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Abstract 25 

The present paper focuses on solute transport behaviour in a Model Heterogeneous Porous 26 

Medium (MHPM) under different flow rates. We report tracer experiments under stationary 27 

hydraulic conditions, with 7 different stationary flow rates spanning two orders of magnitude. 28 

Several replicates are carried out on several MHPMs, allowing for a sound statistical 29 

assessment of experimental imprecision. The experimental BreakThrough Curves (BTCs) 30 

exhibit a dual transport mode in agreement with previously-reported field scale experiments. 31 

This dual transport mode is shown to be flow-rate independent under a suitable variable 32 

change, with the BTCs superposing in the limit of experimental uncertainty. The experiment 33 

is modelled using a classical Multi-Region Advection-Dispersion (MRAD) model with only 34 

two mobile regions. We present a flow rate independent reformulation of the MRAD model 35 

that that allows both water and solute continuity to be preserved during the calibration 36 

process. Assuming a linear dependence of the dispersion and exchange coefficients on the 37 

flow rate is shown to yield satisfactory model behaviour. This confirms the linearity of the 38 

dispersion coefficient with respect to the flow rate, often suggested in the literature, over a 39 

wide range of flow conditions.  40 

 41 
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1. Introduction 42 

Laboratory experiments on model heterogeneous porous media MHPMs contribute to 43 

understand the behaviour of solute transport in real world situations (Majdalani et al., 2015). 44 

A large number of laboratory scale experimental studies on solute transport in porous media 45 

involve a single flow rate, while in real world situations the flow rate may vary over one or 46 

two orders of magnitude. 47 

Several laboratory studies of solute transport in porous media have tested a variable flow rate 48 

in order to test its effect on modelling parameters. A wide review can be found in Griffioen et 49 

al. (1998), Maraqa (2001), and Haggerty et al. (2004). In these studies, the most widely used 50 

model is the Mobile-Immobile Model (MIM), based on the advection-dispersion equation 51 

where two regions (mobile and immobile) exchange mass between each other. The review of 52 

Griffioen et al. (1998) is based on 20 experiments. It shows correlations between the flow rate 53 

and the mass transfer coefficient, the mass transfer and the advection time scale, the mass 54 

transfer and diffusion time scales, the mass transfer and longitudinal interaction time scales. 55 

The review by Maraqa (2001) is based on 19 experiments. It shows that correlations exist 56 

between the mass transfer coefficient and the flow rate, or the mass transfer coefficient and 57 

the residence time. The review of Haggerty et al. (2004) is based on 316 experiments. 58 

Correlations are inferred between the effective mass transfer time and other parameters such 59 

as the flow rate, the capacity coefficient, the advective residence time and the experimental 60 

duration. 61 

Experiments reported in the literature involve porous media made of sand (Coats and Smith, 62 

1964; Gaudet et al., 1977; De Smedt et al., 1986; Rambow and Lennartz, 1993, Kookana et 63 

al., 1993 ; Sharma et al., 2022 ; Sutton et al., 2022), loam (van Genuchten and Wierenga, 64 

1977; van Genuchten et al., 1977), loamy sand (Khan and Jury, 1990), clay (Jørgensen et al., 65 

2004), stony soil (Schulin et al., 1987), glass beads (Krupp and Elrick, 1968; De Smedt and 66 

Wierenga, 1984; Berkowitz et al., 2009), field soil (Smettem, 1984, Sutton et al., 2022), loam 67 

and field soil (Selim et al., 1987), aggregate (Rao et al. 1980; Seyfried and Rao, 1987; Koch 68 

and Flühler, 1993; Li et al., 1994; Nkedi-Kizza et al. 1984; Brusseau et al., 1994; Bajracharya 69 

and Barry, 1997), or spherical clayey inclusions in sandy media (Tran Ngoc et al., 2020).  70 

In the aforementioned studies, porous media are either homogeneous or moderately 71 

heterogeneous. Heterogeneity is generally obtained by introducing coarse aggregates into a 72 

finer surrounding medium (e.g. glass or clay beads into sand). Li et al. (1994) introduced 73 

random porous polyethylene cylinders (porosity 0.50) into silt soil (porosity 0.43). 74 

Bajracharya and Barry (1997) used a porous medium consisting of fine sand and polyethylene 75 

cylinders in different proportions for 3 experimental columns of different lengths, with a 76 

respective total porosity of the composite medium of 0.34, 0.36, and 0.40.  Berkowitz et al. 77 

(2009) used a porous medium made of adjacent porous materials of fine (1 mm) and coarse (4 78 

mm) glass beads, where the porosity (0.39) is the same in both fine and coarse media. 79 

Therefore, in literature studies, the porosity of the introduced heterogeneity mostly belongs to 80 

the range [0.5, 0.6], which is rather close to the porosity of the surrounding medium (range 81 

[0.3, 0.4]). 82 

In many laboratory studies the flow rate varies over a single order of magnitude (Griffioen et 83 

al., 1998; Maraqa, 2001; Haggerty et al., 2004). Although reviews (Griffioen et al., 1998) 84 

report flow rate variations over several orders of magnitude, they aggregate several studies 85 

made on different media, that were all performed over one (or slightly more) order of 86 

magnitude. Rare are the studies where the flow rate in laboratory heterogeneous porous media 87 

is varied over two orders of magnitude within the same medium. One of the widest flow rate 88 

ranges is reported in Li et al. (1994), where the pore velocity is varied by a factor 54 and only 89 



3 

 

