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Abstract—Satellite Digital Video Broadcasting is deeply
changing : the next generation is dedicated to packet based
communications and introduces (like many modern physi-
cal layers : WiMax, HSDPA, . . . ) fade mitigation techniques
leading to variable throughput. Such tremendous changes
need to be taken into account and the scheduling entity
needs to be revisited.

The purpose of this paper is to investigate utility
function based algorithms. Such techniques have already
been studied but never within this context. DVB-S2 frames
can encapsulate numerous IP packets, can offer variable
payload length as well as variable transmission time,
because of ACM techniques. A more general approach is
needed to encompass theses properties. As a consequence,
the number of solutions among which a scheduler has to
find the better is increased. We will then show that the
algorithm implemented is an important issue.

Index Terms—Satellite, DVB-S2, scheduling, ACM, utility
function.

I. INTRODUCTION

Satellite networks present an efficient mechanism

called adaptive coding and modulation (ACM) technique

adopted by DVBS-S2 standard which matches transmis-

sion parameters to the channel conditions [1], [2]. The

first generation of DVBS-S standards only supported

data transport using MPEG-TS. The new encapsulation

called generic stream encapsulation (GSE) allows a back-

ward compatibility with MPEG-TS as well as generic

encapsulation for carrying arbitrary packets of variable

length. GSE protocol reduces overhead by using the

fragmentation and increases the throughput gain by up

to 15 % [3] compared to MPE encapsulation over MPEG-

TS by using packets of variable length witch matches IP

functionalities.

The main problem we address here is the one of packet

scheduling over a ACM link such as a DVB-S2 satellite

downlink. A previous study has shown that a very basic

scheduler could lead to good overall performance but

may induce unfairness [4]. The aim here is to be able to

tackle both the application level QoS requirements (and

then some kind of fairness) and the spectral efficiency

optimisation within the scheduler.

We believe that utility functions could be of great help

for this purpose. It has already been used for packet

scheduling [5] [6], but never adapted to this specific

context.

The remainder of this paper is organised as follows.

Section II will settle the general context and challenges,

section III will briefly discuss utility functions. We will

then be able to settle the problem in section IV and

to describe a scheduler based on the resolution of this

problem in section V. We will then give some results in

section VI before concluding in section VII.

II. SYSTEM DESCRIPTION

Let us assume a simple architecture in which the

forward link (on which we will focus) is implemented

by a DVB-S2 channel, and a return link could be imple-

mented, eg through a DVB-RCS channel.

The problem we tackle is the one of packet scheduling

on the forward link. Each packet is supposed to be part

of a unicast or multicast stream (a stream could be a

single application stream or a larger aggregation). Any

quality of service enforcement will be done on a stream

basis.

Packets will be encapsulated in BBFRAMEs that will

be sent in numerous consecutive slots, according to an

encapsulation scheme shown in figure 1 and based on

the DVB-S2 low layers [2] and the GSE protocol [3].

ACM is implemented with the help of BBFRAMEs and

lower layers. Each BBFRAME is associated to a modu-

lation and coding scheme (hereafter called a MODCOD).

The payload size depends on the coding scheme and

the transmission duration depends on the modulation

scheme.

When a packet has been scheduled, it has to be sent

in a BBFRAME associated to a MODCOD that suits to the

receiver(s) channel conditions. It may be the MODCOD

selected by the ACM management system, but it could be
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Fig. 1. DVB-S2 encapsulation scheme

a MODCOD with a less efficient spectral efficiency (we

call this technique reclassification).

The choice of the next BBFRAME to transmit has then

consequences on the packets that can be sent in this

frame. However, the choice of the next packets to send

has also some consequences on the BBFRAME that can

be used, as far as the receiver(s) must be able to decode

the BBFRAME. These relations alos lead to the need for

a more sophisticated scheduling algorithm.

BBFRAMEs can be large (up to 8 Kbytes) and with the

help of GSE, multiple packets can be sent in the same

BBFRAME (fragmentation is also available, as illustrated

in figure 1).

This scheduling problem is thus characterised by some

interesting properties (ACM, large frames, fragmenta-

tion, reclassification opportunity, . . . ). The scheduler

also needs, in addition, to enforce a tradeoff between

stream level quality of service requirements and spectral

efficiency (or, more generally, resource management).

