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In this paper we bring out innite products expansions for the Weierstrass's elliptic function ℘(z) = ℘(z, τ ) with primitive periods (2, 2τ ) and derive some n-order transformations of that function as well as for its derivative ℘ (z). This allow us to provide some new modular relations.

e 1 (τ ) = ℘(1, τ ), e 2 (τ ) = ℘(-1 -τ, τ ), e 3 (τ ) = ℘(τ, τ ).

The Weierstrass's function ℘(z) = ℘(z; ω, ω ) is an elliptic function with two primitive periods (2ω, 2ω ) such that the imaginary part ω ω > 0 which is of order two, has a double pole at z = 0, Recall that ℘(z) -1 z 2 is analytic in a neighborhood of 0 and it is uniquely dened. One then obtains the analytic series representation of ℘(z)

℘(z) = ℘(z; g 2 , g 3 ) = ℘(z, τ ) = 1 z 2 + m,n 1 (z -2mω -2nω ) 2 - 1 (2mω + 2nω ) 2 ,
where τ = ω ω , The prime symbol means that m and n are not simultaneously zero. A direct consequence of the preceding denition is that the Weierstrass elliptic function is an even function ℘(-z; ω, ω ) = ℘(z; ω, ω ). Moreover, this function veries the following homogeneity condition for any complex λ = 0 ℘(λz; λω, λω ) = λ -2 ℘(z; ω, ω ).

For this reason and for the sake of simplicity we will only consider in the sequel ℘(z) with primitive periods (2, 2τ ), simply denoted by ℘(z; 2, 2τ ) = ℘(z, τ ).

The original constructions of elliptic functions are due to Weierstrass and Jacobi [START_REF] Appell | Fonctions elliptiques et applications Gauthiers-Villard[END_REF][START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF]. Nice approaches on the subject of elliptic functions are the classic book by Watson and Whittaker [12] or the excellent full compilation of Tannery and Molk [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF]. Useful reference handbooks with many details on transcendental functions including those used in this paper are provided by Bateman and Erdelyi, [START_REF] Kiepert | Ueber Theilung und Transformation der elliptischen Functionen[END_REF].

Recall some useful facts on Weierstrass elliptic function. Its values at the halfperiods: ω 1 = 1, ω 2 = -1 -τ, ω 3 = τ are These e i obey the relations e 1 + e 2 + e 3 = 0, e 1 e 2 + e 3 e 1 + e 2 e 3 = -g 2 4 , e 1 e 2 e 3 = g 3 4 .

(1)

Finally, when two of the roots e 1 , e 2 and e 3 coincide, the Weierstrass elliptic function degenerates to a simply periodic function.

On the other hand, the Weierstrass function ℘(z, τ ) is connected to the Jacobi theta functions

θ i (v) = θ i (v, τ ), i = 1, 2, 3, 4 where v = z 2 : ℘(z) = ( 1 2 ) 2 [-4η - d 2 logθ 1 (v) dv 2 ] η = η(τ ) = - 1 12 θ 1 (0) θ 1 (0) = π 2 2 [ 1 6 + n≥1 1 (sin nπτ ) 2 ].
(2)

We have also

℘(z + τ ) = ( 1 2 ) 2 [-4η - d 2 logθ 4 (v) dv 2 ].
Therefore,

e 3 (τ ) = ℘(τ ) = -η(τ ) + π 2 k≥0 1 1 -cos(2k + 1)πτ , e 3 (τ ) = ( π 2 ) 2 θ 1 (0) 3θ 1 (0) - θ 4 (0) θ 4 (0) .
By the same way

e 2 (τ ) = -η(τ + 1) + π 2 k≥0 1 1 + cos(2k + 1)πτ = ( π 2 ) 2 θ 1 (0) 3θ 1 (0) - θ 3 (0) θ 3 (0) . e 1 (τ ) = η(τ ) + η(τ + 1) -2π 2 k≥0 1 (sin(2k + 1)πτ ) 2 = ( π 2 ) 2 θ 1 (0) 3θ 1 (0) - θ 2 (0) θ 2 (0) .
Notice also the following theta function identity [START_REF] Tannery | Elements de la theorie des Fonctions Elliptiques[END_REF][START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF] deriving from (1)

θ 1 (0) θ 1 (0) = θ 2 (0) θ 2 (0) + θ 3 (0) θ 3 (0) + θ 4 (0) θ 4 (0) .
1.2. The Weierstrass' sigma function.

