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Abstract 

An elastic gridshell is an experimental structural typology truly effective in terms of material 

consumption by span ratio. Because classical beam theory is not valid for large deflections, the form-

finding, the dimensioning and the optimization of elastic gridshells are usually done with dynamic 

relaxation method. The apparent complexity of this method makes that typology a subject area restricted 

to researchers or engineers and still too inaccessible for architects. 

The goal of this year’s project is to make those concepts understandable for a group of architecture 

students and to re-build, from nothing, the set of necessary tools for the form-finding, dimensioning, 

fabrication and assembly of a full-scale elastic gridshell in post-formed bending. This reconstitution is 

historical as well as technical and practical, and produces all the necessary theoretical notions for the 

execution of this project. Euler’s elastica, which gave its name to the project, is the starting point of this 

adventure that lets us to recreate – partly – almost two millenniums of history of active bending technics. 

This approach strongly interlinks theoretical and practical fields in order to recontextualize modern 

methods of calculation. In order to popularize those notions, we engaged in three different works:  

• The development of a complete, generic, open-source and ergonomic algorithm, usable by all, 

for form-finding, dimensioning and optimization of elastic gridshells using dynamic relaxation. 

• The publication in La Villette editions, of a collective book that compiles our study and the 

historical, scientific and conceptual knowledge over this subject in a pedagogic way, co-written 

with the master cycle students. 

• The practical application of our study by constructing a full-scale public pavilion, in partnership 

with the municipality of Paris on the belvedere of the Butte du Chapeau Rouge park (Paris XIX). 

Keywords: gridshell, timber, dynamic relaxation, grasshopper, form finding, teaching, pedagogy. 
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1. Introduction 

Elastic gridshells have come a long way from the primitive hut described by Eugène Viollet-le-Duc in 

its Histoire de l’habitation humaine and the vernacular pygmies lobembes to the post-formed gridshell 

of the Manheim Multihalle of Frei Otto (arch.) and Happold and Liddell (ing.). Yet this millennial 

typology remains anecdotal, except numerous educational pavilions and private self-building 

installations, in modern architecture. The Multihalle in Mannheim, built in 1975, remains almost the 

only large-scale architectural object meeting a defined program and need.  

Why such reluctance? The scientific literature, which is becoming increasingly rich on this subject, 

emphasizes their capacity to overcome large spans with less material. The material used, often wood, is 

part of the current problem of limiting anthropogenic carbon emissions. If it is not generalized, the use 

of elastic gridshells should be much more prominent in the covers of large projects.  

Our goal is to propose solutions on to this issue. The main problem we identified – apart from the issues 

of acoustics, thermal insulation and standardization of the finishing work which would merit their own 

study – is the complexity for the architect to grasp the form of a post-formed elastic gridshell. 

As for funicular domes, elastic gridshells take their shape in a natural way, according to the laws of 

physics: a rod of a given length takes one and only one natural shape when bent. This does not restrict 

architectural freedom: the assembly of elements of different lengths in various positions makes it 

possible to create free and varied shapes. However, the natural form is unknown and it must be found: 

the process that leads to it, the form-finding, uses complex tools such as dynamic relaxation that the 

architect does not possess (with a few exceptions). Some tools, such as Kangaroo, already allow an easy 

simulation of active bending but operate in a "black box": the detail of the performed calculation is not 

accessible to the designer. 

To overcome this difficulty in being able to know or predict the real shape of the work, we wanted to 

popularize the current scientific knowledge on this typology and to gather it in a simple and ergonomic 

design tool: an algorithm called ELASTICA. This tool also allows anyone to access the detailed data of 

the calculation and to conduct a complete study of dimensioning and verification of the structure. 

Finally, it has been applied to the construction of a post-formed elastic gridshell at human scale called 

“Elastica” on the belvedere of the Parc de la Butte du Chapeau in the 19th district of Paris. 

2. State of the art 

2.1. What is an elastic gridshell? 

In architecture, a shell is a continuous thin structure with a curved surface. Its rigidity is related to its 

curvature (shape resistance). Thus, a gridshell is a structural lattice of bars forming a curved surface. 

 
                                                     Shell                                      Town truss                   Elastic gridshell 
                                                                   CNIT, Paris, 19858                              Pont de la Frontière, Potton, Quebec, 1896    Toledo Gridshell 2, Naples, 2014 

Figure 1: Schematic typological definition of the gridshell [Jean-Maurice Michaud / Sofia Colabella] 

Labbé [9] classifies gridshells into two main groups:  

- “(...) those with pre-calculated members, both in their curvature and in their geometrical resolution 

but also in their “inactive-bending” fixings, 

- and those known as “active-bending” which start from an initially flat grid, which connections are 

not fixed until after their assembling, once the structure is established in its architectural form”. 
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The first category works in compression and is not the subject of this study. The elements in the second 

one, called elastic gridshells, are working in flexion and compression and have two main characteristics: 

• They are in active bending; the shape is given by the bending of straight elements maintained 

fixed. This condition is necessary to qualify a gridshell as elastic. 

• They are post-formed which means that the grid is manufactured flat, not braced. The thin and 

hinged elements form a deformable unit that is then flexed during the erection. This condition is 

not necessary to be part of elastic gridshells, however our study will be placed in this framework. 

The natural shape of an elastic gridshell depends on the 

initial grid and the displacements imposed on its 

support points. Let us take the simplest of them as an 

example: a simple flexible rod on the ends of which one 

pushes laterally. Initially the rod is in compression. 

Very slender, its equilibrium in compression by 

shortening quickly gives way to an unstable 

equilibrium in flexion: this is buckling. This can be 

generalized by describing a post-formed elastic 

gridshell as the post-buckling shape of a flat grid 

subjected to imposed displacements of its supports. 

Once the ends of the bars are in their final position, the bent gridshell, which is by nature very 

deformable, must be stabilized and rigidified by adding bracing to limit the deformation of the mesh 

and possibly by adding shear blocks. The final grid is very rigid and can cover a large span without 

intermediate supports, and this with very little material. 

