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lucas.maison at univ-avignon.fr

Marcely Zanon Boito
Laboratoire Informatique

d’Avignon (LIA)
Avignon Université
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Abstract—Self-supervised learning (SSL) has recently been
successfully introduced as a training strategy for Transformer-
based neural models. Thanks to this approach, these models
are now able to construct speech representations by using only
audio data, without any manual labels (i.e. no supervision). Once
trained, they can be leveraged for training competitive end-
to-end models for speech processing with smaller amounts of
annotated data. Moreover, when the available annotated data is
plenty, automatic speech recognition (ASR) and translation (AST)
systems based on these SSL models are now the new state of
the art. In this work, we are interested in their application in
challenging settings that are relevant for security. We measure
the robustness of a French-based SSL model to African accent,
and we present some promising but limited results for speech
translation without the use of transcriptions.

Index Terms—automatic speech recognition, speech transla-
tion, self-supervised learning, speech processing, security

I. INTRODUCTION

Speech recognition has been dominated by data-driven
approaches for almost four decades. From the 80s until a
few years ago, automatic speech recognition (ASR) systems
were based on the use of three kinds of knowledge. The first
one was captured by the acoustic models, usually based on
a Hidden Markov Model (HMM) combined to a Gaussian
Mixture Model (GMM) or more recently to a Deep Neu-
ral Network (DNN). The acoustic models were designed to
compute the likelihood of the presence of a phoneme (the
speech unit that discriminates a word in a language) according
to the audio signal. The second knowledge was represented
by a pronunciation dictionary, in order to map a sequence
of phonemes to one or several words. The last knowledge
was captured by a language model, in order to compute the
probability to observe a sequence of words in a language.

At that time, acoustic and language models were mainly
statistical models, and that is why we say that such approaches
are data-driven. To get such models accurate and robust, a large
amount of training data is needed, following the “there is no
better data than more data” paradigm. During the last decade,
DNNs for both acoustic and language models have replaced
the GMMs, and neural end-to-end approaches eliminated the
HMMs, but the need for data remained, at least, the same.

Among this data, the most important modality is having
speech audio data with its manual transcription. This paired

audio/text data is necessary to train ASR systems. It is also a
very costly data that can be rare for many languages.

Self-supervised Learning (SSL) has been recently proposed
as an interesting alternative for data representation learning.
Proven useful learned representations can be found both in
vision [1], [2] and in NLP [3], [4]. The attractiveness of SSL
in general, and SSL from speech in particular, is that it can
leverage huge amounts of unannotated data, which is cheaper
than the audio/text data used by classical systems. This lever-
aging can be done by resolving pseudo-tasks, which do not
require human annotation, as pre-training a feature extractor,
which is then used to extract useful speech representations for
the real (downstream) tasks. The two most commonly used
approaches for SSL from speech are Autoregressive Predictive
Coding (APC) and Contrastive Predictive Coding (CPC). The
former’s pseudo-task is considering the sequential structure
of speech, and predicting information about a future frame
[5], [6], whereas the latter’s consists of distinguishing a future
speech frame from distractor samples [7]–[9] which is an
easier learning objective compared to APC. These repre-
sentations have been proven to improve the performance in
several speech tasks [10], while being less sensitive to domain
and/or language mismatch [11] and being transferable to other
languages [12].

SSL opens new perspectives to build and deploy ASR
for low-resource languages, or low-resource domains. Such
an approach speeds up the creation of a new ASR system,
and reduces its cost, since a significantly smaller amount
of annotated data is necessary to get competitive results in
comparison to the previous state of the art.

Speech recognition can be involved in many tasks for
security purposes. It is also the case for speech translation,
on which SSL is also useful, especially for neural end-to-end
architectures.

This paper discusses current limitations of the wav2vec 2.0
models, focusing on two applications relevant for security:
automatic speech recognition (ASR) and automatic speech
translation (AST). It is organized as follows: Section II
presents a high-level summarization of the technology behind
these SSL models. Section III discusses their application
to ASR, especially to process accented French. Section IV
discusses their application to AST in an extreme low resource
scenario. Section V presents our final remarks.