The Weierstrass' sigma function is an entire function dened by

σ(z) = σ(z, τ ) = z m,n (1 - z m + nτ ) exp z m + nτ + z 2 2(m + nτ ) 2 .
The prime symbol means that m and n are not simultaneously zero. This function is also connected to ℘(z)

℘(z) = σ 2 (z) -σ(z)σ (z) σ 2 (z)
We obtain the analogous for a connection with the sigma function

℘(z) -e i = - σ(z + ω i )σ(z -ω i ) σ 2 (z)σ 2 (ω i ) = σ i (z) σ(z) 2 , i = 1, 2, 3,
where

ω 1 = 1, ω 2 = -1-τ, ω 3 = τ.
Then we have the zeros of ℘ (z) are e i = ℘(ω i ).

Notice that the function ℘(z) -℘(ω i ) is an elliptic function of order two, then it has only poles and zeros and hence the function

[℘(z) -℘(ω i )] 1 2 = σi(z) σ(z)
is a single valued function.

The aim of this paper.

The literature on various representations of the function ℘(z) is notably abundant. Several types of representations whether in the form of analytic or trigonometric series are widely described [START_REF] Appell | Fonctions elliptiques et applications Gauthiers-Villard[END_REF][START_REF] Erdelyi | Higher transcendental functions[END_REF][START_REF] Tannery | Elements de la theorie des Fonctions Elliptiques[END_REF][START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF]. In this work we will be particularly interested in the development in innite products of this function. However, note that this approach seems to have been little exploited. This paper is organized as follows.

First of all we exhibit a representation in innite products for the Weierstrass elliptic function ℘(z) = ℘(z, τ ) with two primitive periods 2, 2τ where z, τ are complex numbers such that the imaginary part of τ is positive, τ > 0 and z < 2 τ, :

℘(z) -e 1 = (π cot πz 2 ) 2 4 k≥1 cot(kπτ -πz 2 ) cot(kπτ + πz 2 ) [cot(kπτ )] 2 2 .
On the other hand, we will considered the n-order odd decomposition as innite products of the Weierstrass sigma functions or for their quotient

σ i (z, nτ ) = exp(z 2 P 1 ) σ j (z) n-1 r=1 σ j (z + 2r n )σ j (z -2r n ) σ 2 ( 2r n )
,

where

P 1 = n-1 r=1 ℘( 2r 
n ), as well as

σ j σ (nz, nτ ) = n-1 m=0 σ j σ (z + 2mπ n , τ ) n-1 m=0 σ σ j ( 2mπ n , τ ), j = 1, 2, 3.
We refer for that for example to Tannery and Molk [10, T.2, p.215,246] as well as to H. Schwarz [9, p.6,36].

The last decomposition allows us to deduce n-decomposition for the elliptic Weierstrass function ℘(z, τ ) :

℘(nz, nτ ) -e 1 (nτ ) = 4 π 4 n-1 θ 2 3 (0, nτ )θ 2 4 (0, nτ ) [θ 2 3 (0, τ )θ 2 4 (0, τ )] n n-1 m=0 ℘(z + m n , τ ) -e 1 (τ ) ,
where e 1 = ℘(1, τ ), as well as for its derivative :

℘ (nz, nτ ) = 4 π 4 n-1 θ 2 1 (0, nτ ) θ 2 1 (0, τ ) n n-1 m=0 ℘ (z + m n , τ ).
Finally, we will also consider the function ξ βγ (u) introduced by Tannery-Molk [10, T2, p.168]. They are dened by

ξ βγ (u) = σ β σ γ (u) = ℘(u) -e β ℘(u) -e γ
where βγ = 0, 1, 2, 3. Here σ 0 (u) = σ(u) and e j are the zeros of ℘ (u).

We then explore the n-decomposition of the logarithmic derivative for these functions.

