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Abstract: Although there have been a lot of researches on convolutional neural networks (CNNs), still what 

happens in this black box remains a mystery. In this paper, we establish the connection between CNNs and signal 

modulation. From a signal modulation point of view, the forward-propagation process of CNNs can be explained 

as a process of modulating the input signals to the vicinity of a special energy spectrum distribution, and the back-

propagation process is searching for the appropriate distribution which is better for classification or other tasks. 

Several experiments have been carried out to verify the modulated explanation of CNNs. Furthermore, we verify 

that modulating the signal to the appropriate energy spectrum distribution in advance can effectively improve the 

classification and segmentation accuracy.

Keywords: Convolutional neural network, signal modulation theory, energy spectrum distribution, classification, 

segmentation.

1. Introduction

In recent years, deep learning [1]-[10] and especially convolutional neural networks (CNNs) [11], [12] have 

been widely used in many research fields and industrial applications. The great success of CNNs is impressive. 

However, why CNN can work well is a long way from clear explanation, which has become a bottleneck restricting 

the development of CNNs and also their applications to areas where interpretable artificial intelligence technology 

is necessary as, for example, in medical domain. Therefore, researchers have proposed many interpretation 

frameworks, which can be roughly divided into two classes: model-specific interpretability and model-agnostic 

interpretability [13]. 

mailto:shu.list@seu.edu.cn
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Model-specific interpretability methods can only interpret specific model types. For example, Hershey et al. 

[14] proposed a framework for deriving novel deep network architectures from model-based inference algorithms 

by unfolding the steps of the algorithm and untying the model parameters across iterations. Wu et al. [15] presented 

a new way to visualize, explain and understand every step of principal components analysis network (PCANet) 

from an energy perspective. The drawback of this practice is that these interpretation methods are not sufficiently 

generic, that is, if we want to use the particular type of interpretation, we have to choose the specific models and 

cannot use other models. Therefore, model-agnostic interpretation methods have become the focus of research in 

recent years. These model-free methods broadly fall into five technique types: (1) Visualization approaches try to 

visualize the representations to explore the pattern hidden inside a neural unit. For example, Matthew and Fergus 

[16] proposed deconvolution network (DeConvNet) method in which the network computations were backtracked 

to identify which image patches are responsible for certain neural activations. Simonyan et al. [17] demonstrated 

that the visualization results of image classification model by using convolutional networks (ConvNets) could be 

obtained by numerical optimization of input image. (2) Knowledge extraction approaches try to extract, in a 

comprehensible form, the knowledge acquired by a network during training and encoded as an internal 

representation. For example, Tan et al. [18] investigated how to use model distillation to extract complex models 

into transparent models. Che et al. [19] introduced a knowledge extraction method called interpretable mimic 

learning to learn interpretable phenotypic features, so as to make reliable predictions while imitating the 

performance of deep learning models. Xu et al. [20] introduced DarkSight, a visualization method used to interpret 

the predictions of black box classifiers on datasets inspired by the concept of dark knowledge. (3) Influence methods 

focus on changing the input or internal components to estimate the importance or the relevance of a feature and to 

better understand the network. For example, Koh and Liang [21] used influence functions to trace a model's 

prediction through the learning algorithm and back to its training data, thereby identifying training points that most 

responsible for a given prediction. Bach et al. [22] proposed the layer-wise relevance propagation algorithm to 

compute the relevance between decision and classifier. (4) Example-based explanation approaches try to understand 

the behavior of machine learning by studying particular instances of dataset. For example, Kim et al. [23] developed 

the maximum mean discrepancy critic (MMD-critic) which efficiently learns prototypes and criticism, designed to 

aid human interpretability. (5) Theoretical connection. An effective method is to establish the relationship between 

deep learning and some well-developed theories, and then use these theories to explain the neural networks and also 

guide the construction of neural networks. Some well-developed theories include: (a) Renormalization Theory. 

Mehta and Schwab [24] explained deep neural networks (DNNs) as a renormalization group like procedure to 

extract relevant features from structured data. (b) Probabilistic Theory. Patel et al. [25] developed a new 

probabilistic framework for deep learning based on a Bayesian generative probabilistic model. (c) Information 

Theory. Tishby and Zaslavsky [26] analyzed CNNs by using the theoretical framework of the information 

bottleneck principle. Then, Steeg and Galstyan [27] further introduced a new framework for unsupervised learning 
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of representations based on a novel hierarchical decomposition of information. (d) Numerical Differential Equations. 

Lu et al. [28] bridged deep architectures and numerical differential equations. (e) Group Theory. Paul and 

Venkatasubramanian [29] showed the intrinsic relations between group theory and deep networks, and explained 

why unsupervised deep learning works. 

In signal modulation domain, many works have been conducted to optimize the traditional signal modulation 

system through deep learning, for example, classification of signal modulation type [30]-[34], optimization of 

transmitter and receiver [35], [36], quantization of L-values for gray-coded modulation [37] and spatial modulation 

multiple-input multiple-output (SM-MIMO) transmit antenna selection [38]. Some works establish links between 

the communication system and the autoencoder, interpreting the communication as an autoencoder [39]-[41]. 

Unlike them, we try a completely opposite problem. In this paper, we aim to provide a new model-agnostic 

interpretation method for CNNs by leveraging the well-studied signal modulation theory, which leads to a clear and 

profound understanding of CNNs, together with new insights. Specifically, we try to bridge the deep learning and 

signal modulation by studying the spectrum distribution of features in CNNs. We conclude that in the forward-

propagation of CNNs, what happens in the black box is explained as the “generalized shifting” of energy spectrum 

and experiments show that different types of energy spectra will be modulated to be near a similar spectrum 

distribution. We conclude that the back-propagation process can be thought of as a searching process for an optimal 

energy spectrum distribution that is most conducive to related tasks by stochastic gradient descent methods. 

Experiments show that different networks will modulate features in the similar direction finally and better classified 

features will be closer to the optimal spectrum. Finally, the applications of our theory on one-dimensional and two-

dimensional public datasets reveal that our theory is helpful for the design of CNNs. The contributions of the paper 

are as follows: 

1）We propose a new interpretation framework for CNNs by using the signal modulation theory for the first 

time and therefore bridging the deep learning domain and signal modulation domain.

2） In the forward-propagation of CNNs, every operation is explained by the signal modulation theory and what 

happens in the black box is explained as the “generalized shifting” of energy spectrum. For the back-

propagation process, it can be thought of as a searching process for an optimal energy spectrum distribution 

that is most conducive to classification or other tasks. Several validation experiments corroborate our theory.

3）We found the relation between feature spectrum distribution and task effects and several experiments reveal 

that our theory is helpful for the design of CNNs.

The paper is organized as follows. Signal modulation theory is reviewed in Section 2. Section 3 explains the 

basic operators and propagation process of CNNs. Some mysteries of CNNs are discussed in Section 4. In Section 

5, two experiments are given to verify the modulation explanation of CNNs. 

2. The Signal Modulation Theory
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2.1 Energy spectrum shift of single-carrier amplitude modulation for the discrete-time signal

Signal modulation is an important concept in communication theory. The information carried in the low 

frequency modulating signal (or baseband signal)  will be greatly attenuated and distorted when this signal is 𝑥[𝑛]

sent on the transmission channel directly. Therefore, it is necessary to modulate  into a high frequency signal 𝑥[𝑛]

named modulated signal  that is more suitable for sending on the transmission channel. The modulated signal 𝑚[𝑛]

 is simply obtained by multiplying the modulating signal  with a high frequency carrier signal . 𝑚[𝑛] 𝑥[𝑛] 𝑐[𝑛]

Through the signal modulation method, we can use the carrier signal  to modulate the signal  so that we 𝑐[𝑛] 𝑥[𝑛]

can get a modulated signal  whose characteristic parameters, such as amplitude, frequency and phase, carry 𝑚[𝑛]

the information of modulating signal . Sinusoidal amplitude modulation is one of the most widely used analog 𝑥[𝑛]

modulation methods in transmission of signals: 

                                     (1)𝑐[𝑛] = cos 2𝜋𝑓𝑐𝑛,

where  is the frequency of . Then, the modulated signal  is given:𝑓𝑐 𝑐[𝑛] 𝑚[𝑛]

                          (2)𝑚[𝑛] = 𝑥[𝑛] ∙ 𝑐[𝑛] = 𝑥[𝑛] ∙ cos 2𝜋𝑓𝑐𝑛.

If the Fourier transforms of  and  are denoted as  and  respectively, then we obtain:𝑥[𝑛] 𝑚[𝑛] 𝑋(𝑓)  𝑀(𝑓)

.                         (3)𝐸𝑀(𝑓) =  |𝑀(𝑓)|2 =  
1
4|𝑋(𝑓 + 𝑓𝑐) + 𝑋(𝑓 ― 𝑓𝑐)|2

One of the most important applications of signal modulation is to achieve energy spectrum shift, that is, the 

energy spectrum of the modulating signal to be transmitted is shifted to a frequency band near a carrier signal, so 

that the process of sending or handling modulated signal will be more convenient than the original modulating 

signal.

