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Abstract

RPQs (regular path queries) are an important building block
of most query languages for graph databases. They are gener-
ally evaluated under homomorphism semantics; in particular
only the endpoints of the matched walks are returned.
However, practical applications often need the full matched
walks to compute aggregate values. In those cases, homomor-
phism semantics are not suitable since the number of matched
walks can be infinite. Hence, graph-database engines adapt
the semantics of RPQs, often neglecting theoretical red flags.
For instance, the popular query language Cypher uses trail
semantics, which ensures the result to be finite at the cost of
making computational problems intractable.
We propose a new kind of semantics for RPQs, including in
particular simple-run and binding-trail semantics, as a can-
didate to reconcile theoretical considerations with practical
aspirations. Both ensure the output to be finite in a way that
is compatible with homomorphism semantics: projection on
endpoints coincides with homomorphism semantics. Hence,
testing the emptiness of result is tractable, and known meth-
ods readily apply. Moreover, simple-run and binding-trail se-
mantics support bag semantics, and enumeration of the bag
of results is tractable.

1 Introduction
When querying data graphs, users are not only interested
in retrieving data, but also in how these pieces of data re-
late to each other. This is why most languages for querying
data graphs, both in theory and in practice, are navigational
languages. Informally, the querying process starts at some
vertex and then walks through the graph: it follows edges
from vertex to vertex, retrieving and testing data along the
way, until the walk ends in some final vertex.

In database theory, this process is usually abstracted as
Regular Path Queries (RPQs, Cruz, Mendelzon, and Wood
1987). An RPQ is defined by a regular expression R and is
traditionally evaluated under walk semantics (also known as
homomorphism semantics, Angles et al. 2017). In that case,
it returns all pairs of vertices in the graph that are linked by
a walk whose label conforms to R. This formalism enjoys
many nice properties and has become an important building
block of most query languages over graph databases.

However, RPQs do not entirely meet the needs of real-
life graph database systems. Indeed, limiting the output of
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Figure 1: Our running graph database D

the query to the endpoints of the walk is not enough for
many real-life applications, which might also require the
number of matching walks (e.g. to rank answers or eval-
uate connectivity), or even the walks themselves (e.g. for
route planning) (Robinson, Webber, and Eifrem 2015). Un-
der walk semantics, the space of matches is infinite: there
are infinitely many matching walks when the graph contains
cycles, which renders these questions meaningless. Most
graph database management systems have their own way of
addressing this issue, with none of them being entirely sat-
isfactory. We briefly describe the most common approaches
below, as well as their shortcomings; we use the database
given in Figure 1 and the following queries to illustrate them.

Q1 = (Road + Ferry)∗

Q2 = (Road + Ferry)∗ Gas (Road + Ferry)∗

Topological restriction This solution roots out unbound-
edness by forbidding cycles. Walks are only returned
if no vertex (simple-walk semantics) or no edge (trail
semantics) is visited twice. For instance, the language
Cypher uses trail semantics (Francis et al. 2018). More-
over, the new query language GQL1(Deutsch et al. 2022;
Francis et al. 2023), currently designed by ISO2 to be the
first standard language for property graphs, implements
several topological restrictions.
The output walks are in some sense representative of the
possibilities in the space of matches. For instance, Q1

1https://www.iso.org/standard/76120.html
2ISO stands for International Standards Organisation.
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returns s → t and s → c1 → c2 → t under trail seman-
tics, two unrelated possibilities in the space of matches.
This is a crucial feature in real systems, in which pattern
matching is usually just a first step before further process-
ing. For instance, one could evaluate the connectivity be-
tween s and t by counting the number of walks from s to t
matching Q1.
The main weakness of this approach is that computational
problems are intractable even for very simple queries. For
instance, deciding whether two vertices are linked by a
walk conforming to Q2 is NP-complete in the size of the
database under both trail (Martens, Niewerth, and Traut-
ner 2020) and simple-walk semantics (Bagan, Bonifati,
and Groz 2020). These semantics are also error-prone in
that desirable results might be discarded unintentionally.
For instance, Q2 returns no walk from s to t under trail
semantics; and in a bigger, more realistic, graph database
the walk s → c1 → c2 → c3 → c1 → c2 → t would
not be considered for further processing. These kinds of
unwanted behaviours happen beyond theoretical settings:
e.g., in (Robinson, Webber, and Eifrem 2015, p.132), the
authors propose a query to solve a real-life scenario; the
query does not work as intended due to trail semantics.

Witness selection Another approach consists in choosing
a metric (length, cost, etc.), and then selecting only a
few best-ranking walks in the space of matches. For in-
stance, the semantics of GSQL (TigerGraph Team 2021;
Deutsch et al. 2019) and G-Core (Angles et al. 2018) only
return the shortest walks matching the query; GQL al-
lows returning the k shortest walks (Deutsch et al. 2022).
However, the length of the path is an arbitrary metric
that may not fit every application: here, Q1 would re-
turn the ferry route v = s → t over the road route
w = s→ c1 → c2 → t but it does not necessarily mean
that v represents a faster or shorter route than w in real-
ity. To circumvent this issue, GQL mentions other met-
rics, such as k-cheapest, as possible extensions to inves-
tigate. On the other hand, witness selection generally
makes counting and aggregating meaningless: it counts
or aggregates over something that is not representative of
the space of matches.

Reducing expressivity Some systems disallow queries or
operations that may lead to infinite outputs or ill-defined
behaviours. Kleene stars in GQL queries are only allowed
if they appear under some form of topological restriction
or witness selection. In SPARQL3, counting the num-
ber of walks matched by a property path is only allowed
when the underlying regular language is finite. Otherwise,
the returned number collapses to 0 (no walk matches the
query) or 1 (at least one walk matches the query). Sim-
ilarly, SPARQL equivalents of queries Q1 or Q2 only
return the endpoints of matched walks. Note also that
switching silently from bag to set semantics depending
on the query is error-prone.

In this article, we propose another approach called run-
based. We present two run-based semantics: simple-run se-

3https://www.w3.org/TR/sparql11-query/#propertypaths

mantics, whose input query is given as a finite automaton
and provide sound theoretical foundations; and binding-trail
semantics which operate directly on a regular expression in
order to be closer to practical use. Akin to topological re-
striction, we aim at producing a finite output that faithfully
represents the space of matches, and we do so by discarding
cyclic results. Intuitively, run-based semantics discard a re-
sult only if a cycle in the walk coincides with a cycle in the
computation of the query. For instance, binding-trail seman-
tics filter out walks in which one edge is matched twice to
the same atom of the regular expression. Indeed, the walk
w = s → c1 → c2 → c3 → c1 → c2 → t is not in the
output of Q1: the edge c1 → c2 is matched twice to the
same Road atom. On the other hand, w is kept in the output
of Q2, because the two occurrences of the edge c1 → c2 are
matched to two different Road atoms. In general, the out-
put under run-based semantics depends on the syntax of the
query. This seeming drawback also provides a finer control
of the output; see Remarks 14 and 30.

The paper is organised as follows. Section 2 covers
necessary preliminaries and Section 3 gives the definition
of simple-run semantics. In Section 4, we revisit classi-
cal computational problems and show that simple-run se-
mantics enjoy efficient PTIME or polynomial-delay algo-
rithms for emptiness, tuple membership and walk enumer-
ation. Counting answers remains #P-Complete. Section 5
defines binding-trail semantics as an adaptation of simple-
run semantics to queries given as regular expressions. As a
side result, we show that any regular expression (in fact, its
Glushkov automaton) may encode the same behaviour and
topology as any arbitrary automaton, which means that all
complexity lower and upper bounds translate from one set-
ting to the other. Finally, we conclude this document in Sec-
tion 6 by discussing possible extensions of our semantics.

2 Preliminaries
2.1 Graph Databases
In this document, we model graph databases as directed,
multi-labeled, multi-edge graphs, and simply refer to them
as databases for short. We will use the database shown in
Figure 1, page 1, as our running example. Databases are
formally defined as follows.
Definition 1. A (graph) database D is a tuple
(Σ, V, E, SRC, TGT, LBL) where: Σ is a finite set of
symbols, or labels; V is a finite set of vertices; E is a
finite set of edges; SRC : E → V is the source function;
TGT : E → V is the target function; and LBL : E → 2Σ

is the labelling function.

Definition 2. A (directed) walk w in D is a non-empty finite
sequence of alternating vertices and edges of the form w =
(n0, e0, n1, . . . , ek−1, nk) where k ≥ 0, n0, . . . , nk ∈ V ,
e0, . . . , ek−1 ∈ E, such that:

∀i, 0≤ i < k, SRC(ei) = ni and TGT(ei) = ni+1

For ease of notation, we use → to avoid naming the edge
that connects two nodes when it is unique, as in w = n0 →
n1 → · · · → nk.
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We call k the length of w and denote it by LEN(w). We
extend the functions SRC, TGT and LBL to the walks in D
as follows. For each walk w = (n0, e0, n1, . . . , ek−1, nk)
in D, SRC(w) = n0, TGT(w) = nk, and

ENDPOINTS(w) =
(

SRC(w), TGT(w)
)

LBL(w) =
{
u0u1 · · ·uk−1

∣∣ ∀i, 0 ≤ i < k, ui ∈ LBL(ei)
}
.

Finally, s w−→ t means that ENDPOINTS(w) = (s, t) and, for
a word u ∈ Σ∗, we write s u−→ t if there exists a walk w in D

such that s w−→ t and u ∈ LBL(w).
We say that two walks w,w′ concatenate if TGT(w) =

SRC(w′), in which case we define their concatenation as
usual, and denote it by w · w′, or simply ww′ for short.
Definition 3. A trail is a walk with no repeated edge. A
simple walk is a walk with no repeated vertex. We let TRAIL
(resp. SIMPLE) denote the bag-to-bag function that takes as
input a bag of walks B and returns the bag of the trails (resp.
simple walks) in B.

2.2 Regular Path Queries, Automata, Expressions
An RPQ is defined by a regular language (given as either an
automaton or a regular expression). RPQs may be evaluated
under various semantics. Several classical semantics, along
with the novel run-based semantics, are defined in Section 3.

A (nondeterministic) automaton is a 5-tuple A =
⟨Σ, Q,∆, I, F ⟩ where Σ is a finite set of symbols, Q is a
finite set of states, I ⊆ Q is called the set of initial states,
∆ ⊆ Q× Σ×Q is the set of transitions and F ⊆ Q is the
set of final states. As usual, we extend ∆ into a relation over
Q×Σ∗ ×Q as follows: for every q ∈ Q, (q, ε, q) ∈ ∆; and
for every q, q′, q′′ ∈ Q and every u, v ∈ Σ∗, if (q, u, q′) ∈ ∆
and (q′, u, q′′) ∈ ∆ then (q, uv, q′′) ∈ ∆. We denote by
L(A) the language of A, defined as follows.

L(A) =
{
u ∈ Σ∗ ∣∣ ∃i ∈ I, ∃f ∈ F, (i, u, f) ∈ ∆

}
(1)

A computation in A is an alternating sequence of states and
transitions that is defined similarly to walks in databases. We
extend SRC, LBL, TGT and ENDPOINTS over computations.
A computation is successful if it starts in an initial state and
ends in a final state.