The design of an elastic gridshell must consider many constraints: material properties and section, types 

of connections between elements, initial grid layout, support conditions, deployment, use and context, 

etc. It is therefore not the result of a simple artistic reflection; on the contrary, it is the result, through 

modeling and/or calculation, of a long process of research into the natural shape of the desired shell. 

2.2. A typology very present in vernacular and primitive architecture 

According to the anthropologist Reclus [14], who studied different ethnic 

groups, vernacular architectures, by using local materials, are a singular 

continuity of the environment in which they are established. The flexible 

and resistant natural materials that constitute the main resources of certain 

communities explain why the use of elastic gridshells took place really 

early in history: they could date back to the Neolithic period. 

Vitruvius, in his treatise De architectura, already foreshadowed the active 

bending potential of certain materials: “The elm tree and the ash contain 

much water and but little air and fire, with a moderate portion of earth. 

They are therefore pliant, and being so full of water, and from want of 

stiffness, soon bend under a superincumbent weight.” 

The way of life of the pygmies of the great equatorial 

forest (Congo and Central African Republic) has 

remained traditional. Being a nomadic civilization, 

their huts, the lobembes, built by single women or 

men, are temporary habitats. The mongulu is a more 

solid variant for a life period of two weeks to a month. 

They are domes made of latticework of thin branches 

bent and anchored in the ground. Leaves are used to 

form a primitive form of waterproofing barrier.  

Figure 3: Primitive hut in 

active bending according to 

Viollet-le-Duc. 

Figure 2: Schematic typological definition of 

elastic gridshells. 

elements 

Preperation of the living 

area 

Beginning of the construction 

of a couple’s lobembe 

Framework of the couple’s lobembe 

in the process of completion 

Figure 4: Steps to build a lobembe according to 

Philippart de Foy [Les Pygmées d'Afrique centrale. 

Éditions Parenthèse, Paris, 1984]. 
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This construction method is very similar to that of the huts of the Khoikhois, Kraals or Nama of southern 

Africa (structures made in fire-tanned tamarisk branches) and to the seasonal wigwams or wickiup, of 

some native Americans tribes, such as the Apaches or the Ojibwe (structures made in green wood from 

young trees forming a circle of 10 to 16 feet of diameter).    

These examples of gridshells are in active bending but not post-formed. To complete this non-exhaustive 

list, let us mention the Mongolian yurt whose circumference is a post-formed mesh in flexion around 

the central vertical axis blocked by straps and anchored to the ground.  

a)   b)  c)  

Figure 5: Huts of the Haru Oms, Nama people (a), Apache wickiup (b) and Mongolian yurt (c) [Exploring Africa 

/ Richtersveld.net / Wikivillage.co.za and Rose, Noah H. / Smith Archive & Alamy Stock Photo]. 

Elastic gridshells are therefore used in primitive and vernacular architecture. One could deduce that it 

is therefore a very accessible typology. However, its use in contemporary architecture is rare and the 

studies that allowed the understanding of this typology only began in the 1970s.  

2.3. A typology rarely used in contemporary architecture 

In 1897 the Russian engineer Vladimir Shukhov built a production workshop for a steel company in 

Vyksa. It is the first double-curved grid structure working in compression. Contrary to this example, an 

elastic gridshell is built flat, before being set up by bending it.  

It was not until 1962 that this typology was highlighted by the work of Frei Otto who, using a study he 

had been carrying out since the late 1950s on lightweight shells from suspended net models, built a first 

trial model of an elastic gridshell during a visit to the University of Berkeley (California). This structure 

is designed from a square grid of 52 m² round steel rods anchored to the ground at its four corners. 

Later in the same year, he built a wooden trial gridshell at the German Building Exhibition in Deubau, 

Essen. Developed with Bernd Friedrich Romberg using suspended models, this 198 m² structure has a 

super-elliptical plan (squircle), sort of intersection between a 15 m × 15 m square and a circle in plan. 

   

Figure 6: From left to right: gridshell in Berkeley, trial gridshell in Essen and its model [from [7] and [12]]. 

Its maximum diagonal span is 16.82 m, with a center height of 4.85 m. 

Two orthogonal layers (lattice is composed with doubled laths in one 

direction and single laths in the other) of 60 mm x 13 mm pine elements 

are assembled to the floor by bolting at the knots, forming a square grid 

with a mesh size of 482 mm per side. The grid, composed of 1,140 linear 

metres of laths, was then lifted using a mobile crane and wooden stilts on 

the perimeter before being fixed to a rim beam driven into the ground. 
Figure 7: Construction of 

the Essen Gridshell [ibid]. 
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However, the first architectural project answering to a program, and one of 

the few of this scale, is undoubtedly the Multihalle in the Herzogenried Park 

in Mannheim (Germany), built in 1975 for the Bundesgatenshau. The 

winning architects of the competition, Carlfried Mutschler, Winfried 

Langner, and Heinz Eckebrecht, encountered difficulties in developing their 

idea of a free-form, airy and light structure: their proposal for large parasols 

suspended by helium balloons was rejected by the authorities. They then 

asked Frei Otto to help them, who became their engineering consultant.   

The project was designed using the suspended net method, to which we will 

come back later, then numerically calculated and tested. The grid built on 

the ground is composed of two interlaced orthogonal networks, each 

composed by a double layer of laths 55 mm wide, forming a square mesh of 

500 mm side. The knots are held by initially loose bolts to allow their 

rotation during erection, which was carried out using height-adjustable 

scaffold towers. The curved grid, still flexible at the time, is then blocked at 

the ends and braced to stiffen it. The western hemlock timber was shaped 

green and not dried because the flexibility of the wood increases with its 

humidity level. 

This project will make the concept of elastic gridshells popular among architects and engineers around 

the world. However, the complexity of its constructive approach, highlighted by the work published by 

Happold and Liddell [7], probably explains why similar projects are exceptionally rare to this day. 

