
HAL Id: hal-03881740
https://hal.science/hal-03881740

Submitted on 2 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Projectile trajectory estimation: an LSTM approach
Alicia Roux, Jonathan Weber, Jean-Philippe Lauffenburger, Sébastien

Changey

To cite this version:
Alicia Roux, Jonathan Weber, Jean-Philippe Lauffenburger, Sébastien Changey. Projectile trajectory
estimation: an LSTM approach. Conference on Artificial Intelligence for Defense, DGA Maîtrise de
l’Information, Nov 2022, Rennes, France. �hal-03881740�

https://hal.science/hal-03881740
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Projectile trajectory estimation: an LSTM approach
Alicia ROUX

Guidance, Navigation and Control (GNC) department
French-German Research Institute of Saint-Louis

Saint-Louis, France
alicia.roux@isl.eu

Jonathan WEBER
Université de Haute-Alsace, IRIMAS (UR 7499)

Mulhouse, France
jonathan.weber@uha.fr

Sébastien CHANGEY
Guidance, Navigation and Control (GNC) department

French-German Research Institute of Saint-Louis
Saint-Louis, France

sebastien.changey@isl.eu

Jean-Philippe LAUFFENBURGER
Université de Haute-Alsace, IRIMAS (UR 7499)

Mulhouse, France
jean-philippe.lauffenburger@uha.fr

Abstract—This paper presents a deep learning approach to
estimate a generic mortar trajectory in a GNSS-denied environ-
ment. For this purpose, Long-Short-Term-Memories (LSTMs)
are trained on projectile fire simulations. Network input data
are the embedded IMU (Inertial Measurement Unit), the refer-
ence magnetic field, flight parameters specific to the considered
ammunition (initial velocity, fin angle, barrel elevation) and a
time vector. This paper focuses on the influence of input data
normalization and navigation frame rotation during the training
step, leading to rescaling a 3D-value over similar variation ranges
with no information loss. LSTM estimates are compared to a
classical Dead Reckoning navigation algorithm. Results clearly
show the AI contribution, especially for projectile position and
velocity estimation.

Index Terms—Projectile navigation, Inertial Measurement
Unit, Artificial intelligence, Long-Short-Term-Memory

I. INTRODUCTION

Projectile trajectory estimation is a complex task due to
dynamic constraints imposed on the system and low-cost
sensors used. For this purpose, projectile navigation is based
on embedded IMU (Inertial Measurement Unit) and GNSS
(Global Navigation Satellite System) signals. The IMU and
GNSS measurements are combined with navigation algorithms
such as Kalman Filters [1] to estimate a trajectory. Due to
GNSS signals vulnerability (hostile conditions, disturbed or
unavailable signals) [2], users aims to exclude these measure-
ments for trajectory estimation [3]–[6].

Moreover, new methods based on AI (Artificial intelligence)
are increasingly used for defense applications such as surveil-
lance, reconnaissance, tracking or navigation [7], [8]. There-
fore, this paper presents an AI-based algorithm to estimate a
projectile trajectory in a GNSS-denied environment using only
the embedded IMU and pre-flight parameters specific to the
ammunition considered.

Considering that a trajectory is a time serie, AI can pro-
vide interesting approaches for its estimation. Time series
prediction could be based on Recurrent Neural Networks
(RNN) [9]–[11]. RNNs are particularly well suited for time
series prediction as they memorize past data to predict future
data. However, the simplest form of RNNs, the Vanilla RNN,

exhibits vanishing/exploding gradient problems during the
training step, so another form of RNNs can be considered:
the Long Short-Term Memory (LSTM) [9]–[11]. A LSTM is
an extension of the Vanilla RNN including a memory cell in
addition to the hidden states, in order to capture both long-term
and short-term time dependencies [11].

This paper presents an AI-based solution for projectile
navigation in a GNSS-denied environment. LSTMs are trained
to estimate projectile position, velocity and Euler angles.
In summary, the main contributions of this work are:

• to detail an LSTM-based approach to estimate a mortar
trajectory in the local navigation frame, from IMU mea-
surements, the reference magnetic field, flight parameters
(initial velocity, fin angle, barrel elevation) and a time
vector.