As shown in Fig. 1, compared to the energy spectrum of the modulating signal , the energy spectrum of 𝑥[𝑛]

the modulated signal  is located around frequencies  and , that is, signal modulation leads to energy 𝑚[𝑛] ― 𝑓𝑐 𝑓𝑐

spectrum shift and moves the energy spectrum of modulating signal towards .± 𝑓𝑐

𝑋(𝑓)

−𝑓 𝑓
−𝑓�

𝑥[𝑛]Low frequency 
modulating signal

High frequency carrier signal

c[𝑛]

𝑚[𝑛]

𝑚[𝑛] = 𝑥[𝑛]𝑐[𝑛]

Modulated signal

𝑀(𝑓) 𝐸𝑀(𝑓)𝐸𝑋(𝑓)
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Fig. 1. The process of double sideband suppressed carrier (DSB-SC).  and  denote spectrum and energy spectrum of modulated signal , 𝑋(𝑓) 𝐸𝑋(𝑓) 𝑥[𝑛]

respectively;  and  denote spectrum and energy spectrum of modulated signal , respectively. The energy spectrum of modulating signal 𝑀(𝑓) 𝐸𝑀(𝑓) 𝑚[𝑛]

is moved to both sides of carrier frequency .𝑓𝑐

http://www.baidu.com/link?url=6pjYv1xz1fBizjo6WbGBvF7zVzcmth-rG7kOPSSu0y0M_nH-F97XnGZoabPrlIVpKUM9w6ywF5wgg6KZAtDkJPJDPiKypRlH03iCPDITvafq_Xzvj7kyxIS8a51dISfw
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2.2 Multi-carrier modulation and multiple-input multiple-output (MIMO) modulation

Besides single-carrier modulation shown in the above section, multi-carrier modulation is also widely used to 

further improve the transmission performance. As shown in Fig. 2, multi-carrier modulation divides the data stream 

into KM sub-data streams , which are modulated by KM carrier signals , obtaining [ ]kx n cos (2𝜋𝑓𝑘𝑛)

                        (4)𝑚𝑘[𝑛] = 𝑥𝑘[𝑛]cos (2𝜋𝑓𝑘𝑛),𝑘 = 1,2,…,𝐾𝑀.

Serial/
Parallel

𝑥[𝑛]

𝑥1[n]

𝑥2[n]

𝑥𝐾𝑀 [𝑛]

∑

𝑚𝐾𝑀 [n]

𝑠[n]

cos2𝜋𝑓1𝑛

cos2𝜋𝑓2𝑛

cos2𝜋𝑓𝐾𝑀 𝑛

𝑚2[n]

𝑚1[n]

Fig. 2. General block diagram of a multi-carrier modulation. KM is the number of carrier signals.

Then, the modulated signal is given:

.                       (5)𝑠[𝑛] = ∑𝐾𝑀

𝑘 = 1𝑚𝑘[𝑛] = ∑𝐾𝑀

𝑘 = 1𝑥𝑘[𝑛]cos (2𝜋𝑓𝑘𝑛)

Multi-carrier modulation can be implemented in many ways. A common technical approach is frequency division 

multiplexing (FDM), that is, the total frequency width is greater than the sum of the frequencies of each sub-channel, 

while ensuring that the frequency bands of the signals transmitted in each sub-channel do not interfere with each 

other. That is to say:

                                (6)𝑀𝑝(𝑓) ⋅ 𝑀𝑞(𝑓) = 0,𝑝 ≠ 𝑞,

where  and  are the spectrum of modulated signals  and  respectively. So similar to 𝑀𝑝(𝑓) 𝑀𝑞(𝑓) [ ]pm n [ ]qm n

Eq. (3), the energy spectrum of Eq. (5) is given by

 (7)𝐸𝑆(𝑓) = |∑ +∞

𝑛 = ―∞
∑𝐾𝑀

𝑘 = 1𝑥𝑘[𝑛]cos (2𝜋𝑓𝑘𝑛)𝑒 ―𝑗2𝜋𝑓𝑛|2
= |∑𝐾𝑀

𝑘 = 1𝑀𝑘(𝑓)|2
= ∑𝐾𝑀

𝑘 = 1𝐸𝑀𝑘(𝑓) = ∑𝐾𝑀

𝑘 = 1
1
4|𝑋𝑘(𝑓 ― 𝑓𝑘) + 𝑋𝑘(𝑓 + 𝑓𝑘)|

2
,

where  are the spectrum of modulating signals ;  is the energy spectrum of 𝑋𝑘(𝑓),𝑘 = 1,2,…,𝐾𝑀 [ ]kx n 𝐸𝑀𝑘(𝑓)

. From Eq. (7), we can see that multi-carrier modulation system realizes simultaneously energy spectrum [ ]km n

shift of multiple signals, which is shown in Fig. 3.
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𝑓𝑓𝑓

𝑓

𝑓

𝑓

𝑓

𝐸𝑋1(𝑓) 𝐸𝑋2(𝑓) 𝐸𝑋𝐾𝑀 (𝑓)

−𝑓 1 𝑓 1

−𝑓 2

−𝑓𝐾𝑀

−𝑓𝐾𝑀

𝑓𝐾𝑀

𝑓 2

𝑓2 𝑓𝐾𝑀𝑓1−𝑓1−𝑓2

𝐸𝑀1(𝑓)

𝐸𝑀2(𝑓)

𝐸𝑀𝐾𝑀 (𝑓)

𝐸𝑆(𝑓)

…

…

… …
Fig. 3. The energy spectrum shift of multi-carrier modulation system.

In the actual signal transmission application, we usually combine multi-carrier technology with multiple-input 

multiple-output (MIMO) technology, which is a typical diversity technology used for anti-fading in communication 

systems. The basic principle of diversity technology is to send multiple copies carrying the same information 

through multiple channels. Each copy undergoes a multi-carrier modulation system on each channel. The principle 

block diagram of the multi-carrier MIMO system is shown in Fig. 4.

After employing spatial diversity, the input signal is divided into IM parts on the antenna array at the 

transmitting end and can be expressed as:

,                          (8)1 2[ ] [ ] [ ] [ ] M

M

T I
In x n x n x n   x  

where the superscript T denotes transpose, IM represents the number of antennas at the transmitting end. Then in 

each channel,  is transmitted through the antenna after its corresponding multi-carrier 𝑥𝑝[𝑛],𝑝 = 1,2,...,𝐼𝑀

modulation. The channel response matrix can be expressed as  , whose element  represents the M MO IH  ℎ𝑞,𝑝

response coefficient from the -th transmitting antenna to the -th receiving antenna. Note that  denotes real 𝑝 𝑞 
number domain. Then, the receiving vector after modulation of multi-carrier MIMO system can be expressed as:

,                     (9)1 2[ ] [ ] [ ] [ ] M

M

T O
On r n r n r n    r Hs 

where OM represents the number of antennas at the receiving end and

                                             (10)1 2[ ] [ ] [ ] M

M

T I
Is n s n s n   s  

is the modulated signal vector.

Eq. (9) can be further refined into:

      (11)𝑟𝑞[𝑛] = ∑𝐼𝑀

𝑝 = 1ℎ𝑞,𝑝𝑠𝑝[𝑛] = ∑𝐼𝑀

𝑝 = 1ℎ𝑞,𝑝[∑𝐾𝑀

𝑘 = 1𝑥𝑝,𝑘[𝑛]cos (2𝜋𝑓𝑝,𝑘𝑛)],𝑞 = 1,2,…,𝑂𝑀,
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where  corresponds to the -th modulating signal of the -th copy in the -th transmit channel,, [ ]p kx n 𝑘 𝑝 𝑝  cos (2𝜋

 corresponds to the -th carrier signal of the -th transmit channel. 𝑓𝑝,𝑘𝑛) 𝑘 𝑝

Similar to Eqs. (3) and (7), the energy spectrum of Eq. (11) is given by

 (12)𝐸𝑅𝑞(𝑓) = ∑𝐼𝑀

𝑝 = 1ℎ𝑞,𝑝
2𝐸𝑆𝑝(𝑓) =

1
4∑𝐼𝑀

𝑝 = 1ℎ𝑞,𝑝
2∑𝐾𝑀

𝑘 = 1|𝑋𝑝,𝑘(𝑓 + 𝑓𝑝,𝑘) + 𝑋𝑝,𝑘(𝑓 ― 𝑓𝑝,𝑘)|2,𝑞 = 1,2,…,𝑂𝑀,

where  is the energy spectrum of  and  is the frequency domain expression of signal 𝐸𝑆𝑝(𝑓) [ ]ps n 𝑋𝑝,𝑘(𝑓)

., [ ]p kx n

Fig.4. Signal model of multi-carrier MIMO modulation system.