3. ELASTICA algorithm design method 

3.1. Study of bending behavior 

Designing an elastic gridshell requires a good understanding of bending. We know from the work of 

Galileo, later corrected by Huygens, Leibniz and Bernoulli, that the natural shape of a chain suspended 

in pure traction is a hyperbolic cosine. Similarly, to understand an elastic gridshell, it is fundamental to 

question the natural shape of the flexible rod in pure flexion.  

In the framework of classical beam theory, which is based on the Euler-Bernoulli hypotheses (plane 

sections remain plane and normal to the axis when it deforms), bending moments induce deflection and 

not the opposite which implies that the supports, including the sliding supports, remain immobile on the 

drawing. The deformation thus shows an elongation of the neutral axis, whereas it is supposed to remain 

constant in length: this theory is therefore valid only for small deflections and rotations, where this 

inconsistency is considered insignificant. This theoretical framework, which is the one in which 

engineers and architects usually evolve, is sufficient for most structures.  

In fact, when the initially flat grid is shaped by the bending resulting from its buckling, the hypothesis 

of small displacements and fixed supports is fundamentally questioned since it is precisely the 

displacement of the mesh supports that will give the shape to the gridshell. 

Let us take the case of flexible rod, with quadratic moment I and 

modulus of elasticity E, on two sliding supports, subjected to a 

following force (a load on the support that continues to act at a point 

even if it moves). The deflection y is related to the curve’s abscissa x 

by the relation d²y/dx² = – M(x)/EI. The curvature corresponds to the 

radius of curvature R evaluated at the studied point. It is related to the 

bending moment by the relation M = EI/R. The equilibrium of 

moments leads to the differential equation relating the deflection 

y(x) to the force F, and solutions shape was found by Euler: 

EI 

Figure 9: buckling of the flexible rod 

and elastica graph at various stages. 

Figure 8: The Mannheim 

Multihalle, exterior and 

interior views [Verein 

Multihalle Mannheim, 

Daniel Lukac]. 
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 𝐸𝐼 ∗
𝑑2𝑦

𝑑𝑥2 + 𝐹 ∗ 𝑦(𝑥) = 0 →  𝑦(𝑥) = 𝐴 ∗ 𝑐𝑜𝑠(𝜔𝑥) + 𝐵 ∗ 𝑠𝑖𝑛(𝜔𝑥) = 0 (1) 

Where ω² = F/EI. A and B can be determined by the boundary conditions (no deflection at the ends): 

 𝑦(0) = 0 →  𝐴 = 0   𝑎𝑛𝑑   𝑦(𝐿) = 0 →  𝐵 ∗ 𝑠𝑖𝑛(𝜔𝐿) = 0 (2) 

As long as ωL < π, the only solution is A = 0 and B = 0: this is the stable compression equilibrium 

(shortening of the rod). When ωL = π, the equation is verified for every value of B and the system 

becomes unstable: the rod buckles as soon as the force exceeds the Euler’s critical load Fcr = π²EI/L. 

Once the rod’s buckling is initiated, the hypothesis of small deflections is no longer valid. The curvature 

can no longer be written d²y/dx² but is still by definition the inverse of the radius of curvature (1/R): 

 
𝐸𝐼

𝑅
+ 𝐹 ∗ 𝑦(𝑥) = 0 (3) 

The EI/R moment at any point, and so the curvature 1/R, are thus proportional to the distance from the 

point to the axis y = 0, the guiding line: this is the geometrical definition of singular curve called elastica.  

Watzky and Bueno [15] explained that Jacques Bernoulli questioned in 1691 the form taken by a vertical 

elastic lamina embedded at the bottom end and pulled downwards on the other end. The resolution of 

this simple problem is so complicated that Huygens and Leibniz gave up but Bernoulli “obtains the 

equations of the rectangle elastica [in 1692], then those of the general case in 1694.” Fifty years later, 

Euler [1] characterizes its various forms. More than a century later, the values, tabulated, of a closed 

form of the solutions are approached and Born measures them precisely from photographs of bent blades 

in 1906. He wrote in his memoirs on this subject: “I felt for the first time the pleasure of finding a theory 

in agreement with the measurements – one of the most pleasant experiences I know.” In line with this 

reasoning, we filmed the buckling of a flexible rod to digitally obtain the kinematics of the curve with 

an image recognition algorithm, measured the radius of curvature at any point and deduced the bending 

moment. The experimental results, which converge towards elastica, have been confronted with 

numerical calculations made with the ELASTICA algorithm which confirmed them.  

  

                                     

                                        

                                          

Figure 10: From top to bottom: extracts from the video of the experiment; deflection and bending moment of the 

flexible rod by image recognition processing; post-buckling shape obtained by the experiment and by the 

numerical dynamic relaxation algorithm ELASTICA. 

3.2. Form finding studies 

Form finding can be carried out either experimentally, by means of hanging chain nets or active bending 

models, or numerically, for example through dynamic relaxation. The work of Frei Otto, ARUP and 

Happold & Liddell, particularly on the gridshells of Essen and Mannheim, has been tested by all three 

methods and provides valuable data for assessing the relevance of each method. 
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3.2.1. Form finding with a model 

Hanging chain nets model: it is simple to realize, although it requires sliding links to make sure that all 

the cables are tight. Its use can be surprising, since the notion of an antifunicular – and therefore pure 

compression – is used to model an object in flexion and compression. To confirm its relevance, in 1973, 

Linkwitz digitally modeled the Mannheim model using photogrammetry. The calculations conducted 

by Happold took into account the bending and led to results similar to those of the hanging chain nets.  

  

Figure 11: Hanging chain net and active-bending models of the trial gridshell in Essen; and hanging chain net 

model of the Mannheim Multihalle and zoom on the links [from [7] and [12]]. 