II. SELF-SUPERVISED MODELS FOR SPEECH: THE
WAV2VEC 2.0 ARCHITECTURE

Fig. 1. Illustration of the wav2vec 2.0 framework (left), which jointly learns
contextualized speech representations and an inventory of discretized speech
units during pre-training on unlabeled data. The fine-tuning step (right) can
be applied to different tasks on labeled data. Illustration adapted from [13]

The wav2vec 2.0 proposed by [14] is an extension of
[8], [9], [15]. Depicted in Figure 1, it consists of a multi-
layer convolutional feature encoder genc : X → Z , which
transforms raw input audio x into latent speech representations
z = {z1, z2, ..., zT } for T time-steps. These latent features
are then fed into a Transformer g : Z → C for building
contextualized representations c = {c1, c2, ..., cT } that capture
the information of the whole sequence.

The wav2vec 2.0 also performs discretization on the output
of the feature encoder zt to qt by using a quantization
module Z → Q. The model’s Transformer network learns
contextualized representations directly from continuous speech
representations (z) via time-step masking and a contrastive
task (CPC) which identifies the true quantized latent audio
representation in a set of distractors for each masked time
step. This consequently allows [14] to train wav2vec 2.0 in
an end-to-end fashion, in which all its components are trained
jointly toward minimizing an objective (Equations 1, 2, 3).

L = Lm + αLd (1)

Lm = − log
exp(sim(ct, qt)/κ)∑

q̃∼Qt
exp(sim(ct, q̃)/κ)

(2)

Ld =
1

GV

G∑
g=1

−H(p̄g) =
1

GV

G∑
g=1

V∑
v=1

p̄g,v log p̄g,v (3)

In Equation 1, the training objective is defined as the sum
of two components:

• Contrastive Loss Lm which is defined in Equation 2.
Particularly, given ct centered over the masked time step
t, the model is trained to contrast the true quantized latent
speech representation qt from K quantized latent distrac-
tors q̃ ∈ Qt uniformly sampled from other masked time
steps of the same utterance. sim(a, b) = a⊤b/||a||||b|| is
the cosine similarity between context representations ct
and quantized latent speech representations qt.

• Diversity Loss Ld which is defined in Equation 3. It
helps to increase the use of the quantized codebook
representations, encouraging the model to equally use all
the V entries in each of G codebooks by maximizing
the entropy of the averaged softmax distribution over the
codebook entries for each codebook p̄g across a batch of
utterances. In Equation 1, Ld is scaled by α, which is a
tunable hyperparameter.

Masking: time-step masking mentioned earlier is done by
randomly sampling without replacement a certain proportion
p of all time steps to be starting indices and then mask the
subsequent M consecutive time steps for every sampled index.
Note that spans may overlap, and inputs to the quantization
module are not masked.

Fine-tuning: the wav2vec 2.0 framework also allows fine-
tuning the pre-trained model directly on ASR (or AST,
or speech classification) labeled data by stacking a linear
projection layer initialized randomly on top of the context
network. Fine-tuned models are optimized by minimizing a
Connectionist Temporal Classification (CTC) loss. It has been
shown [14] that fine-tuning even on only 10 minutes of labeled
training data (48 recordings of 12.5 seconds on average) helps
achieve a respective Word Error Rate (WER) of 4.8% and
8.2% on the test-clean and test-other sets of the Librispeech
corpus (read speech).

III. ASR APPLICATION:
FROM STANDARD TO ACCENTED SPEECH

In recent years, huge progress has been achieved in the
domain of automatic speech recognition (ASR). Neural models
now reach human performance on the English ASR task: best
systems reach a Word Error Rate (WER) of 5.8% and 11%
on Switchboard and CallHome datasets respectively, whereas
performance of human annotators is estimated to be around
5.9% and 11.9% [16].

However, it has been shown that the performance of these
models can decrease drastically when they are used in new
or non-ideal conditions. For example, a noisy environment or
the accent of a speaker can both impact the quality of the
transcription [17], [18]. It is important to study the robustness
of systems to such conditions, because these are likely to be
encountered in real settings. Furthermore, support of accented
speech is mandatory if one aspire to build an inclusive,
general-purpose ASR system. It could also be of interest for
security or intelligence agencies wanting to support a large
spectrum of accents. In this section, we focus on the case of
accented speech in French, presenting results for ASR models
trained on standard and accented French speech.