3 different flow rates are used. In the study by Bajracharya and Barry (1997), the pore 90 

velocity is varied by a factor 12.5.  91 

As mentioned above, the laboratory porous medium of Li et al. (1994) and Bajracharya and 92 

Barry (1997) is moderately heterogeneous. Moreover, the flow direction in these studies is 93 

vertical upward (from bottom to top of the column). We argue that salt-based solute transport 94 

experiments under upward flow are liable to induce density effects and that the observed 95 

BreakThrough Curves (BTCs) might not reflect the real behaviour of passive transport. In 96 

fact, rare are the studies of solute transport in porous media using salt tracer that take the 97 

possibility of solute density effects into account and their impact on BTCs. Due to gravity, 98 

strongly concentrated solute may be trapped in lower parts of the porous medium, thus 99 

impacting the behaviour of solute transport and biasing the breakthrough curves compared to 100 

those of purely passive transport. 101 

Another issue concerning experimental data is reliability. In the aforementioned studies, rare 102 

are the solute transport experiments where both the experiment and the porous medium are 103 

replicated. The first point means that one should repeat the same experiment several times on 104 

a given porous medium column, while the second point means that one should construct 105 

several identical porous medium columns and that the ensemble of the experimental protocol 106 

should be repeated on each of them. By taking the mean of all replicates, as well as the 107 

minimum and maximum values, the statistical variability of the breakthrough curves 108 

stemming from various sources can be assessed. Not only is statistical variability of great help 109 

in estimating modelling parameters, but it also gives stable and reliable breakthrough curves 110 

by minimizing realization sampling effects.  111 

In this paper, we study solute transport in laboratory scale Model Heterogeneous Porous 112 

Media (MHPMs) under different flow rates. The flow rate Q of tracer step experiments varies 113 

over two orders of magnitudes: the ratio of the maximum to the minimum flow rate is 100. 114 

The flow rate is modified across the different realizations/experiments but not within a single 115 

realization (the flow in each given experiment is stationary). The Model Heterogeneous Pours 116 

Medium (MHPM) used in the present study is strongly heterogeneous. A rectangular cavity 117 

(porosity 100%) is introduced into surrounding glass beads (porosity 40%). The purpose is to 118 

assess the applicability of standard transport models to strongly heterogeneous media, in order 119 

to determine whether the degree of heterogeneity induces limitations in the model. Besides, 120 

solute transport experiments are done with horizontal flow and we make sure that no solute 121 

density effect is present in the MHMP. All tracer step experiments are replicated (see Section 122 

2): each experiment is replicated 3 times and the ensemble of the experimental protocol is 123 

replicated on 3 different MHPMs built under the same specifications.  124 

We simulated the breakthrough curves by a classical approach based on the multi-region 125 

advection-dispersion (MRAD) model as presented and analyzed in Majdalani et al. (2018), 126 

where only two mobile regions are used. The MRAD model is a generalization of well-known 127 

models such as the Two Region (TR), Mobile-Immobile (MI) and Multi-rate models (Coats 128 

and Smith, 1964; Griffioen et al. 1998; Haggerty et al., 2000; van Genuchten and Wierenga, 129 

1976). A number of studies have focused on how the model parameters behave with the flow 130 

rates (Griffioen et al., 1998; Haggerty et al., 2004; Li et al., 1994). They do not all lead to the 131 

same conclusions and a wide variety of behaviours is reported. Little is known about how the 132 

parameters were constrained in the model calibration process. In particular, it is not always 133 

clear whether water and solute mass conservation were enforced in the calibration process. In 134 

other words, it is not always clear whether the flow rate in the model is identical to that 135 

prescribed in the experiments. Not preserving this condition may yield biases in the calibrated 136 

transport parameters. In the present work, mass conservation is enforced by rewriting the 137 

MRAD model in terms of flow rate-independent parameters, among which a discharge 138 

partition coefficient for the various regions in the model. To our best knowledge, such a 139 
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reformulation has not been presented in the literature before. Obviously, many other 140 

modelling formalisms than the MRAD might be used. More complex models such as Multi-141 

rate models (Haggerty and Gorelick, 1995) and fractional dynamics / Continuous-Time 142 

Random Walk (CTRW) models have proven efficient in the modelling of tailing effects and 143 

transient dispersion (Berkowitz et al., 2008 ; Bijeljic, 2006 ; Le Borgne et al., 2011 ; Sun et 144 

al., 2014 ; Moradi and Mehdinejadiani, 2018). Multi-region versions of these approaches have 145 

been presented recently (Sun et al., 2020; Yin et al., 2021). Such models are particularly 146 

efficient in modelling the long-term behaviours and tailing effects in breakthrough curves that 147 

are typical of anomalous transport. They can account for asymptotically long travel times 148 

resulting from trapping as well as sudden jumps over long distances, known as Levy flights 149 

(Klafter et al., 1987 ; Metzler and Klafter, 2000). However, in the present study, heavy tailing 150 

was not identified as a salient characteristic of the BTCs. For this reason, using this type of 151 

model was not deemed necessary.  152 

The present paper is organized as follows. Section 2 presents the materials and methods. 153 

Subsections 2.1 and 2.2 are devoted respectively to the experimental setup and protocol for 154 

obtaining a wide range of transport conditions in a strongly porous heterogeneous medium, 155 

with flow rates spanning two orders of magnitude. Subsection 2.3 presents a continuity-156 

enforcing writing of the MRAD model.  Subsection 2.4 deals with the calibration approach, 157 

that takes experimental imprecision into account. Section 3 presents the experimental and 158 

modelling results. Sections 4 and 5 are devoted respectively to a discussion and conclusion. 159 