The shape of a hanging chain (hyperbolic cosine) is determined only by its 

axial stiffness and a flexible rod (elastica) is determined both by its axial 

stiffness and by its bending stiffness. To claim that one is close to the other 

is therefore equivalent to saying that the bending stiffness of the flexible 

rod is negligible compared to its axial stiffness. This is what Douthe [5] 

wanted to verify, arguing that this hypothesis was based on the fact that “the 

stiffness of the shell comes from its shape and that this shape has been 

specially studied to take up the dead weight loads by membrane stress, i.e. 

only by axial forces in the gridshell elements. However, (...) the material 

resists well to axial forces (much better at least than to bending forces), the 

dimensions of the gridshell elements can therefore be reduced and, 

consequently, the total weight of the structure as well. This reduction in 

cross-sections is accompanied by a decrease in inertia so that the bending 

stiffness of the elements is low, which legitimizes retrospectively the initial 

hypothesis and the form finding using a net model.”  

Nevertheless, as the inertia of the grid is not zero, Douthe studies the 

differences between the funicular and the elastica shape according to the 

attack angle α at the base and the loading rate p. He carries out this study 

on a simple beam, a rectangular grid and a free-form grid. He concludes that 

the shape of the gridshell is almost funicular if the angle of attack α is less 

than 65° (optimum at 57.5°), which corresponds to a pL3/EI ratio below 65, 

confirming a posteriori the modelling of Mannheim by Frei Otto. Like 

Happold and Liddel [7], we can therefore conclude that “a funicular shape 

is an advantage but is not essential.”  

About the active bending model. In 1973, as Happold [7] reminded us, 

“there was no previous engineering experience in this field.” To overcome 

this, his team first studied a simpler example by loading a PMMA model at 

the 1/16th scale of the trial gridshell in Essen and comparing the results with 

the data collected by the Warmbronn Workshop on the actual project. The 

tests were conducted with pinned or rigidly glued nodes and with or without 

bracing. The team found, and retained for the Mannheim project, that the 

addition of bracing on the diagonals of the lattice reduced deflection and 

increased the maximum nodal load causing buckling of the shell, but that 

the collapse was more sudden.  

Figure 12: Diagram of the 

problem studied by Douthe, 

and evolution of the 

distance to the hanging 

chain form with the angle α. 
 

Angle in degree 
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Hanging 

chain 

Elastica 

Figure 13: Load test by 

adding nails to the nodes of 

the Essen and Mannheim 

models and loading tests 

with water-filled garbage 

cans [from [7]]. 
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An active bending model of the Multihalle was then fabricated in PMMA at 1/60th scale and tested in 

the same way. The buckling collapse load of the model was measured at 2.8 kg/m² without bracing and 

at 12.5 kg/m² with bracing. Happold and Liddell demonstrate that an extrapolation of the critical load is 

possible from a model to a real project by multiplying it by the ratio of EIxx / aS3 of the project and the 

model (EIxx is the out-of-plane bending stiffness, a the spacing of laths and S the gridshell span). 

From these studies and our experiences on the essential question of the extrapolation of the results from 

the model to the real project, we conclude that: 

• The shape of a funicular and the shape of an elastic gridshell can be transposed from the model 

to the real project, regardless of the stiffness, the section and length of the material used. 

• The buckling force is transposable but subject to several measurement biases. 

• The shear and node stiffness are difficult to transpose, and this may reduce the relevance of the 

results of the previous point. 

    

Figure 14: Scalability tests on the section and stiffness of the material, and on the length of the element.  

3.2.3. The numerical method: discretization of the Chebyshev lattice surface 

To overcome the inaccuracies of a form finding with a model, 

a numerical method is generally necessary. The shape resulting 

from the initial phase of intention, which we will now call 

“architect's shape”, is not the real shape of the project, which 

must respect the rules of physics (especially bending). The 

form finding consists in determining, from the architect's 

shape, what the real shape is going to be.  

The first step consists in dividing the architect’s shape into a 

network of two layers of bars forming equilateral meshes (a 

necessary condition for flat fabrication). The division of any 

surface into equilateral parallelograms is called a Chebyshev 

lattice, named after the mathematician who, in 1878, having a 

rather modest salary, accepted a contract to optimize the 

cutting of military uniforms. The human body is indeed a 

complex shape that it is complicated to cover with a flat fabric 

without folds. Until the end of the 19th century, clothes were 

made by eye and therefore not fitted. Custom tailoring was a 

time-consuming and expensive art. Chebyshev [4] therefore 

devised a method to create a piece of clothing adapted to the 

human anatomy, in large quantities, quickly and at low cost. 

The problem formulated by Ghys [6] highlights the link with gridshells: “A flattened fabric is formed 

by two networks of interwoven straight threads (...) which form small squares. (…) The initial small 

squares can become deformed: their sides do not change in length but the angle between the threads is 

no longer necessarily straight.” Thus, the change of angle between the threads allows them to envelop 

Lattice on a Euclidean plan 

Lattice on an architect’s shape 

Figure 15: Discretization of a fabric and 

Chebyshev pattern for dressing a half-

sphere; Chebyshev lattice: principle, by 

model and by dynamic relaxation 

[BOISSE, P. and BOUHAYA, L.]. 
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a double-curved surface without any fold. To achieve a Chebyshev lattice on any surface, one can go 

for a dynamic relaxation method, or by the geometric method, called "the compass", used by Frei Otto.  

 

Figure 16: Compass method and application by the ELASTICA algorithm.    

3.2.2. Dynamic relaxation 

This form finding method, even though 

simple since it is based on the laws of 

Newtonian physics, is iterative and heavy by 

its quantity of calculations: its development 

had to wait until the end of the 20th century 

and computer-assisted numerical modeling. 

According to Bouhaya [3], “Southwell has 

developed a relaxation method for the 

solution of partial differential equations by 

finite difference approximations. The 

concept of the method itself was established 

much earlier by Rayleigh (…). The 

development of this method is attributed to 

Otter in 1964 for the study of pre-stressed 

concrete pressure vessels. One year later, the 

dynamic relaxation method was developed 

by Day for the same type of problems”. It was 

then further developed and applied, among others, to tensioned structures in the 1970s and to inflatable 

structures in 1977 (Barnes), as well as to shells (Otter 1964), prestressed cables (Barnes 1975), folds 

and creases (Zhang 1989), and tensioned and inflatable structures (Barnes 1977 and 1999 [2]). 