• to present BALCO (BALlistic COde) [12] used to gen-
erate the dataset. This simulator provides true-to-life tra-
jectories of several projectile types according to specific
flight parameters. Note that this work focuses only on
generic mortar trajectories.

• to investigate different normalization form of the LSTM
input data in order to evaluate their contribution on the
estimation accuracy. For this purpose, several LSTMs are
trained with different input data normalization.

• to study the impact of the local navigation frame rotation
on the estimation accuracy. Rotating the local navigation
frame during the training step allows a quantity to have
similar variation ranges along the three axes.

• to evaluate LSTM estimation accuracy compared to a
classical Dead Reckoning navigation algorithm [1], per-
formed on the whole test dataset.

The outline of the paper is as follows. A first part (II)
presents a brief introduction to projectile navigation and
LSTM operating principle. A second part (III) focuses on the
projectile trajectory dataset. The third part (IV) details LSTMs
trained to estimate a projectile trajectory and finally, the last
part (V) presents estimation results.



II. RELATED WORK

This section introduces conventional algorithms used for
projectile navigation, AI-based navigation approaches, and a
brief overview of the LSTM principle.

A. Model-based projectile trajectory estimation

Projectile navigation exploits GNSS (Global navigation
satellite system) and IMU (Inertial Measurement Units) mea-
surements, i.e. accelerometers, gyrometers or magnetometers
embedded in the projectile. These data are then fused with
Kalman Filters [1] such as the Adaptive Extended Kalman
Filter [13], the Invariant Extended Kalman Filter [3], the Un-
scented Kalman Filter [14] or the mixed Extended Unscented
Filter [15]. These filters are based on a Dead Reckoning algo-
rithm and then corrected by observations. A Dead Reckoning
algorithm [1] aims to integrate gyrometer ω and accelerometer
a readings in the sensor frame s to estimate at each discrete
time k:

Rk = Rk−1[ωk∆t]× (1)
vk = vk−1 + (Rk−1ak + g)∆t (2)

pk = pk−1 + vk−1∆t +
1
2 (Rk−1ak + g)∆2

t (3)

with Rk ∈ SO(3) the rotation matrix from the sensor frame
s to the local navigation frame n determined by the projectile
Euler angles, g ∈ R3 the constant gravity vector, pk ∈ R3 and
vk ∈ R3 respectively the projectile position and velocity, and
[.]× an SO(3) operator defined as:

∀x ∈ R3, [x]× =

x1x2
x3


×

=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (4)

Moreover, for high-speed spinning projectiles such as a
155mm shell, the embedded sensors have to resist to high
rotation rates and accelerations and some standard sensors
such as gyrometers saturate and become useless as explained
in [16]. Therefore, several algorithms specialized in high-speed
spinning projectile attitude estimation exploit the magnetome-
ter measurements as in [4]–[6].

B. AI-based trajectory estimation

AI methods are increasingly used in the military field such
as surveillance and target recognition, military training or
cybersecurity [8], [17], [18]. Nevertheless, AI-based projectile
trajectory estimation is not commonly used, despite recurrent
networks (RNNs) are perfectly adapted to such applications.

Recurrent Neural Networks: Recurrent networks are com-
monly used for time series prediction as estimations are
computed from past characteristics memorized in feedback
loops [9]–[11]. The simplest form of RNNs, the Vanilla RNN,
has no memory cell and is therefore inadequate to model long-
term time dependencies. In addition, this network exhibits
vanishing/exploding gradient problems during the training step
[9], [11]. To overcome this issue, memory cells have been
added to the Vanilla RNN, forming the Long Short-Term
Memory (LSTM).

LSTM unit: A LSTM is composed by several units to deal
with short and long-term memory. Figure 1 presents a LSTM
unit with xt the input at timestamp t, ht−1 the hidden state
(previous LSTM unit output) and ct the memory state, which
aims to memorize long-term dependencies.

Fig. 1. LSTM cell operating principle composed by three gates with xt the
input at the current time, ht−1 the hidden state at the previous time, and ct
the memory cell state.

