modes will take place within a very narrowband range. As a result, the constru

e and destructive interferences enable the transmittance to reach its maximum from the minimu

ry quickly, which creates the asymmetric Fano-like profile.

Based on such a straightforward formulation, advances in theoretical and experimental demo

ations of Fano resonance have been achieved in mechanical and acoustic systems [6, 8–14]. B

use of the asymmetric and ultra-sharp properties, Fano resonances in phononic crystals possess

riety of potential applications such as acoustic switching, refractive index sensing, high-quali

tor filters, and highly accurate interferometers. While the high sensitivity of the Fano resonanc

uires precise control and accurate fabrication [15]. Additionally, structural imperfections suc

defects or disorder may shift the Fano resonant frequency, or even completely damage the Fan

e shape. The developments of topological insulators (TIs) [16, 17] and their classical analog

tical [18–21], acoustical [22–28] and mechanical [29–40] systems may provide an elegant sol

n to this problem. TIs support unique edge states protected by the intrinsic bulk bands topolog

ardless of the local perturbations such as defects or disorders. Inspired by this preeminent fe

e, the ultra-sharp spectrum of Fano resonances can be guaranteed by topological protection

acoustic/mechanical systems [15, 41]. In 2D systems, a topological waveguide and a trivi

ity are proposed to serve as the bright and dark modes, respectively [42–44]. By placing a car

3
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ly designed cavity besides the topological waveguide, a coupler can be constructed to suppo

th constructive and destructive interferences between the two modes, which creates a topologic

no resonance. However, only the robustness of the bright mode is guaranteed by the topologic

tection, while the dark mode, i.e., the cavity mode, still remains trivial and less robust.

Here, we harness the very recently discovered higher-order topological insulators (HOTIs) [45

] to achieve a robust dark mode. Generally speaking, an n-order topological insulator in a

ensional system can support (d − n) dimensional topological states, where the order n ≥
icates a higher-order topology, while n = 1 refers to the conventional TIs [60]. Unlike th

nventional TIs with edge states, which has one lower dimension than that of the bulk, the HOT

st topological corner states whose dimension is at least two less than the bulk. Hence, we replac
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ure 1: Illustration of the occurence of toplogical Fano resonance. (a) The schematic view of the 1st-ord

ological edge state and its transmission spectrum, (b) The 2nd-order topological corner state and its transmissi

ctrum, (c) the robust topological Fano resonance and its ultra-sharp and antisymmetric transmission line result

m the coupling between the topological edge and corner states.
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trivial cavity by the second-order topological insulators (SOTIs), which supports topological

tected 0D corner states. By integrating the 0D topological corner state and the 1D edge state

roperly designed 2D phononic crystal structure, we realize a topological Fano resonance wi

th topologically protected bright and dark modes. Specifically, as conceptually depicted in Fi

we construct a first-order topological edge state to serve as a bright mode [Fig. 1(a)], and

ond-order topological corner state to be the dark mode [Fig. 1(b)]. The coupling of these tw

des can be achieved by a proper arrangement of regions occupied by the topological insulat

I) and the ordinary insulator (OI). As a result, a topological Fano resonance can be expected

cur around the resonant frequency of the dark mode, as shown in Fig. 1(c).

The arrangement of the rest of this paper is outlined as follows: In Sec. 2, we introduce

ononic crystal plate with breathing honeycomb unit cells, and show that the shrunken (type A

d expanded (type B) lattices belong to distinct topological phases. In Sec. 3, we demonstrate th

istence of the first-order topological edge states confined at the domain wall formed by differe

ological structures. We then show that these two edge states are in fact not gapless, furthe

re, the edge state gap can be tuned by alternating the geometrical parameters. This is followe

Sec. 4 in which we illustrate the second-order topological corner states that reside within th

ge state gap. In Sec. 5, we propose a compound lattice structure with two types of domain wal

t respectively supports topological edge states as well as the in-gap topological corner states at

mmon frequency. We show that within an extremely narrow range around this specific frequenc

topological edge and corner modes will undergo both constructive and destructive interference

ulting to an asymmetric and ultra-sharp transmission line, i.e., a Fano-like resonance. We furth

strate in Sec. 6 that the topological Fano shape response can be preserved and the resonance fr

ency shift is very small at the presence of various geometrical imperfections, including rando

ations or deformations. Finally, we summarize the main results of this paper in Sec. 7.

The bulk band structure and topology of the phononic plate

We consider the flexural wave propagation problem in a thin elastic plate attached by mas

ring oscillators with a honeycomb arrangement as depicted in Fig. 2(a) and (b). The yello

ckground and the white circles represent the homogeneous plate and the periodic oscillators, r

ectively. Each unit cell comprises six identical resonators located at the vertices of a hexagon wi

5
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(c)

ure 2: Schematic view of the phononic plate. (a) Top view of the phononic plate in the xy plane, each white circ

resents one oscillator. (b) The perspective view of one unit cell. (c) The first Brillouin zone of the honeycom

ice.

e length R, while the lattice constant is denoted by a. The phononic crystal plate is created by p

dically repeating one unit cell along the lattice vectors a1 = a(1, 0) and a2 = a(1/2,
√

3/2). Th

st Brillouin zone and the reciprocal lattice vectors b1 = 2π/a(1,−1/
√

3) and b2 = 2π/a(0, 2/
√

3

ich satisfy the relation ai · b j = 2πδi j, are displayed in Fig. 2(c).

For a specific geometrical configuration that R = a/3 (denoted by R0), the lattice sustain

ourfold degeneracy in the dispersion curves and a double Dirac cone occurs at the Brillou

ne center due to the zone-folding mechanism [20]. By varying the ratio between R and a, th

itching between distinct topological phases can be achieved. Briefly speaking, for a shrunke

ll, i.e., R/a < 1/3, the corresponding band gap features a topologically trivial phase, while f

expanded cell that R/a > 1/3, it is topologically nontrivial [20, 50], as we will describe belo

er. It is worth noting that the above scheme to create topologically distinct phases was wide

ed to achieve TIs by mimicking the quantum spin Hall effect [20, 25, 31, 61, 62] or to realiz

ently proposed SOTIs [50, 52, 57, 63] in classical wave systems. Here we adopt this mechanis

realize both the topological edge and corner states simultaneously at the same frequency, an

estigate their coupling effects and the resultant topologically protected robust Fano resonance

. Weak form for elastic wave equations in periodic systems

Weak forms are powerful mathematical tools to solve partial differential equations (PDEs

ecially in finite element formulations. To obtain the band structure and to discuss its bu

ology of the proposed phononic crystal plate, we first deduce the weak form formulation f

ee-dimensional elastodynamic equations in periodic systems. Its implementations to the flexur

ve problems in phononic plate structures will be discussed in the next section.

6
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For elastic waves in homogeneous and linear elastic materials, the equations of motion witho

dy forces expressed in terms of components with respect to a Cartesian coordinate system (x, y,

σi j, j − ρüi = 0 (

ere ρ is the mass density, σi j and ui (i, j = x, y, z) denote respectively the Cauchy stress tens

d the displacement vector components, and üi represents the second derivative of ui with respe

time. Note that the comma in the subscript denotes partial differentiation, and that the summatio

nvention over a repeated subscript is adopted.

