
HAL Id: hal-03882224
https://hal.science/hal-03882224

Submitted on 2 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Initial Spreading: a Fast Start-Up TCP Mechanism
Renaud Sallantin, Cédric Baudoin, Emmanuel Chaput, Fabrice Arnal,

Emmanuel Dubois, André-Luc Beylot

To cite this version:
Renaud Sallantin, Cédric Baudoin, Emmanuel Chaput, Fabrice Arnal, Emmanuel Dubois, et al..
Initial Spreading: a Fast Start-Up TCP Mechanism. 38th IEEE Conference on Local Computer
Networks (LCN 2013), Oct 2013, Sydney, Australia. pp.492–499, �10.1109/LCN.2013.6761283�. �hal-
03882224�

https://hal.science/hal-03882224
https://hal.archives-ouvertes.fr

Initial Spreading: a Fast Start–Up TCP Mechanism
Renaud Sallantin , Cédric Baudoin‡, Emmanuel Chaput , Fabrice Arnal‡,

Emmanuel Dubois† and André-Luc Beylot

 Université de Toulouse - IRIT Email: {sallantin, chaput, beylot}@enseeiht.fr
† CNES Email: {emmanuel.dubois}@cnes.fr

‡ Thales Alenia Space Email: {cedric.baudoin, fabrice.arnal}@thalesaleniaspace.com

Abstract— With most internet connections being short–lived
(i.e. 10 segments), it is very tempting to enlarge the TCP
Initial Window (IW). This would save two of the three RTTs
needed to transfer most of the web pages through a legacy
slow start. However it has been demonstrated that the bursts
created by a larger IW greatly impair global performance.
An intuitive solution is the TCP Pacing. By spreading the
transmission over the whole RTT, Pacing smoothes the bursts and
delays the congestion. While postponing congestion provides good
performance for short-lived connections, it could signi cantly
deteriorate global network performance insofar as the reaction
to congestion is also delayed.
This paper analyzes the weaknesses of large IW and TCP Pacing
and proposes a fast Start-Up mechanism to speed up short-lived
connections while preserving long-term connections. Extensive
simulations and analysis demonstrate that our solution is as
ef cient as a larger IW would be in an uncongested network
and better than current mechanisms in congested environments.

Index Terms—TCP; Fast Startup; Initial Window; Pacing;
burst; RTT; congestion

I. INTRODUCTION

It is well-known in the research community that the trans-
port layer is responsible for a sizable part of network perfor-
mance. It has also been observed that the Transmission Control
Protocol (TCP) – the most widely-used transport protocol –
is not very ef cient in every network con guration, especially
for Long Fat Networks (LFN). Several researchers have there-
fore attempted to improve this protocol, and optimized TCP
releases [11] [16] have been rolled out in recent years. Their
congestion algorithm has been improved to overcome some
of the weaknesses of previous versions such Reno or new
Reno protocols. The long latency needed to recover from a
loss mainly due to a very conservative and linear congestion
algorithm has thus been reduced using a dynamic and scalable
algorithm in the Compound and Cubic protocols. Instead of
reacting only to the detection of losses, they also exploit the
delay between two losses or two successful acknowledgments
to be more receptive to the network evolution. It has been
demonstrated that Cubic and Compound protocols offer very
high performance for long-lived connections even with LFNs
[14].

Nevertheless, neither Cubic nor Compound protocols have
changed their start up phases: both continue to use a regular
slow start, while current traf c is mainly based on short-
lived connections (90% of HTTP Web objects t within 10
segments) [10] . Only a small percentage of connections then
enter congestion control mode, while the majority are still
constrained by slow start. It is thus necessary to improve the
start up phase.
Intuitively, the easiest way to satisfy this constraint is to

increase the Initial Window (IW). Beginning the connection
with an emission of ten segments instead of one or three,
as is currently the case, would allow nearly 90 % of web
requests to be sent in one Round Trip Time (RTT) and then
save at least three RTTs. For example, this would reduce
by 1s the total transmission time for a ten-segments ow in
satellite communication. Many papers [2] [5] [10] address
this appealing solution but provide diverging conclusions as
to its global results. While there are major advantages in most
cases, it has been determined that this mechanism signi cantly
impairs performance in certain scenarios.
This paper proposes a fast Start-Up solution – Initial Spread-