As shown in Figure 1, a LSTM unit is composed by three
gates:
− the forget gate filters, through a Sigmoid function σ, data
contained in the concatenation of xt and ht−1. Data are
forgotten for values close to 0 and are memorized for values
close to 1. The forget gate model is:

ft = σ(Wf .[ht−1, xt] + bf ) (5)

− the input gate extracts relevant information from [ht−1, xt]
by applying a Sigmoid σ and a Tanh function. The input gate
is represented by:

it = σ(Wi.[ht−1, xt] + bf ) (6)

C̃t = tanh(Wc.[ht−1, xt] + bc) (7)

The memory cell Ct is updated from the forget gate ft and
the input gate it, C̃t, to memorize pertinent data:

Ct = ft × Ct−1 + it × C̃t (8)

− the output gate defines the next hidden state ht containing
information about previous inputs. The hidden state ht is
updated with the memory cell Ct normalized by a Tanh
function and [ht−1, xt] normalized by a Sigmoid function:

ht = σ(Wh.[ht−1, xt] + bh)× tanh(Ct) (9)

with W(.) and b(.), the different gate weights and biases.
Currently, only a few works exploit recurrent networks in

the military field. There are commonly used for navigation,
such as aircraft flight path prediction [19], [20], vehicle
trajectory estimation [21], maritime route prediction [22],
human motion prediction [23], [24] or target tracking [25]. It
is however interesting to mention [26] focusing on projectile
trajectory estimation based on LSTMs trained from incomplete
and noisy radar measurements.



III. PROJECTILE TRAJECTORY DATASET

Results presented in this paper exploit a projectile fire
dataset generated by BALCO (BALlistic COde) [12], i.e. a
high fidelity projectile trajectory simulator.

As shown in Figure 2, two reference frames are considered:
− the local navigation frame n (black frame in Figure 2) in
which projectile trajectories are expressed, is tangent to the
Earth and assumed fixed during the projectile flight.
− the sensor frame s (green frame in Figure 2), rigidly fixed to
the projectile and misaligned with the projectile gravity center,
the frame where the inertial measurements are performed.

The dataset used in this work includes 5 000 mortar fire
simulations and each simulation includes:

• IMU measurements in the sensor frame s: gyrometer
ω ∈ R3, accelerometer a ∈ R3 and magnetometer
h ∈ R3 readings. Two kinds of inertial measurements
are available:
− IMU measurements performed in the sensor frame
including a sensor error model: a misalignment model
between each sensor axis and the projectile gravity
center, a sensitivity factor, a bias and a noise (assumed
Gaussian with zero mean) relative to each sensor axis.
− IMU DYN measurements, performed in the sensor
frame and issued from IMU measurements to which a
transfer function is added to each sensor. This sensor
model allows to denotes the response of the three sensors
over the operating range.

• reference magnetic field hn ∈ R3: in the local navigation
frame n, assumed constant during the projectile flight.

• flight parameters: the fin angle δf ∈ [0, 3]◦, the initial ve-
locity at the end of the propulsion phase v0 ∈ [220, 320]
m/s, and the barrel elevation angle α ∈ [40, 60]◦.

• time vector k∆t with ∆t = 1e−3s the IMU sampling
period.

• reference trajectory: projectile position p, velocity v and
Euler angles Ψ in the local navigation frame n at the IMU
frequency.

Fig. 2. Navigation frames (black - Local navigation frame n, red - projectile
gravity center, green - sensor frame s) and flight parameters (fin angle δf ,
initial velocity v0, barrel elevation angle α).

IV. PROBLEM FORMULATION

This part introduces LSTMs trained to estimate projectile
trajectories from the dataset presented in section (III). Four
network types derived in eight versions are trained. Moreover,
this part presents normalization methods, the local navigation
frame rotation and network training characteristics.

A. Overview

As mentioned in the introduction (I), the LSTM goal is to
estimate a projectile trajectory from pre-flight data and the
embedded IMU. As shown in Figure 3, LSTM predictions at
time t are obtained from an input sequence of length τ and
where the 16 features are:

- inertial measurements M ∈ R12: IMU measurements,
i.e. accelerometer a, gyrometer ω and magnetometer h
readings in the sensor frame s and the reference magnetic
field hn in the local navigation frame n,

- flight parameters P = (δf , v0, α) ∈ R3,
- the time vector T ∈ R1.