The Cauchy stress tensor σ and the infinitesimal strain tensor ε are related by the constitutiv

uations, or known as Hooke’s law,

σi j = Ci jklεkl (

ere Ci jkl is the four-order stiffness tensor, and the strain-displacement equations are

εi j =
1
2

(ui, j + u j,i) (

The weak form for Eq. (1) can be derived by multiplying itself by a test function using variatio

tation δui, and then integrating the result over the solution domain Ω [64]. The terms wi

rivatives of stresses are treated by integrating by parts using Green’s theorem, which yields
∫

Ω

[ρδuiüi + δui, jσi j]dV −
∫

∂Ω

δui · σi jn jdS = 0 (

ere ∂Ω = ∂Ωu ∪ ∂Ωt denotes the boundary surface with the subscripts u and t refer to th

undaries with prescribed displacements and tractions respectively, n j is the j-th component

normal vector. The boundary integration term can be simplified by removing the essenti

undary condition part since δui = 0 is valid on ∂Ωu, and preserving only the natural bounda

ndition part which is σi jn j = fi with fi being the known traction on ∂Ωt.

According to the Bloch theorem, the displacement field ui = ui(x, y, z) in periodic structur

th lattice vectors ai has the following form

ui = ûi exp(iklxl) (

ere ki is the wave vector component, ûi is the cell-periodic counterpart of the Bloch wave u

ich has the same periodicity with the unit cell. We stress that the repeated subscript implies th

7
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mmation convention. From Eq. (5), the derivatives of the displacement field can be expressed

ui, j = (ûi, j + ik jûi) exp(iklxl) (

nsequently, the variation term δui in Eq. (4) should be replaced by its complex conjugation δu

ce the integration represents an inner product operation. Inserting Eq. (6) back into Eqs. (2)

, it can be seen that the stress and strain tensors are also Bloch functions, i.e., they have simil

pressions to Eq. (5),

σi j = σ̂i j exp(iklxl) (7

εi j = ε̂i j exp(iklxl) (7

here ε̂i j = 1
2 [(ûi, j + ik jûi) + (û j,i + ikiû j)], and σ̂i j = Ci jklε̂kl. Now inserting Eqs. (5) – (7) back in

. (4) yields the weak form for wave equations in periodic structures as
∫

Ω

[ρδû∗i ¨̂ui + δ(ε̂∗i j)σ̂i j]dV −
∫

∂Ωt

δû∗i · f̂idS = 0 (

which the identity δui, jσi j = δ(εi j)σi j is used with the symmetry nature of the stress tensor bein

en into consideration. We stress again that δui and δui, j have been replaced by their comple

njugations as required by the complex-valued inner product, and that an auxiliary function f̂i

xp(−iklxl) where fi = σi jn j is introduced to make the expression of Eq. (8) remain compact.

The weak form Eq. (8) is applicable for Bloch modes in general 3D periodic solid material

ich can be solved efficiently by using the weak form PDE module of COMSOL Multiphysic

mbined with periodic boundary conditions imposed on ûi. Moreover, when considering the flex

waves in elastic plates whose thickness h is very small compared with the other two dimension

ditional assumptions regarding the behavior of such structures such as the Kirchhoff theory f

n plates or the Reissner-Mindlin theory for thick plates, can further reduce the formulation fro

mplete three- to two-dimensional equations.

. Weak form for flexural wave in phononic plates

In thin plate theory, the deformation is represented by a single variable w, the out-of-plan

placement of the mid-plane of the plate. This displacement is governed by a four-order PD

cording to Kirchhoff’s assumption, which introduces second derivatives of w in the expression

8



Journal Pre-proof

of s

mo te

the es

of e-

ory nt

co

a)

b)

c)

w to

the ar

pa

a)

b)

N e

pla to

the

a)

b)

c)

w ic

pla -

po e,

ac n

als i-

od e
Jo
ur

na
l P

re
-p

ro
of

strains. However, the requirement that both w and its derivatives need to be continuous bring

re difficulties in the finite element formulations. In contrast, it turns out that the thick pla

ory is simpler to implement in the finite element analysis, since only up to the first derivativ

the dependent variables appear in the strain terms. According to the Reissner-Mindlin plate th

, in which the transverse shear and rotary inertia are taken into consideration, the displaceme

mponents for flexural motions are expressed in the forms [65]

u(x, y, z) = −zθx(x, y) (9

v(x, y, z) = −zθy(x, y) (9

w(x, y, z) = w(x, y) (9

here θx and θy are the local rotations of the normal to the mid-plane of the plate, with respect

x and y axis, respectively. The strains now can be separated into bending and transverse she

rts as follows

εxx = −zθx,x, εyy = −zθy,y, εxy = − z
2

(θx,y + θy,x) (10

εxz =
1
2

(−θx + w,x), εyz =
1
2

(−θy + w,y) (10

ote that the comma in the subscript implies partial differentiation. The flexural motions of th

te can be approximately regarded as a plane stress condition, thus the stresses corresponding

strains above are

σxx =
E

1 − ν2 (εxx + νεyy) (11

σyy =
E

1 − ν2 (εyy + νεxx) (11

σi j = µεi j (i , j and i, j = x, y, z) (11

here E, µ and ν are the Young’s modulus, shear modulus and Poisson’s ratio of the isotrop

te material. Considering that the flexural wave propagates in the xy plane, the out-of-plane com

nent of the wave vector should be zero, i.e., kz = 0, while the other two are retained. Therefor

cording to Eq. (5) for the Bloch waves in three dimensions, the displacements in Eq. (9) ca

o be expressed in a similar manner, for example, u = −zθ̂x exp
(
ikxx + ikyy

)
with θ̂x(x, y) a per

ic function. Finally, substituting Eqs. (9) – (11) into Eq. (8), and analytically performing th

9
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ough-thickness integration yields
∫

A

{ 1
12
ρh3(δθ̂∗x

¨̂θx + δθ̂∗y
¨̂θy) + ρhδŵ∗ ¨̂w

+
1

12
h3[δ(ε̂(0)∗

xx )σ̂(0)
xx + δ(ε̂(0)∗

yy )σ̂(0)
yy + 2δ(ε̂(0)∗

xy )σ̂(0)
xy

]

+ 2γh
[
δ(ε̂(0)∗

xz )σ̂(0)
xz + δ(ε̂(0)∗

yz )σ̂(0)
yz

] − δŵ∗ f̂z

}
dA = 0 (1

ere A denotes the two-dimensional region of one unit cell, γ = π2/12 is the correction fact

roduced to account for the fact that the shear stresses are not constant over the thickness [65], h

plate thickness, and the strain and stress terms with superscript ·(0) represent their z-independe

rts. The strain terms are given by

ε̂(0)
xx = θ̂x,x + ikxθ̂x, ε̂(0)

yy = θ̂y,y + ikyθ̂y, ε̂(0)
xy =

1
2

(θ̂x,y + ikyθ̂x + θ̂y,x + ikxθ̂y) (13

ε̂(0)
xz =

1
2

(−θ̂x + ŵ,x + ikxŵ), ε̂(0)
yz =

1
2

(−θ̂y + ŵ,y + ikyŵ) (13

d the stress terms can be subsequently obtained from Eq. (11).

The weak form formulation Eq. (12) is deduced from the weak form of 3D elastodynam

ve equations, with specific assumptions made on the displacement fields to describe the flexur

tions of thick plates. Considering the periodicity of phononic crystal plates, the displacemen

further regarded as Bloch waves, resulting in the emergence of their cell-periodic counterpar

d the wave vector (kx, ky) in the weak form expression. In this paper, Eq. (12) is solved f

rious wave vectors by using the weak form PDE module of the finite element software COMSO

ultiphysics with the eigenvalue solver in two dimensions. Then the dispersion curves can b

tained from the eigenfrequencies solutions. It is worth noting that the surface traction in the la

m can be determined by the reaction forces from the oscillators as will be detailed below.