A regular expression R over an alphabet Σ is a formula
obtained inductively from the letters in Σ, one unary func-
tion ∗, and two binary functions + and ·, according to the
following grammar.

R :: = ε | a | R∗ | R ·R | R+R where a ∈ Σ (2)
We usually omit the · operator and we let L(R) denote the
subset of Σ∗ described by R.

3 Run-Based Query Evaluation
3.1 Run Database
In Section 3.1, we fix an automaton A = ⟨Σ, Q,∆, I, F ⟩
and a graph database D = (Σ, V, E, SRC, TGT, LBL).
Definition 4. The run database D × A is the database
D ×A = (Σ, V ′, E′, SRC′, TGT′, LBL′) where

V ′ = V ×Q

E′ = { (e, (q, a, q′)) ∈ E ×∆ | a ∈ LBL(e) }

and, for each e′ = (e, (q, a, q′)) ∈ E′,

SRC′(e′) =
(

SRC(e), q
)

TGT′(e′) =
(

TGT(e), q′
)

LBL′(e′) = {a} .

We denote the projection from D × A to D by πD: for
each (n, q) ∈ V ′, πD((n, q)) = n; for each (e, t) ∈ E′,
πD((e, t)) = e; and for each walk w = (n0, e0, . . . , nk),
πD(w) = (πD(n0), πD(e0), . . . , πD(nk)).

The run database is essentially a product of the automaton
with the database. See Figure 2 for an example. In the figure,
elements that do not contribute to any run are dashed.
Definition 5. A walk w in D×A is called a run if SRC(w) ∈
V × I and TGT(w) ∈ V × F . We let MATCHA(D) denote
the bag4 of all runs in D ×A.

A simple verification yields the following property.
Property 6. For every walk w in D, there exists a
run r in D × A such that πD(r) = w if and only if
LBL(w) ∩ L(A) ̸= ∅.
Remark 7. Note that the run database D × A depends on
the structure of the automaton A, and not only on L(A).
Hence, when considering run databases, we cannot assume
that A is deterministic, minimal, or of any particular shape.

The run database allows rephrasing the most common se-
mantics, as in Definitions 8, 9 and 10.
Definition 8. Under walk semantics, RPQs return all walks
of the input database whose label conforms to the query. It
is defined as JAKW (D) = πD ◦MATCHA(D).

We will sometimes refer to the bag JAKW (D) as the space
of matches, as it contains all walks that intuitively match
the query. Note that it can be infinite, and thus cannot be
returned as is. The following two semantics circumvent this
issues by restricting JAKW (D) to a finite bag.
Definition 9. Trail semantics return only the trails matching
the query : JAKT (D) = TRAIL ◦πD ◦MATCHA(D).
Definition 10. Simple-walk semantics return only the
matching walks that are simple: JAKSW (D) =
SIMPLE ◦πD ◦MATCHA(D).

3.2 Simple-Run Semantics
In line with simple-walk and trail semantics, simple-run se-
mantics keeps the output finite by filtering out redundant re-
sults. The difference amounts to the definition of redundant.
Classical semantics filter based on redundancy in the com-
puted walk (repeated edge, repeated vertex), hence filtering
is done after projecting the runs to D. In the semantics we
propose here, filtering is based on redundancy in the run,
hence filtering is done before projecting to D.
Definition 11. The simple-run semantics of an automaton
A, denoted by JAKSR, is the mapping that associates, to
each database D, the following bag of answers.

JAKSR(D) = πD ◦ SIMPLE ◦MATCHA(D) (3)
4Although the multiplicity of each element in MATCHA(D) is

one, we would rather not use the term set to avoid confusion when
we apply bag-to-bag functions later on.
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Figure 2: A run database constructed from D (Figure 1) and A (Figure 2a).

Example 12. A run in the database from Figure 2b is a walk
that goes from the top part to the bottom part. For instance,
the walk r1 = (s, 0) → (c1, 0) → (c2, 0) → (c3, 0) →
(c3, 1) → (c1, 1) → (c2, 1) → (t, 1) is a run, which more-
over is simple. Hence its projection w1 = πD(r1) =
s → c1 → c2 → c3 → c3 → c1 → c2 → t belongs to
JAKSR(D). On the other hand, w1 is neither a trail nor a
simple walk, hence w1 /∈ JAKT (D) and w1 /∈ JAKSW (D).
In fact, JAKT (D) and JAKSW (D) contain no walk going
from s to t.

One of the main features of simple-run semantics is that it
covers the space of matches, in a precise way (Lemma 13).
Essentially, if a walk w matching the query is not returned,
at least one subwalk w′ of w is returned; moreover, w′ is
obtained from w by removing superfluous cycles. Note that
semantics based on topological restriction do not enjoy the
same property, as shown in Example 12.
Lemma 13. Let D be a database, A be an automa-
ton, and w be a walk in MATCHA(D). Then, there ex-
ists a decomposition of w as w = u1v1u2 · · · vnun+1

such that every ui satisfies SRC(ui) = TGT(ui), and
v1 · · · vn ∈ JAKSR(D).

Proof. By induction on the length of w. The statement ob-
viously holds if w is a single vertex since a walk of length 0
is always simple.

Let w ∈ MATCHA(D). Let r be a run in D×A such that
πD(r) = w. If w ∈ JAKSR(D), there is nothing to prove:
fix n = 1, u1, u2 as single vertices and v1 = w. Otherwise,
it means that r is not simple, that is there is a decomposi-
tion of r as r = r1r2r3 such that TGT(r1) = SRC(r2) =
TGT(r2) = SRC(r3) and LEN(r2) ̸= 0. Hence, r1r3 is
a run in D × A and the walk w′ = πD(r1r3) belongs
to MATCHA(D). Then, we conclude by induction on w′

and reconstruct the decomposition of w.

Remark 14. Recall that the run database depends on the
automaton itself (Remark 7). This dependence carries over

to simple-run semantics: JAKSR(D) and JBKSR(D) might
be different even if L(A) = L(B). ChoosingA or B governs
which representatives of the space of matches are returned,
in the sense of Lemma 13.
Remark 15. Akin to simple-run semantics, one could de-
fine trail-run semantics that would return the trails of the run
database. While trail-run semantics would generally enjoy
the same properties as simple-run semantics, the meaning
of a trail in the run database is much harder to grasp. In-
deed, transitions of the automaton usually have no intrinsic
meaning, whereas states encode the content of the memory.

4 Computational Problems
In Section 4, we restate common computational problems
related to query answering. We recall known results for the
usual semantics, and give both lower and upper complexity
bounds for simple-run semantics.

4.1 Existence of a Matching Walk
The problem TUPLE MEMBERSHIP consists in deciding
whether there is a walk matching the query between two
given endpoints. Under walk semantics, this problem corre-
sponds to what is called homomorphism semantics in most
theoretical contexts, hence it is unsurprisingly tractable in
that case (Theorem 16). On the other hand, TUPLE MEM-
BERSHIP is intractable under trail or simple-walk semantics
(Theorem 17). We show in Theorem 18 that it is tractable
under simple-run semantics.

TUPLE MEMBERSHIP UNDER X SEMANTICS

• Data: A database D, and a pair (s, t) of vertices in D.
• Query: An automaton A.
• Question: Does there exist a walk w ∈ JAKX(D) such

that ENDPOINTS(w) = (s, t)?

Theorem 16 (Mendelzon and Wood 1995). TUPLE MEM-
BERSHIP is NL-complete under walk semantics.
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Theorem 17 (Martens, Niewerth, and Trautner 2020;
Bagan, Bonifati, and Groz 2020). TUPLE MEMBERSHIP is
NP-complete under trail or simple-walk semantics. It is al-
ready NP-hard for a fixed query in both cases.

The typical query for which TUPLE MEMBERSHIP is hard
under trail semantics is a∗ba∗. Indeed, one has to record
which edges are matched by the left a∗, in order not to be
matched by the right a∗. Under simple-run semantics it
is not necessary to keep that record, which makes TUPLE
MEMBERSHIP tractable as stated by Theorem 18.
Theorem 18. TUPLE MEMBERSHIP is NL-complete under
simple-run semantics.

Theorem 18 is a corollary of Proposition 19 below, which
is itself a direct consequence of Lemma 13.
Proposition 19. Let D be a database, A be an automaton,
and s, t be two vertices in D. We let Ps,t denote the set
Ps,t =

{
w ∈ JAKW (D)

∣∣ ENDPOINTS(w) = (s, t)
}

. Each
walk with minimal length in Ps,t belongs to JAKSR(D).

Proposition 19 implies that simple-run semantics and
walk semantics are equivalent for TUPLE MEMBERSHIP.
Hence known techniques for computing TUPLE MEMBER-
SHIP efficiently under walk semantics readily apply to
simple-run semantics; and shortest-walk algorithms can be
used to produce witnesses for TUPLE MEMBERSHIP.

4.2 Enumeration of Matching Walks
The problem QUERY EVALUATION consists in enumerat-
ing the walks returned by the query. It is perhaps the most
important computational problem regarding query answer-
ing since it is close to what database engines do in practice.
QUERY EVALUATION is ill-defined under walk semantics
since JAKW (D) might be infinite5. Under trail or simple-
walk semantics, QUERY EVALUATION is well-defined but it
is intractable (Theorem 20). By using Yen’s algorithm, we
show that it is tractable under simple-run semantics.

QUERY EVALUATION UNDER X SEMANTICS

• Data: A database D.
• Query: An automaton A.
• Output: All walks in JAKX(D).

Theorem 20. Unless P = NP, QUERY EVALUATION under
trail or simple-walk semantics cannot be enumerated with
polynomial-time preprocessing.

Theorem 20 follows easily from Theorem 17.
Theorem 21. QUERY EVALUATION under simple-run se-
mantics can be enumerated with polynomial delay and pre-
processing.

Sketch of proof. Computing JAKSR(D) amounts to comput-
ing all simple walks from (s, i) to (t, f) in the run database
D×A, for each vertices s and t of D and each initial and fi-
nal states i and f . This can be done for each (s, i) and (t, f)

5It might be of interest to define (non-terminating) enumeration
procedure for this infinite bag. It is beyond the scope of this paper.

by using classical algorithms for simple-walk enumeration,
such as Yen’s algorithm (see Yen 1971; or Martens, Niew-
erth, and Trautner 2020 for a modern statement).

QUERY EVALUATION enumerates the walks in JAKX(D),
which is a bag. Hence a walk in JAKX(D) with multiplic-
ity m will be output m times. We call DEDUPLICATED
QUERY EVALUATION the problem that enumerates the dis-
tinct matching walks.

DEDUPLICATED QUERY EVAL. UNDER X SEM.
• Data: A database D.
• Query: An automaton A.
• Output: All walks in JAKX(D), without duplicates.

Note that Theorem 20 also holds for DEDUPLICATED
QUERY EVALUATION for similar reasons. We leave its com-
plexity under simple-run semantics as an open problem.