III. UTILITY FUNCTION SPECIFICATION

A. Utility functions

In order to take into account both user’s perception of

the quality of service and the network provider’s interest,

utility functions have been proposed [5] [6] [7] [8] [9]

[10].

A utility function U(s) describes how an application

can benefit (or suffer) from a service s provided by

the network. The service s may be a simple scalar

metric or a tuple encompassing many parameters such

as throughput, delay, loss rate, . . .

For a given application i, the system should try to

increase the utility Ui(si) through the appropriate si
setting. For this purpose, the system should allocate

more resources (as denoted by si) to this application. Of

course, because of the system limitations, the maximum

value of U(s) can not be enforced for all the applications

at the same time.

The basic idea is then to allocate resources among the

applications in order to improve the sum of the utility

functions : μ =
∑

i Ui(si). There are obvioulsy some

constraints on such an allocation as far as resources are

limited.

For the sake of simplicity, we will focus here on

throughput, and then utility functions will be based

on this single QoS parameter. Introduction of other

components such as jitter or loss rate is an interesting

challenge.

We will then describe utility function for stream i as

U(ri) where ri is the throughput allocated to stream i
and evaluated, for example, through a moving average

encompassing previous scheduling decisions.

B. Spectral efficiency optimisation

The very first scheduling strategy that could be im-

plemented is the one leading to the maximal spectral

efficiency :

Use(r) = k.r

where k is a constant that could be used as a weight

in order to enforce some kind of priority.

C. Improving fairness

The main problem with spectral efficiency optimisa-

tion is its unfairness. This could then be improved with

a utility function leading such as throughput variation

consequences are larger for lower bandwidth values. We

can use

Uf (r) = k.log(r)

D. Best effort streams

Propositions have been made to define a utility func-

tion for best effort traffic such as the following [11] :

Ube(r) = r + (1− ek.(rmin−r))

Here, rmin is the minimal bandwidth required by a

given stream and k, here again, can help to introduce

some form of priority.

IV. PROBLEM STATEMENT

Let us now formalise the problem such a scheduler

will have to solve in order to maximise μ as defined in

section III (the sum of utility functions).

A. General problem specification

Transmission through the DVB-S2 link can be seen

as a sequence of frames F (n), n ≥ 1. The aim of the

scheduler is to decide which packets will be sent in the

next BBFRAME.

The optimisation problem we have to solve for every

n is thus the following



Maxsn={m(n),L1(n),...,Lk(n)(n)}
∑

i∈[1...k(n)] Ui(ri(t(n)))∑
i∈[1...k(n)] Li(n) ≤ Pm(n)

∀i ∈ {1, . . . , k(n)}Li(n) ≥ 0

where

• k is the number of clients (streams) ;

• ri is the throughput allocated to client i ;

• Li(n) is the number of bytes from client i in ;

• Uu is the utility function associated to client i
BBFRAME n ;

• Pm is the payload size in a BBFRAME send through

MODCOD m ;

• m(n) is the MODCOD chosen for BBFRAME n.

m(n) has to be chosen among a finite (and small)

number of available MODCODs depending on the sce-

nario.

The departure time is then given by t(n) = t(n−1)+
τ(n). However, from now on, we will not need to use

t(n) anymore, and so we will use ri(n) as a shorthand

for ri(t(n)).

B. Parameter evaluation with adaptive modulation

If Li(n) bytes from stream i are sent in BBFRAME

F (n), then the throughput assigned to this stream during

this slot (of duration τ(n), the transmission time of F (n)
which depends on the associated MODCOD) is given by

bi(n) =
Li(n)
τ(n) .

However, throughput can not be evaluated through

this simple short term memoryless formula. A classical

solution is given by the use of an exponential moving

average, but such a tool should be used with some

precautions within the context of this study. We have

shown through many simulations that as far as the frame

transmission time is not constant, a constant smoothing

factor leads to a bad throughput evaluation and thus to

a poor scheduler behaviour.

The smoothing factor must thus adapt to the frame

duration, then we use the following formula

ri(n) = ατ(n).ri(n− 1) + (1− ατ(n)).bi(n)

where α is close to one.