Fig. 3. LSTM input data: inertial measurements M, flight parameters P ,
time vector T .

Four LSTMs types are trained and differ depending on
the output features learned. LSTMALL trained to estimate
9 output features which are the projectile position p, veloc-
ity v and Euler angles Ψ in the local navigation frame n,
LSTMPOS , LSTMV EL, LSTMANG trained to estimate 3
output features which are respectively the projectile position
p, the projectile velocity v and the projectile Euler angles Ψ
in the local navigation frame n.

LSTMs are declined in 8 versions presented in Table I, to
study the influence of the Min/Max MM(.) and the Standard
Deviation STD(.) normalization as well as the influence of
the local navigation frame rotation on estimation accuracy.

B. Input data normalization

Network input data normalization is a preprocessing data
approach to rescale input data to similar variation ranges while
preserving the same distribution and ratios as the original data.



TABLE I
VERSION SPECIFICATIONS: INFLUENCE OF THE NETWORK INPUT DATA

NORMALIZATION AND THE LOCAL NAVIGATION FRAME ROTATION.

Name NORMALIZATION ROTATION
V1 No No
V2 MM(T ),MM(M),MM(P) No
V3 MM(T ,M,P) No
V4 STD(T ), STD(M), STD(P) No
V5 STD(T ,M,P) No
V6 No Yes
V7 MM(T ,M,P) Yes
V8 STD(T ,M,P) Yes

Min/Max normalization: Versions V2, V3 and V7 use the
Min/Max normalization MM(.) defined as follows:

xMM =
x− xmin

xmax − xmin
(10)

with xmax and xmin respectively the maximum and minimum
of x. This normalization ranges values in the interval [0, 1].

Standard Deviation normalization: Versions V4, V5 and V8
use the Standard Deviation normalization STD(.) defined as
follows:

xSTD =
x− µ

σ
(11)

with x the quantity to normalize, µ its mean and σ its standard
deviation. Thus xSTD is a quantity with a zero-mean and
a standard deviation of one. This normalization is especially
used for input data with different units.

It is important to note that the normalization factors xmax,
xmin, xmin, µ and σ are computed before networks training,
and are evaluated on the training dataset.

C. Local navigation frame rotation

As presented in Table I, versions V6, V7 and V8 use the local
navigation frame rotation. This method, illustrated in Figure
4, aims to rotate the local navigation frame n by a fixed angle
γ (local rotated navigation frame nγ) such as:

xγ = Rγx (12)

with x ∈ R3 defined in n, xγ ∈ R3 expressed in nγ and
Rγ ∈ SO(3) the transition matrix from the local navigation
frame n to the local rotated navigation frame nγ . The rotation
is applied along the three local navigation frame axes and the
angle γ is fixed manually to ensure that the three components
of a quantity expressed in the local rotated navigation frame
nγ are similar along the three axes. In other words, the local
navigation frame rotation is used for the same purpose as
normalization, to express a quantity over similar variation
ranges.

For example, projectile position variation ranges along the
x-axis and z-axis are around several kilometers while along the
y-axis, the projectile position varies by a few meters. Express
the position in the local rotated navigation frame nγ , the
position along the three axes are around one kilometer.

All quantities expressed in the local navigation frame n
are rotated, i.e. projectile position, velocity and Euler angles.

Fig. 4. Local navigation frame n and local rotated navigation frame nγ .

In other words, during the training step, labels are expressed
in the local rotated navigation frame nγ and LSTMs predict
trajectories in nγ . During testing, LSTMs estimate projectile
trajectories in the local rotated navigation frame nγ and then,
estimations are moved back to the initial local navigation
frame n.

D. LSTM training details

Networks LSTMALL, POS, V EL, ANG, V1−8
are trained on

a training dataset composed by 100 simulations, a validation
dataset composed by 10 simulations and a test dataset com-
posed by 20 simulations generated by BALCO presented in
part (III). This reduced dataset is defined to evaluate the impact
of the normalization and the local navigation frame rotation
on estimation accuracy. Moreover, one simulation includes an
average of 35 000 time steps.