 160 

2. Material and Methods 161 

2.1. Model heterogeneous porous medium Xi (i = 1 to 3) and Yi (i = 1 and 2) 162 

Three parallelepiped (Length 20 cm, height 2 cm, width 10 cm) columns (X1, X2, and X3) 163 

were built manually by pasting 5 mm thick plastic plates. The Xi columns are labelled MHPM 164 

A, MHPM B, and MHPM C hereafter. They all contain a parallelepiped pore (length 15 cm, 165 

height 2 cm, width 1 cm) on one side. The rest of the column is filled with 1 mm glass beads 166 

(Figure 1). The rectangular pore (100% porosity) plays the role of a heterogeneity where 167 

water rapidly flows in comparison to the surrounding 1 mm glass beads (40% porosity). The 168 

ends of the rectangular pore are covered with 500 µm sieve so that the 1 mm glass beads 169 

cannot penetrate into it. The Xi columns have four inlets and four outlets. One inlet/outlet 170 

faces the rectangular pore, the remaining three inlets/outlets are spread over the width of the 171 

MHPM. The pore volume of each MHPM is V0 = 158.8 ml.   172 

To reduce solute density effect, the height of the MHPMs was taken very small (2 cm) in 173 

comparison to the width (10 cm) and length (20 cm). The assumption of negligible density 174 

effects was verified as follows. Two rectangular columns Y1 (Figure 2) and Y2 (Figure 3) 175 

were designed in a manner that if they are turned upside down, the position of the 176 

heterogeneity would change along the middle horizontal plane. Thus, should solute density 177 

effects be present, solute transport differ for the Up and Down positions in both Y1 and Y2 178 

columns, and the resulting BTCs would be different. 179 

 180 
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2.2. Tracer step experiment: setup and protocol 181 

The solute transport is studied using tracer step experiments under saturated conditions. The 182 

columns are first filled with deionized water, then a step of salty water (NaCl) with a 183 

concentration of C0 = 0.05 M is introduced into the column via a peristaltic pump (Lead 184 

FluidTM). This yields an Atwood number A = 2.9×10–3, suggesting that density effects will be 185 

negligible. The concentration at the column output is given by a conductivity meter (WTW 186 

TetraCon 325TM). The flow rate is estimated by weighing the effluents on a scale (Figure 4). 187 

The conductivity meter and the scale are connected to a data logger that samples the 188 

measurements at regular time intervals. The step experiment is stopped when the 189 

concentration at the column output reaches C0 (concentration at the column input). The flow 190 

is maintained with pure, deionized water until the conductivity of the outflowing 191 

concentration returns to its initial, background level.  192 

Each of the three Xi columns underwent step experiments with seven flow rates varying from 193 

0.25 to 25 l/h (Table 1). The flow rate is varied across different realizations/experiments but 194 

not within a single experiment (the flow is constant during a given step experiment). Since the 195 

tested flow rates vary in ratios of 2, 4, 10, 20, 40, 100 and 200, they are lalelled Q2, Q4, Q10, 196 

Q20, Q40, Q100, and Q200 hereafter. For the lowest flow rate (Q2), the duration of the step 197 

experiment was 3 hours and the data sampling interval wass 10 seconds. For the higher flow 198 

rate (Q200), the duration of the step experiment was 2 minutes and the data sampling interval 199 

was 1 second (Table 1). Each step experiment was replicated three times for each of the three 200 

Xi columns, hence a total 7 × 3 × 3 = 63 experimental BTCs (see Results and Discussion 201 

sections).  202 

The Y1 and Y2 columns underwent step experiments with the seven flow rates indicated in 203 

Table 1 but the duration of the Yi experiments are smaller than those of Xi because the 204 

volume of Yi columns is smaller than that of Xi columns. A selection of the BTCs for the Yi 205 

columns is coemmented in the Results and Discussion sections. 206 

 207 

2.3. MRAD Model 208 

2.3.1 Model presentation 209 

The so-called Multi-Region Advection-Dispersion (MRAD) (Majdalani et al. 2018) model is 210 

a generalization of a variety of models introduced in the literature from the 1970s. Two well-211 

known particular configurations are (i) the Two Region (TR) model (Coats and Smith, 1964; 212 

Griffioen et al. 1998) and its particular implementation known as the Mobile-Immobile (MI) 213 

model (van Genuchten and Wierenga, 1976), and (ii) the MultiRate (MR) model (Haggerty et 214 

al., 2000). The general model consists of R regions, each of which may be mobile or 215 

immobile with its own flow and dispersion characteristics, exchanging mass with each other. 216 

The governing equations can be written in vector form as 217 

   (1a) 218 

  (1b) 219 

  (1c) 220 
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  (1d) 221 

  (1e) 222 

Where ci, Di, ui, αi, and µi are respectively the concentration, dispersion coefficient, flow 223 

velocity, dispersivity and volume fraction for Region i (i = 1,…, R), and kij is a first-order 224 

exchange coefficient between Regions i and j. The antisymmetry property for the matrix K 225 

and the zero sum in Equation (1d) are necessary conditions for mass conservation (Majdalani 226 

et al. 2018). 227 

Specifying appropriate  combinations allow arbitrary exchange functions between the 228 

mobile and immobile regions to be modelled, including transfer functions with multiple 229 

transfer time scales and long-term memory effects (Haggerty et al. 2000, 2004). The model is 230 

also able to represent the transition from ballistic behaviour (i.e. variance of solute position 231 

growing proportionally to the square of travel time) at small spatial and time scales to normal 232 