As a consequence of all the above, for z < 2 τ we derive modular identities which seem to be new in the literature:

k =0 1 sin(2knπτ + nπz) = n-1 m=0 k =0 1 sin(2kπτ + π(z + 2m n )) = 2 1-n k =0 n-1 m=1 1 sin(2kπτ + π(z + 2m n )) = θ 2 2 (0, nτ ) [θ 2 2 (0, τ )] n n-1 m=0 k =0 1 sin(2kπτ + πz + mπ n )
.

To prove that we will use the above n-decomposition of ℘(z, τ ) as well as the n-transformations of

℘ (z) ℘(z) -e 1 = - 2π sin πz + 2π k≥1 1 sin(2kπτ -πz) - 1 sin(2kπτ + πz) .

Weierstrass's function ℘(z) and infinite products

As we have seen in 1.1, the Weierstrass's function ℘(z) = ℘(z; ω, ω ) is an elliptic function of order two with two primitive periods (2ω, 2ω ) verifying the condition

τ = ω ω , τ > 0.
Recall throughout this paper we will take ω = 1, ω = τ is imaginary. In order to avoid any ambiguity ℘(z) always denotes ℘(z, τ ).

Innite product representations of ℘(z).

We have seen above in 1.2, the connection between ℘(z) and theta functions. The following is well known for

v = z 2ω = z 2 : ℘(z) = e i + 1 4 
θ i+1 (v) πθ i+1 (0) θ 1 (0) θ 1 (v) 2 , i = 1, 2, 3.
These relations allows us to derive variant innite products expressing the Weierstrass's function Theorem 2-1 The Weierstrass's function ℘(z) = ℘(z, τ ) with primitive periods 2 and 2τ veries the following identities

℘(z) -e 1 = (π cot πz 2 ) 2 4 k≥1 cot(kπτ -πz 2 ) cot(kπτ + πz 2 ) [cot(kπτ )] 2 2 = (π 2 θ 3 (0)θ 4 (0) cot πz 2 ) 2 4 k≥1 cot(kπτ - πz 2 ) cot(kπτ + πz 2 ) 2 ,
where e 1 = ℘(1), and Imz < 2 Imτ . We obtain the two other innite products by permuting the e i

℘(z)-e 3 = π 2 2 sin πz 2 2 k≥1 sin((k -1 2 )πτ -π z 2 ) sin(kπτ -π z 2 ) sin((k -1 2 )πτ + π z 2 ) sin(kπτ + π z 2 ) 2 sin(kπτ ) sin((k -1 2 )πτ ) 4 , ℘(z)-e 2 = π 2 2 sin πz 2 2 k≥1 cos((k -1 2 )πτ -π z 2 ) sin(kπτ -π z 2 ) cos((k -1 2 )πτ + π z 2 ) sin(kπτ + π z 2 ) 2 sin(kπτ ) cos((k -1 2 )πτ ) 4 .
Proof of Theorem 2-1 Starting from (as seen above 1.2)

℘(z) = e 1 + 1 4 π θ 2 (v) θ 2 (0) θ 1 (0) θ 1 (v) 2 ,
and by [2, Corollary 3-5] which asserts

θ 1 (v, τ ) π(sin πv) θ 1 (0, τ ) = 1 - sin πv sin kπτ 2 = k≥1 sin(kπτ -πv) sin(kπτ + πv) [sin(kπτ )] 2 , θ 2 (v, τ ) (cos πv) θ 2 (0, τ ) = 1 - sin πv cos kπτ 2 = k≥1 cos(kπτ -πv) cos(kπτ + πv) [cos(kπτ )] 2 .
Then,

θ 2 (v) θ 2 (0) πθ 1 (0) θ 1 (v) = cot πv k≥1 cos[kπτ + πv] cos[kπτ -πv](sin[kπτ ]) 2 sin[kπτ + πv] sin[kπτ -πv](cos[kπτ ]) 2 = cot πv k≥1 cot(kπτ + πv) cot(kπτ -πv) (cot kπτ ) 2 .
Moreover, by the relationship with the elliptic Weierstrass's sigma function

℘(z) -e 1 = σ1z
σz 2 , we have for v = z 2 (see for example Schwarz [9,p. 8,36]) (2 sin πv) π k≥1 sin(kπτ -πv) sin(kπτ + πv)