. The band structure and the topological phase transition

Consider the phononic crystal plate shown in Fig. 2, with lattice constant a = 50 mm, thickne

0.5 mm and the material constants Young’s modulus E = 70 GPa, Poisson’s ration ν = 0.3 an

ss density ρ = 2700 kg/m3. We assume that each oscillator has only one degree of freedom, th

rtical displacement parallel to the z axis. The time-harmonic vibration of the resonators interac

th the elastic plate through the connecting springs, which gives the reaction force as [39]

10
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fz(r) =

6∑

α=1

mα

ω2
αω

2

ω2
α − ω2 w(Rα)δ(r − Rα) (1

ere mα, κα and ωα =
√
κα/mα are respectively the mass, spring constant and the resonant fr

ency of oscillator α, which locates at Rα. δ(r) denotes the Dirac delta function.

For simplification we also assume that the resonant frequencies of the oscillators are sufficient

her than the working frequency we are interested in, with the limiting case being that the mass

rigidly connected to the plate surface. In other words, we let the spring constant κα → +∞ an

the mass to be a finite value, for example mα = 5ρa2h. Consequently, the force term Eq. (1

n be further simplified as

fz(r) =

6∑

α

mαω
2w(rα)δ(r − Rα) (1

This treatment can keep our physical model rather simple without introducing additional re

ant features, and in the meantime, it does not affect the demonstration of the topological Fan

onance phenomenon or the physical mechanism behind it.

We first consider the geometrical configuration for R/R0 = 1 (notice that R0 = a/3), whic

rresponds to a perfect honeycomb lattice, or a phononic analog of graphene. In this scenari

primitive unit cell (i.e., the smallest one) consists of only two oscillators, while the unit ce

own in Fig. 2(b) is in fact a supercell. This specific selection of an enlarged unit cell allows th

mation of a double Dirac cone at Γ point due to a band folding mechanism. By solving Eq. (12

gapless band diagram for R = R0 shown in Fig. 3(a) unambiguously reveals the occurrence

ouble Dirac cone at 331.7 Hz, which is again confirmed by the theoretically predicted resul

k · p method (blue solid lines) which show a very good correspondence with the finite eleme

thod (FEM) results (white open circles). For the details of the implementation of k · p metho

ase refer to Appendix B. The right panel shows the field distributions of the four-fold degenera

des, which are denoted by px, py, dx2−y2 and dxy according to their symmetries. For exampl

dipole-like modes px(y) are antisymmetric about the x(y) axis, but symmetric about the y(x) axi

hile the quadruple-like modes dx2−y2(dxy) are symmetric (antisymmetric) about both x and y axe

sides the mirror symmetries, under a r̂2 operation (180◦ rotation), the p-modes will flip the

n while the d-modes remain unchanged. It is worth noting that these four degenerate mod

generally hybridized in numerical calculations and therefore the aforementioned symmetri

11
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usually broken and thus may need to be constructed by a combination of the degenerate eige

des. To overcome this shortcoming, we present a scheme based on projection (see Appendix A

reconstruct the mode symmetries. We have also presented the phase map of these eigenmodes

. A.10 for a better visualization of the rotational eigenvalue of them.

For values of R , R0, the translational symmetry of the above two-resonator “primitive cell”

ken, and thus the band folding mechanism is no longer applicable, which breaks the four-fo

generacy and opens a complete band gap between the two-fold p modes and d modes. Fig. 3(

sents the varying of the upper and lower gap limits when R/R0 takes different values. Startin

m R/R0 = 0.7, as we increase the value of R/R0, the band gap decreases gradually and clos
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ure 3: Bulk band structures and the topological transition. The band diagram for the critical configuration wh

= R0, where a double Dirac cone is formed. The open circles refer to the FEM simulations whereas blue curves a

results of k · p theory (see Appendix B). The eigenvectors at the Γ point are shown on the right. (b) the topologic

se transition as R1 varies revealed by the lifting of the Dirac cone degeneracy. (c) and (d) the band structures a

enmodes at Γ and M point for configuration A′ and B′, respectively.
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en reaching at the critical point R/R0 = 1. If R/R0 is further increased, the band gap will reope

ain but with the eigenmodes switched their orders, i.e., the p modes correspond to the two band

ove the gap while the d modes correspond to the two below. Such a band inversion is ofte

companied by a topological transition from a trivial phase to a nontrivial one. In the case f

e reversal symmetry preserved C6v breathing lattices, for values of R/R0 < 1 the band gap

ologically trivial and for those R/R0 > 1 it is nontrivial [20, 50]. This can be explained b

ecking the (pseudo) spin Chern numbers based on an effective Hamiltonian obtained by k ·
thod (see Appendix B). To have a deeper understanding of these two topologically distin

ases, we plot the band structures of two example cases for R/R0 = 0.9 (lattice A′) and R/R0 = 1

ttice B′) in Fig. 3(c) and (d). Good agreements between the k· p predictions and the first princip

M results can be found around Γ point for bands 2 − 5, indicating that we can use an effectiv

miltonian to describe the band structure and its topological properties. Besides, there are 3 band

low the complete band gap, and their corresponding eigenmodes at Γ and M points are displaye

the right panels of each figure. The sign + (or −) marked in the band diagrams indicates that th

rresponding eigenmode has an even (or odd) C2 rotation symmetry, and #Γ(2) (#M) is the numb

eigenmodes that have C2 rotation eigenvalue +1 at Γ (M) points for all the bands below the ga

sed on these two integer numbers, the C2 topological invariant is defined as [50, 51]

[M] = #M − #Γ(2) (1

ich is a measure of the difference between the subspaces spanned by the bands below the ga

M and Γ points in the C2 representation. Besides, a C3 topological invariant can also be define

a similar manner as [K] = #K − #Γ(3), where #K and Γ(3) are the number of eigenmodes belo

gap that have C3 rotation eigenvalue +1 for K and Γ points, respectively. Therefore, the bu

ology of the band gap can be characterized by [50, 51]

χ = ([M], [K]) (1

For example, a zero-valued χ implies that the k-dependent Hamiltonian can be continuous

formed along the path that joins the high symmetric points M (or K) and Γ without closing th

nd gap or breaking the symmetry, rendering the bulk topology trivial [50]. In contrast, χ , (0,

eals a nontrivial topology because the low-frequency subspaces below the gap at these points a

13
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ure 4: The first-order topological edge states. (a) Schematic view of a ribbon consisting of 16 layers of latti

andwiched in between 8 layers of lattice A (or A′) on both sides. The band structures for (b) A′/B and (c) A/

rfaces along the kx direction. The inset in (b) shows a zoom in view near the tiny topological edge band gap.

n-equivalent. In our case, by checking the parities of the eigenmodes at M and Γ points show

Fig. 3(c) and (d), we can obtain [M] = 0 for the configuration that R < R0 while [M] = −2 f

> R0. As for the C3 invariant, [K] = 0 is valid for all ratios of R/R0 in our system. This indicat

t the configuration that R > R0 is in a nontrivial phase with χ = (−2, 0) , (0, 0) and consequent

e can expect the observation of corner modes localized at the intersections of topological doma

lls [50].