Dynamic relaxation allows to solve static equilibrium problems by a fictitious 

dynamic calculation. It is valid for large deflections. Bouhaya [3] explains “it 

is an iterative method that describes the movement of the structure from the 

moment of loading to its equilibrium (…)” 

Theory from an analytical point of view: According to Barnes [2], “the basis of 

the method is to trace step-by-step for small time increments, Δt, the motion of 

each node of a structure (from an initial disturbed instant) until, due to artificial 

damping, the structure comes to rest in static equilibrium.” 

Indeed, the architect’s shape is not the natural form of the project, so it is not at 

rest. It wants to move to its natural position: it needs to relax. Thus, the fictitious 

motion of a structure modeled by a discrete mesh of bars (for a gridshell, this 

comes from a Chebyshev lattice, it therefore represents the real physical 

elements of the structure), at the intersection of which are located the nodes 

subjected to forces, must be calculated. Indeed, according to Newton's second 

law ∑ �⃗� = 𝑚 ∗ �⃗�, if the forces at each node do not balance, then the nodes (to 

which we attribute a mass, real or fictitious) experience a fictitious acceleration 

�⃗�  = ∑ �⃗� 𝑚⁄ , and therefore move at a velocity that varies with time. This lets 

us calculate at each iteration, the position of each node at the next instant. 

Steps 1 and 2: Choice of two guidelines 

prefiguring the two main directions of the 

gridshell, subdivision of them with a compass. 

Step 3: First 

intersection. 

Step 5: Next Generations and obtaining the 

Chebyshev lattice. 
Step 4: First generation 

of points. 

L 

ΔL 

F 

L 

L 

L 

1) Initial state: flat grid. 2) Two nodes at opposite angles are 

suspended, causing a fictitious imbalance. 

3) As the fictitious forces do not balance at 

each node, they move according to Newton's 

Second Law, leading to new nodes’ position 

and a different distribution of forces. 

4) Steps 2 and 3 are repeated iteratively 

until the new set of forces at each node 

is balanced: the stretched canvas has 

then reached its natural position. 

Figure 17: General principle of dynamic relaxation applied 

to an example of the form finding of a stretched canvas [10]. 

Figure 18: trial gridshell 

by Rombouts [13]: 

mesh of the architect's 

form, form finding after 

RD and built project. 
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In the case of a gridshell, there are (at least) three forces acting at the nodes: 

the nodal dead weight (�⃗� = 𝑚 ∗ �⃗�), the force induced by the bending of the 

elements as described by Barnes, and the Hooke force in each element, 

proportional to the stiffness and deformation (�⃗� = 𝐸𝑆 ∗ ∆𝐿⃗⃗ ⃗⃗ ⃗), which ensures 

the equilibrium of each node. 

To calculate the value of the bending forces, let us start from the bending 

moment M which causes the bending of the elements. Since the moment is 

the product of the force by its lever arm at the point considered, the force 

field applied to the nodes is deduced from the relation  �⃗⃗⃗� =  𝑂𝐴⃗⃗ ⃗⃗ ⃗⃗  ^ �⃗�. The 

algebraic value of the moment being 𝑀 =  
𝐸𝐼

𝑅
 and, by definition, 

𝑅 =
𝐿𝑖−1,𝑖+1

2 sin(𝛼𝑖)
, we obtain 𝑀 =  

2 EI sin(𝛼𝑖)

𝐿𝑖−1,𝑖+1
. We deduce that in a system 

composed of curved beams, each trio of consecutive nodes admits on 

the ends of each of the two segments formed two opposite forces of the 

same values, 𝐹𝑖−1,𝑖 =
2𝐸𝐼 sin(𝛼𝑖)

𝐿𝑖−1,𝑖∗𝐿𝑖−1,𝑖+1
 for the first segment and 𝐹𝑖,𝑖+1 =

2𝐸𝐼 sin(𝛼𝑖)

𝐿𝑖,𝑖+1∗𝐿𝑖−1,𝑖+1
 for the second.                       

Once the acceleration 𝑎𝑡⃗⃗ ⃗⃗  at a fictitious instant t has been calculated and knowing the initial velocities 

𝑣𝑡+𝑑𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ at the same instant, we deduce nodal velocities at the following instant t + dt: 𝑣𝑡+𝑑𝑡/2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑎𝑡⃗⃗ ⃗⃗ ∗

d𝑡/2 + 𝑣𝑡⃗⃗ ⃗⃗ . In the same way, it is easily demonstrated [10] that the body moves on average at the velocity 

it has at average time t + dt/2. The displacement is then 𝐷 = 𝑣𝑡+𝑑𝑡/2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ∗ d𝑡 = 𝑎𝑡⃗⃗ ⃗⃗ ∗
𝑑𝑡2

2
+ 𝑣𝑡⃗⃗ ⃗⃗ ∗ 𝑑𝑡 = 0. 

We then obtain the positions of each node at time t + dt. The operation is repeated until an equilibrium 

of forces is reached at each node: the structure is then at its natural position. This can only be done by 

adding a damping in the system, which is explained below. 

General theory from an energetic point of view: at the initial instant, the deviation between the initial 

architect’s shape and the equilibrium shape being maximum, the potential energy (which we define by 

simplification as being related to the forces resulting from a deviation between the position at instant t 

and the equilibrium position) of the system is maximum, the initial nodal velocities being zero, the 

kinetic energy ∑
1

2
∗ 𝑚 ∗ 𝑣²𝑛𝑜𝑑𝑒𝑠  of the system is as well. The relaxation then causes the nodes to move. 

At convergence, equilibrium position is obtained when the potential energy is zero (the forces are in 

equilibrium) and the kinetic energy is zero (the nodes no longer move: their velocities is zero). 