(i.e. Fickian) dispersion at large scales (Majdalani et al. 2018). Moreover, Fickian behaviours 233 

can be obtained without including any dispersion terms by specifying appropriate velocities 234 

and exchange coefficients between parallel regions (Majdalani et al. 2018). In the most 235 

general possible layout (Figure 5), each region may exchange with all the other regions. 236 

Intuition suggests that exchange should be possible only between two regions that have 237 

similar flow velocities.  This would ensure a smooth transition between low velocity (or 238 

immobile regions) and fast flowing regions. However, in a strongly heterogeneous porous 239 

medium, fast flowing regions may be located in the immediate neighbourhood of slow flow 240 

regions (Figure 5a), and the regions may not necessarily be connected. Therefore, as far as 241 

flow topology is concerned, nothing should preclude an exchange between any two different 242 

flow regions in the general case. The exchange coefficient in the model of Figure 5b reflects 243 

not only the transfer rate between the various regions, but also their degree of connectivity. 244 

 245 

2.3.2 Identifying a flow rate-independent formulation for the MRAD model from 246 

experimental breakthrough curves 247 

The question arises of how the model parameters, i.e. the coefficients of the matrices U, D 248 

and K vary with the flow rate Q. The simplest possible assumption is that D, K and U are 249 

proportional to the discharge and that µ is fixed. These assumptions can be checked easily 250 

from the experimental breakthrough curves. To do so, the following variable change ω = 251 

Qt/V0 is introduced, where V0 is the flow volume in the domain. This volume can be 252 

determined from the experimental breakthrough curves cB(t) by noting that the inflow 253 

concentration signal cin is a step function with amplitude c0: 254 

  (2) 255 

which yields 256 

  (3) 257 

The integral is computed from the experimental values using the trapezium rule for numerical 258 

integration. Performing the variable change ω = Qt/V0 in Equation (1a), using (1b)-(1e) leads 259 

to 260 

  (4) 261 
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In the particular case where K and U are proportional to Q and the dispersivities  262 

αi are independent of Q, all the matrix coefficients in equation (4) are Q-independent and all 263 

plots of c (x, ω) obtained for different values of Q superimpose. From an experimental point 264 

of view, only the BTC is known: 265 

  (5) 266 

where xds is the abscissa of the downstream end of the model. Therefore, for the BTCs cB(ω) 267 

to superimpose, the volume fraction matrix µ must be independent of Q. 268 

 269 

2.3.3 New MRAD formulation 270 

The MRAD model studied here is not different conceptually from those presented earlier in 271 

the literature. The only difference lies in the presentation of the equations and in the 272 

identification of the model parameters. The proposed formulation brings the following 273 

improvements over previously published versions: 274 

– the (assumed) proportionality of the dispersion and exchange coefficients to the flow rate 275 

is incorporated directly in the formulation,  276 

– the new formulation intrinsically enforces conservation of both water and solute 277 

regardless of the flow rate. Such conservation is not enforced in usual calibration 278 

approaches (such as that described in Majdalani et al. (2018)), whereby the flow 279 

velocities and volume fractions are calibrated without constraining the conservation of 280 

water flux (let alone solute fluxes). 281 

The flow is divided into R regions flowing in parallel. Let Ai and Qi be respectively the cross-282 

sectional area and discharge in Region i. They are related to the total area A and discharge Q 283 

with 284 

  (6) 285 

Assuming discharge-proportional dispersion and exchange coefficients, the governing 286 

equation in Region i is 287 

   (7) 288 

Substituting the relationships (6) into (7) yields 289 

   (8) 290 

The vector form of the equation is 291 

  (9a) 292 

   (9b) 293 

  (9c) 294 

  (9d) 295 

where Kij and kij stand respectively for the elements of the matrix K and the exchange 296 

coefficients between the regions. Equation (9a) is rewritten as 297 
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  (10a) 298 

   (10b) 299 

Noting that A = V0/L, (L is the length of the column) one has 300 

  (11) 301 

For a two region model as dealt with in the present work, there are 5 independent parameters:  302 

α1, α2, µ1, ν1, and k12. Note that µ2 = 1 - µ1 and ν2 = 1 - ν1. In the absence of dispersion and 303 

exchange (a1 = a2 = k12 = 0), the analytical solution for a step injection consists of two steps 304 

arriving at the downstream end of the MHPM at two different times (dashed line in Figure 6, 305 

top). Increasing the dispersion coefficients 1 and 2 tends to smooth out these steps (solid 306 

line in Figure 6, top). (µ1; µ2) act on the contrast between the arrival times of the two steps, 307 

while ν1 influences their relative sizes. Increasing k12 tends to smooth out the transition 308 

between the two steps (Figure 6, bottom). Note that the above considerations are only 309 

indicative of the broad influence of the various parameters on the modelled solution. They do 310 

not reflect the interactions between the exchange and dispersion parameters that may have 311 

similar effects on the long term behaviour of the solution. For instance, the theoretical 312 

analysis in Majdalani et al. (2018) shows that a Fickian dispersive behaviour is obtained 313 

asymptotically for 1 = 2 = 0, provided that the exchange coefficient k12 is non-zero. 314 

Note that the coefficients in matrix K have the dimension of the inverse of a length. Owing to 315 

the conservation properties (9c), (9d), K has at least one nil eigenvalue, while the remaining 316 

ones are all negative (Majdalani et al., 2018). The smaller of the absolute values of the 317 

remaining eigenvalues gives an order of magnitude of the distance needed for the 318 

concentrations in all regions to homogenize. Beyond this distance, the standard, single region, 319 