C. Looking for an optimal scheduling

With optimisation techniques, it has been proven that

a system optimum could be reached with the help of

an equilibrium between users and network choices [6].

Convergence to such an equilibrium remains a challenge.

Our scheduling problem consists in the search for a

BBFRAME achieving such an optimisation every time

the channel is free. Such an interpretation, however,

introduces several problems, because of the specific

properties of our context. The first one is the problem

of the metrics evaluation, already described in section

IV-B.

The second problem introduced by such an interpre-

tation has been described in [11]. There is definitely no

reachable equilibrium between user requests and network

resources as far as both of them may vary with time.

The theoretical optimum changes over time and has

then to be reconsidered for each scheduling decision.

As a consequence, this theoretical optimum is probably

unreachable, because each scheduling decision has a

very short impact on the metrics and then on μ.

For this purpose (following a classical approach [8]

[11]), assuming the stream j is served during slot n
so that it throughput is increased by ε (and throughput

of other streams are not changed), we can rewrite the

function to be maximised :

Fj(n, ε) = Uj((1 + ε).rj(n− 1)) +
∑

i�=j

Ui(ri(n− 1))

Taking the derivative in zero :

F ′
j(n, 0) = rj(n− 1).U ′

j(rj(n− 1))

We will then use a steepest ascent method to find the

“direction” to the maximal value for our optimisation

problem. We will then serve clients according to this

direction.

However, here again, our precise context needs to be

taken into account : a single BBFRAME can carry several

packets for multiple streams, so we need to maximise the

sum of F ′
j(n, 0) for all j.

For each slot n, we will thus search for maximisation

of

∑

i

U ′(ri(n− 1)).
Li(n)

τ(n)

V. PACKET SCHEDULING

Each time the link is ready and the BBFRAME has

to be built and sent, the scheduler has to find the tuple

(m(n), L1(n), . . . , Lk(n)) that maximises the previous

sum. The value m(n) determines the MODCOD and

then the BBFRAME duration, τ(n). Each value Li(n)
determines the number of bytes (and then of packets)

from stream i that will be encapsulated within this next

BBFRAME.

The search for such a tuple may be time consuming

and then an exhaustive search may not be affordable,

so simple algorithms may be implemented. With the



help of simulation, however, exhaustive searches can be

implemented in order to study performances for utility

function based algorithm and to settle upper bounds for

heuristic performance.

A. Resolution through a basic algorithm

We have implemented in our simulator a scheduler

based on a single evaluation of utility functions. Basi-

cally, it will fill a BBFRAME with packets from the queue

with the largest U ′
i function. If some room is available,

it will search for the second largest U ′
i and so on.

B. Resolution through the knapsack model

In order to evaluate the quality of the results given

by the previous scheduler, we ran simulations with a

scheduler implementing a knapsack problem resolution.

The knapsack is a traditional combinatorial optimiza-

tion problem. The objective is to determine the optimal

choice among all possible combinations of objects to put

in a bag. Each object is characterised by a value and a

weight. The solution is then the set of objects with a

total weight lower than or equal to the bag capacity that

cumulates the largest value.

We have chosen to implement two algorithms. The

first one is an exhaustive research of the best solution.

However it is not always possible to use such an algo-

rithm, even in a simulator, so we also implemented a

more classic algorithm based on dynamic programming.

We assumed that a knapsack solution for a bag of

capacity K can be built as the max, for any object weight

w, of the solution for a bag of capacity K −w with the

most valuable object of weight w.

In our problem, the bag is the BBFRAME and the

objects are the packets. As far as packets in multiple FIFO

queues, some of them may be available or not depending

on the previous choices. A consequence is that the

assumption made for the non exhaustive implementation

does not hold.

VI. SIMULATIONS AND RESULTS

A. Simulated scenarios

In our simulated system, the receivers are divided in

four groups, depending on their channel conditions. In

a first scenario (called “uniform”), the trafic is evenly

spread among the four groups, in order to alleviate the

bias introduced by the throughput. In the “clear sky”

scenario (which is more realistic), most of the trafic is

sent to the group with the best channel condition.