ing – to solve the problems arising from a larger IW. Based on
a combination of large IW and Pacing concept, our proposal
offers at least the same bene ts as a larger IW, while assuring
signi cant improvements in current performance at problem
points.
The rest of the paper is organized as follows. Section II,

based on related works, provides an overview of the impact
of an increase in IW. We then focus on the Pacing protocol as a
possible way of ef ciently sending more data within the same
RTT. Both ideas are discussed separately, with an emphasis not
only on the pros and cons of each, but also on the possibility
of combining them. Section III presents our mechanism along
with an evaluation based on NS2 simulations versus existing
solutions. Section IV concludes our paper on the necessity of
using Initial Spreading to safely implement a large IW.

II. RELATED WORKS
TCP aims to share network resources fairly and ef ciently.

Its current operating procedure is quite simple: a TCP con-
nection rst uses a slow start to probe the network and

then increases its bit rate exponentially. Whenever the sender
receives an acknowledgment, its congestion window (CWND)
is incremented by one. The CWND corresponds to the number
of segments which can be sent within the same RTT. Both
CWND and bit rate are very low at rst but double with
each RTT until the rst loss occurs. Considering each drop
as a marker of possible congestion, TCP enters a congestion
avoidance control stage.
During slow start, TCP results in bursty traf c. Segment

transmission is determined by the reception of acknowledg-
ments. With the exception of data transmitted during the rst
RTT, the sending rate is limited by the slowest subsystem of
the network, which is the bottleneck link. The sender receives
the acknowledgments of the previously transmitted window
of segments at the bottleneck rate and then transmits a micro-
burst of two segments for each expected acknowledgments.
The bottleneck router can only process one segment at a
time, so it has to store the other one in its buffer. For
each acknowledged window, the sender is therefore going to
send double what the bottleneck router can handle. Finally,
a CWND of segments builds up a queue of size 2 and
this bursty traf c is responsible for a rapid increase in the
bottleneck queue length.
In recent years, the development of LFNs and the race to
higher performance has led to a combat against the slug-
gishness at the beginning of TCP connections. Research has
therefore focused on Fast start-up mechanisms [3]. [15] un-
derlines two solutions in particular – Jump Start & Quick
Start – that can achieve good results. These solutions are not
discussed further in this paper because both suffer from major
drawbacks. Quick Start uses router explicit noti cation and
then breaks the TCP end–to–end semantics, while Jump Start
is far too aggressive in a congested environment.
The following sections focus on both IW increase as one of

the most appealing start up mechanisms and solutions to deal
with the natural burstiness of TCP traf c.

A. Increase in the TCP IW
In 2002, an RFC [2] legalized the use of a three-segments

IW. This change allowed up to 4 kB to be send in the rst
RTT and then the elimination of up to three RTTs. At this
time, three major arguments justi ed this choice. Firstly, an IW
of one can imply waiting for an unnecessary Retransmission
TimeOut (RTO) because of the delayed ack implementation.
Secondly, the average size of web objects was below 4 kB so,
in an uncongested environment, all the data to be transmitted
could be sent in the same RTT. Lastly, it took into account the
fact that increasing the IW was not transparent for either the
global behavior of the network or for individual connections.
In a congested network, the blind transmission of many seg-

ments can generate multiple retransmissions and signi cantly
impact network performance. Moreover, because the segments
of the rst window are not sent at the bottleneck rate but at the
sender rate, sending an IW of segments does not increase
the queue by 2 but may add up to 1 segments in the
queue. A large IW then creates a burst that may result into

unnecessary drops in congested buffers, leading to noticeable
reductions in the bit rate of individual TCP connections and
notably short-lived connections.
In conclusion, an IW of three segments enables important

time savings in most cases and remains conservative enough
to be ef cient in a congested environment.
Ten years later, several studies have emphasized that web

standards have evolved. The average size of web objects has
in particular risen from 4 kB to 15 kB. Depending on the
Maximum Segment Size (MSS), these sizes can be roughly
translated into three and ten segments respectively. In order to
transmit most of the data in one RTT, [10] proposed to set the
IW to ten segments without any other changes to cover 90
% of the HTTP web requests. The authors showed that this
higher IW was neither responsible for lower global network
performance [9] nor for the deterioration of TCP fairness.
However, as the burst phenomenon remains, individual per-
formance in the event of congestion is still affected, probably
more severely. This solution can be seen as the outcome of a
trade–off between the substantial improvement in performance
in an uncongested network and the deterioration in individual
performance that may occur in the event of severe congestion.