Fickian dispersion model becomes valid, even if the dispersion coefficients are zero in all 320 

regions (Majdalani et al., 2018). In the case of a two region model as explored in the present 321 

study, the non-zero eigenvalue is equal to -2k12, which yields a characteristic distance (2k12)
-1. 322 

Note that this holds in the case of zero dispersion coefficients  323 

αi in all regions. In the presence of dispersion, front spreading occurs faster in all regions and 324 

the normal, Fickian dispersion regime is achieved over smaller distances.  325 

 326 

2.4 Calibration 327 

The model parameters are calibrated as introduced in Majdalani et al. (2018) by minimizing 328 

the objective function 329 

  (12a) 330 

  (12b) 331 

  (12c) 332 

where cB and cexp are respectively the simulated and experimental breakthrough 333 

concentrations, t0 > 0 and T are respectively the simulation time step and simulation length, 334 
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and δc is the measurement precision. The max() operator ensures that the modelling error is 335 

zero if the difference between the simulated and experimental concentrations is smaller than 336 

the measurement precision δc.  337 

The square root of J thus provides a measure of the difference between the modelling results 338 

and the experiments. It is to be compared with the experimental imprecision, that is measured 339 

by computing the standard deviation of the various replicas of a given experiment: 340 

  (13a) 341 

   (13b) 342 

   (13c) 343 

where  is the experimental concentration measured at time t for the jth replica of the 344 

ith flow rate, mi is the number of replicas done for the ith flow rate, N = 6 or 7 is the number 345 

of flow rates tested, and Ti is the length of the experiment for the ith flow rate.   is 346 

therefore the average at time t of all the concentrations obtained from the mi replicas done for 347 

the ith flow rate, and  is a measure of the experimental dispersion, at a given time t, of 348 

the various replicas for the ith flow rate. Averaging  over time and over the N flow rates 349 

yields av, a measure of the overall dispersion of the experimental concentration time series 350 

about the mean signal for all times and all flow rates. 351 

 352 

3. Results  353 

3.1. Solute density effect (Yi columns) 354 

Columns Y1 and Y2 are only test columns to verify the existence or the absence of solute 355 

density effect. Since the position of the heterogeneity is not the same in Yi columns whether 356 

they are in Up or Down position (Figures 2 and 3), and since the solute has a tendency to dive 357 

to the bottom due to gravity (water + solute is denser than deionized water), gravity effects 358 

would induce differences between the BTCs of Columns Y1 and Y2 would be different in Up 359 

and Down positions. We made step experiments on Columns Y1 and Y2 in Up and Down 360 

positions with all the flow rates given in Table 1 and we noticed that the BTCs were the same 361 

(in the limit of experimental uncertainty) in Up and Down positions, regardless of the flow 362 

rate. As an illustration, Figure 7 (top) (respectively bottom) shows the breakthrough curves of 363 

column Y1 (respectively Y2) in Up and Down positions for Flow rate Q100. Therefore, as 364 

argued in Section 2, solute density effects are negligible with the present MHPM design.  365 

 366 

3.2. Flow rate effect (Xi column or MHPM A, B, and C) 367 

Each of the three Xi columns underwent step injections under the seven flow rates Q2 – Q200,  368 

with three replicates in each case. As suggested previously in the MRAD formulation, we 369 

adopt the variable change ω = Qt/V0 to plot the BTCs. Figure 8 shows that, for every MHPM 370 

(A, B, and C), the resulting experimental breakthrough curves superimpose in the limit of 371 
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experimental imprecision for all flow rates. This validates the assumption of a model 372 

formulation with discharge-independent parameters, as expressed by Eq. (4). 373 

In homogeneous porous media, BTCs classically exhibit an ‘S’ shape. The BTCs shown in 374 

Fig. 8 have a double ‘S’ shape: the lower ‘S’ is attributed to a fast solute transport mode 375 

through the heterogeneity (rectangular pore), while the higher ‘S’ is attributed to a slower 376 

transport mode within the glass beads. Other studies have also noticed that BTCs in 377 

heterogeneous porous media do not have a classical ‘S’ shape (Silliman and Simpson, 1987 ; 378 

Golfier et al., 2011 ; Majdalani et al., 2015). Double ‘S’ shaped BTCs (or double peak curves 379 

for their derivatives) have also been reported in natural/real media (Maloszewski et al., 1992 ; 380 

Goldscheider et al., 2008 ; Perrin and Luetscher, 2008 ; Field and Leij, 2012 ; Dewaide et al., 381 

2018). 382 

 383 

3.3. MRAD simulations results  384 

The calibration results are given in Table 2. Noting that the error J is the product of two Root 385 

Mean Square Errors (RMSEs), one with respect to t and the other with respect to 1/t, J1/2 gives 386 

a meaningful assessment of the difference between the simulated and experimental 387 

breakthrough curves. J1/2 is about 3% of the total variation in the concentration, which can be 388 

deemed a very good agreement between the model and the experiment. In comparison, the 389 

experimental imprecision ranges from 0.56% to 1.56% (i.e. half of the modelling error). 390 

Figure 9 shows the experimental versus simulated breakthrough concentrations. A satisfactory 391 

alignment over the first bisector is observed. This was expected considering the values of J1/2 392 

in Table 2.  393 

Since the behaviour of the breakthrough curve for the Q200 setting in Figure 8 seems different 394 

from that of the other BTCs, a second calibration of the model is run by removing the Q200 395 

time series from the experimental data set. This leads to slightly better calibration results 396 