In the intermediate stages, an energy transfer takes place between potential and kinetic energies. When 

the system passes through its equilibrium position, the forces balance and the potential energy becomes 

zero. But nodal velocities, which is then maximum (and therefore the kinetic energy as well), causes a 

continuation of the movement in the opposite direction: the system oscillates. On the other hand, when 

the deformation reaches a maximum, the velocities and thus the kinetic energy are zero and the potential 

energy regains a local maximum. 

Figure 21: Energy transfer during the dynamic relaxation of a gridshell. 

Figure 20: Spring forces from 

Hooke’s law and forces due to 

bending in the case of a gridshell. 
 

P 

P ΔL ΔL 

FH FH 

Figure 19: Equilibrium of 

a node by the spring forces 

from Hooke's law on the 

example of a loaded cable.  
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This fictitious oscillation around the equilibrium position would be endless without the addition of 

damping, i.e. a way to fully dissipate the total energy of the system. 

Viscous damping: it is the most intuitive method, because it is based on 

physical notions. Indeed, in the real world, a ball rolling in a valley is slowed 

down by the friction of the air and ends up stopping. In the same way, the 

roller coaster summits must be descending. In dynamic relaxation, viscous 

damping is modeled by adding to each node a force proportional to a damping 

coefficient c and the opposite of the nodal velocities: 𝐹𝑎
⃗⃗ ⃗⃗ =  − 𝑐 ∗ �⃗�. 

The coefficient c is at the choice of the user because it does not change the 

nature of the equilibrium, only the number of oscillations required before it. However, a too high 

damping coefficient may cause the system to diverge. In the general case, the damping of the system is 

done in a pseudo periodic regime (sufficiently low damping, therefore the convergence is slow). 

Kinetic damping: More abstract, this method does not require setting new 

parameters and often allows for faster convergence. Barnes [2] explains that 

kinetic damping “is an artificial damping (...). In this procedure the 

undamped motion of the structure is traced and when a local peak in the 

total kinetic energy of the system is detected, all velocity components are set 

to zero. The process is then restarted from the current geometry and 

repeated through further (generally decreasing) peaks until the energy of all 

modes of vibration has been dissipated and static equilibrium is achieved.” 

3.2.4. The ELASTICA algorithm 

This algorithm is the concrete application of the above, usable for any type of elastic gridshell, and 

available in open source on the website www.construire-l-architecture.com. We have chosen a 

discretization by the compass method and kinetic damping. 

               

Figure 24: Chronology of form finding stages and stability control using dynamic relaxation by Rombouts [13], 

and extract of the ELASTICA algorithm. 

Table 1: Parameters of the ELASTICA algorithm for the Elastica project. 

Input data Symbol Value Unit  Mechanical parameters Symbol Formula Unit 

Lath width b 0.045 m  
Surface 

Simple layer grid 
S 

bh 
m2 

Lath height h 0.012 m  Double layer grid 2bh 

Initial mesh length L0 0.5 m  Nodal mass m Vρ + ma kg 

Mass of the connecting element ma 0.4 kg  

Inertia 

Simple layer 

I 

bh3/12 

m4 Timber density ρ 500 kg/m3  Double layer without shear blocks 2bh3/12 

Modulus of elasticity of wood E 11 500 MPa  Double layer with shear blocks b(3h)3/12 - bh3/12 = 26 bh3/12 

     Axial stiffness Ra ES/L0 MN/m 

     Inflectional stiffness Rf 2EI/L0
3 MN/m 

         

Figure 22: Kinetic energy 

of dynamic relaxation 

with viscous damping. 

Figure 23: Kinetic energy 

of dynamic relaxation 

with kinetic damping. 

file:///C:/Users/marcl/Google%20Drive/02%20-%20ENSEIGNEMENT/03%20-%20ECHELLE%201/3%20-%20EXPLORER%20À%20L’ÉCHELLE%201/2020-2021%20-%20BAYA%20-%20Coque%20tressée/04%20-%20CONFERENCES/2021%20IASS/Article/www.construire-l-architecture.com
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Calculation of the time interval dt of the iterations. A time interval too short or a nodal mass too high 

can lead to a divergence. Commonly, we choose a time interval dt and deduce from it the fictitious nodal 

masses – different from the real nodal masses of the project – able to ensure the convergence of the 

algorithm by the Barnes-Han-Lee formula [3]: 𝑚 =
d𝑡²

2
∗ (∑ 𝑅𝑎𝜇 + ∑ 𝑅𝑓𝜇 ) where μ is the number of 

bars connected to each node (4 without bracing and 6 with). For convenience, we have set the nodal 

mass m equal to the real mass and deducted dt. This simple formula does not always ensure convergence: 

it is advisable to divide it by a safety factor (2 has been chosen in our case after several tests). 

4. Elastica project: application to a pavilion at human scale 

4.1. Site and architectural design 

The park of the Butte du Chapeau Rouge, developed from 1938 by Léon Azéma and then by his son 

Jean, is located between the Mouzaïa and America quarters, in the 19th district of Paris. Perched on a 

hill and overlooking the plains of Saint-Denis, it is representative of the 1930s architecture. The project 

has been designed after various tests comparing numerical and model studies.  

    

   

Figure 25: Masterplan, model, renderings, and photos of the Elastica project [photo Salem Mostefaoui].  

4.2. Choice of the gridshell’s material 

Based on the Douthe method [5], we have chosen the material after a weighted multi-criteria analysis. 

1) The performance criterion M1 = σy / E is to maximize in order to have the material with the best ratio 

strength (high elastic limit σy) – flexibility (low E) in order to achieve relatively small bending radii. 

2) The criterion M2 = E. Counter-intuitively, according to the above, it should be maximized because 

too much flexibility is harmful for a gridshell in the service phase. Indeed, stress variations under loads 

are not decisive for the structural analysis of the gridshell (higher inertia in service phase and load 

moment generally opposite to the bending moment) contrary to the phenomenon of surface buckling. 