B. Pacing principle

The original Pacing idea is to prevent the generation of
bursts insofar as possible. The principle is to spread window
transmission over the RTT whenever possible. Each segment
thus arrives separately at the bottleneck router. This differs
from the legacy slow start, where segments arrive in pairs. If
the time required to deal with the segment is shorter than the
space between two successive transmissions, then the buffer
queue size is not increased.
This appealing solution has been used and discussed in

several studies as a very ef cient way to reach the maximum
bit rate for each connection fairly. However, [1] has pointed
out some aws caused by Pacing, especially a synchronization
effect and a tendency to overload the network that seriously
damage both individual and global performance.
As outlined previously, bursts are responsible for isolated

congestion and for the transition from the slow start to con-
gestion avoidance. They shape the bit rate of each connection.
An early burst limits the sending rate and its growth, whereas
a late burst allows a fast increase using slow start. Eliminating
bursts may allow higher bit rates, but network resources
and particularly the bottleneck buffer queue size are limited.
By smoothing the traf c, Pacing avoids early and isolated
congestion, but saturates the network. At some point, all
connections suffer from multiple drops, even those in the
congestion avoidance phase. Pacing can therefore result in
worse performance.

C. Pacing used with large IW

As seen above, the burstiness of TCP traf c signi cantly
affects connection performance. Both previous concepts suffer
from bursts: the increase in IW from their occurrence and

Pacing from their absence. Intuitively, a combination of both
may lead to bene cial results.
Figure 1 illustrates queue size evolution of the bottleneck

router for a single connection. This Matlab calculation uses a
simple three-link topology. The bottleneck link bit rate is 10
Mbps, while the other two are 40 Mbps. The RTT is 100ms.
Three cases are studied: large IW, regular Pacing and Pacing
with a large IW.

Figure 1. Queue Size evolution with and without Pacing

This gure highlights the consequences of each option for
different IW sizes. A large IW almost lls the buffer right from
the rst RTTs. On the other hand, Pacing does not increase the
queue size during the rst RTTs even when combined with a
large IW.
In a congested network, the bottleneck router can be very

sensitive to a small increase in its buffer size. As a conse-
quence, an IW of ten is likely to create more drops than an
IW of three, impairing performance. Scenarios with Pacing
do not suffer from the early bursts. The sender can transmit
many segments before there is any disturbance in network
behavior. However, Pacing allows a remarkable increase in
the CWND and may lead to the network overload for long-
lived connections. In the best case, there are multiple drops for
each connection and ow synchronization. In the worst case,
the network collapses.
Finally, using Pacing to increase the IW overcomes the
aws of a large IW. This combination is very competitive for
short-lived connections but appears to exaggerate the Pacing
drawbacks for long-lived connections.
In the following section, we use this result to propose a

solution which ef ciently combines Pacing and a large IW.

III. INITIAL SPREADING: A START–UP MECHANISM BASED
ON PACING AND A LARGE IW

The previous section not only outlines the pros and cons
of each concept but foreshadows the shape of a new protocol.
This new protocol should be able to deal with the different

consequences of bursts in a congested environment in order
to be ef cient when transmitting few data and at least be
transparent for large data transmission.
The following sections introduce our mechanism and

present its performance through our implementation in NS 2.

A. Our proposal
The basic idea is to space out an IW of segments

across the rst RTT before letting the TCP algorithm continue
conventionally. Until the rst loss, this equates to sending
parallel connections starting with a regular slow start and a
unit IW. When a loss occurs, recovery mechanisms quickly
mitigate the impact of our proposal, known as Initial Spreading
to easily differentiate the different mechanisms.
Figure 2 presents the behavior of the three mechanisms

when transmitting 12 segments. 2 and 1 respectively denote
the time to process a packet at the bottleneck rate and at the
rate of the other links.