σ 1 z = e
[sin(kπτ )] 2 .
We then derive the expression

σ 1 z σz = (π cot πv) 2 k≥1 cot(kπτ -πv) cot(kπτ + πv) [cot(kπτ )] 2 ,
and deduce

℘(z)-e 1 = (π cot πz 2 ) 2 4 k≥1 cot(kπτ -πv) cot(kπτ + πv) [cot(kπτ )] 2 2 = (π cot πz 2 ) 2 4 k =0 cot(kπτ -πz 2 ) [cot kπτ ] 2 .
By permutation of the e i , i = 1, 2, 3 we also obtain the other expressions (see Schwarz [9, p.36])

σ 2 z = e ηv 2 2 k≥0 cos((k -1 2 )πτ -πv) cos((k -1 2 )πτ + πv) cos((k -1 2 )πτ ) 2 , σ 3 z = e ηv 2 2 k≥0 sin((k -1 2 )πτ -πv) sin((k -1 2 )πτ + πv) sin((k -1 2 )πτ ) 2 ,
and then deduce analog innite products for

℘(z) -e 2 = σ 2 z σz 2 ℘(z) -e 3 = σ 3 z σz 2 .
Remark 2-2 : (i) This expansion as innite product of elliptic functions may be dierently proved. Indeed, starting from the innite product [9, p.8] noticed that the sigma function may also be written

sin( πu 2ω ) = πu 2ω n≥0 1 - u 2nω e u 2nω n≥0 1 + u 2nω e -u 2nω H.A. Schwarz
σz = 2ω π sin(πv)e 2ηωv 2 n≥1
sin(nπτ -πv) sin(nπτ + πv)

(sin nπτ ) 2 = e 2ηωv 2 2ω π sin(πv) n≥1 1 - (sin πv) 2 (sin nπτ ) 2 , where v = z 2ω , η = π 2 2ω 1 6 + n≥0 1 (sin nπτ ) 2 .
(ii) Other relations and descriptive properties of ℘(z) may be derived from Theorem 2-1. For example, We may write :

℘(z + 1) = e 1 + (π tan π z 2 ) 2 4 k =0 tan(kπτ -π z 2 ) cot(kπτ ) 2 .
We then derive the following well known expression ([4, 13.13, p.333]) to the periods (2, 2τ ). We then have

(℘(z + 1) -e 1 ) (℘(z) -e 1 ) =
℘ (z) ℘(z) -e 1 = - 2π sin πz + 2π k =0 1 sin(2kπτ -πz) = - σ(2z) σ 2 (z)σ 2 1 (z)
, where σ(z), σ 1 (z) are the Weierstrass elliptic functions (as dened above in 1.3).

Indeed, that result follows from Theorem 2-1 and the identity

d cot x dx 1 cot x = - 2 sin 2x
.

Then

℘ (z) ℘(z) -e 1 = - 4π 2 sin πz + 4π 2 k≥1 1 sin(2kπτ -πz) - 1 sin(2kπτ + πz) = k 2π sin(2kπτ -πz)
.

We may expressed it otherwise (for example : see Lawden [7, p.161]) by mean the Weierstrass's elliptic zeta function dened by ζ (z) = -℘(z)

℘ (z) ℘(z) -e 1 = 2 σ 1 σ 1 (z) - σ σ (z) = -2 σ 2 (z)σ 3 (z) σ(z)σ 1 (z) = - σ(2z) σ 2 (z)σ 2 1 (z) = 2ζ(z+1)-2ζ(z)-2η.
Concerning the sigma functions we derive the following results (here η = 

σ σ (z) = ηz + π 2 cot( πz 2 ) + π 2 k≥1 cot(kπτ + πz 2 ) -cot(kπτ - πz 2 ) = ηz + π 2 cot( πz 2 ) + π 2 k≥1 sin πz -cos 2 ( πz 2 ) + cos 2 (kπτ ) , σ 1 σ 1 (z) = σ σ (z + 1) = ηz - π 2 tan( πz 2 ) - π 2 k≥1 sin πz -sin 2 ( πz 2 ) + cos 2 (kπτ ) , σ 2 σ 2 (z) = ηz - π 2 k≥0 tan((k - 1 2 )πτ + πz 2 ) -tan((k - 1 2 )πτ + πz 2 ) = ηz - π 2 k≥1 sin πz -sin 2 ( πz 2 ) + cos 2 ((k -1 2 )πτ ) , σ 3 σ 3 (z) = σ 2 σ 2 (z + 1) = ηz + π 2 k≥1 sin πz -cos 2 ( πz 2 ) + cos 2 ((k -1 2 )πτ )
.