4.3 Counting Matching Walks
Counting the number of matching walks between two ver-
tices, or TUPLE MULTIPLICITY, is also used in practice, for
instance to evaluate the connectivity between two vertices.
TUPLE MULTIPLICITY behaves differently under walk se-
mantics, as some tuples might have infinite multiplicity. Un-
der the variants based on witness selection (e.g. shortest
walk semantics, as explained in the introduction), the prob-
lem takes a different meaning and no longer reflects the level
of connectivity between vertices. Under trail or simple-walk
semantics, this problem is known to be intractable; the same
technique shows that it is also intractable under simple-run
semantics (Theorem 22).

TUPLE MULTIPLICITY UNDER X SEMANTICS

• Data: A database D, and a pair (s, t) of vertices in D.
• Query: An automaton A.
• Output: The total multiplicity of all walks w ∈
JAKX(D) such that ENDPOINTS(w) = (s, t).

Theorem 22. TUPLE MULTIPLICITY is #P-complete under
trail, simple-walk and simple-run semantics. It is already
#P-hard in data complexity: there exists a fixed automaton
A for which the problem is #P-hard.

In all cases, the upper bound comes from counting the
successful computations of a nondeterministic polynomial-
time machine that guesses a trail (resp. simple walk, resp.
simple run) going from s to t and checks that it is accepted
byA. The hardness proof consists in a reduction from count-
ing trails (or simple walks) in unlabelled graphs, two prob-
lems known to be #P-complete (Valiant 1979). One simply
has to fix A as the one-state automaton accepting a∗. For
simple-run semantics, one also has to note that for that par-
ticular A it holds JAKSR(D) = JAKSW (D).

4.4 Walk Membership
The last problem we consider here is WALK MEMBERSHIP,
which consists in deciding whether a given walk is returned.

5



This problem is usually considered whenever TUPLE MEM-
BERSHIP and QUERY EVALUATION are intractable; and as
a matter of fact, it is known to be tractable for all usual se-
mantics (Theorem 23). Surprisingly, it is intractable under
simple-run semantics (Theorem 24).

WALK MEMBERSHIP UNDER X SEMANTICS

• Data: A database D and a walk w.
• Query: An automaton A.
• Question: w ∈ JAKX(D)?

Theorem 23. WALK MEMBERSHIP is NL-complete under
walk, trail or simple-walk semantics.

Sketch of proof. For walk semantics, the problem amounts
to checking acceptance of a word in a nondeterministic finite
automaton. For trail (resp. simple-walk) semantics, one has
to additionally check that the input walk is a trail (resp. a
simple walk). Hardness comes from an easy reduction from
ST-connectivity.

Theorem 24. WALK MEMBERSHIP is NP-complete under
simple-run semantics. It is already NP-hard in data com-
plexity: there exists a fixed automatonA for which the prob-
lem is NP-hard.

Sketch of proof. The hardness proof is done by a di-
rect reduction from 3-SAT. The fixed automaton A uses
the alphabet {Var,Keep, Invert, Eval,Check}, has three
states {0, 1,⊤}, ⊤ is the unique initial and final state, and
its transition table is given below.

Keep: 0 → 0
1 → 1
⊤ → ⊤

Reset: {0, 1,⊤} → ⊤
Check: {0,⊤} → ⊤

Var: {0, 1,⊤} → {0, 1}
Invert: 0 → 1

1 → 0

Eval: 1 → {0, 1}
{0,⊤} → ⊤

Figure 3 gives an example of how the database D is built
from a specific 3-SAT instance, and for this example, the
input walk w = wV wH goes through all edges of D, starting
with vertical edges (wV ) and then horizontal edges (wH ):

wV = Start −→ x1 −→ · · · x̄1 −→ · · ·x2 −→ · · · x̄4 −→ Mid

wH = Mid −→ C0 −→ x̄1
1 −→ · · ·C1 −→ x2

1 −→ · · ·
C2 −→ x3

1 −→ · · ·C3 −→ End

Each valuation of the variables corresponds in a one-to-one
manner to one run in D × A for the vertical part. For in-
stance, valuation x1 7→ 1, x2 7→ 1, x3 7→ 0, x4 7→ 0 corre-
sponds to the run rV :

In D : Start x1 x2
1 x3

1 x̄1 x̄1
1 x2 · · · x3 · · · x4 · · · Mid

In A : ⊤ 1 1 1 0 0 1 · · · 0 · · · 0 · · · ⊤

The horizontal walk wH has three parts (C0 −→ C1, C1 −→
C2 and C2 −→ C3); each Ci−1 −→ Ci checks whether the

valuation makes the clause Ci true. Let us take C1 for in-
stance. There is exactly one run r1 for the part C0 −→ C1 in
order for rV r1 to be simple, given below.

In D : C0 x̄1
1 x1

3 x̄1
4 C1

In A : ⊤ 1 1 0 ⊤
Indeed, the state reached at x̄1

1 is necessarily 1, otherwise the
full run would not be simple: the vertex (x̄1

1, 0) of the run
database was already visited in the vertical part. One may
see that the state reached at vertex C1 is⊤, which means that
the valuation satisfies C1. If the valuation did not make C1

true, there would be no run r1 such that rV r1 is simple.

5 Query Given as a Regular Expression
This section aims at applying simple-run semantics to prac-
tical settings. In real life, users generally input RPQs as
a regular expression and not as an automaton. The natu-
ral idea would consist in translating the expression and then
applying simple-run semantics to the resulting automaton.
In Section 5.1, we explain why this approach leads to un-
wanted behaviour. Section 5.2 introduces binding-trail se-
mantics as an adhoc adaptation of simple-run semantics to
the case where the query is given as a regular expressions.
Then, we show that binding-trail semantics enjoy the same
computational properties as simple-run semantics.

5.1 Expression to Automaton
Given a regular language, there are many known approaches
for producing automata which accept the same language (see
for instance Sakarovitch 2021). Then, all algorithms from
Section 4 immediately apply. However, the crux of the mat-
ter lies in Remark 7: semantics do not only depend on the
language accepted by the automaton, but on the automa-
ton itself. Thus, how we choose to translate the expression
into an equivalent automaton matters, and it seems that each
translation algorithm features undesirable quirks. We give
two compelling examples, and leave a complete account of
the many translation algorithms for future work.

First, one could translate the expression into a min-
imal DFA, but this choice makes the semantics non-
compositional. Consider an expression R = R1 + R2, one
would expect R to return more results than R1 or R2; but it
is not always the case. For instance, if R1 = b∗(ab∗ab∗)∗

and R2 = (a+ b)(a+ b)∗, then R is equivalent to (a+ b)∗.
The minimal DFA A1 associated with R1 has two states,
while the minimal DFA A associated with R has only one
state. Hence one can easily find a database D such that
JAKSR(D) ̸⊇ JA1KSR(D). Similar quirks can be found
for concatenation and star. This example illustrates that the
translated automaton must not only represent the regular
language but also the regular expression as written.

Second, one could use Glushkov construction (recalled
in Definition 25, below), which famously produces an au-
tomaton that stays close to the regular expression. How-
ever, this choice introduces a left-to-right bias. Typically,
A = Gl(a∗b∗) is not the mirrored automaton of Gl(b∗a∗),
and if one considers the following database D, the walk
S → S → T belongs to JAKSR(D) but not the walk
S→ T→ T.

6



x1
1

x2
1

x1
3

x3
1 x3

2

x1
4

x2
3

x3
3

x2
4

x1

x1

x2

x2

x3

x3

x4

x4

Start Mid

C1

C2

C3

C0

End

Var

In
vert

In
vert

In
vert

In
vert

K
ee
p

K
ee
p

K
ee
p

Va
r

Va
r

Re
set

Va
r

K
eep

K
eep

K
eep

K
eep

K
ee
p

K
ee
p

Reset

Var

FromC
0 Var

Var

FromC
1 Var

Var

FromC
2 Var

Eval Eval

Eval Eval

Eval Eval

Check

Check

Check

Reset

Figure 3: Graph encoding 3-SAT instance C1 ∧ C2 ∧ C3 with C1 = ¬x1 ∨ x3 ∨ ¬x4, C2 = x1 ∨ ¬x3 ∨ ¬x4 and C3 = x1 ∨ x2 ∨ ¬x3

S T
a, b

ba

Definition 25. Let R be a regular expression over Σ. A
linearisation of R is a copy R′ of R in which each atom in Σ
is replaced by a different symbol in a new alphabet Γ, called
the positions of R. Given α ∈ Γ, we denote as α the label of
its antecedent in R.

The Glushkov’s automaton of R, Gl(R), is the automaton
⟨Σ, { i} ⊎ Γ,∆, { i}, F ⟩ defined as follows:

∆ = { (α, β, β) | ∃u, v ∈ Γ∗, uαβv ∈ L(R′) }
∪ { (i, α, α) | ∃u ∈ Γ∗, αu ∈ L(R′) }

F = {α | ∃u ∈ Γ∗, uα ∈ L(R′) } ∪ { i} if ε ∈ L(R′)

5.2 Binding-Trail Semantics
This section defines binding-trail semantics, a counterpart to
simple-run semantics that operates directly on a given regu-
lar expression R, without translating R into an automaton.

Definition 26. Let D = (Σ, V, E, SRC, TGT, LBL) be a
database, and R a regular expression. Let R′ be a linearisa-
tion of R and Γ be the corresponding positions of R. A bind-
ing trail of D matching R is a sequence (e1, α1) . . . (en, αn)
of pairs in E × Γ such that:

• e1 . . . en describes a walk of D and α1 · · ·αn ∈
LBL(e1 . . . en);

• α1 · · ·αn belongs to L(R′);
• All (ei, αi) are pairwise distinct.

Binding-trail semantics are then defined by:

JRKBT (D) = πD

(
{ t | t is a binding trail of D matching R }

)

In other words, given a walk w in D, w conforms to
binding-trail semantics if w matches R in such a way that
the same edge of w cannot be used twice at the same po-
sition in R. The following lemma shows how binding-trail
semantics relate to the run database.

Lemma 27. For every regular expression R and
database D,

JRKBT (D) = πD ◦ BINDINGTRAIL ◦MATCHA(D) ,

where A = Gl(R) and BINDINGTRAIL is the run-bag filter
that keeps only the runs

(n0, q0)(e0, δ0)(n1, q1) · · · (ek−1, δk−1)(nk, qk)

such that all (ei, qi+1)’s, 0 ≤ i < k, are pairwise distinct.

As is the case for simple-run semantics, binding-trail se-
mantics also coincide with walk semantics for TUPLE MEM-
BERSHIP, and produce the same shortest witnesses. Indeed,
the proof of Proposition 19 can easily be adapted to prove
the following:

Proposition 28. Let D be a database and R be an expres-
sion. Let A be any automaton such that L(R) = L(A).
Let s, t be two vertices in D, and we denote by P the set of
walks in JAKW (D) that go from s to t. Let w be a walk in P
with minimal length. Then, w belongs to JRKBT (D).

Lemma 27 hints at the fact that the upper bounds of
Section 4 for simple-run semantics immediately apply to
binding-trail semantics, due to standard graph reduction
techniques translating vertex-disjoint walks to edge-disjoint
walks and back. The same does not necessarily hold true
for lower bounds. Glushkov automata have additional prop-
erties: only one initial state, all incoming edges to a given
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state have the same label, and so on (Caron and Ziadi 2000).
We show that these properties cannot be used to design more
efficient algorithms.