The first-order topological edge states

According to the bulk-edge correspondence, it is known that there exist a pair of topologic

ge states confined at the domain wall formed by the two topologically distinct lattices. As show

Fig. 4(a), we calculate the band structure of a supercell consisting of 16 layers of lattice

dwiched in between 8 layers of lattice A (or A′) on each side, by applying periodic bounda

nditions on both the left-right and top-bottom edge pairs. Note that the top and bottom term

tion can be viewed as they were sutured together due to the periodic boundary condition, whic

minates the boundary modes and allows us to focus on the edge states confined at the doma

lls.

Let us first consider the edge states confined at A′/B interface, as shown in Fig. 4(b). Clearl

14
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o branches of bands (red and blue solid lines) emerge in the common frequency range of the bu

nd gaps of lattices A′ and B. Moreover, the corresponding eigenmodes of these two bands featu

ry localized amplitude-distributions near the topological domain walls (not shown). However, w

uld like to mention that these two edge states are not gapless, and that there exists a tiny gap b

een them. The reason is that the C6 symmetry of the entire structure is not strictly preserved du

the deviations between lattices at different sides of the domain wall [31]. It can be expected th

s tiny gap could even be extended to be sufficiently large if the configuration difference betwee

two lattices is further enlarged. This is indeed the case for the result shown in Fig. 4(c), whe

lattice A′, with geometrical configuration R/R0 = 0.9, has been replaced by lattice A whic

s a smaller value of R/R0 (= 0.7). Compared with Fig. 4(b), it is much more obvious that the

ists a band gap in between the blue and red branches of edge states, making the topological edg

tes gapped themselves. One may notice that there is another band gap between the upper branc

topological edge state and the bulk states, but the second order topological corner modes a

pected to reside inside the band gap of the first order topological edge states. We will show lat

t the existence of in-gap topological second-order corner states is guaranteed by the topologic

gin of this edge band gap.

The second-order topological corner states

It has been shown that inside the topologically nontrivial bulk band gaps there exist topologic

ge states along the domain walls. Similarly, if the edge band gap mentioned above also possess

ntrivial topological classification, a new type of topological states will emerge at the intersectio

two domain walls, namely the second-order topological corner states. The corner modes a

atially very confined near the corners, and they are well isolated from the bulk and edge states

frequency spectrum.

To illustrate this point, we consider a hexagon-shaped crystal stacked by type A unit cells (co

d in blue) coated by a type B cells (red) which features a global C6v symmetry that is compatib

th the symmetry of the unit cell, as depicted in Fig. 5(a). These two types of lattices posse

erent topological invariants χ, that is χ = (0, 0) for lattice A while χ = (−2, 0) for lattice B, as w

ve already stated. Each vertex of the inner hexagon region is the intersection of two 120◦-angle

ighboring topological interfaces. Note that the 60◦-angled interface corresponding to a triangul

15
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ure 5: The second-order topological corner states. (a) The schematic view of the hexagonal structure and va

s lattice imperfections. (b) The normalized out-of-plane displacement distribution of the corner state. (c)-(f) T

enfrequency spectra of the lattice structure under various geometrical perturbations: (c) without any perturbation

with a cavity, or disorders introduced by randomly (e) rotating or (f) deforming several cells near each corner.

ape lattice A is not considered here for two reasons, the first reason is the lattice termination

erfaces should be compatible with the unit cell symmetry [51], and the second reason is th

corner states at obtuse-angled corners are topologically protected while those at acute-angle

rners are not [52]. Besides the perfect periodic structure, we also introduced three types of pertu

tions on the crystal to demonstrate the robustness of the corner states with topological protectio

luding a cavity by removing one resonator near the corner, or disorders induced by random

ating or deforming seven-unit cells close to the corner, schematically shown in the right pa

in Fig. 5(a). The calculated eigenfrequency spectra for the perfect and perturbed crystals a

own in Fig. 5(c) – (f), and a typical mode shape corresponding to one of the six corner stat

hlighted by red dots in Fig. 5(c) for the perfect lattice is plotted in Fig. 5(b). The result in Fi

) again illustrates the existences of topological edge states (blue dots), and more important
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in-gap topological second-order corner states (red dots, around 335 Hz), which are not direct

dictable from the edge-projected band diagrams. The spatial localization of the corner states

ambiguously demonstrated by the eigenmode distribution, in which only a small region near th

rners has nonzero out-of-plane displacements.

Ensured by their topological origin, the in-gap topological second-order corner states are n

ly frequency-isolated but also are robust against structure imperfections as long as the lattices o

th sides of the interface hold the topological classification. In other words, the corner-localize

des will be preserved, and their corresponding eigenfrequencies won’t deviate too much fro

original values in the presence of various types of perturbations on the perfect lattice (witho

sing the bulk gap), such as removing resonators, randomly rotating or deforming several un

lls near the corners. The eigenfrequencies of the perturbed crystals for these three cases a

ted in Fig. 5(d) – (f). Comparing them with Fig. 5(c) reflects two important facts: the first on

that the eigenfrequencies of the in-gap topological corner states almost remain unchanged, an

second one is that inside the trivial gap, the trivial corner modes (green dots), however, eith

pear or disappear under different circumstances. Even in the case of their presence, the trivi

rner modes may emerge at different frequencies or even come into multiple groups, complete

pendent on the specific perturbed crystal, which makes them much less useful when compare

th the robust topological corner modes.

Occurrence of topological Fano resonance

We propose a three-component phononic plate structure, as shown in Fig. 6(a), to investiga

Fano resonances induced by the coupling between topological edge states and the second-ord

rner states. This phononic crystal is composed of 11 layers of type A′ lattices (R/R0 = 0.9) o

upper half, and 11 layers of type B lattices (R/R0 = 1.3) on the lower half but with a sem

xagon region replaced by type A lattices (R/R0 = 0.7). According to our previous discussion

A′/B interface supports nearly gapless topological edge states (termed as the bright mode

d the A/B interfaces support the gapped edge states and the in-gap second-order corner stat

rmed as the dark mode). One can anticipate that the bright mode and dark mode will underg

ry strong interactions around the resonant frequency, while at other frequencies their coupling

negligible. Moreover, the phase variation of the bright mode is continuous and slow, but th

17
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ure 6: The occurrence of topological Fano resonance. (a) schematic view of a sandwiched lattice with A′/B

figuration that supports the coupling between topological edge states and second-order corner modes. (b) T

malized frequency response of the topological edge state. (c) and (d) the wave fields magnitudes |w(x, y)| at the di

peak-frequency, respectively.

rk mode has a phase shift of π near the resonant frequency, leading to a transition from a

t-of-phase interference to an in-phase one, or vice versa. This abrupt change finally creates a

mmetric lineshape in the frequency response within a very narrow band, which is a Fano-lik

onance with topological origins for both the bright and dark modes.