Figure 2. Time diagram picturing the transmission of 12 segments with the
three different mechanisms using an IW of four

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

time (RTT)

qu
eu

e
si

ze
 (

se
gm

en
ts

)

queue size of the bottleneck buffer

IW=10

pacing & IW=10

Initial Spreading & IW=10

Figure 3. Queue size evolution with Pacing and Initial Spreading

Figure 3 depicts how the different fast start-up protocols ll
the bottleneck router queue for an IW of ten segments during
the slow start. The Syn/Ack exchange is used to estimate the
RTT and thus the space between two successive segments
transmitted with Initial Spreading. One noticeable difference
between Pacing and Initial Spreading is the creation of bursts
as early as the second RTT. We assume that these small bursts
would prevent congestion to occur too late but still grant good
performance with short-lived connection.
In the following sections, we verify our hypothesis and

justify our protocol using NS2 simulations. Special atten-
tion is paid to the performance of the protocol in sensitive
scenarios like short- or large- ow transmissions. Finally the
consequences of a set IW size are studied and a suitable size
proposed.

B. Implementation
We implemented our fast start–up algorithm in the NS2

environment. NS2 is the most widely deployed and shared
simulator for network research. Most of the latest releases
and TCP developments are already being implemented. Our
simulations mainly used TCP Cubic, but we ensured that
our conclusions also apply to other TCP avors. In order to
ensure the reliability of our results, we used the NS seeds
to accurately repeat identical scenarios for each mechanism
over numerous iterations and random emission times [4] [6].
A con dence interval of 95 % is indicated for each point.

Figure 4. The network topology used for the simulation experiments

Figure 4 depicts the basic network topology used during
our simulations. Multiple values were considered for delays
and link bit rates to evaluate the behavior of Initial Spreading
under different traf c conditions.
In order to observe the different behaviors in congested but

realistic environments, short–lived connections between and
with in [1 : 12] were initiated at a random time after

unlimited TCP connections between and with in [13 :
15] were established.
Most of the following results were obtained in accordance

with the testbed of [1] in order to be able to compare results.
Simulations were conducted with and without Delayed

Acknowledgements (Del Ack), but the following sections only
illustrate the case with the Del Ack TCP option turned off.
Comparisons of the different IW management approaches did

not reveal any signi cant differences in TCP behavior with
or without Del Ack. Regarding long-lived connections and
notably the steady state, the effects of Del Ack are lessened by
TCP Cubic which tends to adapt its congestion algorithm to
take into account whether the receiver uses the Del Ack option
or not. In so doing, it can prevent the connection from being
too slow, and still continue to reduce acknowledgments traf c.
In the event of short-lived connections, a slow start is less
aggressive with Del Ack than without, but there is no change
in the burst propagation model. As soon as the rst ack arrives,
Del Ack reduces CWND growth but new segments continue to
be transmitted with micro bursts of two-segments. The only
noticeable impact of the Del Ack option is the decrease in
the number of potential Dup Acks that trigger a fast losses
recovery. This point works in favor of Initial Spreading, which
alleviates bursty behavior and then reduces the probability of
losses.
The exact con guration is given in each of the following

subsections.

C. Performance of short-lived connections

1) Uncongested network: In an uncongested environment,
the best performance is achieved using a large IW without any
other fast start–up protocol. Pacing delays transmission and
thus the acknowledgments throughout the entire RTT. With
2 the time to process a packet at the bottleneck rate and
the IW size, acknowledgement of the whole IW lasts +
(1) 2 without Pacing, and + (1) with
Pacing, so the difference is equal to (1) (2) with
(2) 0.
If the number of data to be transmitted does not ll up the

IW, good performance continues to be mostly related to the
increase in IW rather than the spacing between segments. As
shown in Figure 2, not spreading the initial batch of packets
over time is still faster when no drop occurs. However, penal-
ties for both other approaches are limited to few milliseconds.
2) Congested network: In a congested environment, the

burst phenomenon has a substantial impact on performance. In
section II, we hypothesized that a large IW without Pacing can
lead to poor ef ciency because of the bursts it causes and the
resulting congestion that may occur. On the contrary, Pacing
smoothes the bursts and so may allow transmission of a few
data ef ciently.
The following gures show our extended simulation for

veri cation purposes. The bottleneck link bit rate is set to 10
Mbps and the delay to 50 ms whereas the other links have a bit
rate of 40 Mbps and a delay of 5 ms. The buffer size is set to
half the Bandwidth-delay product. We chose to illustrate our
proposal with a typical network instead of an LFN topology
for example. The tests conducted with satellite scenarios show
even better results in favor of Initial Spreading.
Figure 5 plots the average completion time, i.e., time it takes

a source to successfully transfer a given number of data, for a
large IW of ten segments with and without Initial Spreading as
a function of ow size. We noticed non–intuitive results that