Corollary 2-5 The elliptic sigma functions and their derivatives relative to periods (2, 2τ ) verify the identities

℘ (z) 2(℘(z) -e 1 ) = σ 1 σ 1 (z) - σ σ (z) = π k≥1 1 sin(2kπτ -πz) - 1 sin(2kπτ + πz) , σ 2 σ 2 (z) - σ 3 σ 3 (z) = π k≥0 1 sin((2k -1)πτ -πz) - 1 sin((2k -1)πτ + πz) . σ 1 σ 1 (z) + σ σ (z) = 2ηz + π cot(πz) + π k≥1 [cot(2kπτ + πz) -cot(2kπτ -πz)] , σ 2 σ 2 (z) + σ 3 σ 3 (z) = 2ηz + π k≥0 [cot((2k -1)πτ + πz) -cot((2k -1)πτ -πz)] .
Next results provide other expressions for the Weierstrass function as well as for its derivative The Weierstrass function relative to periods (2, 2τ ) veries the identities

℘(z, τ ) -e 2 (τ ) = π 2 k≥1 1 sin(2kπτ + πz) k≥1 1 sin( -2kπ τ + πz) , ℘(z, τ ) -e 3 (τ ) = π 2 k≥1 1 sin(2kπτ + πz) k≥1 1 sin( -2kπ τ +1 + πz) , ℘(z, τ ) -e 1 τ ) = π 2 k≥1 1 sin( 2kπ τ +1 + πz) k≥1 1 sin( -2kπ τ + πz) .
Indeed, one has since [4, p.368] e 1 ( -1 τ ) = e 3 (τ ) and e 1 ( -1 τ +1 ) = e 2 (τ ) then

℘ (z) ℘(z) -e 3 = -2π k≥1 1 sin( -2kπ τ + πz) , ℘ (z) ℘(z) -e 2 = -2π k≥1 1 sin( -2kπ τ +1 + πz) .
Moreover, since

℘ 2 (z) (℘(z) -e 1 )(℘(z) -e 3 ) = ℘ (z) (℘(z) -e 1 ) ℘ (z) (℘(z) -e 3 ) = 4 [℘(z) -e 2 ]
it easily follows the rst identity of Corollary 2-6. On the other hand, since τ ) we then obtain the two other identities.

e 2 (1 + τ ) = e 3 (τ ), e 1 ( -1 τ +1 ) = e 2 (
Corollary 2-7 The derivative of Weierstrass's function

℘ (z) = ℘ (z, τ ) = d℘(z) dz , ℘ (z) = d 2 ℘(z)
dz 2 with primitive periods 2 and 2τ veries the following identities

℘ (z, τ ) = -2π 3 k≥1 1 sin(2kπτ + πz) k≥1 1 sin( -2kπ τ + πz) k≥1 1 sin( -2kπ τ +1 + πz) . ℘ (z) ℘ (z) = -π k≥1 1 sin(2kπτ -πz) + 1 sin( -2kπ τ + πz) + 1 sin( -2kπ τ +1 + πz) . ℘ (z) ℘(z) -e 1 = 4π 2   k≥1 1 sin(2kπτ -πz)   2 +π 2 k≥1   1 cos 2 (kπτ -π z 2 ) - k≥1 1 sin 2 (kπτ -π z 2 )   .
Consider the second derivative of the Weierstrass function ℘ (z, τ ) = d 2 ℘(z) dz 2 . We have the following which may be easily deduced from the classical properties

2 ℘ (z) ℘ (z) = ℘ (z) ℘(z) -e 1 + ℘ (z) ℘(z) -e 2 + ℘ (z) ℘(z) -e 3 .
Thus we derive

℘ (z) ℘ (z) = -π k≥1 1 sin(2kπτ -πz) -π k≥1 1 sin( -2kπ τ + πz) -π k≥1 1 sin( -2kπ τ +1 + πz)
.