3. The connection between CNNs and Modulation Theory

CNNs are hierarchical models whose inputs are raw data, such as RGB image, audio signal, and so on. Then 

CNNs stack various layers composed of a series of operations, such as convolution operation, pooling operation, 

and non-linear activation function, the purpose of which is to extract high-level semantic information from the input 

layer and abstract it layer by layer. This process of feature extraction is called “forward-propagation”. Finally, the 

last layer of the CNNs formalizes its target task (classification, segmentation, regression, etc.) into an objective 

function. More generally speaking, the construction of CNNs is like a process of building blocks, using the Conv-

ReLU-Pooling operator as the “basic unit” in turn to “build” on the original data and “stack” layer by layer, as 

shown in Fig. 5. This “basic unit” will be the focus of our research. In this section, we will bridge CNNs and 

modulation theory and explain the correspondence in these two frames, whose main points are briefly summarized 

in Table 1.
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Input Conv-ReLU-Pooling …… Conv-ReLU-Pooling Target task
Forward- propagation

Segmentation
Classification

Regression
……

Fig. 5. The forward-propagation process of CNNs and Modulation Theory

Table 1. The connection between CNNs and modulation theory

CNNs Modulation Theory
Objective Minimize the cost function. If we train with mean square error, we need to minimize

  2

1

1( ; ) ( ( ) ) ,
CS

i i
iC

M g D g x y
S 

 
where ,  is the true label of sample  , 

1 1 2 2{( , ), ( , ), ..., ( , )}
C CS SD x y x y x y iy ix

 is the classifier, is the number of samples. By minimizing the loss function, g CS
the appropriate parameters (filters) are obtained, that is, pretrained model, through 
which excellent classification or recognition effect can be obtained.

Minimize the interference of the signal in the 
channel and the fading of the modulating 
signals.

Solve Forward-propagation
Stack the Conv-ReLU-Pooling in different ways, modulate the input data to a 
specific energy spectrum distribution (Features = , where  𝑓(𝑿;𝜗) 𝑿 = {𝑥1,𝑥2,…,𝑥𝐼𝑆}
is the sample set and  represents the parameters of filters), then send the result to 𝜗
the classifier.
Back-propagation
The back-propagation process is searching for the appropriate energy spectrum 
distribution which is best for classification, through gradient descent.

Energy spectrum shift
Through different modulation methods, the 
energy spectrum of the original signal is moved 
to a higher carrier frequency, which can 
improve the anti-interference and anti-fading 
ability of the system.

Building block Convolution

Activation function (ReLU)

Pooling

Conv-ReLU-Pooling

Multi-carrier MIMO amplitude modulation

Single-carrier amplitude modulation

Multi-carrier amplitude modulation

Continuous amplitude modulation
3.1 Convolution

The convolutional layer is the core layer of the CNNs, which can realize the feature extraction of the input 

data. The convolutional layer contains multiple convolution kernels. When the convolutional kernel works, it will 

regularly scan the input data, and perform matrix element multiplication and summation on the input data, thereby 

enhancing some features of the input data. Note that the commutativity of convolution is not very important in the 

practical application of CNNs, most neural network libraries regard cross-correlation function as convolution:

        (13)𝑦𝑞[𝑛] = ∑𝐼𝐶

𝑝 = 1𝑤𝑞,𝑝[𝑛]⨀𝑥𝑝[𝑛] = ∑𝐼𝐶

𝑝 = 1
∑𝐾𝐶

𝑘 = 1𝑤𝑞,𝑝[𝑘]𝑥𝑝[𝑛 + 𝑘],𝑞 = 1,2,…,𝑂𝐶,

where  is the number of input channels,  is the number of output channels, denotes the -th channel 𝐼𝐶 𝑂𝐶 𝑥𝑝[𝑛] 𝑝

of the input feature map and  is the -th channel of the output feature of convolution layer, 𝑦𝑞[𝑛] 𝑞

 is the convolutional (or correlation) kernel corresponding to the , , , ,[1] [2] C
T K

q p q p q p q p Cw w w K   w = [ ] 

-th input channel and the -th output channel, and  is the convolution (or cross-correlation) operation. Let 𝑝 𝑞 ⊙

then the single-channel convolution (or correlation) can be obtained:1,C CI O 

                        (14)𝑦[𝑛] = (𝑥⨀𝑤)[𝑛] = ∑𝐾𝐶

𝑘 = 1𝑤[𝑘]𝑥[𝑛 + 𝑘],

where we discard the subscripts p and q for simplicity.

3.1.1 Connection between convolution and modulation
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Let us first establish the relationship between the single-channel convolution as reported above and the multi-

carrier modulation. Comparing Eq. (14) with Eq. (5), if we replace  by ,  by , [ ]kx n [ ]x n k cos (2𝜋𝑓𝑘𝑛) [ ]w k

in Eq. (5), and also set KC=KM, then we can obtain Eq. (14). Therefore, the single-channel convolution operation 

can be achieved by constructing a special multi-carrier modulation which is shown in Fig. 6. For example, if the 

size of the convolution kernel is KC=3, the specific calculation process of convolution is shown in the left part of 

Fig. 6. Correspondingly, the right part is a multi-carrier modulation system with three channels. The multiplier 

represents scalar multiplication of vectors, the adder represents the sum of the corresponding positions of the three 

vectors, and then we can get the same calculation result as the convolution.

𝑥[1]

𝑥[2]

𝑥[3]

𝑥[4]

…

…

𝑥[𝑁� − 1]

𝑥[𝑁�]

𝑤[1]

𝑤[2]

𝑤[3]

𝑦[1] = 𝑥[1]𝑤[1] + 𝑥[2]𝑤[2] + 𝑥[3]𝑤[3]

𝑦[2] = 𝑥[2]𝑤[1] + 𝑥[3]𝑤[2] + 𝑥[4]𝑤[3]

𝑦[3] = 𝑥[3]𝑤[1] + 𝑥[4]𝑤[2] + 𝑥[5]𝑤[3]

…

…

𝑦[𝑁� − 2] = 𝑥[𝑁� − 2]𝑤[1] + 𝑥[𝑁� − 1]𝑤[2] + 𝑥[𝑁�]𝑤[3]

Serial/  
Parallel𝑥[𝑛]

𝑥[3] 𝑥(1) ... 𝑥(𝑁� )

𝑤[3]

𝑤[1]

𝑤[2]

𝑤[3]

𝑤[1]

𝑤[2]

𝑤[3]

𝑥[1] 𝑥[2] ... 𝑥[𝑁� − 2]

𝑤[2]

𝑤[1]

𝑥 2 𝑤[2] 𝑥 3 𝑤[2] … 𝑥 𝑁𝑴 − 1 𝑤[2]

𝑥 3 𝑤[3] 𝑥 4 𝑤[3] … 𝑥 𝑁𝑴 𝑤[3]

𝑥 1 𝑤[1] +
𝑥[2]𝑤[2] +
𝑥[3]𝑤[3]

𝑥 2 𝑤[1] +
𝑥[3]𝑤[2] +
𝑥[4]𝑤[3]

…
𝑥 𝑁𝑴 − 𝟐 𝑤[1]

+𝑥 𝑁𝑴 − 1 𝑤[2]
+𝑥 𝑁𝑴 𝑤[3]

s[1] 𝑠[2] … 𝑠[𝑁𝑴 − 2]

𝑥[2] 𝑥[3] ... 𝑥[𝑁𝑴 − 1]

𝑥 1 𝑤[1] 𝑥 2 𝑤[1] … 𝑥 𝑁𝑴 − 2 𝑤[1]

𝑥�[𝑛]

𝑥�[n]

𝑥�[n]

𝑚�[𝑛]

𝑚�[𝑛]

𝑚�[𝑛]

𝑠[𝑛]

Fig. 6. The relationship between the single-channel convolution and the multi-carrier modulation. The left part is the convolution operation process in the 

practical application of CNNs, and the right part is the corresponding multi-carrier amplitude modulation model.  and  represent the length of input 𝑁𝐶 𝑁𝑀

signal of convolution and modulation, respectively.

Then, we establish the relationship between the multi-channel convolution and the multi-carrier MIMO 

modulation, whose correspondence of parameters is shown in Table 2. Furthermore, comparing Eq. (13) with Eq. 

(11), if we replace  by ,  by , and also set KC=KM, and IC=IM in Eq. , [ ]p kx n [ ]px n k ℎ𝑞,𝑝cos (2𝜋𝑓𝑝,𝑘𝑛) , [ ]q pw k

(11), then we can obtain Eq. (13). Therefore, the multi-channel convolution operation can be achieved by 

constructing a special multi-carrier MIMO modulation which is shown in Fig. 7.

For the commonly used two-dimensional image data in CNNs, we can construct a similar system, which will 

not be repeated here. At this point in the article, we can regard the convolution operation of CNNs as a special 

multi-carrier MIMO modulation system. 