Proposition 29. TUPLE MEMBERSHIP, TUPLE MULTI-
PLICITY, QUERY EVALUATION and WALK MEMBERSHIP
are computationally equivalent under binding-trail seman-
tics and under simple-run semantics.

Proposition 29 is actually a consequence of a much deeper
result stating essentially that, given any automaton A, there
exists a regular expression R that encodes the topology of
A in the sense that there is a strong connection between the
computations ofA and those of Gl(R). Hence, any problem
that takes automata as input will likely have hard instances
that are of the form Gl(R) for some expression R. Due
to space constraints, we only sketch the main idea of the
encoding.

Sketch of proof. Let A = ⟨Σ, Q,∆, I, F⟩. Let m =
CARD(∆) and G denote any bijection G : ∆ →
{1, . . . ,m}. Let H be the only bijection H : ∆ →
{1, . . . ,m} that meets: ∀e ∈ ∆, G(e) + H(e) = m + 1.
Finally, let σ be a fresh symbol that is not in Σ. We define
the expression R over the alphabet Σ ⊎ {σ } as follows:∑

q∈Q

[( if q ∈ I︷︸︸︷
ε +

∑
s∈Q, a∈Σ

e=(s,a,q)∈∆

aG(e)
)
σ
( if q ∈ F︷︸︸︷

ε +
∑

a∈Σ, t∈Q
e=(q,a,t)∈∆

aH(e)
)]

∗

Note that there are exactly CARD(Q) occurrences of the
letter σ in R. We associate each state s ∈ Q with the occur-
rence of σ appearing in the term of the external sum when
q = s. Similarly, each transition e = (s, a, t) with label a
in A is encoded by the word σam+1σ that will be matched
by the concatenation of the σ corresponding to s, the subex-
pression aH(e) on its right, the aG(e) on the left of σ corre-
sponding to t followed by this σ.

We conclude by showing that a successful computation
in A over a word a0 · · · an ∈ Σ∗ is encoded by matching
the word σa0

m+1σ · · · anm+1σ in R. Moreover, this encod-
ing preserves relevant topological properties. For instance,
a computation of A reuses a state if and only if its encoding
reuses a position labelled by σ.

Remark 30. Similarly to simple-run semantics (see Re-
mark 14), binding-trail semantics depend on the given regu-
lar expression and not only on the corresponding language.
This allows for a finer control on which repetitions are per-
mitted by the query. For instance, the three following ex-
pressions have different meanings under binding-trail se-
mantics:

• Ja∗KBT returns all trails labelled by a.

• Ja∗ · a∗KBT returns the concatenations of two trails.

• J(a+ a)∗KBT returns all walks where edges are repeated
at most twice.

6 Perspectives
Run-based semantics are an attempt at addressing real-life
concerns while maintaining good theoretical foundations.
As such, our medium-term goal is to make sure that our
work is indeed applicable to query languages used in prac-
tice. GQL offers a very plausible opportunity for integration,
as it is in active development and already supports several
semantics. This section aims at closing some of the gaps be-
tween theory and practice by discussing how run-based se-
mantics adapt to commonly seen extensions or limitations.

6.1 Syntax Restrictions Used in Practice
Real query languages, such as GQL or Cypher, impose syn-
tax restrictions on the regular expression given as input. We
discuss here whether the lower bound complexity results
change by imposing those restrictions. Note that no reason-
able syntax restriction can change the complexity of TUPLE
MULTIPLICITY since the lower bound already holds for the
fixed expression a∗.

We consider three syntax restrictions and their respective
impact on the complexity of WALK MEMBERSHIP. A regu-
lar expression has star-height 1 if it has no nested Kleene
stars. A regular expression is said to have no union un-
der star (resp. no concatenation under star) if no union
(resp. no concatenation) operator occurs in any subexpres-
sion nested under a Kleene star.

These restrictions match syntax rules commonly seen in
practice: GQL only allows expressions with star-height 1
and Cypher queries cannot express concatenations under
star. Moreover, users rarely use the full expressive power at
their disposal. In (Bonifati, Martens, and Timm 2020), the
authors make an analytical study of over 240,000 SPARQL
queries: in the collected data set, every single RPQ has star-
height 1, all queries but one have no concatenation under
star, and only about 40% of queries use a union under a star.

The expression shown in Section 5.1 to simulate the com-
putations of any arbitrary automaton has no nested stars.
Hence all complexity lower bounds hold even when ex-
pressions are restricted to star-height 1. That expression
has unions under star, but one can do without. Indeed,
let A = ⟨Σ, Q,∆, I, F⟩ be an automaton; for simplic-
ity we assume that Σ = {0, 1, . . . , k − 1} and that Q =
{0, 1, . . . , n − 1}. Consider the following expression over
the alphabet {a, b, c, σ }.∑

i∈I

ci+1

(∏
i∈Q

(
cn−iσai+1

)∗ ·∏
(i,x,j)∈∆

(
an−ibxcj+1

)∗)∗∑
i∈F

an−i (4)

As in Section 5.2, one can show that this new expression6 en-
codes the behaviour ofA. The key arguments are as follows:
each letter x ∈ Σ is encoded by λ(x) = an+1bxcn+1σ; each
word x0 · · ·xn is encoded by cn+1λ(x1) · · ·λ(xn)a

n+1; the
states of A are simulated by the positions with label σ.

6Strictly speaking, Equation (4) denotes a family of expressions,
as concatenation (Π) is noncommutative. However, the reduction
works for any of those expressions.
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Trail Run-based Homomorphism Shortest-walk

TUPLE MEMBERSHIP Intractable Tractable Tractable Tractable
TUPLE MULTIPLICITY Intractable Intractable ∗ ∗
QUERY EVALUATION Intractable Tractable ∗ Tractable
DEDUPLICATED QUERY EVAL. Intractable Open ∗ Tractable
WALK MEMBERSHIP Tractable Intractable Tractable Tractable

Table 1: Summary of computational complexity

Remark 31. The internal Kleene stars in Equation (4) are
used at most once, so these stars might be replaced by an
optional operator, sometimes denoted by a “?”. In that case,
the expression would also be of star-height 1.

When expressions have no concatenation under star,
WALK MEMBERSHIP becomes tractable in combined com-
plexity, as stated below.

Theorem 32. WALK MEMBERSHIP is in PTIME under
binding-trail semantics when restricted to expressions with
no concatenation under star. The same holds under simple-
run semantics when queries are restricted to the Glushkov
automata of such expressions.

Under binding-trail semantics, matching a starred subex-
pression with no concatenation in a walk amounts to count-
ing that the number of repetitions of each edge in the walk is
less than the number of compatible atoms of the expression.
Under simple-run semantics, the proof relies on a reduction
to matchings in bipartite graphs (Cormen et al. 2009, Sec-
tion 26.3).

6.2 Extensions of Regular Expressions
Let us discuss how simple-run and binding-trail semantics
behave with respect to some common extensions of RPQs.

One-or-more repetitions Many formalisms allow writing
R+ as a shorthand for R · R∗. While expanding the no-
tation is not suitable in our setting (the two R subexpres-
sions in R · R∗ would then be matched independently,
resulting in a different behaviour), treating R+ as a new
operator poses no particular problem: the definitions of
both binding-trail semantics and Glushkov automaton ex-
tend naturally over +.

Arbitrary repetitions Some formalisms allow an operator
‘{n,m}’ with n ∈ N and m ∈ N ∪ {∞}: R{n,m} means
that R may be repeated between n and m times. Once
again, expanding the notation would change the result. On
the other hand, allowing this new operator would make
Lemma 13 false, e.g., querying the database from Fig. 1
with R{6,∞} would yield tuple (s, t) under walk seman-
tics but not under binding-trail semantics. The impact of
this operator on complexity results is left for future work.

Backward atoms Allowing backward atoms ←−a in expres-
sions, as for instance in 2RPQs (Angles et al. 2017), poses
no particular problem: transitions of the automaton that
are labelled with a backward atom are simply paired with
reversed edges of the database in the run database.

Any-directed atoms Cypher and GQL allow any-directed
atoms ←→a , that match edges labelled by a forward or
backward. Allowing them would make Lemma 13 (and
Prop. 28) false. For instance, let us query the database

from Figure 1 with R =
((−→

R +
−→
G
)
·
←→
R ·

(−→
R +

−→
G
))∗

.
The walk w = c1 → c2 → c3 → c3 ← c2 → t con-
tradicts Lemma 13. This issue can be circumvented by
expanding←→a into−→a +←−a rather than treating it as a new
operator, once again with some effect on the semantics.

7 Conclusion
Table 1, below, presents a summary of the computational
complexity of popular semantics and compares them with
run-based semantics. We also emphasize the following com-
parison points that do not appear in the table.
• Table 1 paints a negative picture of trail semantics, which

seems at odds with its popularity in practice. We be-
lieve that one strength of trail semantics is that the output
provides some kind of coverage of the space of matches,
which enables rich aggregation and post-processing. Run-
based semantics improves on this property by giving some
guarantees on the coverage (Lemma 13).

• WALK MEMBERSHIP is a theoretical counterpart to
QUERY EVALUATION: only the latter is implemented in
real systems. Thus, we believe that run-based semantics
offer a reasonable compromise by having tractable TU-
PLE MEMBERSHIP, tractable QUERY EVALUATION and
intractable WALK MEMBERSHIP. It is in our view better
than the other way around, as in trail semantics.

• Under homomorphism or shortest-walk semantics, some
problems are marked with a ∗. Although tractable,
complexity comparison with other semantics makes little
sense since they behave differently. For instance, count-
ing all matching walks leads to unboundedness under ho-
momorphism semantics, and returns an information of du-
bious value under shortest-walk: 0 or 1 most of the time,
and the number of uncomparable minimal runs otherwise.
In conclusion, simple-run and binding-trail semantics

provide good computational properties overall, supports bag
semantics and rich aggregation. However, while the RPQ
formalism is a good model of the navigational part of most
query languages over graph databases, it does not capture
their ability to collect and compare data values along tested
walks. Extending our proposed framework to handle data
values lying in the edges and vertices of the database consti-
tutes our main challenge going forward.
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Appendix A: Recap figure
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Appendix B: Proof of Theorem 24

Theorem 24. WALK MEMBERSHIP is NP-complete under
simple-run semantics. It is already NP-hard in data com-
plexity: there exists a fixed automatonA for which the prob-
lem is NP-hard.

The problem is obviously in NP as one can guess a run r
in D×A and check that πD(r) = w. The proof of hardness
is done by reduction from 3-SAT. We define a fixed au-
tomaton A such that for any 3-SAT instance I we can build
a polynomial size database DI and walk pI such that I is
satisfiable iff pI ∈ JAKSR(DI).

Preliminary warning. Let us warn the reader that the
sketch of proof as well as the Figure 3, page 7 give a simpli-
fied version of the construction presented here. The database
DI defined in this formal proof has many more useless ver-
tices and edges in order to make the definition and state-
ments easier to formulate. We omit those in the body of the
paper to simplify Figure 3 and give better intuition in the
sketch of proof. Figure 5 gives the database corresponding
to the example of Figure 3 for the encoding defined below.