On the other hand, consider the derivative

d dz ℘ (z) ℘(z) -e 1 = ℘ (z) ℘(z) -e 1 - ℘ (z) ℘(z) -e 1 2 = -2π 2 k cos(2kπτ -πz) sin 2 (2kπτ -πz) = π 2 k≥1 1 cos 2 (kπτ -π z 2 ) - 1 sin 2 (kπτ -π z 2 )
.

We then derive

℘ (z) ℘(z) -e 1 = 4π 2   k≥1 1 sin(2kπτ -πz)   2 +π 2 k≥1 1 cos 2 (kπτ -π z 2 ) - 1 sin 2 (kπτ -π z 2 )
.

On the other hand, by [9, p.13, (1.)] here is another connection between the Weierstrass function ℘(z, τ ), and the sigma function

- σ(u + v)σ(u -v) σ 2 (u)σ 2 (v) = ℘(u) -℘(v).
Since σ(u) = 2 πθ 1 (0,τ ) e ηu 2 /2 θ 1 ( u 2 , τ ), then

℘(u) -℘(v) = (πθ 1 (0, τ )) 2 θ 1 ( u+v 2 , τ )θ 1 ( u-v 2 , τ ) θ 1 ( u 2 , τ )θ 1 ( v 2 , τ ) 2 .
In the limit case when v → u after dividing both sides by v -u, we nd

℘ (u) = - σ(2u) σ 4 (u) = -[πθ 1 (0, τ )] 3 θ 1 (2u, τ ) [θ 1 (u, τ )] 4 .
However, using again innite products of theta functions we may express ℘ (u) as innite product.

Theorem 2-8 The derivative of Weierstrass's function

℘ (z) = ℘ (z, τ ) = d℘(z) dz
with primitive periods 2 and 2τ veries the following equality

℘ (u) = - sin 2πv (sin πv) 4 k≥1
sin(kπτ + 2πv) sin(kπτ -2πv)(sin(kπτ )) 6 [sin(kπτ + πv) sin(kπτ -πv)] 4 .

Proof of Theorem 2-8 Indeed, this expression may be deduced from [2, Cor.

3-5]

θ 1 (v, τ ) (π sin πv) θ 1 (0, τ ) = k≥1 1 - sin πv sin kπτ 2 = k≥1 cos 2πv -cos 2kπτ 1 -cos 2kπτ , [ θ 1 (v, τ ) (π sin πv) θ 1 (0, τ ) ] 4 = k≥1 1 - sin πv sin kπτ 2 4 = k≥1 cos 2πv -cos 2kπτ 1 -cos 2kπτ 4 .
Thus sin(kπτ + 2πv) sin(kπτ -2πv)(sin(kπτ )) 6 [sin(kπτ + πv) sin(kπτ -πv)] 4 .

θ 1 (2v, τ ) θ 1 (0, τ ) (θ 1 (0, τ )) 4 [θ 1 (v, τ )] 4 = -π 3 ℘ (z) =

The functions ξ(u, τ )

Following Tannery [10, T.2, p. 168] it is often appropriate to introduce the quotients that can be formed by means of two functions σ(z, τ ) relating to the same variable and the same periods. Thus the four functions σ, σ 1 , σ 2 , σ 3 generate twelve functions. Indexes α, β, γ are selected according to the convention : they are dierent and be chosen between the values 0, 1, 2, 3

ξ α0 (u) = σ α σ (u) = ℘(u) -e α , ξ 0α (u) = σ σ α (u) = 1 ℘(u) -e α , ξ βγ (u) = σ β σ γ (u) = ℘(u) -e β ℘(u) -e γ .
We will simply write ξ βγ (u) instead ξ βγ (u, τ ) when there is no ambiguity. These functions are even or odd depending on whether they contain the index 0 or not. They are algebraic function of ℘(u) and have a single pole as simple singularity. Moreover, these functions are doubly periodic and verify many algebraic relations see [10, T.2, p. 168-187]. Observe that we may deduce from the above :