3.1.2 Difference between convolution and modulation

Although multi-channel convolution can be transformed into a multi-carrier MIMO modulation structure, there 

are still some differences between them. In signal modulation, in order to achieve a long-distance transmission of 

signal, we need to move the energy spectrum of low frequency signal to a position which is near the carrier energy 

spectrum. Generally speaking, these carrier signals are fixed and have been determined in advance. For example, 

we usually use the carrier signals shown in Fig. 8 in OFDM-MIMO which is one of the most widely used multi-

carrier MIMO modulation methods. In contrast to the fixed carrier signals, we have no idea about what kind of 

energy spectrum distribution is beneficial to classification or segmentation in CNNs and also what kind of carrier 

signals can improve the classification accuracy of input signals. So, the “carrier parameters” in CNNs are usually 

randomly initialized, and then the optimal carrier signals are found by stochastic gradient descent method.



10

Table 2. Multi-channel convolution and its corresponding multi-carrier MIMO system

Multi-channel convolution Multi-carrier MIMO modulation system

The number of data samples SC The number of modulating signals SM

The number of input feature map IC The number of transmit antennas IM

The number of output feature map OC The number of receive antennas OM

The size of input feature map NC The length of modulating signal NM

The number of convolution kernel parameters 𝑂𝐶 × 𝐼𝐶 × 𝐾𝐶 The number of subcarrier parameters OM×IM×KM

The output feature map )𝑂𝐶 × (𝑁𝐶 ― 𝐾𝐶 +1 The modulated signal )𝑂𝑀 × (𝑁𝑀 ― 𝐾𝑀 +1

…
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𝑐ℎ𝑎𝑛𝑛𝑒𝑙 2
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…
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⊙

⊙
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𝒚��,𝟏[𝟏] 𝒚��,𝟏 𝟐 … 𝒚��,𝟏[𝑵𝑪 − 𝟐]𝒙𝟏[𝟏] 𝒙𝟏[𝟐] … 𝒙𝟏[𝑵𝑪]

𝒙𝟐[𝟏] 𝒙𝟐[𝟐] … 𝒙𝟐[𝑵𝑪] 𝒘��,𝟐[𝟏] 𝒘��,𝟐[𝟐] 𝒘��,𝟐[𝟑]

𝑥�[𝑛] 𝑤��,�[𝑛]

𝒙��[𝟏] 𝒙��[𝟐] … 𝒙��[𝑵𝑪]

𝑥��[𝑛]
𝒘��,��[𝟏] 𝒘��,��[𝟐] 𝒘��,��[𝟑]
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𝒙𝟐

𝒙𝑰𝑪

𝒚��,𝟐[𝟏] 𝒚��,𝟐[𝟐] … 𝒚��,𝟐[𝑵𝑪 − 𝟐]

𝒚��,��[𝟏] 𝒚��,��[𝟐] … 𝒚��,��[𝑵𝑪 − 𝟐]
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𝒚�� [𝟏] 𝒚�� [𝟐] … 𝒚�� [𝑵𝑴 − 𝟐]

Fig. 7. The relationship between the multi-channel convolution and the multi-carrier MIMO modulation. The left part of figure shows a convolution schematic process. The input dimension is , (𝐼𝐶, 𝑁𝐶)

the convolutional kernel size is , and the stride is . The right part of figure shows the corresponding MIMO modulation system. The number of input antennas is , the number of output (𝑂𝐶, 𝐼𝐶, 3) 1 𝐼𝑀

antennas is , and the number of carrier signals per channel is 3.𝑂𝑀
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Fig. 8. The carrier signals used in the OFDM-MIMO system. The left figure is the OFDM subcarriers in time domain, and the right figure is the energy 

spectrum of that.

3.1.3 Energy spectrum generalized shifting of convolution operator

Since the most important role of the signal modulation system is to shift the energy spectrum of the original 

baseband signal into the spectrums of multi-carrier signals for a better transmission. In the following, we will check 

whether the convolution operator in a pretrained CNN can also realize the energy spectrum shift. In the following 

section, we will give the example on one-dimensional (1-D) audio classification. Example on two-dimensional(2-D) 

image classification is given in in the supplement document.

We analyze the signal energy spectrum shift of multi-channel convolution in a pretrained CNN for 1-D audio 

classification. Note that the CNN structure we used is Network-audio-1 which is shown in Fig. A1 in Appendix.

We simply choose the second convolutional layer Conv2 in Network-audio-1 with multi-channel input and multi-

channel output for analysis instead of Conv1 with single-channel input and multi-channel output. The multi-channel 

convolution is defined in Eq. (13). The energy spectra of input and output signals are obtained by:

                         (15)𝐸𝑥
𝑝(𝑓) = |∑ +∞

𝑛 = ―∞𝑥𝑝[𝑛]𝑒 ―𝑗2𝜋𝑓𝑛|2
,𝑝 = 1,2,…,𝐼𝐶,

                         (16)𝐸𝑦
𝑞(𝑓) = |∑ +∞

𝑛 = ―∞𝑦𝑞[𝑛]𝑒 ―𝑗2𝜋𝑓𝑛|2
,𝑞 = 1,2,…,𝑂𝐶,

In order to analyze the general law, we randomly select 1000 audio segments in urbansound8K [42], which are 

then fed into the pretrained CNN for audio classification. The average energy spectra of the input feature map and the 

output feature map of Conv2 layer are respectively given by

                               (17)𝜓𝑥(𝑓) =
1
𝑆𝐶

1
𝐼𝐶

∑𝑆𝐶

𝑖 = 1
∑𝐼𝐶

𝑝 = 1𝐸𝑥
𝑖,𝑝(𝑓),

                               (18)𝜓𝑦(𝑓) =
1
𝑆𝐶

1
O𝐶

∑𝑆𝐶

𝑖 = 1
∑O𝐶

𝑞 = 1𝐸𝑦
𝑖,𝑞(𝑓),

where , , and are explained in Table 2, and𝑆𝐶 𝐼𝐶 𝑂𝐶 

                               (19)𝐸𝑥
𝑖,𝑝(𝑓) = |∑ +∞

𝑛 = ―∞𝑥𝑖,𝑝[𝑛]𝑒 ―𝑗2𝜋𝑓𝑛|2
,

                               (20)𝐸𝑦
𝑖,𝑞(𝑓) = |∑ +∞

𝑛 = ―∞𝑦𝑖,𝑞[𝑛]𝑒 ―𝑗2𝜋𝑓𝑛|2
,

where  means the -th input channel corresponding to the i-th audio sample and  means the -th , [ ]i px n 𝑝 , [ ]i qy n 𝑞

output channel corresponding to the i-th audio sample. The plots of  and  are shown in Fig. 9. Although 𝜓𝑥(𝑓) 𝜓𝑦(𝑓)
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convolution can be transformed into a form of signal modulation, the specific carrier will be more complicated at this 

time. Therefore, the shift of energy spectrum of the convolutional layer is no longer a simple movement, but a process 

of energy spectrum shifting and reshaping (reallocation). We called the process of moving the energy spectrum to the 

vicinity of a specific distribution generalized shifting. From Fig. 9 we can find that the energy spectra increase in the 

frequency , and correspondingly the energy spectra of other parts decrease. After the Conv2 layer, the [ 50,50]f  

energy spectra are mainly moving to the low frequency. The concentrated area of energy spectra is narrowing during 

convolution. The energy spectrum generalized shifts of other convolutional layers are shown in Fig. 10. 

Fig. 9. The average energy spectra of xi,p[n] and yi,q[n].  and  are shown in red and blue, respectively.𝜓𝑥(𝑓) 𝜓𝑦(𝑓)

Fig. 10. The energy spectrum generalized shifts of all of the convolution layers of the Network-audio-1.

3.2 Activation function

Activation function is another important component of CNNs, and many different kinds of activation functions 

have been proposed, such as sigmoid, tanh, ReLU, Leaky ReLU [43], ELU [44], parametric ReLU [45], maxout [46], 

and sine [47], among them ReLU is probably the most popular activation function used in CNNs and the definition 

of ReLU is:

,                       (21)[ ] (0, [ ]),    1, 2,...,q q Ca n max y n q O 

where  is the -th channel of the output feature of convolution layer defined in Eq. (13). Eq. (21) can also be  𝑦𝑞[𝑛] 𝑞

expressed as:

                           (22)[ ] [ ] ( [ ]),    1,2,...,q q q Ca n y n H y n q O 

and  is the Heaviside function [48] given by:𝐻(𝑡)
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                            (23)( ) 1 if t>0 and ( ) 0 if t<0H t H t 

Comparing Eq. (22) with Eq. (2), we can see that ReLU can be constructed by a single carrier DSB-SC modulation, 

in which  is the modulating signal and  is the carrier signal.[ ]qy n 𝐻(𝑡)

The Fourier transform of Eq. (22) can be expressed as follows:

                       (24)𝐴𝑞(𝑓) = ∑ +∞
𝑛 = ―∞𝑎𝑞[𝑛]𝑒 ―𝑗2𝜋𝑓𝑛,𝑞 = 1,2,…,𝑂𝐶.