A. Models and datasets

Focusing on the French language, the LeBenchmark initia-
tive [19], [20] is a proeminent work in the area of SSL bench-
marking. It provides evaluation recipes for four downstream
tasks (ASR, AST, automatic emotion recognition, spoken
language understanding) alongside with wav2vec 2.0 models



Fig. 2. ASR results (WER, the lower the better) over the two test sets for
models fine-tuned on CommonVoice.

of various sizes, and pre-trained using different amounts of
speech audio.

For our ASR models, we use the following models from
the LeBenchmark: LB-1K-base/large, LB-2.7K-base, LB-3K-
base/large, and LB-7K-base/large, which were pre-trained on
respectively 1,096, 2,773, 2,933 and 7,739 hours of French
audio [20]. The “base” refers to the standard model archi-
tecture from [14] that has 95 millions parameters, while the
“large” refers to their larger architecture that presents greater
capacity (317 millions parameters).

In addition to these French models, two multilingual models
were tested. The first one, Niger-Mali [21], is a base model
pre-trained on 641 h of speech in 5 languages, including 111 h
of accented French. The second one, XLSR-53 [22], is a large
model pre-trained on 56k hours of speech in 53 languages,
including 1,429 h of French.

Each pre-trained wav2vec 2.0 model acts as a speech
encoder, which is optimized for the ASR task together with an
additional feed-forward network. This head network consists
of three linear layers with 768 or 1,024 neurons for a base
or large model, respectively. Each linear layer is followed
by batch normalization and a Leaky ReLU [23] activation
function. We use dropout with p = 0.15 between each linear
layer. At last, a final linear layer projects the output into token
space, and log-softmax is applied to obtain probabilities of
each token. We use individual characters as tokens. Note that
we do not apply any language model besides our end-to-end
model.

We employ the SpeechBrain [24] toolkit for all our
experiments. All models are fine-tuned during 50 epochs using
the CTC loss, and Adam [25] and Adadelta [26] optimizers
are used to update the weights, one for the wav2vec 2.0 model
and one for the additional top layers.

We use two different datasets in this study. The first one
is the French subset of CommonVoice (CV) 3.0 [27] that

Fig. 3. ASR results (WER, the lower the better) over the two test sets for
models fine-tuned on African Accented French.

comprises 56 h of recordings. It represents our reference
dataset of unaccented speech. The second one is the African
Accented French (AAF) dataset [28]. It is composed of 13 h of
speech 1. Speakers are from Cameroon, Chad, Congo, Gabon
and Niger, and they speak French with a strong African accent.
It should be noted that this latter dataset was used as part of
the pre-training data for the following LeBenchmark models:
LB-3K-base/large, LB-7K-base/large.

B. Fine-tuning ASR models: from non-accented to accented
speech

To assess the robustness of the pre-trained wav2vec 2.0
models with respect to accent variability, we fine-tune each
model on the train split of CV. Then, we evaluate the
resulting models on both the test split of CV and AAF.
Results are shown on Figure 2. The trend we observe is that,
the more speech data we use for pre-training, the best the
model performs, meaning that it better specialized its speech
representations.

We also notice that, thanks to their increased capacity,
“large” models perform much better than “base” ones. More-
over, multilingual models perform rather badly when com-
pared with French models trained with similar amounts of
speech. The best model (LB-7K-large) obtains a WER of
9.37% on CV, which is comparable to the best scores reported
in [20] on the same dataset (CV). However, this same model
scores 20.47% on AAF. Moreover, all the tested models follow
a similar trend, with a WER that doubles on AAF compared
to CV. This means that these models are likely to make twice
as many transcription errors when used by non-native speakers
rather than native speakers.

In order to improve the robustness of the models on accented
speech, we restart the experiment and fine-tune each pre-

1The original dataset is larger, but we excluded portions containing anno-
tation errors.