The more flexible a structure is, the more likely it is to buckle. However, it is easy to stiffen the gridshell 

by adding bracing and shear blocks. 

3) The criteria M3 = KIC/E. KIC [MPa.m1/2] is the tenacity of the material (its ability to resist crack 

propagation). During erection, stress concentrations can locally occur at the pseudo-punctual contact 

between the bolt and the wood at the holes, the risk of cracking is important (it is common to have to 

change laths during the installation).  

h
 =

 2
,6

0
 m
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4) The economic criterion M4 = E1/2 / Cρ. The cost of the structure is C = Cρ*S*Ltot where Cρ is the volume 

cost of the material, S = b*h the lath section and Ltot their total length. 

The critical buckling force being proportional to EI/R3 and I, in first approach, proportional to S², we 

can write 𝑺 ∝  √
𝑭𝒄𝒓𝑹3

𝑬
. Thus, maximizing the stability/cost ratio means maximizing M4. 

Other criteria proposed by Douthe related to environmental impact are not considered in our study 

because of our pavilion is small, and the materials’ environmental data is not easily accessible. 

Table 2: Mechanical and economic material parameters and multi-criteria evaluation. 

Material 
Density 

[kg/m3] 

Elastic 

modulus 

E [Gpa] 

Yield 

strength 

σy [MPa] 

Flexural 

resistanc

e [MPa] 

Tenacity 

KIC 

[MPa.m1/2] 

Volume 

cost Cρ 

[€/m3] 

M1 

 

Coef. 4 

M2 

[MPa] 

Coef. 1 

M3 

[MPa/m3/2] 

Coef. 3 

M4 

[MN0,5*m0,5/€] 

Coef. 5 

Global 

Score 

Oak 380 - 480 13 300 40 105 0.6 1 150 3.01 x 10-3 13 300 4.51 x 10-5 100.28 x 10-3 3.96/5 

Pine 300 - 400 10 200 24 97 0.5 850 2.35 x 10-3 10 200 4.90 x 10-5 118.82 x 10-3 3.60/5 

Ash 600 - 750 12 900 40 113 0.75 1 200 3.10 x 10-3 12 900 5.81 x 10-5 94.65 x 10-3 4.08/5 

Black locust 670 - 770 16 900 40 126 0.9 1 500 2.37 x 10-3 16 900 5.33 x 10-5 86.67 x 10-3 3.60/5 

Niangon 620 - 780 14 430 42 103 1 2 000 2.91 x 10-3 14 430 6.93 x 10-5 60.06 x 10-3 3.62/5 

Steel 7 850 210 000 275 600 85 23 550 1.31 x 10-3 210 000 40.48 x 10-5 19.46 x 10-3 2.58/4 
Carbon Fiber 

Reinforced Plastic 
1 800 90 000 2500 1200 45 175 000 27.78 x 10-3 90 000 50.00 x 10-5 1.71 x 10-3 2.85/4 

Glass Fiber 

Reinforced Plastic 
2 600 26 000 3200 1000 65 14 500 123.08 x 10-3 26 000 250.00 x 10-5 11.12 x 10-3 3.77/4 

 

This shows that ash is the most suitable material for our project. We also decided to increase the 

maximum curvature allowed by the wood by maintaining it moisture content at the fibre saturation 

point, soaking it before erection in order to make it more flexible. 

4.2. Verification and adjustment of details 

Nodal load assumptions according to the 

Eurocodes: 

• Dead loads: G = 1.26 kg 

• Live loads due to wind W = 3.42 kg 

• Live loads due to snow: S = 2.15 kg 

maximum 

• Accidental loads: people with a mass 

of 100 kg hanging from various 

gridshell’s nodes. 

 

Load combinations: 

• Service Limit State: for deflections’ calculation. 
However, as the pavilion is temporary, no limit is 
imposed on this serviceability criterion and 
creep in timber is neglected. 

1.00 G = 1.26 kg  /  1.00 G + 1.00 W + 0.60 S = 5.97 kg 

• Ultimate Limit State: a safety criterion used for 
stress and surface’s buckling verifications. 

1.35 G = 1.70 kg  /  1.35 G + 1.50 W + 1.05 S = 9.09 kg 

Buckling limit load of the surface: predominant ruin mode for gridshells. 

     

Layer Bracing 
Shear 

blocks 

Critical nodal load 

Elastica [kg at each node] 
 

Critical nodal load 

Mannheim [kgf/m²]  [7] 
*     Results of the numerical model 

**   Extrapolated predictions based on the Essen 

model 

***  Results extrapolated on the basis of the 

Multihall mode.  
 

The differences are explained by the non-

scalability of the shear stiffness or by a greater 

stiffness of the nodes of the reduced model. 

Simple 
no n/a 1.00 to 1.10  3.8** 

yes n/a 1.90 to 2.00  non evaluated 

Double 

no no 2.05 to 2.15  63***/100** 

no yes 25 to 26  - 

yes no 3.5 to 3.7  100*/160**/280*** 

yes yes 42 to 43  - 

Figure 26: ELASTICA’s kinematics of gridshell’s global buckling when the nodal load exceeds the critical load, 

and critical buckling loads for Elastica and Mannheim gridshells. 
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According to Happold and Liddell, all other things 

being equal, the use of bracing on double lathing 

increases the critical load by a factor of between 

1.60 and 4.44. Furthermore, we can predict that 

the addition of shear blocks will increase the 

critical buckling load by a factor of about 13, 

determined by the ratio of inertias with (26bh3/12) 

and without (2bh3/12) these blocks. As for the results of our modeling of the Elastica project, we can 

conclude that, all other things being equal, buckling resistance is increasing: 

• By a factor of 1.97 to 2 by designing a double layer grid. 

• By a factor of 1.67 to 1.86 adding bracing.  

• By a factor of 11.03 to 12.14 adding shear blocks. 

These results correlate with our theoretical predictions and with Happold and Liddell's analyses.  