Note that as the support of convolution  is finite, the  is well defined. [ ]qy n 𝐴𝑞(𝑓)

We also check the energy spectrum generalized shift in a pretrained 1-D CNN of Network-audio-1 whose 

structure is shown in Fig. A1 in Appendix. We simply choose the second ReLU layer ReLU2 for the comparison with 

Conv2. The energy spectrum before the ReLU2 is shown in Eq. (16), and the energy spectrum after the layer ReLU2 

is given by:

                            (25)𝐸𝑎
𝑞(𝑓) = |𝐴𝑞(𝑓)|2,𝑞 = 1,2,…,𝑂𝐶.

Similarly, we randomly select 1000 audio segments in urbansound8K dataset [42], and send them to the 1-D 

Network-audio-1, and obtain the input and output feature maps of ReLU2 layer. Then, the average energy spectrum 

of each channel and each audio segment before the ReLU2 is shown in Eq. (18) and the average energy spectrum of 

each channel and each audio segment after the ReLU2 layer is calculated as follows:

                            (26)𝜓𝑎(𝑓) =
1
𝑆𝐶

1
𝑂𝐶

∑𝑆𝐶

𝑖 = 1
∑𝑂𝐶

𝑝 = 1𝐸𝑎
𝑖,𝑝(𝑓),

where  is the energy spectrum of the -th channel of output feature map corresponding to the -th sample after E𝑎
𝑖,𝑝(𝑓)  𝑞 𝑖

the ReLU2 layer.  and  are explained in Table 2. The plots of  in Eq. (18) and  in Eq. (26) using 𝑂𝐶 𝑆𝑐 𝜓𝑦(𝑓) 𝜓𝑎(𝑓)

ReLU are shown in Fig. 11. We can find that the energy spectra decrease in the frequency , and [ 50,50]f  

correspondingly the energy spectra of other parts increase. After the ReLU2 layer, the energy spectra are moving to 

the high frequency which is opposite to the direction of spectrum generalized shift of conv2 layer. The spectrum 

generalized shifts of other ReLU layers are shown in Fig. 12. Although each layer here is performing ReLU operations, 

the moving direction of each ReLU layer is slightly different, and we will make a more specific introduction in Section 

4.

For other activation functions, we can always use Taylor's formula to convert the activation function into the 

following form: which can also be constructed by a single-carrier DSB-SC modulation. We will not [ ] [ ] [ ]a n y n n

give examples one by one and we verified the phenomenon of energy spectrum generalized shifts of some activation 

functions like sigmoid, tanh, sine, ELU on the Network-audio-1 whose activation functions are changed from ReLU 

to others. The plots of  and  using other activation functions instead of ReLU are shown in Fig. 13, 𝜓𝑦(𝑓) 𝜓𝑎(𝑓)

from which we can also observe the phenomenon of energy spectrum generalized shift.

Therefore, in the perspective of signal modulation, the combination of convolution and activation function is not 

just a superposition of two independent linear and nonlinear operators, but a continuous process of modulation in 
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which energy spectrum of input will be shifted to the appropriate sidebands from two opposite directions.

Besides Conv2 and ReLU2 of Network-audio-1 for 1-D audio classification, the results of 2-D image data are 

shown in the supplement document.

Fig. 11. The average energy spectra of yq[n] and aq[n] using ReLU function. ψy(f) and ψa(f) are shown in red and blue, respectively. 

Fig. 12. The energy spectrum generalized shift of all of the ReLU layers of the Network-audio-1.

                         (a)                          (b)                           (c)                           (d)
Fig. 13. The average energy spectra of yq[n] and aq[n] using other activation functions except ReLU. (a) The results of ; (b) The results of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑦)

; (c) The results of ; (d) The results of . 𝑡𝑎𝑛ℎ(𝑦) 𝑠𝑖𝑛𝑒(𝑦) 𝐸𝐿𝑈(𝑦)

3.3 Pooling

Although Conv-ReLU can move the image energy spectrum in two different directions, and it seems that the 

appropriate combination of Conv-ReLU can achieve the purpose of generalized shifting the energy spectrum to the 

appropriate distribution. But both of them usually do not change the resolution and too high resolution will make 

calculations unbearable. Therefore, the introduction of pooling operations is very important in CNNs. Pooling is used 

in CNNs to reduce information between computational layers. Existing pooling methods mainly include pooling in 

spatial domain (average, max, etc) and pooling in frequency domain (Spectrum pooling) [49]. The examples of two 

pooling methods are shown in Fig. 14. Although one is cropped in spatial domain and the other is in frequency domain, 

we could not say these two kinds of methods are two completely different pooling methods. In the view of signal 

modulation theory, they are all modulation processes.
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(a)The computational process of a typical spatial average pooling      (b)The computational process of special spectrum pooling

Fig. 14. The main pooling methods include spatial pooling and spectrum pooling.

1. Spatial pooling

We try to understand a specific pooling layer, like average pooling, whose main operation is to calculate the 

average of the matrices in a specific range which can be easily understood as a convolution. We map the pooling 

function to a  convolution function (step size is decided according to the resolution required by the network), as 1
CK

shown in Fig. 15. Therefore, this type of pooling can completely be replaced by the convolution function with specific 

structure as follows:

,                              (27)1( [ ]) [ ] 1
CK

C

ap x n x n
K

 

where  is the size of convolutional kernel decided by the parameters of pooling layer. Therefore, the process of 𝐾𝐶

average pooling of each channel can be understood as a process of single-channel convolution. For max pooling 

layer, Springenberg [50] found that max pooling can simply be replaced by a convolutional layer with increased 

stride without loss in accuracy. 

Therefore, we can regard spatial pooling as a special convolution and explain the pooling by the same way that 

we used to interpret the convolution, that is, we can regard spatial pooling as a way of modulation with one special 

carrier signal.
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Fig. 15. The process of calculating with  instead of average pooling.1
CKinput 

2. Spectral pooling

In spectral pooling, the image is truncated into a suitable size in the frequency domain. The network achieves 

the purpose of information compression by cropping coefficients of the low frequency of transformed feature maps. 

The spectral pooling can be stated as:

                              (28)𝑆𝑃(𝑥[𝑛]) = 𝑋(𝑓) ⋅ 𝐻(𝑓),

where  is the frequency representation of input feature , namely,  is firstly mapped to frequency 𝑋(𝑓) 𝑥[𝑛] 𝑥[𝑛]

domain by Fast Fourier transform (FFT) and then the low frequency part is shifted to the center using fftshift. 

 is the frequency representation of output feature.  is a modified Heaviside function as follows𝑆𝑃(𝑥[𝑛]) 𝐻(𝑓)
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                               (29)𝐻(𝑓) = {1,|𝑓 ―
𝑁𝑃

2 | ≤
𝑑
2,

0,|𝑓 ―
𝑁𝑃

2 | ≥
𝑑
2,

 

where  is the size of input images, d is the size of output features. 𝑁𝑃

According to convolution theorem, Eq. (28) can be restated as:

,                                (30)( [ ]) [ ] [ ]sp x n x n h n 

where  is the result of the inverse Fourier transform of . From Eq. (29), we can explain the spectral [ ]h n 𝐻(𝑓)

pooling as a special convolution with one specific convolution kernel, that is, spectral pooling is also a special 

modulation according to Section 3.1.

Through the previous description, we can consider convolution, activation, and pooling as three different 

modulation methods. Therefore, Conv-ReLU-Pooling, the basic operators of CNN, can be regarded as a combination 

of three different modulation, playing the role of the basic unit of signal modulation. Then the process of stacking 

Conv-ReLU-Pooling operators is actually a process of continuous signal modulation. 

4. Answers to some questions in CNNs

Given the above analysis about building connection in basic units (Conv, ReLU and Pooling) of CNNs and signal 

modulation, we can answer the following questions from a modulation point of view:

 Since the operator of feature extraction layer of CNNs can be interpreted as a series of signal modulation, why 

CNNs need modulation?

In the signal modulation theory, we have mentioned that high frequency signals are more suitable for propagation 

in channels than low frequency signals, so the original low frequency modulating signal x(t) needs performing 

modulation and shifting the energy spectrum to the position of high frequency carrier signal c(t). Similarly, in the 

signal classification problem, if the original input signals are not suitable for classification, then, we also need to move 

the energy spectra of original signals to a specific frequency band and this specific energy spectrum distribution can 

achieve the optimal classification goal. Therefore, CNNs need to perform modulation and generalized shifting the 

original signal along the direction of this specific energy spectrum distribution to obtain a good classification 

performance. Notice that we will verify that there exists this optimal energy spectrum distribution, and different CNNs 

will modulate different signals to the similar energy spectrum distribution in Section 5.

 Why each convolution in CNN is followed by ReLU function?

In contrast to the explanation by Glorot et al. [51], we try to explain the question from a modulation point of 

view. 