Figure 5: Drawing of the database DI encoding the instance I =
C1∧C2∧C3 with C1 = ¬x1 ∨ x3 ∨ ¬x4, C2 = x1 ∨ ¬x3 ∨ ¬x4

and C3 = x1 ∨ x2 ∨ ¬x3

B1 The automaton A
Let A be the automaton defined as follow:

• the alphabet is {Check,Eval, Invert,Keep,Reset,Var};
• A has three states 0, 1 and ⊤;

• ⊤ is both the only intial state and the only final state;

• its transition table is given below. (See Figure 6 for a
graphical presentation.)

Keep: 0 → 0
1 → 1
⊤ → ⊤

Reset: {0, 1,⊤} → ⊤
Check: {0,⊤} → ⊤

Var: {0, 1,⊤} → {0, 1}
Invert: 0 → 1

1 → 0

Eval: 1 → {0, 1}
{0,⊤} → ⊤

B2 SAT instance I
Given a 3-SAT instance I = C1 ∧ · · · ∧ Cγ , we denote by
X the set of the distinct variables x1, . . . , xn appearing in I
and by X̄ the set of the corresponding negated version of
these variables: x̄1, . . . , x̄n.

In the following, we will generally use the notation x, x̄
and x̃ for elements in X , X̄ and X ∪ X̄ , respectively. Typi-
cally we write Ci = x̃ℓ ∨ x̃k ∨ x̃m.

B3 The Database DI

Let I be a 3-SAT instance. We can now build a database DI

from I . An example is given in Figure 5.

Vertices
• DI contains three special vertices: Start, Mid, and End

• For each x in X , DI contains three vertices: xin, x, and
xout.

• For each x̄ in X̄ , D contains one vertex: x̄.

• For each element x̃ in X ∪ X̄ and each clause Ci, DI

contains one vertex (x̃, Ci)

• For each clause Ci we create two vertices: C in
i and Cout

i .

Edges
For each variable x ∈ X we add the edges from the follow-
ing walk px to DI .

px = xin Var−−→ x
Keep−−−→ (x,C0)

Keep−−−→ · · ·

· · · Keep−−−→ (x,Cγ)
Invert−−−→ x̄

Keep−−−→ (x̄, Cγ)
Keep−−−→ · · ·

· · · Keep−−−→ (x̄, C0)
Reset−−−→ xout

For each clause Ci = x̃k ∨ x̃ℓ ∨ x̃m, we add edges from the
following walk pCi

to DI .

pCi = C in
i

Var−−→ (x̃k, Ci)
Eval−−→ (x̃ℓ, Ci)

Eval−−→ (x̃m, Ci)
Check−−−→ Cout

i

Then we connect these walks by Reset-labelled edges as fol-
lows.

Start Reset−−−→ xin
1

∀i, 1 ≤ i < n xout
i

Reset−−−→ xin
i+1

xout
n

Reset−−−→ Mid

Mid Reset−−−→ C in
1

∀i, 1 ≤ i < γ Cout
i

Reset−−−→ C in
i+1

Cγ
Reset−−−→ End
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Figure 6: Transitions of the automaton A (⊤ is initial and final)

B4 The walk pI , and its components psetval
and pchecksat

The walk pI consists in traversal from Start to End going
through every single edge of the database DI . Intuitively, a
first walk psetval going through every px will be used to define
a valuation of the variables. A second walk pchecksat going
through every pCi

will be used to check that this valuation
makes the instance true. Formally, we define the walk pI
as psetval · pchecksat where psetval and pchecksat are as follows :

psetval = Start Reset−−−→ px1

Reset−−−→ px2

Reset−−−→ · · ·

· · · Reset−−−→ pxn

Reset−−−→ Mid

pchecksat = Mid Reset−−−→ pC1

Reset−−−→ pC2

Reset−−−→ · · ·

· · · Reset−−−→ pCγ

Reset−−−→ End

Note that the equation above makes a slight abuse of no-
tation: the pxi

’s and pCi
’s are walks instead of vertices:

p
Reset−−−→ p′ means that we connect the last vertex of p with

the first vertex of p′.

B5 Main statement
We call valuation any (total) function µ : X ∪ X̄ → {0, 1}
such that for every x ∈ X , µ(x̄) = 1−µ(x). The purpose of
the remainder of this section is to show the following propo-
sition, of which Theorem 24 is a direct consequence.

Proposition B33. There are exactly N simple runs r
in DI ×A such that πD(r) = pI , where N is the number of
distinct valuations that make I true.

B6 Setting a valuation of the variables
Let us show that there is a bijection between the valuations
and the runs in DI ×A for the part psetval.

Lemma B34. (a) For every valuation µ there exists a sim-
ple run rµ in DI × A such that: for every x ∈ X , the
run rµ passes through the vertex (x, µ(x)).

(b) For every valuation µ, the run rµ passes through the
vertices ((x̃, Ci), µ(x̃)), for each x ∈ X ∪ X̄ and 1 ≤
i ≤ γ.

(c) Let r be any run in DI × A such that πD(r) = psetval,
then r = rµ for some valuation µ.
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Proof. (a) For each x ∈ X , we denote by rµ,x the following
run of DI ×A.

rµ,x = (xin,⊤) Var−−→ (x, µ(x))
Keep−−−→ ((x,C0), µ(x))
Keep−−−→ · · ·
Keep−−−→ ((x,Cγ), µ(x))

Invert−−−→ (x̄, µ(x̄))
Keep−−−→ ((x̄, Cγ), µ(x̄))
Keep−−−→ · · ·
Keep−−−→ ((x̄, C0), µ(x̄))

Reset−−−→ (xout,⊤)
Then we define rµ as follows.

(Start,⊤) Reset−−−→ rµ,x1

Reset−−−→ · · · Reset−−−→ rµ,xn

Reset−−−→ (Mid,⊤)
By construction, rµ,x is a simple run of DI ×A.

(b) Follows from the definition of rµ in item (a).

(c) For each variable x ∈ X , the vertex x appears exactly
once in πsetval hence there is exactly one occurrence in r of
a vertex of the form (x, s), for some s ∈ {0, 1,⊤}. Note
moreover that the edge coming into x in psetval is labelled
by Var hence that s ∈ {0, 1} from the definition of A (cf.
Figure 6a). We let µ denote the valuation that maps each x ∈
X to the unique s such that (x, s).

From the definition of A (cf. Figure 6), the letters Reset,
Keep and Invert are deterministic, in the sense that there is at
most one transition going out from every state and labelled
by one of these letters. It follows that r = rµ since both runs
coincide on all states coming after an edge labelled by Var.

B7 Checking the clauses
Lemma B35. For each valuation µ,
(a) if µ makes I true, then there exists a unique run r′µ such

that both π(r′µ) = pchecksat, and rµ · r′µ is simple;
(b) if µ makes I false, then there is no run r′ such

that πD(r′) = pchecksat and rµ · r′ is simple.
We say that two runs r and r′ are mutually simple if r

and r′ have no vertex in common.

Proof of (a). Let Ci = x̃k ∨ x̃ℓ ∨ x̃m be a clause of I . By
hypothesis, one of the atom is made true by µ. Let r′µ,Ci

be
the run in DI × A defined as follows, depending on which
among the atoms x̃k, x̃ℓ and x̃m is made true by µ

If µ(x̃k) = 1:

r′µ,Ci
= (C in

i ,⊤)
Var−−→ ((x̃k, Ci), 0)

Eval−−→ ((x̃ℓ, Ci), ⊤)
Eval−−→ ((x̃m, Ci),⊤)

Check−−−→ (Cout
i ,⊤)

If µ(x̃k) = 0 and µ(x̃ℓ) = 1:

r′µ,Ci
= (C in

i ,⊤)
Var−−→ ((x̃k, Ci), 1)

Eval−−→ ((x̃ℓ, Ci), 0)

Eval−−→ ((x̃m, Ci),⊤)
Check−−−→ (Cout

i ,⊤)

If µ(x̃k) = µ(x̃ℓ) = 0 and µ(x̃m) = 1:

r′µ,Ci
= (C in

i ,⊤)
Var−−→ ((x̃k, Ci), 1)

Eval−−→ ((x̃ℓ, Ci), 1)

Eval−−→ ((x̃m, Ci), 0)
Check−−−→ (Cout

i ,⊤)
One may check that in each case, the vertex ((x̃k, Ci), s) in
rµ,Ci

is such that s = 1 − µ(x̃k); and that the same is true
for xℓ and xm. It follows that rµ and r′µ,Ci

are mutually
simple.

By definitions, rµ,Ci
and rµ,Cj

are mutually simple if i ̸=
j. Hence, the run rµr

′
µ is simple where r′µ is defined as

follows.

r′µ = (Mid,⊤) Reset−−−→ rµ,C1

Reset−−−→ · · ·

· · · Reset−−−→ rµ,Cγ

Reset−−−→ End

It may be verified that r′µ is unique. The only letters that
are nondeterministic in A are Var and Eval, and the choice
is between state 0 and 1. More precisely, these letters al-
ways bring up a choice between between vertex ((x̃, Ci), 0)
or ((x̃, Ci), 1) in DI×A for some i ∈ {1, . . . , γ } and some
variable x̃ ∈ X ∪ X̄ . One of those two vertices necessarily
appears in rµ (as ((x̃k, Ci), µ(x̃))), hence only the other one
may appear in r′µ.

Proof of (b). For the sake of contradiction, let us assume
that there exists a run r′ such that πD(r′) = πchecksat and
such that rµr′ is simple. Since µ makes I false, it makes
Ci = x̃k ∨ x̃ℓ ∨ x̃m false for some i. Let r′Ci

be the subwalk
of r′ such that πD(r′Ci

) = pCi
; it may we written as follows.

r′Ci
= (C in

i , s
in)

Var−−→ ((x̃k, Ci), sk)

Eval−−→ ((x̃ℓ, Ci), sℓ)

Eval−−→ ((x̃m, Ci), sm)
Check−−−→ (Cout

i , sout)

for some sin, sk, sℓ, sm, sout ∈ {0, 1,⊤}. Since µ
makes I false, it follows that µ(x̃k) = 0, hence from
Lemma B34(b) that rµ contains the vertex ((x̃k, Ci), 0).
Moreover, since rµr

′ is simple, it follows that sk ̸= 0. A
similar reasoning yields that sℓ ̸= 0 and sm ̸= 0 Regardless
of the value of sin, it follows from the transitions of A for
letter Var (cf. Figure 6a) that sk ∈ {0, 1}, hence sk = 1;
it then follows from the transitions of A for letter Eval
(cf. Figure 6d) that sℓ = 1, and with the same argument
that sm = 1. Since A has no transition labelled by Check
and going out from state 1 (cf. Figure 6e), this leads to a
contradiction.

B8 Proof of Proposition B33
Let N be the number of valuations that make I true. Let µ
be a valuation that makes I true. Lemma B34(a) yields a
run rµ and Lemma B35(a) yields a run r′µ such that rµ · r′µ
is simple and πD(rµ · r′µ) = pI .