(Table 3), with J1/2 reduced by 10% to 25% compared to the calibration results in Table 2. 397 

Removing Q200 from the experimental data set leaves the average experimental imprecision 398 

almost unchanged. Comparing the average calibrated parameter values in Tables 2 and 3 399 

shows that the calibrated 1, 1 and k12 are significantly sensitive to the presence of Q200 in 400 

the data, while a2 and v exhibit a much lower sensitivity. 401 

Table 4 shows the r2 coefficients, the objective function J1/2 and the Mean Bias Error (MBE), 402 

computed from the experimental vs. simulated C/C0 series shown in Figure 9. The MBE is 403 

calculated accounting for experimental imprecision as 404 

  (14) 405 

whereby the modelling error is calculated as the difference between the modelled 406 

concentration signal cB and the closest bound of the experimental concentration interval 407 

. 408 

All r2 coefficients are larger than 0.99, even for the Q200 setting. The values for  J1/2 (that is 409 

analogous to a Root Mean Squared Error) is smaller than 1.6×10–2 in all 21 experiments, and 410 

about 5×10–3 for most of them.  Lastly, the MBE is smaller than 1%. For all three indicators, 411 

the Q200 setting does not significantly poorer values than for the other flow rates. For instance, 412 

for MHPM A, the r2 for Q200 is similar to that of Q10, its MBE is smaller and its J1/2 is very 413 

similar. Similar remarks can be made for MHPM B and MHPM C. This confirms that the 414 

behaviour of the model is satisfactory, not only on the average, but also for all individual 415 

experiments for all three MHPM. 416 

 417 
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4. Discussion 418 

The linearity of the exchange coefficient k12 and the dispersion coefficients Di with respect to 419 

the flow rate under laminar flow was expected from theoretical considerations (Majdalani et 420 

al., 2018), because these coefficients reflect the statistics of the fluctuations of the velocity 421 

field about the mean values. Such fluctuations are expected to be proportional to the average 422 

flow velocity (thus to the flow rate) when the flow rate is small.  423 

The present experimental and modelling results confirm the theoretical assumption of a linear 424 

relation between the flow rate and the mass exchange coefficients over a wide range of flow 425 

rate values, even for a strongly heterogeneous MHPM. This is also true for the flow velocities 426 

and dispersion coefficients in the two regions of the model. The volume fractions of the two 427 

regions and the partition coefficient of the flow rate between these regions are found to be 428 

flow rate independent. As a consequence, the flow velocity is proportional to the flow rate 429 

and the dispersivity is flow rate independent in both regions. We note that e.g. Hansen (2022) 430 

also inferred a flow velocity proportional to the flow rate and a flow rate independent 431 

dispersivity using a very different experimental setup and a different model, based on 432 

fractional mass exchange between the mobile and immobile regions. While Hansen (2022) 433 

concludes that the exchange coefficient is flow rate independent, we obtain a linear 434 

relationship between k12 and the flow rate. These two findings are not necessarily 435 

contradictory in that the structures of the two exchange models are different. 436 

The three MHPMs used in the present study were built following the same geometric 437 

specifications. They are identical within a geometric precision of 1 mm (for a total length of 438 

150 mm). This may be considered an excellent geometric replicability. Comparing the 439 

calibration results in Tables 2 and 3 gives an idea of the uncertainty in the parameters with 440 

respect to MHPM manufacturing for almost indiscernible geometries. While the volume and 441 

flow distribution parameters i and i in Table 2 are remarkably stable from one MHPM to 442 

the next, the dispersion coefficients in both regions vary by 150% and the exchange 443 

coefficient varies by more than 300%. Dropping the largest discharge from the experimental 444 

set contributes to increase the consistency of the calibration results: all model parameters, 445 

including the exchange coefficient k12, are remarkably consistent for all MHPMs. This seems 446 

to indicate that the highest flow rate (Q200 pump setting) is the limit of applicability of the 447 

flow rate independent model formulation. For this flow rate, the residence time of the tracer 448 

within the MHPM is approximately 23 s, which corresponds to an average flow velocity of 449 

6.6 mm/s. Assuming that all the flow passes through the 2 cm high central conduit yields an 450 

upper bound Re = 132 for the Reynolds number. Turbulence effects are therefore an unlikely 451 

cause. However, it is suspected that, owing to the strongly contrasted MHPM geometry, the 452 

effective flow paths are not exactly the same for the Q200 setting as for smaller flow rates, thus 453 

inducing different model calibration results.   454 

In order to compare our modelling results with previous literature findings, namely Li et al. 455 

(1994) and Bajracharya and Barry (1997), we recall that in the present study u varies between 456 

0.2 and 20 cm/min. Li et al. (1994) found a linear relation between u and the mass exchange 457 

coefficient k12 for 0.3 < u < 2.7 cm/min, but for 0.05 < u < 0.1 cm/min the relation between 458 

k12 and u was rather quadratic (k12 = 94.23 × u2.3). In both cases, the fit of the k12–u 459 

relationship was based on 3 data points, for which the experimental confidence interval is not 460 

known. Thus, according to Li et al. (1994), the k12–u relationship is quadratic at low pore 461 

water velocity and linear at higher velocities. We argue that more than 3 data points are 462 

needed to deduce a good fit and this is why we use 7 flow rates in our study. In our study, the 463 

k12–u relationship is linear, in agreement with Li et al. (1994) for high velocities, and even 464 

beyond the range of velocities explored by Li et al. (1994).  465 
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Bajracharya and Barry (1997) tried to fit a relation in the form  to their data and 466 

evaluated the fitting quality using the coefficient of determination r2. Since several, different 467 

experimental conditions (column material, column depth, column diameter, velocity range) 468 

were involved, Bajracharya and Barry (1997) obtained several values for the power b:  b = 469 