℘ (u) = -2 σ 1 σ (u) σ 2 σ (u) σ 3 σ (u) = -2ξ α0 (u) ξ β0 (u) ξ γ0 (u).
These relations yield in particular, [10, T.2, p. 171]

ξ α0 (u) = ℘ (u) 2 ℘(u) -e α = -℘(u) -e β ℘(u) -e γ = -ξ β0 (u) ξ γ0 (u), ξ 0α (u) = ξ βα (u) ξ γα (u), ξ βγ (u) = -(e β -e γ )ξ 0γ (u) ξ αγ (u), ξ β0 (u) ξ γ1 (u) = -℘ (u) 2(℘(u) -e 1 )
.

Moreover, ξ α0 is solution of the dierential equation The derivatives of the Weierstrass functions yield

3℘(u) = ξ 2 α0 (u) + ξ 2 β0 (u) + ξ 2 γ0 (u), ℘ (u) ℘ (u) = 2ξ α0 (u) + 2ξ β0 (u) + 2ξ γ0 (u).
Notice for

ω 1 = 1, ω 2 = 1 + τ, ω 3 = τ we derive ξ α0 (ω β ) = e β -e α , ξ βγ (ω α ) = √ e α -e β √ e α -e γ .
The periods are

k = ξ 21 (ω 3 ), k = ξ 23 (ω 1 ).
Many other interesting properties concerning the functions ξ βγ (u) (homogeneity, variations, growing,...) can be found in [10, T.2, p. 170-190]. In [START_REF] Tannery | Elements de la theorie des Fonctions Elliptiques[END_REF] we will also observe a rigorous and systematic study of these functions as well as their periodicity, their relationships with other elliptic functions and connections with theta functions of Jacobi. The following is particularly interesting Theorem 3-1 The function ξ α0 (u, τ ) = ξ α0 (u) verify the identities Notice under the action of the modular group Γ 0 the permutation between the e j does not change the Weierstrass function ℘(z, τ ). Indeed by changing τ into τ + 1 or into -1 τ it yields [4, p. 365]: 
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 1 sin nπτ ) 2 ) using their innite product expansions [10, T.2, p.246] and their logarithmic derivatives Corollary 2-4 The Weierstrass's elliptic sigma functions and their derivatives relative to periods (2, 2τ ) verify the identities

4 = π 3 4 = π 3

 4343 sin 2πv (sin πv) 4 k≥1 [cos 4πv -cos 2kπτ ][1 -cos 2kπτ ] 3 [cos 2πv -cos 2kπτ ] sin 2πv (sin πv) 4 k≥1

dy du 2 =

 2 (e α -e β + y 2 ) (e α -e γ + y 2 ).

  may write for any integer m ∈ [0, n -1]℘(z+ m n , τ )-e 1 (τ ) = (π cot(πv + mπ n )) 2 4 k≥1 cot(kπτ + πv + mπ n ) cot(kπτ -πv + mπ n ) (cot(kπτ ) -e 1 (τ ) = 4 π 2 [℘(nz, nτ ) -e 1 (nτ )] .Turn now to the other cases j = 2, 3, by the same way we deduce analog decomposition of ℘(nz, nτ ) -e 3 (nτ ), ℘(nz, nτ ) -e 2 (nτ ) from Theorem 2-1 since℘(z) = e 3 + π22 sin πz

e 3

 3 (τ ), e 3 (1 + τ ) = e 2 (τ ).

Proof of Theorem 3-1 This theorem is a direct consequence of Corollaries 2-3 and 2-5.

Transformations of order n

Then the n-transformation theory of functions deals with the relations between functions belonging to dierent pairs of primitive periods : (2, 2τ ), (2, 2nτ ).