Note that if µ, µ′ denote two valuations that makes I
true, rµ = r′µ implies that for every x ∈ X , µ(x) = µ′(x)

14



(due to the condition in Lemma B34(a)), hence that µ = µ′.
Thus, the previous paragraph defines N distinct simple runs
in DI ×A.

Let r · r′ be any simple run in DI ×A such that πD(r) =
psetval and πD(r′) = pchecksat. Hence from Lemma B34(c),
there exists µ such that r = rµ. It is impossible that µ
makes I false since the existence of r′ would be in contra-
diction with Lemma B35(b). Hence, µ makes I true and the
unicity in Lemma B35(a) implies that r′ = r′µ.
Remark 36. The size of the database DI built in Section B3
may be up to quadratic in the size of the 3-SAT instance I ,
namely in O(γn). This is due to the fact that we create a
lot of ”useless” vertices. In particular, every vertex (x̃, Ci)
can be omitted if x̃ does not appear in clause Ci. By omit-
ting those vertices, the database DI would be of a size in
O(γ+n), at the cost of making the definition more involved.
Figure 3, page 7, gives an example of that simplified D.
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Appendix C: Glushkov construction provides hard
instance for WALK MEMBERSHIP

The purpose of appendix C is to prove the proof of The-
orem C37, below, which is the center piece behind Propo-
sition 29. The proof uses the novel notion of topological
coding of an automaton, which we plan to flesh-out in a fu-
ture independent document; we leave a preview of it here in
order for this preprint to be self-contained.

Theorem C37. There exists a fixed expression R such that
WALK MEMBERSHIP is NP-hard for A = Gl(R) under
simple-run semantics.

Section C1 introduces a different, equivalent definition for
the Glushkov automaton of an expression. It allows for more
effective notations, whereas the initial definition was only
stated in a declarative way. Section C2 defines topological
codings and Section C3 gives a precise meaning to the intu-
ition that a topological coding somehow simulates another
automaton. Section C4 states and shows Theorem C43,
the main result of appendix C: any automaton can be en-
coded into a Glushkov automaton. Section C5 applies The-
orem C43 to the proof of Theorem C37. Finally Section C6
briefly explains how a counterpart to Theorem C37 can be
proved under binding-trail semantics.

C1 Glushkov automaton

A linearisation of an expression R over an alphabet Γ is a
pair ⟨Γ, R′⟩ where

• Γ is a finite set of annotations;

• R′ is an expression over Σ× Γ such that

– every letter in Σ× Γ appears at most once in R′

– f(R′) = R where f is the projection Σ × Γ → Σ on
the first component, lifted to regular expressions.

We denote the letter (a, i) ∈ Σ × Γ as
[
a
i

]
. Classically, one

linearises R using Γ = {1, . . . , n}, where n is the num-
ber of atoms in R, annotating the i-th leftmost atom in R
with i. For instance, the linearisation of b∗(ab∗ab∗)∗ would
be ⟨R′,Γ⟩ with:

R′ =
[
b
1

]∗ ([a
2

][
b
3

]∗[a
4

][
b
5

]∗)∗
Γ = {1, 2, 3, 4, 5}.

Given a regular expression R over an alphabet Σ,
the Glushkov automaton associated with R, denoted by
Gl(R) = ⟨Σ, Q,∆, I, F⟩, is defined as follows from any

linearisation ⟨Γ, R′⟩ of R.

Q = { init} ∪ Σ× Γ (5)

∆ =

{([
a
i

]
, b,
[
b
k

]) ∣∣∣∣ [ai], [bk] ∈ Σ× Γ
∃w,w′ such that w

[
a
i

][
b
k

]
w′ ∈ L(R′))

}
⋃{

(init, a,
[
a
i

]
)

∣∣∣∣ [ai] ∈ Σ× Γ
∃w such that

[
a
i

]
w ∈ L(R′)

}
(6)

I = { init} (7)

F =
{ [

a
i

] ∣∣∃w such that w
[
a
i

]
∈ L(R′)

}
(8)

C2 Topological coding of an automaton
The notion of topological coding is an adaptation to au-
tomata of the notion of topological minor for directed graphs
(Diestel 2012). Topological codings are defined formally in
Definition C38. We give a first intuitive definition below.

Intuitively, B is a topological coding of A if B may be
built from A by the following process:

• for each letter a in ΣA, the alphabet of A, choose a
nonempty word λ(a) over ΣB, the alphabet of B;

• replace each transition (s, q, t) in A by a fresh walk la-
belled by λ(a) that starts at s and ends at t;

• optionally, choose a word ui over ΣB, add a fresh initial
state init, and for each initial state s of A, remove its
initial status and add a fresh walk going from init to s

• optionally, proceed similarly for final states with a
word uf and a fresh final state final;

• then, one may add states and transitions, as long as it does
not create a walk labelled by a word in IM(λ), or a walk
starting from an initial (resp. ending in a final) state la-
belled by ui (resp. uf ).

Given an automaton A, we let Comp(A) denote the set
of computations in A.

Definition C38. We say that B = ⟨ΣB, QB,∆B, IB, FB⟩ is
a topological out-coding ofA = ⟨ΣA, QA,∆A, IA, FA⟩, or
simply a topological coding7 of A, if there exist:

(a) two words ui, uf ∈ Σ∗
B;

(b) an injective function λ : ΣA → Σ+
B

(c) an injective function ν : QA → QB.

7The out- comes from the fact that the definitions of
the W something

B ’s are not symmetric: WB contains the walks going
out of a state...
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and, denoting

W initial
B =

{
w ∈ Comp(B)

∣∣∣∣ SRC(w) ∈ IB
LBL(w) = ui

}
(9)

W transition
B =

{
w ∈ Comp(B)

∣∣∣∣ SRC(w) ∈ IM(ν)
LBL(w) ∈ IM(λ)

}
(10)

W final
B =

{
w ∈ Comp(B)

∣∣∣∣ SRC(w) ∈ IM(ν)
LBL(w) = uf

}
(11)

there exist:

(d) a bijection ηi : IA →W initial
B such that

• for every s ∈ IA, the walk ηi(s) ends in ν(s)

• for every w ∈ IM(ηi) and every state s that appears
in w at a position that is not the last one, then s /∈
IM(ν);

(e) a bijection η : ∆A → W transition
B such that for ev-

ery (s, a, t) in ∆A, the walk w = η((s, a, t)) satisfies:
• η((s, a, t)) starts in ν(s)

• η((s, a, t)) is labelled by λ(a)

• η((s, a, t)) ends in ν(t)

• every internal state8 in η((s, a, t)) is not in IM(ν);

(f) a bijection ηf : FA →W final
B such that

• for every s ∈ FA, the walk ηf (s) ends in FB
• for every w ∈ IM(ηf ) and every state s that appears

in w at a position that is not the first one, then s /∈
IM(ν).

that collectively satisfy:

(g) for every w1, w2 ∈
(

IM(ηi) ∪ IM(η) ∪ IM(ηf )
)
, if w1

and w2 have a transition or an internal state in com-
mon, then w1 = w2.

C3 Properties of a topological coding
In this section, we fix two automata A =
⟨ΣA, QA,∆A, IA, FA⟩ and B = ⟨ΣB, QB,∆B, IB, FB⟩
such that B is a topological out-coding of A and we reuse
the notations of Definition C38.

Remark 39. The properties below follow from the definition
of a topological coding.

(a) The conditions C38 (d) and C38 (e) imply that W transition
B

and W initial
B are disjoint. Indeed, if ui ̸= ε, the first

state in each walk in W transition
B is in IM(ν), while the

first state in each walk in W initial
B is not; and if ui =

ε, all walks in W initial
B has length 0 while all walks

in W transition
B have a positive length since LEN(λ(a)) >

0 for every a ∈ ΣA.
(b) Similarly, W transition

B and W final
B are disjoint.

(c) Similarly, W initial
B and W final

B are disjoint unless ui =
uf = ε and IA ∩ FA ̸= ∅.

As expected, there is a strong correspondence between
computations in an automaton and its topological coding.

8A state in a computation is internal if it appears at a position
that is not the first or the last one.

Lemma C40. Let A and B be two automata such that B is
a topological coding of A.

(a) Let s0
a1−→ s1

a2−→ · · · ak−→ sk be a computation in A.

Then, ν(s0)
λ(a1)−−−→ ν(s1)

λ(a2)−−−→ · · · λ(ak)−−−→ ν(sk) is a
computation in B.

(b) Conversely, let πB be a computation in B of the form

πB = ν(s0)
λ(a1)−−−→ ν(s1)

λ(a2)−−−→ · · · λ(ak)−−−→ ν(sk)

then s0
a1−→ s1

a2−→ · · · ak−→ sk is a computation in A.

Proof. Item (a) follows from condition C38(e) applied to
each transition of ∆A. Item (b) follows from the fact that

each walk ν(si)
λ(ai+1)−−−−−→ ν(si+1) belongs to W transition

B ,
which allows to apply C38(e) and concludes the proof.

Definition C41. Let B be a topological coding of A. Given
a successful computation πA = s0

a1−→ s1
a2−→ · · · ak−→ sk

inA, we call corresponding computation in B, the computa-
tion πB defined as

ηi(s0)︷ ︸︸ ︷
x

ui−→ ν(s0)
λ(a1)−−−→ ν(s1)︸ ︷︷ ︸

η((s0,a1,s1))

λ(a2)−−−→ · · ·

· · · λ(ak−1)−−−−−→ ν(sk−1)
λ(ak)−−−→ ν(sk)︸ ︷︷ ︸

η((sk−1,a1,sk))

ηf (sk)︷ ︸︸ ︷
uf−−→ y

where x = SRC(ηi(s0)) and y = TGT(ηf (sk)).
We show that there is a bijection between successful com-

putations inA and successful computations inB of a specific
shape.
Proposition C42. Let B be a topological coding of A.
(a) Let πA be a successful computation in A, then the cor-

responding computation πB in B is successful.
(b) Let πB be a successful computation in B such

that LBL(πB) = ui λ(u)uf for some u ∈ Σ∗
A. Then

there exists a successful computation inA, of which πB
is the corresponding computation.

(c) For every word u ∈ Σ∗
A, u is accepted by A if and only

if ui λ(u)uf is accepted by B.

Proof. Item (a) follows from Definition C38(d) which en-
sures that SRC(πB) ∈ IB and Definition C38(f) which en-
sures that TGT(πB) ∈ FB.

Item (b). We write u = a1 · · · ak. The computa-
tion πB may be factorised as πB = π0π1 · · ·πkπk+1 with
LBL(π0) = ui, LBL(πk+1) = uf , and for every i, 0 < i ≤
k, LBL(πi) = λ(ai). Since πB is successful, π0 is such that

SRC(π0) ∈ IB and LBL(π0) = ui

which implies that π0 ∈ W initial
B by definition, and

TGT(π0) ∈ IM(ν) from the first item of Condition C38(d).
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Then a simple induction using the third item of Condition
C38(e) yields that for every i, 0 < i ≤ k, πi ∈ W transition

B
and TGT(πi) ∈ IM(ν). Finally since πk+1 is such that

SRC(πk+1) ∈ IM(ν) and LBL(πk+1) = uf

it holds πk+1 ∈ W final
B . We let πA denote the following

computation.