The batch size is 64 and the window size (SEQ LEN) is
set to 20 timestamp to capture enough long-term dependencies
without depending on measurement noise. LSTMs are com-
posed of two layers of 64 and 128 hidden units.

The loss between LSTM estimates and the reference trajec-
tory is evaluated with the Mean Squared Error (MSE) defined
as:

MSE =
1

N

N∑
k=1

(x̂k − xrefk)
2 (13)

with x̂ the LSTM estimate and xref the reference value.
Network weights and biases are updated by Adam optimiza-
tion algorithm [27].

V. RESULTS AND ANALYSIS

This section reports the estimated trajectories of a mortar
according to the different networks mentioned in section
(IV). LSTM estimates are compared to a classical navigation
algorithm: a Dead Reckoning (1)-(3).
A first part (V-A) focuses on one mortar trajectory result, then,
the LSTM performances are analyzed on the whole test dataset
(V-B). Finally, the last part (V-C) is centered on the LSTM
performance on a larger dataset and on the influence of the
IMU error model.



A. Focus on one mortar fire simulation

Figures 5-7 present the estimated position, velocity, and
Euler angles and the associated errors for one mortar shot
in the test dataset. For readability reasons, three estimation
methods are first compared: the Dead Reckoning algorithm
(1)-(3), LSTMALL,V1

(IV), and LSTMALL,V6
(local naviga-

tion frame rotation).

Fig. 5. Estimated projectile position and associated errors [m].

Fig. 6. Estimated projectile velocity and associated errors [m/s].

Fig. 7. Estimated projectile Euler angles and associated errors [rad].

As shown in Figures 5 and 6, positions and velocities
estimated by LSTMs are significantly more accurate than Dead
Reckoning. For the orientation (Figure 7), LSTMs are only
precise to estimate the pitch θ and yaw angle ψ. Errors in
LSTM roll angle ϕ estimation are due to mortar rotation rate.
LSTMs fail to fully capture all roll angle variations. Moreover,
according to Figures 5 and 6, rotating the local navigation
frame improves projectile position and velocity estimation but
slightly degrades pitch angle θ estimation (Figure 7).

B. Analysis on the whole test dataset: 20 mortar shots

In order to validate the previous observations, networks
presented in section (IV), LSTMALL, POS, V EL, ANG, V1−8

,
are evaluated on the whole test dataset according to two criteria
based on the Root Mean Square Error (RMSE):

RMSEx =

√√√√ 1

N

N∑
k=1

(x̂k − xk,ref )
2 (14)

with x̂ the estimated quantity, xref the reference and N the
number of samples.

Success Rate C1: The first evaluation criterion is the success
rate, i. e. number of simulations in the test dataset where a
LSTM’s RMSE is strictly smaller than the Dead Reckoning’s
RMSE:

C1 =

Nsim∑
k=1

RMSELSTM < RMSEDR (15)

with Nsim the number of simulations in the test dataset.
Error Rate C2: The second evaluation criterion is the error

rate evaluated such as:

C2 =
1

Nsim

Nsim∑
k=1

RMSEsimk
(16)

with Nsim the number of simulations in the test dataset.
The success rate C1 of LSTMALL,POS,V EL,ANG,V1−V8 are

presented in Figure 8-10.(a) and the error rates of LSTMs
C2LSTM

and Dead Reckoning C2DR
, are presented in Figure

8-10.(b), for position, velocity and Euler angles estimation.

Fig. 8. Position estimation analysis: C1 criterion (a) and C2 criterion [m] (b).

Position analysis results: According to Figure 8, LSTMs
strongly outperform Dead Reckoning for position estimation.
Moreover, LSTMPOS,V1−V8

, specialized in position estima-
tion exclusively, slightly exceed LSTMALL,V1−V8

.
Normalizations applied to input data affect position estimates
differently. Firstly, V3 and V4 versions exhibit lower success
and error rates than other normalizations. Thus, normalizations



MM(T ,M,P) and STD(T ), STD(M), STD(P) are not
appropriate to this application. Secondly, the accuracy of
networks with normalization (Min/Max V2,3,7 and STD V4,5,8)
is worse than networks with no normalization V1,6 as normal-
ization implies a loss of information. Finally, the Min/Max
normalization per feature V2 is better than a Min/Max normal-
ization for all features V3, in contrast to the STD normalization
(V5 better than V4).
Rotating the local navigation frame V6−8 improves the position
estimation accuracy especially along the z-axis.