We also wished to compare them with the 

formula proposed by Douthe [5] who believes 

that “in order to obtain an expression of the 

critical pressure pcr that will cause the shell to 

collapse, it is assumed that this load is close to 

that which causes the instability of an equivalent 

cylindrical shell subjected to hydrostatic 

loading, i.e. of the type: pcr = 3EI/R3” (I is here the inertia per unit of length). The proximity to the 

results on the three designs tested confirm this theory. 

Before concluding, let us recall that any structure must be dimensioned with a safety factor on the results 

of the calculations. Happold and Liddell evaluate it by considering various parameters: variations in 

modulus of elasticity E (between the different laths, due to moisture and due to creep), accuracy of shape 

of shell, variations in loading, accuracy of computer model and assumptions, nature and significance of 

buckling collapse and consequences of failure. Their global safety coefficient was 2.85, and ours is 4.85. 

Since the variability in loading is already taken into account in the ULS combination (9.09 kg), we apply 

an overall safety factor of 4.85/1.40 = 3.46 (31.45 kg) to this load. The results of our study show that 

the expected loads on the Elastica gridshell require a double lath design with bracing and shear blocks. 

 

 

Figure 28: Synthesis of the project loads and critical buckling loads according to the different possible designs, 

and details of the Elastica gridshell: double layer grid, bracing and shear blocks. 

Layer Bracing 
Shear 

blocks 

Critical nodal 

load by 

modeling [kg] 

Critical nodal 

load by Douthe's 

formula [kg] 

Simple no n/a ≈ 1.05 1.02 

Double 
no no ≈ 2.10 2.05  

no yes ≈ 25.50 26.71 

Double layer only 

2.10 kg 

Simple layer only 

1.05 kg 
Double layer 

+ bracing 3.85 kg 

Double layer  

+ shear blocks  

25.5 kg 

Double layer + bracing 

+ shear blocks 

42.5 kg 

Simple layer  

+ bracing 1.95 kg 

Self-weight 

1.26 kg 
SLS Combination 

5.97 kg 
Supported structure: 0 kg 

ULS Combination 

9.09 kg 
ULS Combination with 

security factor 

31.45 kg 

Nodal load [kg] 

2. Shear block holes 

1 . Knots 

3. Flat bracing 30x3mm 

1. Screw 30mm 

2. Shear blocks 

Figure 27: Principle of increasing inertia by 

connecting the layers with shear blocks.  

Dissociated elements Interdependent elements 

Table 3: Critical buckling loads by the ELASTICA 

algorithm and by the formula of cylindrical shells. 
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Accidental loads: According to our 

tests, the critical position of punctual 

loads is in the middle of the vault on 

the lateral plane (top), and very close 

to an edge (entrance arch). 24 people, 

each weighing 100 kg, can hang 

simultaneously in this critical area. 

Stress in timber elements: they are due to its bending during the assembly phase and then, in the 

service phase, to the loading (self-weight and variable loads). Stress is equal to 𝜎 =
𝑀∗𝑦

𝐼
 where y is 

the relative position (distance to the neutral axis). However, shear blocks are added after erection, 

increasing the inertia of the members from 2bh3/12 in the erection stage to 26bh3/12 in service 

phase. In addition, during erection stage the laths work independently (maximum stress at 

ymax = h/2), while in the service phase, double lathing works as a single Vierendeel truss 

(ymax = 3h/2). As M = EI/R, the maximal stress is equal to 𝜎𝑚𝑎𝑥 =
𝐸∗ℎ

2∗𝑅
 for the part of the stress 

received in the erection stage and  𝜎𝑚𝑎𝑥 =
3𝐸∗ℎ

2∗𝑅
 for the part of the stress received in the service 

phase. We have therefore simulated and combined three stress cartographies to obtain the resulting 

stresses in timber elements in service stage. 

 

Figure 30: Stress cartography in timber elements, and forces in bracing, under SLU combination. 

38% of the elements remain in the elastic domain during the erection stage and 39% in the service 

phase, all remaining below the breaking point (respectively 49% and 50% with timber soaking, 

reducing the elastic modulus E of about 27% at fibre saturation point during the erection). The local 

plastification of laths is allowed by the load transfer on the parts remaining in the elastic domain. 

Bracing verification. Flat sections in steel S235 (width b = 30 mm and height h = 3 mm) in traction are 

dimensioned by the intrinsic resistance of their section Nmax = fy.b.h = 2156 kg and those in compression 

by their critical buckling force 𝑁𝑐𝑟 =  𝜋²𝐸𝐼 𝑙𝑓²⁄ = 89 𝑘𝑔 for a 40 cm long element. 

Horizontal reactions: their average value at each lath end is 37.5 kg under self-weight and 261 kg at 

the SLU. The gridshell’s base is anchored by steel rods driven 25 cm into the ground. Benches and 

plant containers act as buttresses. The whole system can resist a 270 kg horizontal reaction. 

5. Conclusions 

The outcomes achieved so far are:  

• Popularization work of elastic gridshells 

• Calculation and verification algorithm 

• User's manual 

Outcomes expected during next steps: 

• User-friendly interface 

• Algorithm’s adaptation to other typologies 

like braiding (BAYA study [11]). 

Cartography A      –     Cartography B    +    Cartography C    =    Cartography D 

 
At the end of the 

erection stage, without 

loading,  𝜎𝑚𝑎𝑥 =
𝐸∗ℎ

2∗𝑅
 

 

At the end of the 

erection stage, with 

loading, 𝜎𝑚𝑎𝑥 =
3𝐸∗ℎ

2∗𝑅
 

 

In service phase after 

relaxation, with loading, 

𝜎𝑚𝑎𝑥 =
3𝐸∗ℎ

2∗𝑅
 

 

Resulting stresses in 

timber elements 

Figure 29: Gridshell deflection under the action of its self weight 

and of 7 persons of 100 kg suspended at 7 nodes in the critical zone. 
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Philippe Agricole (maintenance shop), Philippe Bourdier, in charge of student life and Marc Fayolle De 

Mans, Jacques Bergna and Alain Raynaud (model workshop). 
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