Fig. 4. ASR results (WER, the lower the better) over the two test sets for
models fine-tuned on a mixed dataset (CV+AAF).

trained model on the train split of AAF, and evaluate the
resulting models on the same test sets as before. We can see
on Figure 3 that doing so greatly reduce the WER on AAF
(-75% on average), with our best model now scoring 5.72%.
However, this large improvement comes at the cost of a similar
performance degradation on CV (+282% on average). This
demonstrates that fine-tuning directly on accented speech is
beneficial if we desire to transcribe a particular accent, but
should not be done if the goal is to build an all-purpose system.

Finally, we created a mixed dataset of accented and native
speech by taking the full AAF training set and an equal
amount of speech from the CV training set. We use this
new dataset to fine-tune the models. Results of evaluation
are shown on Figure 4. We can see that fine-tuning on this
mixed dataset allows the models to reach good performance on
both accented and non-accented speech. Our best model scores
12.38% and 5.47% on CV and AAF respectively. Compared to
the models fine-tuned on CV only, these models reach much
lower WER on AAF (-75% on average), while only suffering
mild performance degradation on CV (+32% on average).

C. Discussion of results

It may seem surprising that the “Niger-Mali” model does not
obtain a good performance despite being pre-trained on a large
amount of accented French. We believe that the most important
factor contributing to low WER is the amount of French audio
in the pre-training dataset. The Niger-Mali model is the one
with the lowest quantity of French seen during pre-training
(111 h), thus explaining its poor score.

The presence of accented French in the pre-training dataset
may still play an important role: we can see on Figures 2, 3,
and 4 that LB-3K-base is achieving slightly better results on
AAF compared to LB-2.7K-base, the main difference between
these two models being the presence of accented speech in the
pre-training dataset of the former.

The second multilingual model has been pre-trained on
much more data (56k hours), but only 1,429 h of French.
Its scores no better than the other large models pre-trained
on much smaller (but French only) datasets. This seems
to indicate that multilingual models, despite obtaining good
performances on a variety of languages, are not suited for
recognizing accented speech.

In summary, in this section we illustrated existing limi-
tations of ASR models for transcribing accented speech in
French. We experimented with two multilingual wav2vec 2.0
models, and seven French models, comparing the performance
of obtained ASR systems in standard and accented French
speech. We find that models fine-tuned on native speech only
are not robusts to accent variation, but that incorporating
accented data in the fine-tuning dataset greatly improve ro-
bustness.

IV. AST APPLICATION:
SSL MODELS FOR LOW-RESOURCE END-TO-END AST

Traditionally, the speech translation task is defined in a
cascaded fashion: the speech is first transcribed by an ASR
model, and then a text-to-text machine translation (MT)
module produces the final translation in the target language.
The limitations of this approach for AST includes the error
propagation between the ASR and MT modules, the omission
of speech cues that could disambiguate the information given
to the MT module, and the need for both a considerable
amount of transcribed and translated data.

Going beyond the practical time and money constrains for
producing this data in non-mainstream languages in order to
train and deploy cascaded systems, and the cost of training the
systems themselves, it is also important to be aware that not
all languages present a standard written form. Indeed, most
of the world’s languages are not actively written, even the
ones with an official writing system [29]: these are called oral
languages.

This is one reason behind the recent motivation of the
speech community to investigate end-to-end approaches for
AST [30], [31]. We define end-to-end AST as a single opti-
mized model that receives as input speech and produces as
output textual translations. Optionally, these models can be
jointly optimized for producing transcriptions as well, when
these are available during training. This joint training was
shown to increase translation performance [32], [33].

In this section we shed light on some limitations of SSL-
based end-to-end AST models for processing oral-languages,
for which the amount of available data is limited. This is
relevant in the context of security because a government or an
organization might aim to deploy AST models for minority
or dialect languages in areas of particular interest. In these
cases, the amount of available data is usually limited. Ideal
AST systems for security should thus be able to work in low-
resource settings.

This section is organized as follows. We first validate
our AST architecture by producing results for three lan-
guage pairs in the mTEDx dataset [34] (Section IV-A).