πA = η−1
i (π0) · η−1(π1) · · · η−1(πk) · η−1

f (πk+1)

Conditions C38(d), C38(e) and C38(f) ensure that πA is a
well-defined computation in A and that it is successful.

Item (c) follows directly from (a) and (b).

C4 Main statement
Theorem C43. Let A = ⟨Σ, Q,∆, I, F⟩ be a trim automa-
ton. There exists a regular expression R such that Gl(R) is
a topological coding of A.

Moreover, let m = CARD(∆). The size of R is in O(m2),
there is exactly one Kleene star in R, and the number of
transitions in Gl(R) is in O(m2).

The remainder of section C4 is dedicated to the proof of
Theorem C43.

We write A = ⟨ΣA, QA,∆A, IA, FA⟩ and m =
CARD(∆A). We let G denote any bijection G : ∆A →
{1, . . . ,m}. We let H denote the only bijection H : ∆A →
{1, . . . ,m} that meets the following.

∀e ∈ ∆A, G(e) +H(e) = m+ 1 (12)

For each state q ∈ Q we let Rleft
q and Rright

q denote the
following expressions.

Rleft
q =

if q ∈ IA︷ ︸︸ ︷
ε +

∑
s∈Q, a∈Σ

e=(s,a,q)∈E

G(e) times︷ ︸︸ ︷
a · · · a (13)

Rright
q =

if q ∈ FA︷︸︸︷
ε +

∑
a∈Σ, t∈Q

e=(q,a,t)∈E

H(e) times︷ ︸︸ ︷
a · · · a (14)

Finally, given a fresh letter σ /∈ ΣA, we define the expres-
sion R over ΣA ⊎ {σ } as follows:

R =

∑
q∈Q

Rleft
q · σ ·Rright

q

∗

(15)

Note that for R to be well defined, we need the automatonA
to be trim. Indeed, an automaton that is not accessible might
feature a state q that is not initial and that has no incoming
transition. In that case, the subexpression Rleft

q would be an
empty sum, and the neutral element for the sum of regular
expression is not allowed in our formalism for regular ex-
pressions. A similar phenomenon occurs would A not be
coaccessible.

Now, let us show that Gl(R) is a topological coding of
A. We define a particular linearisation R̄ of R in order to be

able to explicitly state the elements ui, uf , λ, ν, ηi, η and ηf
that realise the the topological coding.

Let ⟨R̄,Γ⟩ be the linearisation of R with R̄ defined as
follows and Γ defined implicitly .

R̄ =

∑
q∈Q

R̄left
q ·

[
σ
q

]
· R̄right

q

∗

(16)

where:

R̄right
q =

if q ∈ FA︷︸︸︷
ε +

∑
a∈Σ, t∈Q

e=(q,a,t)∈E

[
a
e,0

]
· · ·
[

a
e,H(e)−1

]
(17)

R̄left
q =

if q ∈ IA︷ ︸︸ ︷
ε +

∑
s∈Q, a∈Σ

e=(s,a,q)∈E

[
a

e,H(e)

]
· · ·
[

a
e,m

]
(18)

Notice that, in R̄left
q (18), there are indeed G(e) concate-

nated atom in the member of the sum corresponding to tran-
sition e since G(e) +H(e) = m+ 1.

In the following, B = ⟨ΣB, QB,∆B, IB, FB⟩ denotes the
Glushov automaton built from the linearisation ⟨R̄,Γ⟩. In-
tuitively, each state q of A is encoded by the state

[
σ
q

]
of

B.

Using notations from Definition C38, we now prove
that B is a topological coding of A. We define the
words ui, uf as ui = σ and uf = ε and the func-
tion λ, ν, ηi, η, ηf as follows.

λ : ΣA → ΣA ⊎ {σ }
a 7→ am+1σ (19)

ν : QA → QB

q 7→
[
σ
q

]
(20)

ηi : IA → Comp(B)
q 7→ init

σ−→
[
q
σ

]
(21)

η : ∆A → Comp(B)
e 7→

[
σ
q

] a−→
[

a
e,0

] a−→
[

a
e,1

]
· · · a−→

[
a

e,m

] σ−→
[
σ
q′
]

(22)

where e = (q, a, q′)

ηf : FA → Comp(B)
q 7→

[
σ
q

]
(23)

Notice that the image of ηf are computations of length 0,
hence reduced to a single state.

It remains to show that conditions of Definition C38 are
satisfied.
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Conditions C38(a) to C38(c) Condition C38(a) is triv-
ially satisfied, and it is easy to see that λ and ν are injective;
hence Conditions C38(b) and C38(c) hold.

Condition C38(d) Since IB = { init} and ui = σ, it fol-
lows from (9) and (6):

W initial
B = {w ∈ Comp(B) | SRC(w) ∈ IB and LBL(w) = ui }

=

{
init

σ−→
[
σ
q

] ∣∣∣∣ q ∈ QA
ε ∈ L(R̄left

q )

}
=
{
init

σ−→
[
σ
q

] ∣∣∣ q ∈ IA

}
= IM(ηi)

Hence ηi is a bijection IA → W initial
B . Then, it may be veri-

fied that Condition C38(d) is met by definition.

Condition C38(e) Showing this condition amounts to
showing the following.

W transition
B = IM(η) (24)

Indeed, all other requirements follow from the definition
of η. It is clear that IM(η) ⊆ W transition

B so let us show the
other direction. Let w ∈W transition

B , hence

• there exists q1 ∈ QA such that SRC(w) =
[
σ
q1

]
• there exists a ∈ ΣA such that LBL(w) = am+1σ

• since LBL(w) ends with the letter σ, there exists q2 ∈ QA
such that TGT(w) =

[
σ
q2

]
.

Thus, the computation w is of the form w = w1w2w3 with
LBL(w1) ∈ L(R̄right

q1 ), LBL(w2) ∈ L(R̄left
q2 ) and LBL(w3) =

σ. Let ℓ1, ℓ2 ∈ N such that LBL(w1) = aℓ1 and LBL(w2) =
aℓ2 .

If ℓ1 > 0 and ℓ2 > 0, there exist e1 = (q1, a, t) ∈ ∆A
and e2 = (s, a, q2) ∈ ∆A that satisfy:

w =
[
σ
q

]
−→
[

a
e1,0

] a−→
[

a
e1,1

] a−→ · · ·

· · · a−→
[

a
e1,H(e1)−1

] a−→
[

a
e2,H(e2)

] a−→
[

a
e2,H(e2)+1

] a−→ · · ·

· · · a−→
[

a
e2,m

] σ−→
[
σ
q′
]

The only way for the label of w to be am+1σ is if H(e1) =
H(e2), that is if e1 = e2. It follows that (q1, a, q2) ∈ ∆A
and one may verify that w = η((q1, a, q2)).

Otherwise, if ℓ1 = 0, then ℓ2 = m + 1. This is a con-
tradiction with LBL(w2) ∈ L(R̄left

q2 ) because all words in
L(R̄left

q2 ) are of length at most m. The case where ℓ2 = 0 is
impossible for similar reasons.

Condition C38(f) Since uf = ε, Condition C38(f)
amounts to showing that

{ [
σ
q

] ∣∣ q ∈ FA
}
⊆ FB. It is true

from the definition of R̄: indeed ε ∈ L(R̄right
q ) if and only

if q ∈ FA.

Condition C38 (g) Let w1, w2 ∈
(

IM(ηi) ∪ IM(η) ∪
IM(ηf )

)
such that w1 and w2 have a transition or an inter-

nal state in common. The walks in IM(ηf ) have no transi-
tions nor internal states, hence w1, w2 ∈

(
IM(ηi) ∪ IM(η)).

Since the walks in IM(ηi) consists of a single transition and
that transition is never used by any walk in IM(η), then ei-
ther w1, w2 ∈ IM(ηi) or w1, w2 ∈ IM(η). If w1, w2 ∈
IM(ηi), by hypothesis w1 and w2 have a transition in com-
mon (since they don’t have internal states) hence w1 =
w2. Let us now treat the case where w1, w2 ∈ IM(η).
If w1 and w2 have an internal state in common

[
a
e,i

]
for

some a ∈ ΣA, e ∈ ∆A and i ∈ {0, . . . ,m}, which implies
that w1 = w2 = η(e). Otherwise, w1 and w2 have a transi-
tion in common, and since they are both of length m + 2 it
also means that they have an internal state in common and
we may apply the previous case.

This concludes the proof of the main statement of Theo-
rem C43. We now show the second part.
Lemma C44. In R there are exactly (CARD(Q) +m(m+
1)) atoms and (CARD(I) + CARD(F )) occurrences of ε.

Proof. Let e = (s, a, t) ∈ ∆A. It gives rise to two subex-
pressions in RA: aH(e) in Rright

s and aG(e) in Rleft
t . In total,

H(e) + G(e) = m + 1 atoms. Moreover, there are exactly
CARD(Q) occurrences of σ and (CARD(I)+CARD(F )) oc-
currences of ε.

SinceA is trim, CARD(Q) ≤ m hence Lemma C44 yields
that the size of R is in O(m2).
Lemma C45. The only states in Gl(R) that have more than
one outgoing edges are in

IM(ν) ∪
{ [

a
e,H(e)−1

] ∣∣ e ∈ ∆A and a = LBL(e)
}

(25)

The only states in Gl(R) that have more than one incom-
ing edges are in

IM(ν) ∪
{ [

a
e,H(e)

] ∣∣ e ∈ ∆A and a = LBL(e)
}

(26)

Corollary C46. The number of transitions in Gl(R) is
in O(m2).

C5 Application of Theorem C43 to the proof
of Theorem C37

Theorem C37 follows from Theorems 24 and C43, together
with the next proposition. Note that the database in the
proof of Theorem 23 is simply-labelled: We say that a
database D = (Σ, V, E, SRC, TGT, LBL) is simply-labelled
if CARD(LBL(v)) = 1 for every v ∈ V .
Proposition C47. LetA and B be two automata such that B
is a topological coding of A. Let D be a simply-labelled
database and w a walk in D. There exists a simply-labelled
database D′ and a walk w′ such that WALK MEMBERSHIP
returns true on D,w,A if and only if WALK MEMBERSHIP
returns true on D′, w′,B.

Proof. We reuse notation from Definition C38
for ui, uf , λ, ν, ηi, η, ηf . The database D′ =
(ΣB, V

′, E′, SRC′, TGT′, LBL′) is built from the
database D = (ΣA, V, E, SRC, TGT, LBL) as follows:
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• V ′ contains V
• each edge e ∈ E is replaced in D′ by a walk we with

label λ(LBL(e)): LEN(λ(i)) fresh edges are added to
E′ and LEN(λ(i)) − 1 fresh nodes are added to V ′ for
each e ∈ E.

• we add in D′ one walk wi from a fresh node S to SRC(w)
and one walk wf from TGT(w) to a fresh node T :

wi = S ui−→ src(w)

wf = TGT(w)
uf−−→ T

That is (LEN(ui) + LEN(uf )) fresh nodes and edges.