2.15 (r2 = 0.965) for 0.05 < u < 0.4 cm/min, b = 1.79 (r2 = 0.971) for 0 < u < 0.8 cm/min, b = 470 

1.3 for 0 < u < 6 cm/min (r2 = 0.954). In the latter case, a linear relation with b = 1 was also 471 

possible with r2 = 0.933. Bajracharya and Barry (1997) concluded that k12–u relationship 472 

follows a power law with a power coefficient b that ranges from 1 to 2 where k12 scales 473 

linearly with u at low pore water velocity, and k12 may assume any value between 0.5 and 2 at 474 

higher velocities (which contradicts the conclusions of Li et al. (1994)).  475 

In the review of Maraqa et al. (2001), that is based on 19 experiments, the k12–u relationship 476 

is found to be sublinear (b < 1) and the value of b depends on the type of porous medium: b = 477 

0.85 (r2 = 0.57) for a non-aggregated medium with 0.01 < u < 0.12 cm/min, b = 0.71 (r2 = 478 

0.52) for an aggregated medium with 0.01 < u < 0.12 cm/min, and b = 0.76 (r2 = 0.7) for a 479 

stony medium with 0.006 < u < 0.045 cm/min.  480 

The review of Griffioen et al. (1998) is based on 20 experiments. Its conclusions are that the 481 

k12–u relationship rather follows   , where b has no stable value. Table 3 in 482 

Griffioen et al. (1998) shows that b can take any value between -0.3568 (experiment of Khan 483 

and Jury (1990)) and 4.8543 (experiment of Nielsen and Biggar (1961)). 484 

The results of Bajracharya and Barry (1997), Maraqa et al. (2001), and Griffioen et al. (1998) 485 

show that, even though the relationship k12–u is expected to be linear for theoretical reasons, 486 

experimental data do not generally reflect such linearity. However, such lack of linearity may 487 

stem from various sources. For instance, solute density effects may be present under vertical 488 

flow conditions and induce a non-linear behaviour in the k12–u relationship. The lack of 489 

linearity may also be explained by the absence of replicates. Not replicating the measurements 490 

precludes the width of the experimental confidence interval to be assessed, thus making it 491 

impossible to determine whether a linear (or another type of) law would pass through the 492 

experimental error boxes. We consider that our experimental data set is reliable because the 493 

absence of solute density effects has been verified experimentally and because tehere are 9 494 

replicates for each flow rate: 3 replicates of each experiment and 3 replicates of the porous 495 

medium.   496 

A last discussion point is how the conclusions of the present work, carried out using a single, 497 

strongly contrasted heterogeneity, can be transposed to more natural aquifers, involving much 498 

larger scales and less contrasted heterogeneities. The present MHPMs were designed so as to 499 

maximize the contrast between the fast and slow flow paths. The purpose was to make the 500 

experimental transport process as difficult as possible to model using the standard MRAD 501 

model. From the authors’ experience on MHPMs placed in series (Majdalani et al., 2015), 502 

increasing the number of heterogeneities tends to smooth out the transport process, bringing it 503 

closer to a Fickian behaviour. This is nothing but a consequence of the central limit theorem 504 

(see e.g. Klafter et al., 1987 ; Metzler and Klafter, 2000). Decreasing the contrast between the 505 

permeabilities of the two media or making the volume occupied by one of them significantly 506 

smaller than the other also contributes to decrease the contrast between the slow and fast 507 

transport fluxes, which also brings the BTCs closer to those of a single transport mode, 508 

Fickian behaviour. That the reformulated MRAD model reproduces satisfactorily the BTCs of 509 

a single, highly contrasted MHPM is therefore seen as an encouraging sign for the modelling 510 

of more natural aquifers containing multiple heterogeneities. Obviously, this conclusion holds 511 

only provided that the properties (size, porosity, permeability) of the heterogeneities do not 512 

exhibit large scale variations that would be impossible to capture by a model with uniform 513 

parameters. 514 
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5. Conclusion   515 

In this paper we studied solute transport in heterogeneous model porous medium under a wide 516 

range of flow rates. We conducted tracer experiments with seven tested flow rates ranging 517 

from 0.25 to 25 l/h, that is over two orders of magnitude. In comparison to other studies 518 

where the porous medium is moderately heterogeneous, our experiment is characterized by a 519 

high degree of heterogeneity. Solute transport experiment were carried out under horizontal 520 

flow and so that no solute density effects are present in the MHPM. In order to make our 521 

experimental data reliable for modelling exercise, all tracer step experiments were done with 522 

replicates: 3 replicates of each experiment and the ensemble of the experimental protocol was 523 

replicated on 3 identical MHPMs (A, B, and C).  524 

The experimental breakthrough curves show a double ‘S’ shape behaviour in accordance with 525 

other literature findings, and that the ‘S’ shape is a stable behaviour that does not vary with 526 

flow rate under a suitable change of variable on the abscissa axis: ω = Qt/V0. This shows that 527 

there exists a model with flow-rate independent parameters that can reproduce all 528 

experimental BTCs. The BTCs are modelled successfully using a reformulated version of the 529 