TABLE I
STASTISTICS FOR THE MTEDX FR-{EN,ES,PT} DATASET.

train valid testen es pt
# spk duration # spk duration # spk duration # spk duration # spk duration
250 45:04 196 32:30 112 20:01 12 1:38 10 1:33

Fig. 5. AST results (BLEU scores, the higher the better) over the test set for
the three language pairs, and using the base and large wav2vec 2.0 models.

These languages have decreasing amounts of available parallel
data: French-English (48 h), French-Spanish (35 h), French-
Portuguese (23 h).

Having defined these mid-to-low-resource baselines, in Sec-
tion IV-B, we explore the case of the Tamasheq dataset pre-
sented in this year’s IWSLT campaign [35]. The challenge is
producing translation, without available transcription, having
only 17 hours of speech in Tamasheq aligned to French
translations. In this case, we illustrate how general purpose
SSL models fail to produce exploitable representations. Lastly,
in Section IV-C we summarize our findings on the use of SSL
models for low-resource end-to-end AST.

A. AST in mid-to-low-resource settings

The presented end-to-end AST models are similar to the
end-to-end ASR model architecture presented in Section III.
They are implemented on SpeechBrain [24], being made
of a wav2vec 2.0 as a foundation block, followed by a linear
projection, and a Transformer Decoder [36]. The weights for
the wav2vec 2.0 speech encoder block are initialized from the
pre-trained SSL models available in the LeBenchmark model
collection [19], [20].2 The model is trained on the negative
log likelihood loss, and two different instances of the Adam
optimizer manage the weight updates: one dedicated to the
wav2vec 2.0 block, the other one to the following layers.

As aforementioned, we train mid-to-low-resource baselines
using the mTEDx dataset. We use as source the French
language (speech), and as target languages (text): English (en),
Spanish (es) and Portuguese (pt). The resulting language pairs
share validation and test sets, but they vary on the amount of
available training data. This information (duration), together
with the number of speakers (# spk), is presented in Table I.

2Available at https://huggingface.co/LeBenchmark

Figure 5 presents the AST results3 using the three language
pairs, and three different wav2vec 2.0 models: LB-1K, LB-3K
and LB-7K. These models differ on the amount of training
data used during SSL pre-training, with 1K corresponding to
approximately 1,000 hours of speech. For each model, we
experiment with both base and large architecture sizes.4

Looking at the results using base wav2vec 2.0 models (Fig-
ure 5, darker bars), we notice that AST models trained in all
language pairs benefit from having SSL wav2vec 2.0 models
trained using more data: using LB-7K-base and LB-3K-base
as foundation blocks seem to be clearly superior compared
to AST models that used LB-1K-base. We however, do not
observe a very clear distinction between LB-7K-base and
LB-3K-base, which might be due to the wav2vec 2.0 model
reaching the limits of its own capacity [20].

Focusing on the large models (Figure 5, brighter bars), we
notice that the trend is not the same for all languages. For
English, it seems to still exist some benefit on employing these
larger models, compared to their base counterparts: BLEU
scores are higher or equivalent. For the other two languages,
we notice that performance using large models is inferior to
the one reached by their base counterparts.

For these languages, we have less training examples com-
pared to English: for Spanish we have only 35 h, and for
Portuguese only 23 h. We thus believe that this discrepancy
in performance between base and large models for these
languages might be related to the amount of available data,
since for large wav2vec 2.0 models we have an additional
221.2 million trainable parameters.5 The lack of available data
might result on these extra parameters not being properly
fine-tuned, thus resulting in the observed deterioration in
performance. We believe that the fine-tuning of base models
might be more realistic in settings of data scarcity, as the
overhead caused by the extra parameters in large architectures
seem to be excessive for models working with less than 50
hours of speech.

Finally, it is also important to highlight that the results
obtained for our baselines in this work are considerably higher
compared to results obtained with AST models trained without
SSL models as a foundation block. In [34], and for the same
dataset, they reach BLEU scores of 8.9, 10.6 and 7.9 for
English, Spanish and Portuguese respectively.