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60 70

la
te

nc
y

(s
)

flow size (packets)

 IW = 10 without Initial Spreading
IW = 10 with Initial Spreading

Phase 2 Phase 3Phase 1

Figure 5. Average latency for a large IW with and without Initial Spreading

require further explanation. The graph may be divided into
three distinct phases:

1) Phase 1: ow size varies from one to ten. Both mecha-
nisms lead to very different performance.
Without Initial Spreading, the ow is sent in one burst.
In a bursty loss model, it is ordinary to consider that
the loss of one segment implies the loss of all the
following segments in the burst [7] [17]. The probability
of packet drop greatly increases with ow size and
the packets sent last are then more likely to be lost
than the rst ones. During this phase, each loss leads
to a timeout because no Duplicated Acknowledgements
(Dup Ack) are generated. Indeed, TCP has two ways
of recovering from a loss: either waiting for a timeout
before transmitting the segments again or receiving three
Dup Ack that enable Fast Retransmit and Fast Recovery.
Each additional segment in the ow raises then the
drop probability and so the average estimation of the
completion time
With Initial Spreading, bursts are smoothed and only
one packet is sent every 10 . Initial Spreading tends
to make losses independent, and with a stationary back-
ground traf c, the probability for a spread segment to
be dropped becomes constant. The probability of loss
increases then with ow size, but this is offset by the
concomitant increase in the probability of entering in
Fast Retransmit. Results are thus better with Initial
Spreading.

2) Phase 2: ow size varies from 11 to 30, which is the
maximum number of packets that can be transmitted
in the rst two RTTs. Once again, both solutions have
different impacts on the average transmission time.
Without Initial Spreading, all the acknowledgments can
only result from the rst segments sent in the IW, i.e.,
at that moment, the receiver receives only expected ac-

knowledgments and is not aware of any congestion. The
connection continues therefore in slow start mode and
each acknowledgment received triggers the transmission
of micro-bursts of two new packets at bottleneck arrival
rate (see Figure 2). These micro–bursts have a higher
probability of successful transmission over the network
than segments from the initial burst. So enlarging the
ow size raises the probability of receiving Dup Acks
and then fast-retransmitting the lost segments and en-
tering a Fast Recovery stage. When in Fast Recovery,
each Dup Ack received enables the transmission of a
new packet and a high bit rate is conserved. Average
completion time tends to decrease due to those recovery
mechanisms.
With Initial Spreading, each expected acknowledgment
leads to the transmission of micro–bursts of two seg-
ments. But unlike the case where there is no Initial
Spreading, these bursts have a higher probability of
being lost than the spread IW segments. However the
higher probability of losing these segments is counter-
balanced by a higher probability of entering in fast
recovery due to Dup Acks. When enough segments have
been transmitted, the probability of a fast recovery is
signi cant and average latency evolves very slowly.

3) Phase 3: ows over 30 packets. The sender receives
non-duplicate acknowledgments from the segments sent
when in Fast Recovery. Reception of the rst one
leads to a transition from Fast Recovery to Congestion
Avoidance and CWND is reduced. Initial Spreading and
Large IW mechanisms behave similarly and the slope of
their curves is the same.