The walk w′ is built from w as follows: we let e1, e2, . . . , ek
be the edges in w and:

w′ = wi · we1 · we2 · · ·wek · wf

Assume that there is r ∈ JAKSR(D) such that πD(r) =
w. In the following, we denote the vertices in the run
database in column to improve readability; typically (n, s)

is written
〈
n
s

〉
. We denote r and w as follows.

r =

〈
n0

s0

〉
a1−→
〈
n1

s1

〉
a2−→ · · · ak−→

〈
nk

sk

〉
(27)

w = (n0, e1, n1, · · · , ek, nk) (28)

with s0 ∈ IA and s0 ∈ FA. Hence πA, below, is a success-
ful computation in A.

πA = s0
a1−→ s1

a2−→ · · · ak−→ sk (29)
We denote:

∀i, 0 < i ≤ k, δi = (ni−1, ai, ni) (30)

Hence the corresponding computation (Definition C41), de-
noted by πB and given below, is successful in B (from
Lemma C42(a)).

ηi(s0)︷ ︸︸ ︷
x

ui−→ ν(s0)
λ(a1)−−−→ ν(s1)︸ ︷︷ ︸
η(δ1)

λ(a2)−−−→ · · ·

· · · λ(ak−1)−−−−−→ ν(sk−1)
λ(ak)−−−→ ν(sk)︸ ︷︷ ︸

η(δk)

ηf (sk)︷ ︸︸ ︷
uf−−→ y

where x = SRC(i(s0)) and y = TGT(f(sk)). Hence r′,
defined below, is a run in D′ × B.

r′ =

〈
S
x

〉
wi−−−−→

ηi(s0)

〈
n0

ν(s0)

〉
we1−−−→
η(δ1)

〈
n1

ν(s1)

〉
· · ·

wek−−−→
η(δk)

〈
nk

ν(sk)

〉
wf−−−−→

ηf (sk)

〈
T
y

〉

It remains to show that r′ is simple. We assume that it is
not simple for the sake of contradiction; let N,M be two
vertices in r′ such that N = M .

(1) If N =

〈
S
x

〉
then no vertex M can be equal to it

since S is a fresh vertex in D′: it does not occur in wi or wf ,
nor in any wej .

(2) The three following cases are treated in the same way:

(2a) N =

〈
T
y

〉
; (2b) N is an internal node of wi−−−−→

ηi(s0)
; and

(2c) N is an internal node of
wf−−−−→

ηf (sk)
.

(3) Case where N =

〈
ni

ν(si)

〉
and M =

〈
nj

ν(sj)

〉
for

some i, j. Since ν is a bijection, N = M implies
〈
ni

si

〉
=〈

nj

sj

〉
, hence i = j since r is simple.

(4) Case where N is an internal vertex in
wei−−−→
η(δi)

for some i

and M is an internal vertex in
wej−−−→
η(δj)

for some j. It im-

plies that η(δi) and η(δj) have an internal state in common,
hence that η(δi) = η(δj) from Definition C38(g), hence
that ν(si) = ν(sj). Similarly, the internal vertices in wei
and wej were created fresh, hence wei = wej . It follows
that ni = nj .

Finally, we have
〈

ni

ν(si)

〉
=

〈
nj

ν(sj)

〉
and we apply case

(3).

(5) The last case is where, for some i, j, N is an internal

vertex in
wei−−−→
η(δi)

and M =

〈
nj

ν(sj)

〉
. It would implies that

an internal node in wei , which is a fresh node in D′, is equal
to nj , which was already in D, a contradiction.

It remains to show the converse: the existence of a sim-
ple run r in D′ × B implies the existence of a simple run r′

in D × A. We use Lemma C42(b) to build a successful
computation in A from the successful computation in B un-
derlying r, and then we build a run r′ ∈ D × A. In that
direction, showing that r′ is simple is directly implied by
the fact that r is simple.

C6 About Proposition 29
The technique developed earlier in appendix C allows to
prove Proposition 29, recalled below.

Proposition 29. TUPLE MEMBERSHIP, TUPLE MULTI-
PLICITY, QUERY EVALUATION and WALK MEMBERSHIP
are computationally equivalent under binding-trail seman-
tics and under simple-run semantics.
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Indeed, binding trail semantics is closely linked to the
Glushkov automaton, and we show next how to use The-
orem C37 to show one of reductions required for Propo-
sition 29. Other reductions require similar classical graph
techniques.
Proposition C48. There exists a fixed expression R such
that WALK MEMBERSHIP is NP-hard for binding-trail se-
mantics.

Proof. Let R be the expression and D =
(Σ, V, E, SRC, TGT, LBL) the database given by Theo-
rem C37. Let D′ be the database constructed from D
by splitting vertices in order for every vertex in D′

to have at most one incoming transition. More pre-
cisely D′ = (Σ, V ′ ∪ V,E′ ∪ E, SRC′, TGT′, LBL′)
where

• V ′ = { (e, v) ∈ E × V | TGT(e) = v };
• E′ = { ((e, v), e′) ∈ V ′ × E | SRC(e′) = v };
• SRC′(((e, v), e′)) = (e, v); SRC′(e) = SRC(e);
• TGT′(((e, v), e′)) = (e′, TGT(e′)); TGT′(e) =
(e, TGT(e));

• LBL′(((e, v), e′)) = LBL(e′); SRC′(e) = SRC(e).

The simple runs in D × Gl(R) are in bijection
with the binding trails in D matching R that start
with an edge in E. Indeed, the simple-run r =
((v0, s0), (e1, t1), (v1, s1), . . . , (en, tn), (vn, sn)) in D ×
Gl(R) is associated with: (f1, α1) · · · (fn, αn), where

• f1 = e1, fi = ((ei−1) for every i, 1 < i ≤ n; and
• αn is the letter labelling transition tn for every i, 0 < i ≤
n.

One may verify that tfae

• (fi, αi) = (fj , αj)

• (vi, si) = (vj , sj)

Note also that (v0, s0) = (vi, si) implies i = 0: the state s0
is necessarily the special initial state from the Glushkov
Construction and thus has no incoming transition.
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Appendix D: Proof of Theorem 32

The purpose of Appendix D is to show Theorem 32, re-
stated below.
Theorem 32. WALK MEMBERSHIP is in PTIME under
binding-trail semantics when restricted to expressions with
no concatenation under star. The same holds under simple-
run semantics when queries are restricted to the Glushkov
automata of such expressions.

We only show the statement for Glushkov automaton; the
proof is similar for binding-trail semantics.

First, Lemma D49 states that as soon as we don’t allow
concatenation under star, the expression may be simplified
syntactically.
Lemma D49. Let R be an expression with no concatenation
under star. Then,
• deleting all stars that are nested inside another star,
• deleting every occurrence of ε that appears inside a star
yields an expression R′ such that Gl(R) = Gl(R′).

Lemma D49 describes a much simplified version of
the algorithm to put an expression in star-normal form
(Brügemann-Klein 1993; Sakarovitch 2021).
Proposition D50. WALK MEMBERSHIP under simple-run
semantics is in P-time if the input is A = Gl(R) where R is
an expression with no concatenation under star.

Proof. Let R be an expression with no concatenation un-
der star. From Lemma D49, we may assume that R
has no star nor occurrence of ε inside a star. Let w =
(n0, e1, n1, . . . , em, nm) be a walk in the database D =
(Σ, V, E, SRC, TGT, LBL).

The general strategy is to compute inductively the set SX

given below, for each subexpression X of R.

SX =

{
(i, j)

∣∣∣∣ 0 ≤ i ≤ j ≤ m
(ni, ei+1, . . . , nj) ∈ JGl(X)KSR(D)

}
First, SX·Y and SX+Y are easy to compute in polynomial

time from SX and SY . Second, Sε = { (i, i) | 0 ≤ i ≤ m }
and, for each a ∈ Σ Sa = { (i, i + 1) | 0 ≤ i < m and a ∈
LBL(ei+1) } is built in linear time. The remainder of the
proof is about the last case, that is where X = (a1 + · · · +
an)

∗, for some atoms a1, . . . , an. Note that it is possible
that ai = aj for some i ̸= j.

We build SX by testing whether (ℓ, k) ∈ SX for each
ℓ, k such that 0 ≤ ℓ ≤ k ≤ m. We now describe a poly-
nomial time algorithm to test whether (ℓ, k) ∈ SX . For
each vertex v in w, we let Iv denote the set Iv =

{
i ∈

{ℓ, . . . , k − 1}
∣∣ TGT(ei) = v

}
. Consider the following

undirected graph Hv = (V,U)

• V contains CARD(Iv)+n vertices, one vertex Pi for each
position i in Iv , plus one vertex Aj for each atom aj :

V = {Pi | i ∈ Iv } ∪ {Aj | 0 < j ≤ n }

• U contains an edge between Pi and Aj if and only if aj is
a label of ei:

U =

{
(Pi, Aj)

∣∣∣∣∣ i ∈ Iv
0 < j ≤ n
aj ∈ LBL(ei)

}
Note that Hv is a bipartite graph. We may then use a
classical algorithm to compute the maximal matching Mv

of Hv in polynomial time (Cormen et al. 2009, Sec-
tion 26.3)(Hopcroft and Karp 1973).

Then, one may use the different Mv’s to test whether
(ℓ, k) ∈ SX , as stated below.

Claim D50.1. The following are equivalent.

(a) For each i, ℓ < i ≤ k, CARD(Mni) = CARD(Ini);
(b) (ℓ, k) ∈ SX .

Proof of Claim D50.1. (a) ⇒ (b). Let us consider the au-
tomaton Gl(X). It has (n + 1) states: one initial state q0,
plus one state qj for each atom aj , 1 ≤ j ≤ n. All states
are final. It has (n+1)n transitions: (qi, aj , qj) for each i, j
such that 0 ≤ i ≤ n and 0 < j ≤ n.

Let us construct a run r such that πD(r) =
(nℓ, eℓ+1, . . . , nk). It is defined by

r =

〈
nℓ

sℓ

〉
eℓ+1−−−→
bℓ+1

〈
nℓ+1

sℓ+1

〉
eℓ+2−−−→
bℓ+2

· · · ek−→
bk

〈
nk

sk

〉
where sℓ = q0 and for every i, ℓ < i ≤ k, we set si = qj ,
and bi = aj , where j is the index of the vertex Aj matched

to vertex Pi in Mni
. By construction sℓ

bℓ+1−−−→ · · · bk−→ sk is
an (accepting) computation in Gl(X). For the sake of con-
tradiction, assume that r is not simple. There exists i, i′, j
such that ni = ni′ and si = si′ = qj hence by definition,
Aj is matched to both Pi and P ′

i in the matching Mni , a
contradiction.

The proof of (b)⇒ (a) is similar: the construction of the
run from the matchings is actually bijective. (The matchings
built from the run are necessarily maximal since they use all
Pi’s.)

In order to compute SX , we use the algorithm above for
each pair (k, ℓ), 0 ≤ k < ℓ ≤ m; which results in a poly-
nomial time algorithm overall. The number of subexpres-
sions of R are in polynomial number so computing all SX ’s
may be done in polynomial time, and then one simply has to
check that SR contains (0,m).
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