Summarizing, in this section we presented end-to-end AST
models in mid-to-low-resource settings. For the language
pair with the most available speech data (fr-en) we observe
benefits on having large pre-trained SSL models, and we reach
acceptable BLEU scores compared to the literature [38], [39].
This finding however does not hold as we reduce the amount
of trainable data: even 35 h in Spanish seems not to be enough
to fully fine-tune a large wav2vec 2.0 architecture, and results
for large models drag behind the results for base models.

3BLEU4 scores computed using sacreBLEU [37].
4There are approximately 221.2 million extra parameters in the large

architecture.
5In this work we do not explore partially freezing the wav2vec 2.0 blocks.

https://huggingface.co/LeBenchmark


The challenge of low-resource AST is illustrated with the
clear performance drop between our three setups: fr-en reaches
higher performance than fr-es (data reduction of 13 h), and the
latter outperforms fr-pt models (data reduction of 12 h com-
pared to Spanish, 25 h compared to English). This highlights
the existence of a minimal amount of data needed in order to
make the training of end-to-end AST architectures based on
SSL models exploitable.

B. Use case: AST for Tamasheq

We now present our experiments for the Tamasheq-French
dataset in the context of the IWSLT 2022 low-resource speech
translation track. The dataset contains 17 h of speech in the
Tamasheq language, which corresponds to 5,829 utterances
translated to French [40]. Additional audio data was also made
available through the Niger-Mali audio collection: 224 h in
Tamasheq and 417 h in geographically close languages (French
from Niger, Fulfulde, Hausa, and Zarma).6 For all this data,
the speech style is radio broadcasting, and the dataset presents
no transcription.

We start by training AST models that use wav2vec 2.0
models simply as feature extractors: the output of these SSL
architectures replaces commonly used mel filterbank (MFB).
This was shown to result in a considerable performance boost
using the mTEDx dataset in [19], and we choose this approach
since our results from the previous session hint that end-to-
end fine-tuning for the AST task requires more data than the
available 17 h.

In these settings, we compare two general purpose
wav2vec 2.0 models – the multilingual XLSR-53 [22] and the
French LB-7K-large [20] – against two smaller base models
trained in the target language: Tamasheq-only, trained on 243 h
of Tamasheq, and Niger-Mali, trained on the totality of the
Niger-Mali audio collection (641 h).

Our AST models that use wav2vec 2.0 models as feature
extractors are very close to the recipe for low-resource ST
from wav2vec 2.0 features described in [20]. We use the
fairseq s2t toolkit [41] for training an end-to-end AST Trans-
former model [36] with 4 heads, dimensionality of 256, inner
projection of 1,024, 6 encoder and 3 encoder layers. The
Transformer is preceded by a 1D convolutional layer (k=5,
stride=2) for down-projecting the wav2vec 2.0 large (1,024) or
base (768) features into the Transformer input dimensionality.
These models are trained for 500 epochs using the Adam
optimizer with 10k warm-up steps. For decoding, we use beam
search with a beam size of 5. We generate a 1k unigram
vocabulary for the French text using Sentencepiece [42], with
no pre-tokenization. Lastly, we include baseline results that
replace wav2vec 2.0 features by 80-dimensional MFB features.
In this setting, the CNN preceding the transformer encoder is
identical from the one in [20].

AST results using the four wav2vec 2.0 models as feature
extractors are presented in Table II. For each model other than
Tamasheq-only, we investigate fine-tuning on a task-agnostic

6https://demo-lia.univ-avignon.fr/studios-tamani-kalangou/

TABLE II
BLEU4 RESULTS FOR TAMASHEQ-FRENCH AST.

wav2vec 2.0 model Fine-tuning valid test
None (MFB) - 2.22 1.80
LB-FR-7K - 2.36 1.80
LB-FR-7K Task-agnostic 2.48 1.92
XLSR-53 - 2.05 1.42
XLSR-53 Task-agnostic 1.99 1.91
Niger-Mali - 2.81 2.68
Niger-Mali Task-agnostic 2.94 2.57
Tamasheq-only - 2.99 2.42

fashion for approximately 20,000 updates on all available
Tamasheq speech (243 h). This fine-tuning is supposed to
reduce performance issues related to domain shift, however,
in our setting we do not notice a significant performance gap
between fine-tuned models and their pre-trained counterparts.