The FEM-based method in previous sections are suitable for band structure (eigenproblme

lculations, while hereafter we turn to utilize the computationally efficient multiple scatterin

thod (MST) [29] (see Appendix E for details) to simulate the wave field distributions and fr

ency response of the proposed lattice under a specific source excitation. Note that even the MS

sed on the Kirchhoff-Love plate theory is valid only for low frequencies and long waveleng

it, the MST simulated results show good correspondence with the FEM calculated bandgap

e Fig. 4 and Fig. C.11 for comparison). Fig. 6(b) shows the MST simulated frequency r

onse with respect to its maximum. Here the frequency response is defined as the ratio betwee
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detected displacement signal and the excited source signal. In the calculation, we have s

= 3d0 where d0 =
√

3a/2 is the height of each unit cell, and the wave field is excited by

it-magnitude point source. Around the resonant frequency of corner modes (∼ 335 Hz), we ca

arly see the resultant asymmetric and ultra-sharp Fano line. It reaches the maximum very quick

f2 = 335.3870 Hz from the minimum at f1 = 335.3640 Hz, and the ratio between the maximu

d the minimum is 1/(3.557 × 10−3) = 281. The Q-factor for the Fano resonance is given by th

io between the average frequency and the frequency difference of the peak and dip value [66

sed on which we found the Fano resonance here has an ultrahigh value that Q = f0/∆ f = 1458

e out-of-plane displacement distributions exited by a unit-magnitude point source at f1 and f2 a

own in Fig. 6(c) and (d), respectively, which vividly demonstrate the forbidden and pass stat

e to the destructive and constructive interference between the bright and dark modes. This ultr

sitive switching phenomenon may provide potential applications in acoustic sensors or switche

oreover, because both the bright and dark modes, the fundamental ingredients to create the Fan

onance, have the topological protection features, this particular type of Fano resonance ma

nd out from its conventional counterparts as it is more robust against structural imperfections.

The lattice configurations for other values of d will affect the peak- and dip-value of the Fan

onance, but the resonant frequency, as well as the ultra-sharp and asymmetric features of th

ponse curve will be preserved. The frequency responses of the topological edge states couple

th the corner modes at different values of d are shown in Fig. 7(b)-(e). As a reference, the edg

tes frequency response without edge-corner couplings are also displayed in Fig. 7(a), which

fact a zoom-in view of Fig. C.11(d). The main profile of the frequency response in Fig. 7(a

ecially the two large broad peaks around 333 and 335 Hz, are maintained even in the presenc

the edge-corner couplings. The significant result of the edge-corner coupling is the emergenc

the Fano resonance. In addition, by comparing Fig. 7(c)-(e), it can be concluded that larg

lues of d means weaker coupling strengths, which will decrease the ratio between the peak- an

- values, making the Fano resonance less observable. Note that around the Fano resonance, th

ponse changes abruptly, thus a very fine frequency sweep are needed, as shown in the insets.

It is also worth noting that for d = 2d0, the edge-corner distance is too close such that th

ponse is affected strongly by the corner modes, and presents a different behavior with oth

ses. To qualitatively explain this, we simplify the topological lattice system into a 3 degre
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ure 7: Fano lineshapes in the MST simulated frequency responses for various edge/corner distances. (a) T

quency response for the A′/B edge states. (b)-(d) correspond to d = 2d0 to 5d0 with d0 the height of one u

l. The insets show sufficient fine sweep of the response spectra near the Fano resonant frequency in the numeric

culations. (f) The schematic view of the lattice configuration that supports edge-corner couplings. (g) The simplifi

crete 3 degree-of-freedom (DOF) mass-spring system. (h)-(l) The frequency response for the 3-DOF system in (

various values of coupling strengths ξ. The dimensionless parameters are k1 = 1,m1 = 1, c1 = 0.3, k2 = 4,m2

2 = 0.01, k3 = 1.1k2,m3 = m2, c3 = c2, η = 0.5, and ξ is the tuning parameter.

freedom (DOF) system as shown in Fig. 7(f)-(g). Since the both corners states are isolate

des, thus they can be viewed as a 1-DOF oscillator with very small damping ratio, while th

ad band topological edge states span over a broad spectrum, thus an oscillator with a larg

mping ratio is needed to exhibit a similar behavior (see the particular parameters we chose

. 7). Next, we apply a force F(Ω) on m1 and record its displacement response X(Ω) an

tain the frequency response function H(Ω) = X(Ω)/F(Ω) where Ω is the dimensionless angul

quency. The amplitudes of H(Ω) for various values of ξ are plotted in Fig. 7(h)-(l). He

enotes the coupling strength between m1 and m2,3, directly mimicking the couplings betwee

topological edge and corners. If we ignore the first peak in Fig. 7(a)-(e), it can be seen th
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r simplified 3-DOF system matches well with the real topological edge/corner coupling lattic

comparing the frequency responses of both systems. Note that the two corner modes are n

mpletely degenerate, thus we have let k3 slightly deviates from k2. Through the calculation o

3-DOF system, we found that there are in fact always two Fano resonant peaks [see Fig.7(i)

rresponding the two corners. The competition between edge-corner coupling (ξ) and the corne

rner coupling (η) determines which one of the two Fano profiles is dominant. For ξ = 4η, bo

no profiles are observable, which explains Fig.7(a). As the coupling strength ξ decreases show

Fig.7(j)-(l), both Fano resonances decrease quickly and only one of them is detectable, whic

plains Fig.7(c)-(e).

Robustness of topological Fano resonance

In this section, we investigate the robustness of the topological Fano resonance when variou

es of structural imperfections are deliberately introduced into the system. From the discussion

the previous sections, we know that the Fano resonance occurs around the resonant frequency

dark mode, i.e., the topological second-order corner mode. So, it is natural to consider that th

rner mode influences the Fano resonance more significantly, therefore we focus on the variation

the frequency response for the structural imperfections acting on the corners.

As a first example, we consider the rotational perturbations by assigning random rotation

gles (schematically illustrated in Fig. 5(a)) independently for each of the seven cells around th

rners. For simplification, both corners are set to be under exactly the same perturbation. Th

dom angles are given with an increasing of the angle magnitudes, from |θ| < 5◦ to |θ| < 10

) (b) (c)

336

N
or
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re
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 r
es

po
ns

e

ure 8: The robustness of the topological Fano resonance when different random rotational angles are intr

ced for (a) |∆θ| < 5◦, (b) |∆θ| < 8◦ and (c) |∆θ| < 10◦ when d = 3d0.
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r each perturbative level, we generate 3 different groups of the random angles and repeat th

lculation for each of them. From the results listed in Fig. 8, we can conclude that the Fano shap

ponse is always preserved even though the resonant frequency may deviate slightly from th

ginal point. As the magnitudes of the angles increase, the frequency shift of the Fano resonanc

ds to take a larger value. However, even for the case that |θ| < 10◦, we can see the largest relativ

quency shift is approximately estimated as |333 − 335|/335 ≈ 0.6%, which is very small.

Then we investigate the influences of the deformations by assigning independent random re

ator to centroid distances on the same seven cells considered above. Similar to the case

ational perturbations, here we also consider different magnitudes of the distances in an increa

manner from |∆R/R0| < 5% to |∆R/R0| < 10%, and for each level we also generate 3 groups

ometrical configurations, upon which the calculation is repeated. The results shown in Fig. 9 a

ry similar to those shown in Fig. 8 for the rotational cases, from which we can conclude aga

t the Fano lineshape response is always preserved, and the frequency shift is comparatively sma

en we impose the maximum value of 10% geometrical perturbations.

Note that if we remove one resonator around the corner as we did in Fig. 5(a), we can expe

t the influence on the Fano resonance is also neglectable (not shown) since the eigenfrequenc

ectrum in Fig. 5(d) reveals that the topological corner modes are very robust. We compare th

ological corner states and trivial defects with disorders in Appendix D, which indicates th

frequency of the topological corner states still remains in the gap of edge states and are on

rturbed slightly, while the trivial point defect with disorders will suffer a huge shift across th

ole bandgap of the bulk states. This unambiguously reflects the robustness of the topologic

) (b) (c)
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ure 9: The robustness of the topological Fano resonance when different random resonator-centroid distanc

introduced for (a) |∆R/R0| < 5%, (b) |∆R/R0| < 8% and (c) |∆R/R0| < 10% when d = 3d0.
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rner modes and topological Fano resonance.