Figure 6 and Figure 7 depict the effects of different IWs
for TCP connection with and without Initial Spreading. For
the ow sizes of interest (around ten segments), larger IWs
without Initial Spreading are responsible for worse perfor-
mance than shorter ones because of the burst phenomenon
described in phases 1 & 2. For a ow size of ten segments,
the most ef cient IW without Initial Spreading is then of three
segments.
On the other hand, our proposal leads to very good results

whatever the IW, and notably IWs larger or equal to ten. A
further study in the last section analyzed the impact of the IW
size on Initial Spreading in a more accurate way.
Focusing on short-lived ows, and particularly on ows

shorter than the IW, both Pacing and Initial Spreading give
similar results. Both use the spacing of the rst segments to
signi cantly decrease the number of losses due to congestion.
Figure 8 compares the best results obtained with and with-

out Initial Spreading. Initial Spreading reduces the completion
time of short-lived connections by roughly 30 %.
In conclusion, using a combination of Initial Spreading and

a large IW does not deteriorate performance in uncongested
scenarios and is at least 30 % more ef cient than a large IW
alone in a congested environment.

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70

la
te

nc
y

(s
)

flow size (packets)

 IW = 1
 IW = 3 without Initial Spreading
 IW = 6 without Initial Spreading

 IW = 10 without Initial Spreading

Figure 6. Impact of a large IW without Initial Spreading on average Latency

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

la
te

nc
y

(s
)

flow size (packets)

IW = 10 with Initial Spreading
IW = 12 with Initial Spreading
IW = 15 with Initial Spreading

Figure 7. Impact of a large IW with Initial Spreading on average Latency

D. Performance for long-lived connections

Unlike the previous simulations where transmission dura-
tions were measured for different ow sizes in an already
congested environment, we near simultaneously sent 15 con-
nections of the same size over an empty network to create a
congestion from scratch. This test realized by [1] revealed Pac-
ing’s very bad performance and underlined a synchronization
effect.
Up to a certain number of segments per ow (around a few

hundred), there is no signi cant congestion and performance
of both the legacy mechanism and Pacing is similar (see III-
C-1). Both are then affected by congestion due to the increase
in data and some ows are likely forced to time out. After
an RTO, connections restart with a slow start and an IW of
one. The bursty traf c of the legacy mechanism slows down
establishment of the connection and then deteriorates individ-
ual performance in favor of global performance. On the other
hand, connection with Pacing overloads the network because
of late congestion detection until all the connections suffer

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60 70

la
te

nc
y

(s
)

flow size (packets)

 IW = 3 without Initial Spreading
 IW = 10 without Initial Spreading

IW = 10 with Initial Spreading
IW = 15 with Initial Spreading

Figure 8. Comparison of the average latency for connections using large IW
with and without Initial Spreading

from congestion and ows are synchronized. Performance with
Pacing is then only half the performance without.
Figure 9 illustrates the behavior of our Initial Spreading

proposal and a large IW without Pacing for long–lived con-
nections. The results are normalized using an estimate of
fair latency, which corresponds to the time required for a
connection beginning with a slow start and then keeping a
stable and fair bit rate: 1

15 of the bottleneck bit rate.
The results obtained show similar performance for both the

legacy mechanism and our proposal. As the Initial Spreading
transmission segment behavior reverts back to regular bursty
behavior after the rst window, it is transparent after a timeout
when the IW is set to one and does not affect long-lived
connections. Regarding intermediary ow size when there is
still little probability of a timeout, the bursts created as early
as the second RTT avoid overloading the network.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 100 1000 10000

no
rm

al
iz

ed
 la

te
nc

y

flow size (packets)s

IW = 1
 IW = 3 with Initial Spreading

 IW = 12 with Initial Spreading
 IW = 3 without

 IW =12 without

Figure 9. Impact of the synchronization effect on normalized latency

E. Interaction of Initial Spreading and non-Initial Spreading
Flows
Scenarios considered so far consisted of ows with the same

kind of CWND management evolving together. In this section,
we present results related to the interaction of ows using a
large IW with and without Initial Spreading.
[1] noted that Pacing performance decreased when facing

ows using a regular algorithm. The authors assumed that
beyond a certain number of in- ight segments, the probability
of a paced segment encountering a burst, and then being
dropped, is higher due to the uniform spreading of packets
over the RTT. On the other hand, a bursty traf c has a smaller
probability to meet an other burst and then to drop a packet.
These interactions were responsible for better performance
without Pacing.
Figure 10 below illustrates the consequences of mixing

sources with different initial window management approaches.
In contrast to the previous observation, Initial Spreading

performance is actually not mitigated by the concurrence of
other ows, and continues to grant signi cant improvements.
Moreover, results obtained without Initial Spreading tend to
be better in a mixed environment. Initial Spreading helps then
to improve TCP friendliness.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

la
te

nc
y

(s
)

flow size (packets)

 IW = 10 without Initial Spreading, single kind of source
 IW = 10 without Initial Spreading, dual kind of sources

 IW = 10 with Initial Spreading, single kind of source
 IW = 10 with Initial Spreading, dual kind of sources

Figure 10. Effect of different sources sharing a bottleneck

To conclude, the previous sections support our hypotheses
and con rm that Initial Spreading solve the problems caused
by a large IW and Pacing .