Through the experiments in Section 3.2, we notice that the direction of energy spectrum generalized shift of the 

activation layer is usually opposite to that of the convolution layer. In order to explore the more specific relationship 

between two energy spectrum generalized shifts, we introduce the energy spectrum difference of a layer of CNNs to 

represent the role of the layer in the energy spectrum generalized shift of the network. For example, the energy 
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spectrum differences of convolution layer and activation layer are respectively given by:

                             (31)𝐶𝐷𝐼𝐹𝐹(𝑓) = 𝜓𝑦(𝑓) ― 𝜓𝑥(𝑓),

                             (32)𝐴𝐷𝐼𝐹𝐹(𝑓) = 𝜓𝑎(𝑓) ― 𝜓𝑦(𝑓),

where ,  and  are explained in Eqs. (17), (18) and (26), respectively. Fig. 16 shows the 𝜓𝑥(𝑓) 𝜓𝑦(𝑓) 𝜓𝑎(𝑓) 𝐶𝐷𝐼𝐹𝐹

 and  of all of the convolution layers and ReLU layers of Network-audio-1. We can find that these (𝑓) 𝐴𝐷𝐼𝐹𝐹(𝑓)

two opposite directions of spectrum generalized shifts are common in the network. 

Furthermore, in order to analyze the role of the two totally different kinds of structures, we no longer limit to 

exploring the differences of each single layer and try to accumulate the energy spectrum differences of all the 

convolution and activation layers respectively. The accumulation of energy spectrum differences of the convolution 

layer and the activation layer are respectively given by:

                            (33)𝐴𝐶𝐷𝐼𝐹𝐹(𝑓) = ∑𝑁𝐶𝐿

𝑛 = 1𝐶𝐷𝐼𝐹𝐹𝑛(𝑓),

                            (34)𝐴𝐴𝐷𝐼𝐹𝐹(𝑓) = ∑𝑁𝐴𝐿

𝑛 = 1𝐴𝐷𝐼𝐹𝐹𝑛(𝑓),

where  and  are the number of convolution layers and activation layers of the network respectively.𝑁𝐶𝐿 𝑁𝐴𝐿  𝐶𝐷𝐼𝐹𝐹𝑛

 and  mean the n-th  and the n-th , respectively. The plots of and (𝑓) 𝐴𝐷𝐼𝐹𝐹𝑛(𝑓)  𝐶𝐷𝐼𝐹𝐹(𝑓)  𝐴𝐷𝐼𝐹𝐹(𝑓) 𝐴𝐶𝐷𝐼𝐹𝐹(𝑓) 

 are shown in Fig. 17, from which we can clearly observe that the directions of the two operators 𝐴𝐴𝐷𝐼𝐹𝐹(𝑓)

(convolution and activation) are opposite and the amplitudes are close. So, in a modulation point of view, the 

convolution+ReLU can be seen as a delta modulation process. In other words, the energy spectrum generalized shift 

process of CNNs with only convolution is given:

                        (35)F𝐸𝐴𝑇𝑈𝑅𝐸(𝑓) = 𝐼𝑁𝑃𝑈𝑇(𝑓) +𝐴𝐶𝐷𝐼𝐹𝐹(𝑓),

where  and  are the energy spectrum of input and output features. The energy spectrum  𝐼𝑁𝑃𝑈𝑇(𝑓)  F𝐸𝐴𝑇𝑈𝑅𝐸(𝑓)

generalized shift process of CNNs with convolution+ReLU is given:

(36)𝐹𝐸𝐴𝑇𝑈𝑅𝐸(𝑓) = 𝐼𝑁𝑃𝑈𝑇(𝑓) +𝐴𝐶𝐷𝐼𝐹𝐹(𝑓) +𝐴𝐴𝐷𝐼𝐹𝐹(𝑓) = 𝐼𝑁𝑃𝑈𝑇(𝑓) + (1 ― 𝜆)𝐴𝐶𝐷𝐼𝐹𝐹(𝑓) = 𝐼𝑁𝑃𝑈𝑇(𝑓) + Δ𝐴𝐶𝐷𝐼𝐹𝐹(𝑓),

where  is the correlation coefficient decided by the specific convolution layer. Therefore, what CNNs with 

convolution+ReLU need to learn is the delta shift . Convlolution+ReLU is a more refined energy Δ𝐴𝐶𝐷𝐼𝐹𝐹(𝑓)

spectrum generalized shift than the generalized shift of single convolution. That is why CNNs with 

convolution+ReLU can stack more layers than CNNs only with convolution.

In addition, since the batch normalization [52] is increasingly used to optimize convolution recently, we further 

do an experiment to verify the role of activation functions by replacing convolution with convolution_bn 

(convolution+batch normalization). From Fig. 18 we can find that the reverse spectrum regulation principle of 

activation functions (ReLU, sigmoid, sine, tanh) is also applicable.
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Fig. 16. The  and  of all of the convolution layers and ReLU layers of Network-audio-1.𝐶𝐷𝐼𝐹𝐹(𝑓) 𝐴𝐷𝐼𝐹𝐹(𝑓)

Fig. 17. The  and  of all of the convolution layers and ReLU layers of Network-audio-1.𝐴𝐶𝐷𝐼𝐹𝐹(𝑓) 𝐴𝐴𝐷𝐼𝐹𝐹(𝑓)

(a)                               (b)                             (c)                             (d)

Fig. 18. The  and  of all of the convolution layers and activation layers of Network-audio-1. Convolution layer is replaced with 𝐴𝐶𝐷𝐼𝐹𝐹(𝑓) 𝐴𝐴𝐷𝐼𝐹𝐹(𝑓)

convolution_bn layer in (a); ReLU is replaced with sigmoid, sine and tanh in (b), (c), and (d), respectively.

 Can another commonly used operator deconvolution be explained by signal modulation?

Up-sampling by deconvolution [53] is a popular method for implementing semantic segmentation in deep 

learning. While the operation is called deconvolution, it is in fact a special kind of convolution. Deconvolution first 

enlarges the size of the input image to a certain ratio by interpolating , then rotates the convolution kernel, and 0

finally performs convolution. Dosovitskiy et al. [54] found that Unpooling+Convolution has similar effect as 

deconvolution. Time domain interpolation (unpooling) does not have much effect on the resolution of the image 

energy spectrum, but only adds some small extra high frequency components. The main energy spectrum changes in 
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deconvolution are still happen in the convolution process. So, we can still regard deconvolution (a special convolution) 

as a special modulation.

 Why need back-propagation in CNNs?

In Section 3, we connect the basic units (Conv, ReLU, Pooling) of CNNs with signal modulation. We think that 

the forward-propagation process of CNN is a continuous modulation process, and each operator of Conv, ReLU and 

Pooling will modulate the input signals. Then the modulated signals will be sent to the classifier of CNNs to get the 

classification results. Although both signal modulation and CNNs are doing the work of modulating the energy 

spectrum of input signals, the biggest difference between CNNs and conventional signal modulation is the existence 

of back-propagation process in CNNs. In signal modulation, we know that low frequency signals are not conducive 

to transmit, and high frequency signals are more suitable for transmission, so what we need is just a fixed high 

frequency carrier which can modulate low frequency original signal into high frequency modulated signal. However, 

in CNNs, although it is also a continuous modulation process, we only know that the original signal cannot be easily 

classified, and we have no idea about what kind of energy spectrum distribution of signal is easy to classify. So, CNNs 

need a back-propagation process to search for a suitable energy spectrum distribution. In back-propagation, the 

process of adjusting parameters of convolution kernels is also the process of adjusting the energy spectrum distribution 

of carrier signals as shown in Fig. 19.

Fig. 19. The process of back-propagation is also the process of adjusting the energy spectrum of carrier signals.

5. Verification and Application Experiments

In this section, we give several experiments to verify the proposed modulation explanation theory, whose 

application examples are also shown. The experiments are implemented using PyTorch and Matlab on a PC machine, 

which sets up Ubuntu 16.04 operating system and has an Intel(R) Core(TM) i7-4790K CPU with speed of 4.00 GHz 

*8 and 32 GB RAM, and has one NVIDIA GTX1080-Ti GPU. Some of the models in this section are provided by 

torchvision in PyTorch, and some hyperparameters of models have been modified to meet the video memory 

requirements.

5.1 Verification experiment

In the proposed modulation theory, CNNs are continuous energy spectrum modulation process. The verification 

experiments are divided into three parts: 

(1) In the forward-propagation process, what the network does is moving the energy spectrum distribution of input 

signals. Similar to the process of signal modulation, that the carrier signal modulates different modulating signals 
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to the vicinity of energy spectrum of the carrier signal, the CNNs (a continuous spectrum modulation process) 

modulate different input signals to the similar energy spectrum distribution. Experiment will be conducted to 

verify whether input signals with different energy spectrum distributions will be moved to the similar distribution.