Discussions and Conclusions

In conclusion, we have investigated the topological Fano resonance induced by the interferenc

tween the first-order topological edge states and the second-order topological corner modes b

ing an elastic phononic crystal plate as an example object. The breathing honeycomb lattice u

r consideration in this work is capable of hosting simultaneous topological edge states and corn

tes, which can be achieved simply by tuning the geometrical parameters. When both topolog

l states are integrated into the same platform, they can have the possibility to couple with eac

er. Hence, the constructive and destructive interferences between them result in the ultra-sha

d asymmetric Fano resonance. Because both of the bright and dark modes are topologically pr

ted, the resultant Fano resonance features a unique advantage of robustness against various kind

geometrical imperfections, which is also quantitively confirmed by our numerical calculations

We also demonstrated that the coupling strength between the topological edge and corner mod

s a significant influence on the Fano-like spectrum. As the distance between the edge and corne

reasing, the coupling strength decreases gradually, weakening the resultant topological Fan

onance. By qualitatively simplify the elastic continuum structure into a 3-DOF system, we foun

t if the two corner modes are not rigorously degenerate, there are in fact two Fano resona

files. The relative magnitudes of these two Fanos depends on the competition between th

ge/corner and corner/corner couplings. In our case, only for d = 2d0 could we observe tw

no resonance, while once d ≥ d0, one of them almost disappears and becomes not detectabl

rthermore, we found that if two corners are placed with unequal distances from the topologic

ge, two nested ultra-sharp peak-dip pairs will also emerge.

It is worth noting that the lossless phononic plate attached with mass-spring resonators propose

re is a prototype design. For practical considerations, We discussed in Appendix G the effects

sipation and concluded that the increasing of the loss coefficient will gradually flatten the ultr

arp Fano line-shape and the large peak-dip discrepancy. If the loss coefficient is large enough, th

mmetric Fano line will be eased out and the Q factor decreases quickly. For the experiment

lization of the proposed robust Fano resonance, we suggest a more physically accessible way

del the mass-spring resonators by using elastic pillars in the future experimental works, such
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-chip micromechanical phononic plates with pillars etched on silicon chips [33, 56], or simil

angements on the macroscale phononic crystals by using 3D printing [67] or other techniqu

, 68]. Our findings may find applications in highly sensitive and accurate filters, sensors, an

itches.

During the submission of this paper, we became aware of Ref. [69] which also utilized the SO

s to realize the robust dark modes to construct a topological Fano resonance in photonic crystal

would like to note that Ref. [69] adopted both armchair and zigzag topological interfaces to r

ze gapless topological edge states and in-gap corner modes with common frequencies to furth

arantee the Fano interaction, while in our work it is simply realized by independently tuning th

ometrical configurations of unit cells in different regions of the phononic crystal, and only on

e of topological interface is needed.
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pendix A. Symmetry reconstruction of degenerate eigenmodes

The Bloch modes usually exhibit certain symmetries at high-symmetric point in the reciproc

ace. But for degenerate modes, these symmetries might be hidden because of mode hybridizatio

ich is very common in numerical simulations. In this section we demonstrate how to recov

symmetry of the modes from the hybridized ones, which is very useful for topological inde

alysis and effective Hamiltonian deduction.

As shown in Fig. A.10, ψi(i = 1, 2, 3, 4) are four degenerate eigenmodes at the double Dira

ne, which are clearly hybridized due to the indetermination resulting from numerical calculatio

FEM analysis. Our strategy is as follows: first, to find some linear combination of ψi suc

t the new modes ϕi can be grouped into two categories (ϕ1, ϕ2) and (ϕ3, ϕ4), depending on the

rresponding eigenvalues of r̂2 operation (rotating 180◦ about the origin), as depicted in the secon

of Fig. A.10. Similarly, the second step is to find some linear combination of (ϕ1, ϕ2), such th

new modes (φ1, φ2) can be distinguished by their parities, and the same for (φ3, φ4), as shown
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last row of Fig. A.10. The key of these two steps is to find the mentioned linear combination

low we demonstrate how to fulfill it by taking the first step as an example.

Suppose the four modes ψi (i = 1, 2, 3, 4) satisfy the following eigenvalue problem,

Hψi = λψi (A.

And the rotation operator r̂2 commutes with H, which means

r̂2H = Hr̂2 (A.

Now let H act on r̂2ψi, we have

Hr̂2ψi = r̂2Hψi = r̂2(λψi) = λ(r̂2ψi) (A.

FEM results (hybridized)

lo
w

 s
ym

m
et

ry
hi

gh
 s

ym
m

et
ry

ure A.10: The reconstruction of the symmetric eigenmodes from the hybridized modes. The phases of these mod

also shown to illustrate their rational eigenvalues.
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which unambiguously reveals that r̂2ψi is also an eigenvector of H, corresponding to the sam

envalue λ. Therefore, r̂2ψi must lies in the subspace spanned by ψi(i = 1, 2, 3, 4),

r̂2ψi =

4∑

j=1

S i jψ j (A.

in which S i j represent some expansion coefficients that can be identified as

S i j = 〈r̂2ψi, ψ j〉 (A.

Once the 4 × 4 matrix S is obtained, we consider the following eigenvalue problem

S >v = ηv (A.

which η and v are the eigenvalue and eigenvector of S >. Now let v be the coordinate of som

ctor in span{ψi}, denoted as ϕ, which means

ϕ =
∑

i=1

viψi (A.

Therefore, r̂2ϕ can be evaluated as follows,

r̂2ϕ =

4∑

i=1

vir̂2ψi =

4∑

i=1

vi

4∑

j=1

S i jψ j =

4∑

j=1

ψ j

4∑

i=1

viS i j =

4∑

j=1

ψ jηv j = ηϕ (A.

We find that ϕ is an eigenvector of r̂2, with the corresponding eigenvalue being η. This revea

t ϕ defined in Eq. (A.7) is symmetric under the operation r̂2.

The aforementioned procedure indeed helps us to transform ψi to ϕi, as shown in the secon

of Fig. A.10. By applying similar method, we can finally obtain the four modes listed in th

rd row of Fig. A.10, with well recovered symmetries.

pendix B. The effective Hamiltonian by k · p method

In this section we give the explicit form of the reduced effective Hamiltonian of the continuu

stic system by using the k · p perturbation method. We start from a group of eigenfrequenci

k0 and their corresponding eigenmodes wnk0 at k0 point, which can be numerically obtained by th

thod illustrated in Sec. 2 and Appendix A. With these eigen-solutions at hand, the eigenmod

k0 + ∆k are supposed to be the linear superposition of wnk0 , and are inserted back into th
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uation of motion, which gives rise up to a small matrix eigenvalue problem, i.e., the effectiv

miltonianH . By taking the symmetry properties of the eigenmodes wnk0 into consideration, it

monstrated that the explicit form of the effective Hamiltonian can be obtained without explicit

lving the eigenvalue problem. Furthermore, by analytically solving the eigenvalue, the resul

ow good agreements with that from the FEM simulations for small |∆k|, as shown in Fig 3.