F. Choice of IW Size
Having presented the global improvement offered by Initial

Spreading, we now focus on the in uence of the IW on
Initial Spreading behavior. Different network con gurations
are introduced in the following simulations, designed to further
evaluate the possibility of setting the IW with RTT as the only
known parameter.
The purpose of this research was to provide excellent

performance for short–lived ows (i.e. around 10 segments)
in both uncongested and congested networks. Section III-C

Table I
SAVINGS FOR 10 SEGMENTS USING INITIAL SPREADING

IW = 10 IW = 12 IW = 15
Average Savings 35.2 % 41.5 % 37 %
Min Savings 30 % 38 % 30 %

shows that Initial Spreading meets these requirements when
combined with a large IW. As Initial Spreading with an IW
larger than ten is more ef cient than any large IW without
Initial Spreading whatever the case, we then focused on IW
equal to or greater than 10.
Table I presents the average bene ts obtained from using

Initial Spreading with an IW of 10, 12 or 15 segments for ows
shorter or equal to 10 segments in a congested environment.
The time savings are relative to the best results obtained
without Initial Spreading, i.e., what could be reached without
Initial Spreading if we used the most well-adapted IW for
each scenario (in terms of degree of congestion and ow
size). Several con gurations were tested and the following
table highlights the average results. Regarding the ten-segment
ows, a remarkable improvement of over 30 % is achieved for
every scenario tested.
We noted that the best results are achieved with an IW of

12, though ten and 15-segments IWs offered similar results.
A further study considering the in uence of scenario metrics
on the evolution of the performance explains these results and
highlights two different behaviors:
• Regarding long delays, the space between two transmis-
sions is large enough to send ten or 15 segments in the
rst RTT just as ef ciently, i.e., segments continue to
have independent loss probability. So when IW equals 15
segments instead of ten, the time required to transmit ten
segments is lowered by 9 (10 15). This behavior
was veri ed during our simulations of satellite network.

• Otherwise, as enlarging the IW will reduce the space
between two initial transmissions, Initial Spreading is
more likely to suffer from congestion with an IW of 15
than with an IW of 12 or ten. For example, a bottleneck
of 1ms in the classic topology (see Figure 4) leads to
a greater ef ciency with an IW of ten or 12 than 15.
Nevertheless, in the sample group of existing scenarios
we considered, Initial Spreading always performed better
with an IW of 12 than with ten.

An other possibility is to calculate an ideal IW. [13]
proposes a variable IW based on the different network band-
widths, buffer sizes and RTT to improve the ef ciency of fast
Start–up TCP mechanisms. In the light of our results, such
a proposal does not lead to suf cient progress to justify the
extra and prohibitive complexity.
We conclude that time savings due to a shorter space

between two transmissions is less important than a potential
deterioration due to insuf cient spacing. Given that Initial
Spreading with an IW of ten always offers time savings
of over 30 % compared to the standard mechanism, we

propose remaining conservative and setting the value at ten.
We thus keep a reasonable margin in order to take into account
potential developments in future networks.

IV. CONCLUSION
This paper evaluates the effect on TCP performance of

an Initial Spreading mechanism to speed up the beginning
of TCP connection by supporting safely large IW. Without
Initial Spreading, the current proposal [9] to increase the
IW from three to ten is extremely controversial because of
the deterioration in performance in several sensitive cases,
including congested networks.
Our hypothesis was that a large IW and Pacing were suffering
from bursty TCP traf c and that our proposal should take
this into account to optimise ef ciency in most scenarios.
Extensive simulations have shown that Initial Spreading en-
ables us to keep the same high level of performance as the
best start up proposals in an uncongested environment, while
offering signi cant improvements in congested environment.
More particularly, in congested network, Initial Spreading
offers:
• time savings of over 30 % for connections with few data
in comparison with a regular slow start whatever the IW
size, including three- and ten-segments.