Fig. 9. Velocity estimation analysis: C1 criterion (a) and C2 criterion [m/s]
(b).

Veclocity analysis results: According to Figure 9, similar
observations as previously can be formulated. LSTMs clearly
outperform Dead Reckoning for velocity estimation. Special-
ized networks LSTMV EL are a bit better than LSTMALL.
The STD normalization for all features V5 exhibits the best
results among the different normalization options investigated,
especially for velocity along the z-axis. Moreover, rotating the
local navigation frame V6 significantly improves the projectile
velocity estimation along all the three axes.

Fig. 10. Euler angles estimation analysis: C1 criterion (a) and C2 criterion
[rad] (b).

Euler angles analysis results: Euler angles estimation is
more mitigated according to figure 10. Focusing on the success
rate C1, LSTMs deteriorate the roll ϕ and pitch θ angles esti-
mates compared to Dead Reckoning, but accurately estimate
the yaw angle ψ. In addition, LSTMANG is less accurate
than LSTMALL for roll ϕ and pitch θ estimation according
to criterion C1, contrary to the yaw angle ψ. As previously,
the STD(T ,M,P) normalization of LSTMALL exhibits the
best performances for the three Euler angles estimation as well
as the local navigation frame rotation.

In summary, end-to-end estimation using LSTM is partic-
ularly appropriate for projectile position and velocity estima-
tion. According to the reported results, Figure 8-10, specialized
networks do not significantly improve estimation accuracy.
Moreover, these results show that STD(T ,M,P) normal-
ization is more appropriate to estimate a projectile trajectory.
Finally, rotating the local navigation frame is an efficient
method to optimize projectile position and velocity estimation.

C. IMU measurements: effects on position estimation

The dataset presented in section (III) contains two kinds
of inertial readings; IMU measurements, used so far, and
IMU DYN measurements, where sensors are characterized by
a dynamic model. This part focuses on the effect of the
IMU error model on projectile position estimation. To this
end, two LSTMs are trained with the same specifications as
LSTMALL V 1 (no normalization, no rotation):

• LSTMIMU trained with IMU measurements with no
normalization and no rotation in order to estimate the
projectile position, velocity and orientation.

• LSTMIMU DYN trained with IMU DYN measurements
with the same characteristics as LSTMIMU .

Both networks are trained on 4 000 mortar fire simulations,
validated on 400 and tested on 400.

− LSTMIMU : Figure 11 presents the RMSE (14)
returned by LSTMIMU as a function of the Dead Reckoning
RMSE for projectile position estimation on the 400 simula-
tions in the test dataset.

Fig. 11. LSTMIMU : (RMSELSTM , RMSEDR) [m] for 400 mortar
fire simulations.



According to Figure 11, LSTMIMU significantly outper-
forms Dead Reckoning for position estimation along the
three axes, as most of the markers are located in the upper
part. LSTMIMU accurately estimates the projectile position,
especially along the y-axis.

Figure 12 presents position errors along at the impact point
(position errors (px, py) at the final time of a shot) for all 400
simulations in the test dataset.

Fig. 12. Errors at impact point obtained by LSTMIMU (blue dot) and the
Dead Reckoning (red dot).

As shown in figure 12, most LSTMIMU errors at the
impact point are located inside a 50-meter error disk (gray
disk), while Dead Reckoning errors are much larger. More
precisely, 249 of the 400 shots have errors at the impact point
less than 10m with the LSTM, 149 shots with errors between
10 and 50 m and 2 shots with errors between 50 and 100 m.
Concerning the Dead Reckoning, 293 of the 400 simulations
have errors greater than 100 m. Thus, on a large dataset, with
various flight parameters, LSTMIMU succeeds in accurately
estimate the projectile position.