(2) During the back-propagation process, the CNNs continuously adjust the Conv-ReLU-Pooling (carrier signal 

parameters) to make the energy spectrum of the modulated signal change in a specific direction. In the second 

part, we will verify that the back-propagation process of networks of different structures (composed of basic 

Conv-ReLU-Pooling structure) essentially moves the energy spectrum along different routes toward the similar 

direction of energy spectrum distribution which is beneficial for classification. 

(3) Since CNNs actually act on each individual image, we will explore how different the output spectra are if two 

different images are taken from one category and find the association between optimal spectrum distribution and 

individual classification effects.

5.1.1 Forward-propagation

In this part, the network we choose is a 152-layer residual network (Since we study a generalized modulation 

process with forward propagation, here we test on an untrained network with random initialization). Ten different 

categories of ImageNet [55] are randomly selected and the specific categories are shown in the Table 4.

Then we explore the average energy spectrum distributions of the input images and the output features of CNNs, 

as shown in Fig. 20. The average energy spectra of input images and output features of each category are given:
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where  and  are the number of channels of input images and output features.  is the element IC FC , ( , )i pinput u v

of , which is the  channel of the  sample of input images.  is the 1 2
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category, we calculate Eqs. (39) and (40) after averaging 1300 samples in ImageNet with Natural Image Statistical 

Toolbox [56]. The curves in the image represent 60%, 80%, and 90% of the image energy spectrum for each section 
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from the center to the periphery. Algorithm 1 provides the pseudo-code for how we get the average energy spectrum 

for each section. Notice that the 80% and 90% curves of the modulated image are so close that they may be 

indistinguishable but the curves of input image are not so. From Table 4, we can find that CNN normalizes different 

categories of images with different initial energy spectrum distributions to the similar energy spectrum distribution 

during the process of forward-propagation.

Fig. 20. The energy spectrum distributions of the input images and the output features of CNNs. The lower half is the forward-propagation of CNNs. The 

input image is regarded as the modulating signal, and the output feature as the modulated signal. In the upper part the energy spectrum distributions of the 

modulating signal and the modulated signal are compared.

Table 4. The average energy spectrum distribution of ten different categories of images. The first and the fourth columns are category names. Columns 2 

and 5 are the average energy spectra of images (modulating signals) of each category. Columns 3 and 6 are the average energy spectra of the features extracted 

by ResNet152.

category
Input

(modulating signal)

Output

(modulated signal)
category

Input

(modulating signal)

Output

(modulated signal)

Tench Goldfish
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Spotted

salamander
Iguana

African

Crocodile

Night

Snake

Harvestman
Jacamar

Toucan Drake

5.1.2 Back-propagation

In this part, the back-propagation process of several different CNNs, including Alexnet_bn, VGG19_bn, 

Resnet18, Resnet152, and Resnext50, will be explored. Similar to Section 5.1.1, we randomly select ten different 

classes in ImageNet to complete training. In order to intuitively display the changing process of the average energy 

spectrum distribution of images, we use 3-D coordinates  to represent the energy spectrum changes of ( , , )epoch 

the modulated signal of each epoch.

One of the most famous scale invariances of natural image statistics [57], [58] is 1/ρ law, which states that the 

amplitude of the averaged Fourier spectrum  of the ensemble of natural images obeys a distribution [59]:𝐴𝐹(𝜌)

                                     (41)( ) 1/ ,AF  

where  is the radius from the spectrum center. Therefore, the average energy spectrum  obeys the 𝜌 ( )AE 

distribution:

,                                      (42)2( ) 1/AE  

which means that the average energy spectrum of the natural images, after averaging over orientations, lies 

approximately on a straight line on a log-log scale. Therefore, the specific relationship of  and  log ( )AE 
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 of five different CNNs can be obtained by linear regression, that is, . 2log 1/     2log ( ) log 1/AE     

In this experiment, 200 epochs are conducted in the process of back-propagation. For each epoch,  are ( , ) 

calculated and the plots are shown in Fig. 21. We can find that although the paths are not exactly the same, the back-

propagation processes of five different CNNs are similar: the networks move the image energy spectrum towards the 

similar end, which is beneficial to classification. Notice that the starting points of five different CNNs are totally 

different mainly due to the different modulation results caused by different CNNs with totally different structures.

Fig. 21. The energy spectrum modulation process of five different CNNs (AlexNet_bn, VGG19_bn, Resnet18, Resnet152, and Resnext50). The abscissa, 

ordinate and vertical coordinates in the figure represent , , and , respectively.  epoch

5.1.3 Connections between spectrum distribution and task

In Section 5.1.1 we verified that CNNs modulate different types of image spectra to a similar spectrum 

distribution, and in Section 5.1.2, we introduced that in backpropagation, different CNNs will follow different paths 

to search the best spectrum distribution in the similar direction. The task of CNNs is to accomplish the set goal for 

each image. So, if we want to better understand CNNs with modulation theory, we need to relate the spectrum of a 

specific image to the target. We will then study the connection between the optimal spectrum distribution and the 

effect of the task.

The network we choose is the 152-layer residual network (Since we study correlation between the classification 

results and spectrum, here we test on a trained network). We choose the specific category of “Tench” in ImageNet. 

In order to compare the association between spectrum and classification results, we select 20 images with the best 

classification results and 20 images with the worst classification results. Notice that we consider the images with a 

high probability of Top-1 being “Tench” in the classification results as good classifications and vice versa as bad 

classifications.

We take the same study approach as in Section 5.1.1, but here we no longer do a study of the average spectrum 

of a category, but specifically compare each individual image (Eq. (40)). We compare the optimal spectrum 

distribution, the average spectrum distribution of the Top-20, and the spectrum distribution of the individual image in 

the Top-20. We compare the optimal spectrum distribution, the average spectrum distribution of the Bottom-20, and 

the spectrum distribution of the individual image in the Bottom-20. Table 5 shows the results. Top-20 indicates the 



24

20 best-performing images, and Bottom-20 indicates the 20 worst-performing images. We can find that for each 

individual image, good classified images will be closer to this optimal spectrum distribution, and the less well 

classified ones will be further away. 

At last, combined with our validation experiments, we give our final understanding of the CNNs as a tool to 

finish modulating. The CNNs are trying to do a spectrum normalization process to modulate different types of images 

to a similar spectrum distribution nearby, and by gradient descent methods the backpropagation process searches for 

an optimal spectrum distribution which is beneficial to the set task and better performed cases will be more inclined 

to be closer to. We have given our understanding of deep learning as a black box, how can we use modulation theory 

to improve deep learning? Since images with spectrum closer to the optimal spectral distribution tend to perform 

better for the target task, having an energy spectrum generalized shift process in advance become a natural fit in cases 

where we want to exploit the spectrum for the set tasks. We give some application experiments on 1-D audio 

classification task and 2-D image segmentation in the next section.
Table 5. Comparison between spectrum distributions of individual image in one certain class. The second column are 20 images with the best classification 

results. The fourth column are 20 images with the worst classification results. Top-20 indicates the 20 best-performing images, and Bottom-20 indicates the 20 

worst-performing images.

Optimal spectrum 

distribution

Average energy 

spectrum distribution of 

Top-20

Average energy 

spectrum distribution 

of Bottom-20

Energy spectrum of 

Example I of Top-20

Energy spectrum of 

Example I of Bottom-

20

Energy spectrum of 

Example Ⅱ of Top-20

Energy spectrum of 

Example Ⅱ of 

Bottom-20
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Energy spectrum of 

Example Ⅲ of Top-20

Energy spectrum of 

Example Ⅲ of 

Bottom-20

5.2 Application experiment

In this section, we will show the application examples of the proposed modulation explanation theory. Since we 

have explained that the CNNs are essentially a continuous signal modulation process, what the back-propagation of 

the CNNs really does is to find an energy spectrum distribution which is most conducive to classification or other 

tasks, and input signals with different energy spectrum distributions will be moved to this optimal spectrum 

distribution in the forward-propagation. Naturally, we consider whether this energy spectrum distribution can be used 

in some practical applications to guide the network design and to obtain an improved result in some tasks, for example, 

classification, segmentation, etc.

Here the energy spectrum generalized shift, that is, energy spectrum difference of CNN is given:

                              (43)𝐷𝐼𝐹𝐹(𝑓) = 𝐹𝐸𝐴𝑇𝑈𝑅𝐸(𝑓) ―𝐼𝑁𝑃𝑈𝑇(𝑓),

where  and  are the energy spectrum of input and output features. As shown in Fig.22, 𝐼𝑁𝑃𝑈𝑇(𝑓)  𝐹𝐸𝐴𝑇𝑈𝑅𝐸(𝑓)

we firstly train a CNN to obtain the  and . Then we can calculate the  by linear  𝐹𝐸𝐴𝑇𝑈𝑅𝐸(𝑓)  𝐼𝑁𝑃𝑈𝑇(𝑓) 𝐷𝐼𝐹𝐹(𝑓)

fitting of Eq. (43). Finally, we try and see if  can be used to improve the performance of CNNs. In the 𝐷𝐼𝐹𝐹(𝑓)

following two experiments, we shift the input spectrum to a better spectrum distribution in advance by determined 

carrier signals. We called the process post-shift. We will verify whether post-shift signals will get better results 

compared to raw data.