• a higher or equal bit rate to that obtained with any IW
for bigger ow sizes

• a way of avoiding overload due to late congestion and
synchronization

To conclude, the simplicity of implementation of Initial
Spreading is an additional advantage. Initial Spreading may
be used as a warranty to enlarge the IW from three to ten
while avoiding any controversy.
In the future, we plan to work on two potential TCP start

options in order to improve Initial Spreading: the use of the
initial SYN/ACK exchange to begin data transmission [8], and
the possibility of restarting with a large IW after a time–out
[12]. As our simulations have shown that Initial Spreading
enables greater improvements for LFNs and particularly satel-
lite communication, we shall focus on this last area. We aim
to determine whether Initial Spreading can remove the need
for TCP accelerators such as Performance Enhancing Proxy
(PEPs).

REFERENCES
[1] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-

mance of TCP pacing,” in INFOCOM, vol. 3, mar 2000, pp. 1157 –1165.
[2] A. Allman and S. Floyd, “Increasing tcp’s initial window,” no. 3390,

2002.
[3] ——, “Quick-Start for TCP and IP,” no. 4782, 2007.
[4] M. Allman and A. Falk, “On the Effective Evaluation of TCP,” ACM

Computer Communication Review, 1999.
[5] M. Allman, C. Hayes, and S. Ostermann, “An evaluation of TCP with

Larger Initial Windows,” SIGCOMM Comput. Commun. Rev., vol. 28,
no. 3, pp. 41–52, Jul. 1998.

[6] A. Andrew, C. Marcondes, S. Floyd, L. Dunn, and T. e. a. Eggert,
“Towards a Common TCP Evaluation Suite,” in Sixth International
Workshop on Protocols for FAST Long-Distance Networks, Mar. 2008.

[7] N. Cardwell, S. Savage, and T. Anderson, “Modeling tcp latency,” in
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 3,
2000, pp. 1742–1751 vol.3.

[8] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP Fast Open,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-tcpm-fastopen-
02, Oct. 2012.

[9] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing tcp’s
initial window,” Working Draft, IETF Secretariat, Internet-Draft draft-
ietf-tcpm-initcwnd-07, Jan. 2013.

[10] N. Dukkipati, T. Re ce, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An Argument for Increasing TCP’s Initial
Congestion Window,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 3,
pp. 26–33, Jun. 2010.

[11] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul.
2008. [Online]. Available: http://doi.acm.org/10.1145/1400097.1400105

[12] P. Hurtig, A. Petlund, and M. Welzl, “TCP and SCTP RTO Restart,”
Working Draft, IETF Secretariat, Internet-Draft draft-hurtig-tcpm-
rtorestart-03, Oct. 2012.

[13] S. Kodama, M. Shimamura, and K. Iida, “Initial CWND Determination
Method for Fast Startup TCP Algorithms,” in Proceedings of the
Nineteenth International Workshop on Quality of Service, ser. IWQoS.
IEEE Press, 2011, pp. 11:1–11:3.

[14] R. Sallantin, E. Chaput, E. P. Dubois, C. Baudoin, F. Arnal, and A.-L.
Beylot, “On the sustainability of PEPs for satellite Internet access,” in
ICSSC. AIAA, 2012.

[15] M. Scharf, “Performance Evaluation of Fast Startup Congestion Control
Schemes,” in NETWORKING 2009, ser. Lecture Notes in Computer
Science, L. Fratta, H. Schulzrinne, Y. Takahashi, and O. Spaniol, Eds.
Springer Berlin Heidelberg, 2009, vol. 5550, pp. 716–727.

[16] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “Compound TCP: A Scal-
able and TCP-friendly Congestion Control for High-speed Networks,”
in in 4th International workshop on Protocols for Fast Long-Distance
Networks (PFLDNet), 2006, 2006.

[17] K. Zhou, K. Yeung, and V. Li, “Throughput modeling of TCP with
slow-start and fast recovery,” in Global Telecommunications Conference,
2005. GLOBECOM ’05. IEEE, vol. 1, nov.-2 dec. 2005, pp. 261–265.