− LSTMIMU DY N : Figures 13 and 14 respectively
show (RMSELSTMIMU DY N

, RMSEDR) for projectile po-
sition estimation and errors at the impact point.

Fig. 13. LSTMIMU DY N : (RMSELSTM , RMSEDR) [m] for 400
mortar fire simulations.

Dead Reckoning completely diverges for position estimation
from IMU DYN data. Conversely, LSTM accurately estimates

Fig. 14. Errors at impact point obtained by LSTMIMU DY N (blue dot)
and the Dead Reckoning (red dot).

the projectile position: from Figure 13, most of the markers
are located in the upper part, and from Figure 14, most
errors at impact point are less than 50m. Concerning the
LSTMIMU DYN , 266 of the 400 shots have errors at the
impact point less than 5m while with the Dead Reckoning,
378 of the 400 shots have errors greater than 100m. Therefore,
despite sensor dynamics, the LSTM is still able to estimate the
projectile position.

In summary, according to Figures 11 and 14, a LSTM is able
to accurately estimate a projectile position despite dynamic
inertial data and a various range of flight characteristics. In
addition, generic guided mortar accuracy is around 10 to 70m
and LSTM estimation results improve these accuracies.

CONCLUSION

This paper presents a deep learning approach to estimate
a mortar trajectory in a GNSS-denied environment. LSTMs
are trained only from inertial measurements, flight parameters
and a time vector. Different normalizations are applied to input
data as well as the local navigation frame rotation during the
training step, in order to deal with the different variation ranges
along the three axes.

According to the reported results, LSTMs are accurate
to estimate projectile positions and velocities compared to
a classical navigation algorithm. Moreover, LSTMs are still
accurate to estimate projectile positions even with dynamic
inertial measurements and outperform the accuracy of generic
guided mortars.

Currently, this estimation method aims to be tested on real
data. Moreover, although not presented here, this method is
generalized to other kinds of projectiles: 155mm shells, 40mm
projectile and Basic Finner.

Now, the idea is to develop Deep Kalman filters by inte-
grating LSTM models into a Kalman filter. In other words, the
idea is to use a LSTM to estimate one model of the Kalman
filter such as the prediction model or the observation model.
For example, in the case of an Extended Kalman Filter to
estimate a projectile trajectory from IMU measurements and
corrected by GNSS observations, LSTM estimates can be used
as GNSS measurements, allowing to bypass the GNSS and
avoid any decoying or jamming problem.



REFERENCES

[1] Paul Groves. Principles of GNSS, Inertial, and Multisensor Integrated
Navigation Systems, Second Edition. 2013.

[2] Gregory Duckworth and Edward Baranoski. Navigation in GNSS-denied
environments: Signals of opportunity and beacons. In Proceedings of
the NATO Research and Technology Organization (RTO) Sensors and
Technology Panel (SET) Symposium, 2007.

[3] Alicia Roux, Sébastien Changey, Jonathan Weber, and Jean-Philippe
Lauffenburger. Projectile trajectory estimation: performance analysis of
an Extended Kalman Filter and an Imperfect Invariant Extended Kalman
Filter. In 2021 9th International Conference on Systems and Control
(ICSC), pages 274–281, 2021.

[4] Christophe Combettes, Sébastien Changey, Ronan Adam, and Emmanuel
Pecheur. Attitude and velocity estimation of a projectile using low
cost magnetometers and accelerometers. In 2018 IEEE/ION Position,
Location and Navigation Symposium (PLANS), pages 650–657, 2018.

[5] Sébastien Changey, Emmanuel Pecheur, Loic Bernard, and all. Real
time estimation of projectile roll angle using magnetometers: In-flight
experimental validation. In Proceedings of the 2012 IEEE/ION Position,
Location and Navigation Symposium, pages 371–376, 2012.

[6] Aurélien Fiot, Sébastien Changey, and Nicolas Petit. Attitude estimation
for artillery shells using magnetometers and frequency detection of
accelerometers. Control Engineering Practice, 122:105080, 2022.

[7] Adrian Carrio, Carlos Sampedro, Alejandro Rodriguez-Ramos, and
Pascual Campoy. A review of deep learning methods and applications
for unmanned aerial vehicles. Journal of Sensors, 2017, 2017.