If we suppose n is not a prime number it will be the product of two or more odd primes, and the transformation will break up into distinct transformations each of which may be separately considered. We therefore now assume n an odd prime: the modular equation is in this case an irreducible equation of the order n + 1. Then, it is convenient to restrict the attention to the case n an odd number. Thus, we are going to study the transformations whose order is odd and positive, transformations which are reduced to those that we change the period (2, τ ) into ( 2 n , τ ) without changing τ . This corresponds to changing v to nv and τ to nτ . We shall always assume

Observe by Lawden [7, p.252], Enneper [4, p.240] or Roy [9, p.89] that any transformation of order n > 1 may be represented as a product of transformations of rst order and of transformations of higher order with matrix

Moreover, any transformation τ = nτ can be separated into a product when n has prime factors. Therefore, we only study the case of transformation when n is a prime and limit our study for this type of matrix.

4.1. Transformation of ℘(z, τ ). Theorem 2-1 provided an expansion of the Weierstrass function ℘(z, τ ) relative to periods 2, 2τ ) as innite product

where e 1 = ℘(1). It allows to derive in particular a n-order transformation formula for i = 1, 2, 3.

That permits to deduce various identities as

where j = 1, 2, 3,

More precisely, one gets the following connection between ℘(nz, nτ ) and ℘(z, τ ) derived from Theorem 2-1 Theorem 4-1 Let n be an odd integer and consider the Weierstrass's function ℘(nz, nτ ) with primitive periods 2 and 2nτ , then the following identity holds

where e j (τ ) are the zeros of ℘ (z, τ ), i = 1, 2, 3 and z < 2 τ .

Proof of Theorem 4-1 Prove at rst for i = 1. Notice by Theorem 2-1

We start from the classical trigonometric product formulas valid for n odd integer

Thus we derive the expression

Therefore, we nd analog expansions for ℘(nz, nτ )-e 2 (nτ ) and ℘(nz, nτ )-e 3 (nτ ).

then by Remark 2-2 (ii) we may deduce the following n-decomposition of ℘ (nz, nτ ) .

Corollary 4-2 Let n be an odd integer, then the following identity holds

Among others interesting equalities, we may derive the following identities

From Theorem 4-1 we also get Corollary 4-3 Let ℘(z, τ ) be the Weierstrass function and ℘ (z, τ ) its derivative relative to the periods (2, 2τ ), then the following identities hold for any odd n and j = 1, 2, 3

.

Indeed, (i) may be deduced from Theorem 4-1 and also by the n-order transformation of the quotient of sigma functions (see also [10, T.2, p.215], or [11, ex 9 p.456])

(ii) is deduced from (i) since

Moreover, since n is odd then the quotient (ii) over (i) yields (iii).

Corollary 4-4 Let ℘(z, τ ) be the Weierstrass function and ℘ (z, τ ) its derivative relative to the periods (2, 2τ ), then the following identities hold for any odd n and j = 1, 2, 3

.

Moreover, one gets for j = 1

.

Indeed, (i) is derived from Theorem 4-1 and Corollary 4-2 and using the quotient

℘(nz,nτ )-e1(nτ ) . Corollary 2-3 implies (ii).

4.2.

The n-transformations of the functions ξ(u). We start from the n-transformations of the sigma functions. In [10,T.1, p.234] Tannery-Molk proved

, for j = 1, 2, 3 we obtain the quotient

.

We then deduce [10, T.2, p.215]

.

This shows that ξ α0 (nu, nτ )) is a rational function of ξ α0 (u), as well as ξ βγ (nu, nτ ) is a rational function of ξ βγ (u, τ ).

We then derive the identity

.

We obtain the modular relations of the periods

The zeros become

.

By the same way if we replace τ by τ n one obtains the formulas

.

More generally ([10, T.2, p. 217]), if we replace τ by τ +2p n for any odd n and integer p one gets

Other applications may be derived from the decomposition of ℘ (nz,nτ ) ℘(nz,nτ )-e1(nτ ) as the following modular identities Corollary 4-5 For 0 < (τ ) < z and for any odd integer n the following identity holds

.

To prove that, take the logarithmic dierentiation of ξ 10 (nz, nτ ) see [10, T.2, p.215] :

, which yields

.

Therefore, Corollary 2-3 implies Corollary 4-4.

Corollary 4-6 For 0 < (τ ) < z and for any odd integer n the following identities hold

.

To prove Corollary 4-6, recall by Corollary 2-3 we have We then obtain an equality allowing us to invert the sum and the product : .