We consider the bands in the vicinity of Γ point (k0 = 0), by first expanding the cell-period

unterpart of the Bloch wave at k = ∆k in terms of those at Γ,

ŵnk(r) =
∑

l

Anl(k)ŵlΓ(r) (B.

ere A is the k-dependent expansion coefficient. Inserting this expression back into Eq. (5)) w

ve

wnk(r) = exp(ik · r)
∑

l

Anl(k)wlΓ(r) (B.

For simplification and compactness, from hereafter, we adopt the biharmonic equation for fle

l wave in which the field wnk(r) is governed as

D∇2[∇2wnk(r)] − ρhω2wnk(r) = fz(r) (B.

Similar to our previous work [39], by substituting Eq. (B.2) into Eq. (B.3), we have

∑

l

Anl(k)
[
4Dk · i∇∇2 − ρ′h(ω2

nk − ω2
nΓ)

]
wlΓ(r) = 0 (B.

which the higher order of |k| has been neglected, and the effective mass density ρ′ is expresse

ρ′ = ρ +
1
h

6∑

j=1

mδ(r − R j) (B.

which m and R j are the mass and location of the attached resonator, and δ(r) is the Dirac-del

ction. Considering the orthogonality of the Bloch functions,
∫

cell
ρ′w∗nΓ(r)wlΓ(r)dr = δn,l, (B.

arrive at the final eigenvalue problem

∑

l

[
k · pnl − (ω2

nk − ω2
nΓ)δn,l

]
Anl = 0 (B.
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ere

pnl = 4D
∫

cell
w∗nΓ · i∇(∇2wlΓ)dr (B.

As we are interested in the dispersion around the double Dirac cone, and the other bands a

away from the Dirac frequency (Fig. 3), the infinite summation in Eqs. (B.4) and (B.7) ca

truncated and only the fourfold degenerate modes are conserved. Therefore, p is reduced in

× 4 matrix in which each entry itself is a two-dimensional vector. The reduced Hamiltonian

en by

Hi j = k · pi j (B.

Now let us take the symmetry of the eigenmodes into consideration to simplify the above e

ssion. As demonstrated in Fig. 3, the p and d modes have different mirror symmetries along tw

ordinate axes. These four modes are arranged in the order of px, py, dx2−y2 and dxy. Therefore, th

lculation of p11 require us to calculate p∗x and i∇(∇2 px). To be brief, the parity of all the term

t are involved in the calculation of p11 is listed in Table B.1, in which the sign + (or −) represe

certain term is even (or odd) with respective to the corresponding axis. For example, the sign

the first column in Table B.1 indicate that px is odd and even with respect to the x and y axi

pectively. The rest entries can be understood in the same way.

Table B.1: The parity of each term needed in the calculation of p11

px i∂x(∇2 px) i∂y(∇2 px) p∗x · i∂x(∇2 px) p∗x · i∂y(∇2 px)

x − + − − +

y + + − + −

According to the last two columns of Table B.1, one can conclude that
∫

cell
p∗x · i∂x(∇2 px)dr = 0 (B.10

∫

cell
p∗x · i∂y(∇2 px)dr = 0 (B.10

nce, p11 = (0, 0).
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After analyzing all the term of pi j in the similar way, the matrix form of p is collected as follow

p4×4 =



(0, 0) (0, 0) (B∗, 0) (0, B∗)

(0, 0) (0, 0) (0, B) (B∗, 0)

(B, 0) (0, B∗) (0, 0) (0, 0)

(0, B) (B, 0) (0, 0) (0, 0)



(B.1

which B is a pure imaginary number which need to be further numerically calculated. Substitu

Eq. (B.11) back into Eq. (B.7), we obtain the following eigenvalue problem,



0 0 B∗kx B∗ky

0 0 Bky B∗kx

Bkx B∗ky 0 0

Bky Bkx 0 0



A =
[
ω2 − diag(ω2

p, ω
2
p, ω

2
d, ω

2
d)
]

A (B.1

If we denote p± = (px ± ipy)/
√

2, d± = (dx2−y2 ± idxy)/
√

2, ω2
0 = (ω2

p + ω2
d)/2, and ∆

2
d − ω2

p)/2, we arrive at the final eigenvalue problem

HΦ = λΦ (B.1

which the eigenvalue is λ = ω2 − ω2
0, with the corresponding eigenvector Φ to be the line

perposition of the expanding coefficients A according to the above base-transformation, and th

ective Hamiltonian is given by

H =



−∆ − αk2 B∗k−

Bk+ ∆ + αk2

−∆ − αk2 B∗k+

Bk− ∆ + αk2



(B.1

ere k = |k|, k± = kx ± iky, and α = |B|2/2∆. The eigenvalues ofH are analytically obtained as

ω2 − ω2
0 = ±

√
(∆ + αk2)2 + |B|2k2 (B.1

ich can well describe the real behavior of the band structures in the vicinity of Γ point, as show

Fig. 3(a), (c) and (d).
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pendix C. The frequency responses for topological edge states

To provide more insights on the topological edge states and the aforementioned tiny gap, w

sent the frequency response spectrum for the phononic crystal constructed from topological

tinct lattices in Fig. C.11. As schematically illustrated in Fig. C.11(a), the upper half of th

sented phononic crystal, being type A (or A′) lattice, consists of more than 20 unit cells alon

x direction and 8 layers along the y axis, while the lower half made of type B lattice consists

exact same number of cells, forming a topological interface near the horizontal line y = 0.

e-harmonic point source (marked by a star) is placed at the lattice center to excite the flexur

ves, and the multiple scattering method calculated out-of-plane displacement near the right outl

recorded and plotted in Fig. C.11(d) and (e) for A′/B and A/B interfaces, respectively. From Fi

11(d) we can clearly see that in the case for A′/B interface, the responses are relatively large

bulk band gap, meaning the emergence of topological edge states. Fig. C.11(b) shows a typic

ample of the out-of-plane displacement fields of the exited topological edge states at 335 H

(a)

(b)

(c)

(d)

(e)

tiny gap

edge states
fig. (b)

Frequency (Hz)

fig. (c)

source probe

edge states

tiny gap

N
or

m
. f

re
q.

 r
es

po
ns

e
N

or
m

. f
re

q.
 r

es
po

ns
e

ure C.11: The frequency responses for topological edge states of A′/B and A/B interfaces. (a) The illustrati

the lattice configuration. (b) and (c) The wave field distributions for A′/B and A/B lattices at a common frequen

rked by black arrows in (d) and (e). (d) and (e) The calculated frequency responses for A′/B and A/B interface

pectively.
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ich is clearly localized near the domain wall. Note that a very tiny gap around 330 Hz can b

refully detected inside the range of the edge states, as predicted by the band structure in Fig 4(b

is tiny gap will become more visible if we enlarge the discrepancy between the two types

tices, as shown in Fig. C.11(e). In this case, the above excitation frequency lies into the ban

p and therefore the corresponding excited wave field shown in Fig. C.11(c) is forbidden to trav

ng the domain wall.

pendix D. Comparison between the topological corner and trivial cavity modes

In this section we calculated the eigenfrequency spectrums for the topological corner modes an

trivial cavity modes with/without introducing geometrical defects. As shown in Fig. D.12 (a

Trivial cavity Trivial cavity
(perturbed)

Topological corner Topological corner
(perturbed)

(a) (b)

(c) (d)

Not robust

ure D.12: Comparison between the robust topological corner modes and the trivial cavity modes. The eige

quency spectrum of the topological corner states (a) with and (b) without perturbations, and the eigenfrequen

ctrum of the trivial cavity modes (c) with and (d) without perturbations. The corner modes are highlighted by bl

s. The insets in each figure show a zoom-in view of the corner/cavity of the corresponding structure configuration
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topological corner is constructed in the same way as shown in Fig. 5(a), and the perturbatio

topological corner is realized by removing one resonator near the corner [white dots in the ins

Fig. D.12 (b)]. While the trivial cavity is created by removing one resonator in a single pha

tice (R/R0 = 1.3) as shown in the inset of Fig. D.12 (c), and the perturbation is achieved b

oving an additional resonator marked by white dots shown in the inset of Fig. D.12 (d).