[8] Peter Svenmarck, Linus Luotsinen, Mattias Nilsson, and Johan Schu-
bert. Possibilities and challenges for artificial intelligence in military
applications. 05 2018.

[9] Alex Sherstinsky. Fundamentals of Recurrent Neural Network (RNN)
and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear
Phenomena, 404:132306, 2020.

[10] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review
of recurrent neural networks: LSTM cells and network architectures.
Neural computation, 31(7):1235–1270, 2019.

[11] Ralf Staudemeyer and Eric Rothstein Morris. Understanding LSTM–a
tutorial into long short-term memory recurrent neural networks. arXiv
preprint arXiv:1909.09586, 2019.

[12] Pierre Wey, Daniel Corriveau, Thomas Saitz, Wim de Ruijter, and Peter
Strömbäck. BALCO 6/7-DoF Trajectory Model. 05 2016.

[13] Hui Zhao and Zhong Su. Real-time estimation of roll angle for trajectory
correction projectile using radial magnetometers. IET Radar, Sonar &
Navigation, 14(10):1559–1570, 2020.

[14] Liangliang An, Liangming Wang, Ning Liu, Jian Fu, and Yang Zhong.
A Novel Method for Estimating Pitch and Yaw of Rotating Projectiles
Based on Dynamic Constraints. Sensors, 19(23), 2019.

[15] Sébastien Changey and all. A mixed extended-unscented filter for
attitude estimation with magnetometer sensor. In 2006 American Control
Conference, pages 6 pp.–, 2006.

[16] Nabil Jardak, Ronan Adam, and Sebastien Changey. A Gyroless
Algorithm with Multi-Hypothesis Initialization for Projectile Navigation.
Sensors, 21:7487, 11 2021.

[17] YuLong Zhang, ZiJie Dai, LongFei Zhang, ZhengYi Wang, Li Chen, and
YuZhen Zhou. Application of artificial intelligence in military: From
projects view. In 2020 6th International Conference on Big Data and
Information Analytics (BigDIA), pages 113–116, 2020.

[18] Antonio Carlo. Artificial intelligence in the defence sector. In
International Conference on Modelling and Simulation for Autonomous
Systems, pages 269–278. Springer, 2020.

[19] Zhiyuan Shi, Min Xu, Quan Pan, Bing Yan, and Haimin Zhang.
LSTM-based Flight Trajectory Prediction. In 2018 International Joint
Conference on Neural Networks (IJCNN), pages 1–8, 2018.

[20] Nikolai Gaiduchenko, Pavel Gritsyk, and Yanka Malashko. Multi-
step ballistic vehicle trajectory forecasting using deep learning models.
In 2020 International Conference Engineering and Telecommunication
(En&T), pages 1–6, 2020.

[21] SeongHyeon Park, Byeongdo Kim, Chang Mook Kang, Chung Choo
Chung, and Jun Won Choi. Sequence-to-sequence prediction of
vehicle trajectory via LSTM encoder-decoder architecture. CoRR,
abs/1802.06338, 2018.

[22] Kristian Aalling Sørensen, Peder Heiselberg, and Henning Heiselberg.
Probabilistic maritime trajectory prediction in complex scenarios using
deep learning. Sensors, 22(5), 2022.

[23] Abdulrahman Al-Molegi, Mohammed Jabreel, and Baraq Ghaleb. Stf-
rnn: Space-time features-based recurrent neural network for predicting
people’s next location. 12 2016.

[24] Emad Barsoum, John Kender, and Zicheng Liu. Hp-gan: Probabilistic 3d
human motion prediction via gan. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) Workshops,
June 2018.

[25] Sami Jouaber, Silvere Bonnabel, Santiago Velasco-Forero, and Marion
Pilte. NNAKF: A neural network adapted Kalman filter for target
tracking. In ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4075–4079,
Toronto, France, June 2021. IEEE.

[26] Li-he Hou and Hua-jun Liu. An End-to-End LSTM-MDN Network for
Projectile Trajectory Prediction, pages 114–125. 11 2019.

[27] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.