B. Previous results

During a previous study, we noticed that a scheduler

based on static parameter (such as spectral efficiency) is,

of course, unfair, and that different dynamic parameters

(like queue bit length, BBFRAME fill rate, . . . ) give very

similar results [4]. Most interestingly, we have shown

that both reclassification and fragmentation can help

improving the system performance.

However, no distinction was made between the multi-

ple streams. That means that quality of service was not

enforced. The aim of this work is then to be able to tune

fairness.

A last comment on the previous results is that there is

a need to implement a scheduling strategy encompass-

ing both spectral efficiency and preformance (including

fairness). The first one can be efficiently implemented

by static parameter based scheduling, while the second

one seems easy to implement with a dynamic one.

C. Some results and analysis

1) Algorithms comparison: The exhaustive imple-

mentation is only usable for low value of the system

load, and without reclassification. On the other hand, the

dynamic programming version execution time is O(k.L)
where k is the number of queues and L the BBFRAME

length. This implementation is thus less sensitive to the

system load. The basic algorithm is of course the most

efficient as far as execution time is concerned.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

M1/Q1M1/Q2M1/Q3 M2/Q1M2/Q2M2/Q3 M3/Q1M3/Q2M3/Q3 M4/Q1M4/Q2M4/Q3

Response Time
Confidence Interval

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

M1/Q1M1/Q2M1/Q3 M2/Q1M2/Q2M2/Q3 M3/Q1M3/Q2M3/Q3 M4/Q1M4/Q2M4/Q3

Response Time
Confidence Interval

Fig. 2. Uniform scenario, knapsack (right) and exhaustive (left)

The performances of the knapsack and exhaustive

implementations are very close, as depicted by figure

2 for the uniform scenario and figure 3 for the clear sky

scenario. These figures show the mean waiting time for

three streams sent to the four groups of receivers. We can

notice that these implementations are fair in the uniform

scenario (with no throughput bias).

This result was predictable as a consequence of the

low probability of the cases that have not been consid-

ered by the knapsack implementation.

On the other hand, figure 4 shows the system per-

formances for the basic implementation. We can notice

that the overall performances are both lower and more
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Fig. 3. Clear sky scenario, knapsack (right) and exhaustive (left)

unfair, although fairness remains within a given group

of receivers with the same channel conditions).
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Fig. 4. Basic implementation, uniform (left) and clear sky scenarios

2) Changing channel conditions: We have simulated

the consequences of a rain event. For this purpose, in a

“clear sky scenario”, we have changed the MODCOD used

in the second most loaded queue. During a short period

(12 minutes out of one hour of simulated time) it is

replaced by a MODCOD with a lower spectral efficiency

(leading to an overloaded system).

The knapsack implementation is very efficient in this

situation. Of course the mean waiting time increases, and

then some packets are lost. However, this implementation

complies with utility functions : with Use, the streams

with the worst channel conditions suffer more from the

performance degradation. On the other hand, using Uf ,

the streams with the highest throughput are the most

impacted. Finally, reclassification can be really helpful,

especially for streams with good channel conditions (ie
with reclassification opportunities) : with Uf , the number

of losses during the rain event has been decreased by

25% to 60%, depending on the stream.

The basic implementation seems unable to achieve any

comparable results. The overall performance decreases

and the utility functions are not enforced. Reclassifica-

tion does not help in any way in this implementation.

VII. CONCLUSION AND FUTURE WORKS

Packet scheduling over GSE/DVB-S2 introduces lots of

new challenges. These are consequences of the system

properties : ACM, large frames, fragmentation, reclas-

sification, . . . Utility functions allow to encompass in

a single expression multiple different constraints. They

have been used to implement packet scheduling, but

never in this specific context.

We have shown in this paper that with a slightly

more general implementation (variable time slot, multi-

dimensional gradient, . . . ) this technique could suit our

problem. A drawback is that the search for an optimal

scheduling could be very expensive. We have shown

that basic algorithms are inefficient and that a knapsack-

based algorithm could be both efficient and affordable.

Some interesting challenges remain, however. One of

the most general (and maybe the most difficult) is how

to translate high level QoS specifications (eg DiffServ

PHBs) into utility functions. Another question is the

tuning and the behaviour of the system when multiple

different utility functions are used simultaneously. Fi-

nally, we plan to study in which conditions the system

can be proved to remain stable.
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