It can be seen from Fig. D.12 (a) and (b) that a defect on the topological corner only slight

rturb the frequency of the topological corner states, changing from 330 Hz to 333 Hz (blue dots

hile for the trivial cavity, it is evident from Fig. D.12 (c) and (d) that a defect will strong

ect the trivial corner states such that the frequency change from 280 Hz to 483 Hz (blue dots

erefore, it can be concluded that the topological corner modes are more robust than the trivi

ity modes.

pendix E. The multiple scattering method for flexural wave in thin plates

In this section we briefly introduce the MST method following Ref.[29] for the total wave fie

ulations under arbitrary incident wave fields, which is used in this paper for the calculation

ve field distributions and the spectrum response curve. We can rewrite Eq. (B.3) as

∇4w(r) − κ4w(r) =
∑

α

tαw(Rα)δ(r − Rα), (E.

ere κ = (ρhω2/D)1/4 is the wave number in the homogeneous plate, α is a label of the resonator

d tα measures the resonant strength, which is given by

tα =
mαω

2

D
(E.

For truncated finite clusters of resonators, the total wave field distribution under an extern

ident wave can be semi-analytically solved using MST method: each resonator acts like a poi

urce and radiates a cylindrical wave. The total field is thus the superposition of all the scattere

lds and external incident field,

w(r) = winc(r) +
∑

α

tαw(Rα)G(r; Rα), (E.

ere winc(r) is the incident field which is known beforehand, and G(r; Rα) = i/(8κ2)[H(1)
0 (κ|r

|) + 2i/πK0(κ|r − Rα|)] is the Green’s function which satisfies ∇4w(r) − κ4w(r) = δ(r − Rα) [29

32



Journal Pre-proof

Co e

lin

4)

fro n-

str n

effi nt

wa

Ap g

rs

are te

tha 7.

Sin nt

co a

so T

ca d0

an m

Fig h

rea ft

co es

thi m

cu et

of 2

als of

ma e

ha d

the p

(th
Jo
ur

na
l P

re
-p

ro
of

nsidering the total field at an arbitrary resonator’s position r = Rβ, from Eq.(E.3) we have th

ear system
∑

α

[
δα,β − tαG(Rβ; Rα)

]
w(Rα) = winc(Rβ), (E.

m which we can derive the displacement of each resonator. The total field can then be co

ucted by using Eq.(E.3). This semi-analytical method by using Green’s function constitutes a

cient approach for the calculations of the total wave field response under any given incide

ve.

pendix F. Double asymmetric Fano profiles by two different waveguide-corner couplin

strengths

In this section we consider the case when the distances between the edge and the two corne

different, in which the frequency spectrum exhibits a double Fano-like ultrasharp profiles. No

t we have demonstrated the influence of different values of d on the Fano-line profile in Fig.

ce the Fano profile is almost not noticeable for d ≥ 5d0, here we study the effects of differe

upling strengths by considering d1 = 3d0 and d2 = 4d0 as shown in Fig. F.13(a). Again,

urce and a detector are placed near the left and right port of the A’/B domain wall. The MS

lculated frequency response (solid red curve) is plotted in Fig. F.13(b) and the result for d1 = 3

d d2 = 3d0 (dashed blue curve) is also shown for comparison. It can be clearly seen fro

. F.13(b) that the ultrasharp asymmetric Fano-line profile still exists, the magnitude of whic

ches from almost zero to nearly unit very quickly, except the frequency has been slightly shi

mpared with the case for two identical coupling strengths. The different point is that besid

s giant asymmetric Fano-line (denoted as Fano 1), we can observe another asymmetric spectru

rve resides into the frequency interval of Fano 1, which we denote as Fano 2 [see the ins

Fig. F.13(b)]. This phenomenon behaves like a hierarchy of Fano resonances. The Fano

o experiences an abrupt change in response magnitudes versus frequency, though the change

gnitudes is very small. This can be ascribed to the weaker coupling strength for d2 = 4d0. W

ve further increased the value of d2 such that d1 = 3d0 and d1 = 5d0, in which case we foun

Fano 2 disappears and can be not be detected even we adopted a finer frequency sweeping ste

us the result is not shown here).
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(a)

source probe Fano 2

Fano 1

(b)(a)

(c) (d)

(e) (f)

weak transmissionnearly no output

ure F.13: Double asymmetric Fano profiles by two different waveguide-corner coupling strengths. (

ematic view of a sandwiched lattice with A′/B/A configuration that supports two different waveguide-corner co

g strengths. (b) The normalized frequency response of the topological waveguide. (c) and (d) the wave fiel

gnitudes |w(x, y)| at the dip- and peak-frequency for the giant Fano-line profile (Fano 1), respectively. (e) and

wave fields magnitudes |w(x, y)| at the dip- and peak-frequency for the tiny Fano-line profile (Fano 2), respective

te that the frequency sweeping step is fine enough in the calculation to ensure the ultrasharp Fano-line profiles a

ained correctly.

We have also shown the wave field distributions for the dip and peak frequencies for both Fan

nd Fano 2. At the dip frequency of Fano 1, the detected signal at the right port is almost zer

ich is further confirmed by Fig. F.13(c), in which the topological edge state is not excited whi
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ly one corner mode has a large magnitude. As for the peak of Fano 2, we can see topologic

ge state and both corner modes are excited. In the case for Fano 2, both at the dip and pea

quencies the two corner modes are excited, and the edge mode discrepancy between the dip an

ak is not as evident as that for Fano 1.

pendix G. The loss effects on the Fano resonance

In practical situations, the loss effects of the dissipation should be taken into consideratio

consider again the three-component phononic crystal illustrated in Fig. 6(a). The geometric

rameters remain the same as the lossless case, and the only difference is that we introduced

mplex-valued Young’s modulus such that E′ = E0(1 + iη) where E0 is the modulus witho

s and the parameter η is a coefficient to account for the loss effects. A harmonic point source

plied on the topological waveguide near the left port, and the simulated out-of-plane displaceme

the waveguide near the right port is recorded. The magnitude of the frequency response, i.e

ratio between the detected signal and the source signal, is plotted below for various choic

η. Note that the lossless case [Fig. 6(b)] is also shown by dashed blue line for reference. W

n clearly see that as the loss coefficient η increases, the ultrasharp Fano line-shape and the larg

ak-dip are flattened gradually. If the loss coefficient is large enough, the asymmetric Fano lin

ll be eased out and the Q factor decreases quickly.

ure G.14: The influence of the loss effects on the Fano line-shape spectrum response. The loss is introduced
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The edge and the corner states are investigated by a weak form for elastic wave equations

Topological Fano interaction is formulated by combining the edge and the corner states 

Fano resonance features a unique advantage of robustness against geometrical imperfections
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