Regarding the overall very low AST performance,7 it is
notable that the results obtained by using general purpose
wav2vec 2.0 models are not very different from the baseline
results (MFB). This was also observed in the literature: it
seems wav2vec 2.0 models tend to perform poorly as feature
extractors in low-resource settings, compared to MFB [43].
Finally, although performance is poor regardless of the feature
extractor, the wav2vec 2.0 models trained on target data seem
to output superior features for Tamasheq-French AST. This
is despite the fact they are trained with considerably smaller
quantities of data compared to the large and general purpose
models.

Based on this finding, the best AST results we reported
on [21] used these smaller wav2vec 2.0 models on an end-to-
end fashion. However, as expected by our mid-to-low-resource
baseline results from last section, there are not enough training
hours to successfully fine-tune an entire wav2vec 2.0-based
AST architecture for Tamasheq-French.8

We circumvent this by exploring the representation from
intermediate layers: previous work [44] has shown that the
middle layers inside the Transformer Encoder inside the
wav2vec 2.0 architecture contain a higher abstraction level
with respect to the speech signal, being more useful for end-
to-end ASR fine-tuning compared to the last layers. Inspired
by that finding, we experimented pruning the last layers of
the wav2vec 2.0 model, which reduced the amount of trainable
parameters. Our final model, and the best result for the IWSLT
2022 low-resource task, was an end-to-end wav2vec 2.0-based
AST model using the Tamasheq-only model. It comprised
only 7 Transformer layers (out of 12) on its wav2vec 2.0
foundation block, and it achieved a BLEU4 of 6.0.

C. SSL models for low-resource end-to-end AST

Throughout this section, we illustrated how the performance
of wav2vec 2.0-based AST models drops in settings of data
scarcity. One important aspect of our results is the complete

7High-resource end-to-end speech translation BLEU4 scores range from 19
to 30 in the last editions of IWSLT [38], [39].

8The best BLEU score for an end-to-end wav2vec 2.0 AST model was of
2.34, by using the Tamasheq-only wav2vec 2.0 model.

https://demo-lia.univ-avignon.fr/studios-tamani-kalangou/


lack of transcription we impose to our experimental setup: by
doing this we reduce the final translation scores, but we are
able to assess performance for situations where this informa-
tion is not available (e.g. the processing of oral dialects).

The main finding of our AST experiments is the overall
under-performance of off-the-shelf wav2vec 2.0 large models
in low-resource settings, even after fine-tuning them on target
data. We also notice that the wav2vec 2.0 base models we
trained with considerable less data were more effective in these
same settings. We believe this happens because these task-
specific SSL models better inform downstream tasks such as
AST, since there is no domain shift in the data representation.
This hints that massive multi-purpose wav2vec 2.0 models
might not be the adequate solution for low-resource speech-to-
text approaches, and that instead, smaller and better informed
SSL blocks, trained on target data and/or domain, should be
favored.

V. FINAL REMARKS

This paper presented some premises and limitations of
wav2vec 2.0 models. These are promising because they allow
us to build ASR and AST models with less data than the
previous approaches: this is an important issue since in-domain
manually labeled data is very rare. This offers a new mean of
action in order to address new languages.

Regarding our ASR experiments, we have seen that in order
to improve recognition of accented speech, it is necessary to
include accented speech in the fine-tuning data. Fine-tuning
on both accented and non-accented speech seems to be a
promising method for building general-purpose systems. In
this work we used an equal amount of accented and native
speech in our mixed dataset. The variation of the amount of
accented speech in the fine-tuning dataset, the inclusion of
additional accents (Swiss French, Quebec French), and the
use of data augmentation to increase artificially the amount of
accented speech are left as future work.

Regarding our AST experiments, we illustrated how build-
ing speech translation models without the existence of tran-
scriptions is a challenging topic, and that models based on
off-the-shelf wav2vec 2.0 models fail performance-wise in
low-resource settings. Future research will focus on increasing
performance in challenging settings: techniques such as speech
augmentation, the production of dummy transcriptions [21],
and multilingual pre-training and adaptation are promising
topics.

The LIA will continue to study these approaches with the
goal of making them highly accurate for real-world data.
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