Input
CNN

Features

Classifier

Energy spectrum 
of output feature

Energy spectrum 
of input

Energy spectrum 
difference

Train

Fig. 22. Energy spectrum difference of CNN can be obtained from the energy spectrum of input and output feature of a trained CNN.

5.2.1 Audio classification

In this experiment, we try to move the energy spectrum of original audios to the vicinity of the energy spectrum 

distribution which is conducive to classification in advance, and then to see if the energy spectrum post-shift process 

can obtain an improved result in audio classification as shown in Fig. 23. 

Input shift Post-shift 
dataEnergy spectrum 

difference

Input

cont r ast

Fig. 23. Original audios and post-shift audios are sent to the same network to compare the classification results.
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We first take two datasets Urbansound8k [42] and Dcase2016 [60] as Data-audio-A and Data-audio-B 

respectively. Data-audio-A is used to get the energy spectrum difference in advance and Data-audio-B is the part we 

use to validate the results. Then we create two simple CNNs: Network-audio-2 and Network-audio-3 whose detailed 

convolution and pooling hyperparameters are shown in Fig. A2 in Appendix. The stochastic gradient descent 

algorithm and cross-entropy loss are adopted in both CNNs, and each CNN is trained with 200 epochs. As shown in 

Fig. 24, experiment is carried according to the following three steps and Algorithm 2 shows the pseudo-code:

(1) Data preprocessing. We firstly extract six features from these audios, that is, Short Time Fourier Transform 

(STFT), Mel Frequency Cepstrum Coefficient (MFCC), Chroma, Mel Spectrogram, Spectral Contrast and 

Tonnetz feature, and then combine these features as input.

(2) Acquisition of energy spectrum difference. We firstly train a 5-layer classification network (Network-audio-2) 

with dataset Data-audio-A. Then making use of the energy spectrum distribution of features obtained by the 

trained classification network, we can obtain the  by linear regression method with the energy spectrum𝐷𝐼𝐹𝐹(𝑓)

 and . 𝐼𝑁𝑃𝑈𝑇(𝑓) 𝐹𝐸𝐴𝑇𝑈𝑅𝐸(𝑓)

(3) Comparison results. We firstly train a 3-layer classification network (Network-audio-3) with original Data-audio-

B. Then we shift the energy spectrum of Data-audio-B with the obtained energy spectrum difference, and then 

send the post-shift audios to the same network but without pooling layer to compare original results. As shown in 

Fig. 25, we can find that the classification accuracy is effectively improved by shifting the energy spectrum of 

signal to the vicinity of a certain excellent energy spectrum distribution in advance.
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Fig. 24. The flow chart of 1-D audio classification experiment. An excellent energy spectrum distribution is obtained through a CNN, then the energy spectrum 

difference is used to shift the energy spectrum of signal to this good distribution in advance, and finally the classification results of the post-shift signal and the 

original signal are compared.

Fig. 25. Comparison results of the classification accuracy of the original signal and post-shift signal. The blue one is the accuracy curve of post-shift audio in 

Data-audio-B, and the red one is that of the original audio.

5.2.2 Image segmentation

In this experiment, we try to move the energy spectrum of original images to the vicinity of the energy spectrum 

distribution which is conducive to segmentation in advance, and then to see if energy spectrum post-shift images are  

more conducive to guiding semantic segmentation than the original images.

We firstly divide the Pascal VOC2012 [61] dataset into two parts: Data-image-A and Data-image-B, and each 

containing half of the original images. Data-image-A is used to get the energy spectrum difference in advance and 

Data-image-B is the part we use to validate the results. In this experiment, we construct two segmentation convolution 

networks: Network-image-4 and Nwtwork-image-5 whose detailed convolution, deconvolution and pooling 
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hyperparameters are shown in Fig. A3 in Appendix. The stochastic gradient descent algorithm and cross-entropy loss 

are adopted in both CNNs, and each CNN is trained with 200 epochs. Then as shown in Fig. 26, experiment is carried 

according to the following steps:

(1) Acquisition of energy spectrum difference. We firstly train Network-image-4 with Data-image-A. Then making 

use of the energy spectrum distribution of features obtained by the trained segmentation network, we can obtain 

the  by linear regression method with the energy spectrum  and .𝐷𝐼𝐹𝐹(𝑓)  𝐼𝑁𝑃𝑈𝑇(𝑓) 𝐹𝐸𝐴𝑇𝑈𝑅𝐸(𝑓)

(2) Comparison results. We firstly train Network-image-5 with dataset Data-image-B to get the original 

segmentation accuracy. Then we replace the skip connection in Network-image-5 with energy spectrum 

generalized shift by the obtained energy spectrum difference, that is, we use post-shift images instead of original 

images guiding the segmentation layer. The result is shown in Table 6, and we can find that moving energy 

spectrum distribution of the original image to a certain optimal energy spectrum distribution in advance can 

achieve better results on mean accuracy and mean IU for image segmentation task.

image conv1 pool1 conv2 pool2 conv3 pool3 conv4 pool4 conv5 pool5 deconv1 deconv2 deconv3 deconv4 deconv5 classifier

linear regression

conv1 pool1 conv2 pool2 conv3 pool3 conv4 pool4 conv5 pool5 deconv1 deconv2 deconv3 deconv4 deconv5 classifierimage

Energy spectrum difference

Energy spectrum shift
FFT IFFT

VGG16

VGG11

conv1 pool1 conv2 pool2 conv3 pool3 conv4 pool4 conv5 pool5 deconv1 deconv2 deconv3 deconv4 deconv5 classifierimage

CONV

VGG11

contrast

linear regression

Energy spectrum Energy spectrum

Data-image-AData-image-AData-image-BData-image-B

Fig. 26. The flow chart of 2-D image segmentation experiment. An optimal carrier signal through a CNN is obtained first, and then this carrier signal is used to 

modulate the image signals to improve the segmentation performance. 

Table 6. Comparison of Mean accuracy and Mean IU verification accuracy of the original image signal and modulated image signal in Data-image-B.

Mean accuracy Mean IU

Original images 0.4737 0.3621

Post-shift images 0.5169 0.4017

6. Conclusion and discussion

In this paper, we explained CNNs from a new perspective based on signal modulation theory. In our explained 



29

framework, each basic operator in CNNs can be seen as the modulation of the signals. The combination of convolution 

and ReLU layer is thought of as a special delta modulation. The stack of basic module of Conv-ReLU-Pooling in 

CNNs is essentially a continuous modulation of the signal energy spectrum. What happens in forward-propagation is 

regarded as moving the energy spectrum of different input signals to the certain energy spectrum distribution. For the 

back-propagation process, it can be thought of as a searching process for an optimal energy spectrum distribution that 

is most conducive to classification or other tasks and the optimal carrier signals will be found by gradient descent 

during the process. Our experiments prove that the CNNs modulate the original signals with different energy spectrum 

distributions to the similar spectrum distribution to achieve better classification goal. CNNs with different structures 

will move the energy spectrum distribution along different paths but towards the similar end and images that are 

shifted closer to the optimal spectrum distribution will tend to perform better. Furthermore, shifting the input signal 

to the vicinity near the optimal energy spectrum distribution in advance can significantly improve the performance of 

classification and the shifted images can guide the semantic segmentation more effectively.

In this work, we explain what happens in CNNs by studying the spectrum distribution of features in the spatial domain. 

However, in most classical CNNs, the spatial domain of the features is continuously down-sampled and the dimensionality 

channel domain of the features or the width of CNN is constantly increasing. Attempts to better understand CNNs in the 

channel domain can be of great interest to the study of interpretability in deep learning. The next phase of our research will 

focus on the channel domain in more depth. We see this will be an important direction for further understanding of CNNs 

and needs further study.

Appendix: Network detail

We list all the networks we used throughout this article in detail. The structure of Network-audio-1 is shown in 

Fig. A1.

Fig. A1. The structure of Network-audio-1. Note that this CNN is modified appropriately from VGG-11 to process 1-D audio data.

The structures of Network-audio-2 and network-audio-3 are shown in Fig. A2.
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Fig. A2. The structures of Network-audio-2 and Network-audio-3 used in Section 5.2.1. (a) Network-audio-2 is used to obtain the optimal energy spectrum 

difference; (b) The obtained optimal energy spectrum difference is used to optimize the Network-audio-3.

The structures of Network-image-4 and Network-image-5 are shown in Fig. A3.
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Fig. A3. The structures of Network-image-4 and Network-image-5 used in Section 5.2.2. (a) Network-image-4 is used to obtain the optimal energy spectrum 

difference; (b) The obtained optimal energy spectrum difference is used to optimize the Network-iamge-5.
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