MRAD model with only two mobile regions. The new formulation enforces mass balance for 530 

both water and the solute, and uses flow rate independent parameters. The simulated BTCs 531 

are in close agreement with the experimental ones, with an error around 3%, r2 coefficients 532 

above 0.99 and a Mean Bias Error smaller than 10-2. This validates the assumption of linear 533 

flow velocities, dispersion coefficients and exchange coefficients with respect to the flow rate 534 

in the two region model. 535 

Although the assumption of linearity between transport parameters and the flow rate has been 536 

suggested in previous studies, no clear experimental evidence for this can be found in the 537 

literature. Our study can be considered to provide a clear experimental evidence of the 538 

linearity assumption between MRAD parameters and flow rate. The variability of the model 539 

parameters from one MHPM to the other is strongly reduced when the largest flow rates are 540 

dropped from the experimental data sets. This may be an indication that the largest flow rate 541 

is at the limit of model applicability. Our experimental data set is deemed reliable owing to its 542 

high sampling rate, the use of several replicates for each experiment, all done on several 543 

replicates of the MHPM. 544 

We should like to conclude with a remark on the one-dimensional nature of the transport 545 

model. Although MHPMs (and the resulting flow within them) are three-dimensional, most 546 

experiments performed in the literature (including the present ones) involve one-dimensional 547 

flow models. These are upscaled models (Farmer, 2002) in that they attempt to provide a one-548 

dimensional representation of the transport process on the (low) resolution of the MHPM size, 549 

while the actual transport process is spatially variable and three-dimensional on a much 550 

smaller scale. Being one-dimensional, the model includes a single (longitudinal) dispersion 551 

coefficient. However, in real-world situations, dispersion involves a tensor formulation with 552 

three principal directions. A logical next step in the present research should be to investigate 553 

of how the MRAD model can be generalized to two- and three-dimensional modelling and 554 

whether the rate of convergence to the Fickian limit and the linear dependence to the flow is 555 

preserved when the MHPM is not only strongly heterogeneous but also strongly anisotropic in 556 

two and three dimensions. 557 

 558 

 559 
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Appendix. Numerical solution of the transport equations 560 

The present appendix details the numerical solution of the transport equation (1a), that can be 561 

rewritten in the following form under the assumption of space-independent coefficients in the 562 

equation 563 

  (A.1) 564 

The equation is solved using a three step time splitting procedure (Strang, 1968). To do so, 565 

Eq. (A.1) is split into three equations: 566 

  (A.2a) 567 

  (A.2b) 568 

  (A.2c) 569 

where Eqs. (A.2a-c) are solved numerically using the same computational time step t, and 570 

each equation (A.2b-c) uses the result of the previous one as a starting point over the time 571 

step.  572 

Equation (A.2a) is solved using a finite volume procedure. Within each region i (the subscript 573 

i is dropped in the notation for the sake of readability), the following formula is used: 574 

  (A.3) 575 

where  is the average value for c in the kth cell at time step n, and  is the average 576 

value of c at the interface between Cells k–1 and k between time levels n and n+1. The salient 577 

point of the algorithm lies in the definition of the interface values  . In order to 578 

minimize numerical diffusion, we used an arbitrary time step explicit method presented in 579 

Leonard (1994). This method removes the restriction on the time computational time step by 580 

allowing the dimensionless CFL number  to take any arbitrary large value. t is set up 581 

to the largest possible value allowing the fastest region to travel over the length L of the 582 

computational domain within t, that is  583 

   (A.4) 584 

Equation (A.2b) is discretized using a classical centred implicit scheme 585 

  (A.5a) 586 

  (A.5b) 587 

Eq. (A.2c) is discretized using an implicit time marching scheme 588 

   (A.6) 589 

where . Solving (A.6) for  yields 590 

  (A.7) 591 

 592 
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 737 

List of Tables 738 

Table 1. Values and symbols of the flow rates tested in step experiments on columns Xi (i = 1 to 3) also called MHPM A, 

MHPM B, and MHPM C 

Symbol Flow rate (l/h) Experiment duration (min) Sampling Interval (s) 

Q2 0.25 180 10 

Q4 0.5 90 10 

Q10 1.25 40 5 

Q20 2.5 20 5 

Q40 5 10 1 

Q100 12.5 3 1 

Q200 25 2 1 

 739 
Table 2. Calibration results with all flow rates. The average and standard deviations in each row are computed row from 

the three values obtained from MHPMs A-C.  

Parameter MHPM A MHPM B MHPM C Average Standard dev. 

α1 (cm) 2.36 2.33 1.72 2.14 0.36 

α2 (m) 0.373 0.269 0.262 0.301 0.062 

μ1 (-) 0.294 0.288 0.270 0.284 0.012 

ν1 (-) 0.598 0.546 0.593 0.579 0.029 

k12 (m-1) 0.578 0.295 0.948 0.607 0.327 

J (-) 7.05 × 10–4 10–3 1.47 × 10–3 1.06 × 10–3 3.9 × 10–4 

J1/2 (-) 2.66 × 10–2 3.17 × 10–2 3.84 × 10–2 3.22 × 10–2 5.9 × 10–3 

av 1.56 × 10–2 0.76 × 10–2 0.56 × 10–2 0.96 × 10–2 5.3 × 10–3 

 740 
 741 
Table 3. Calibration results without Q200. The average and standard deviations in each row are computed row from the 

three values obtained from MHPMs A-C. 

Parameters MHPM A MHPM B MHPM C Average Standard dev. 

α1 (cm) 1.55 1.15 1.48 1.39 0.21 

α2 (cm) 0.334 0.291 0.283 0.303 0.024 

μ1 (-) 0.271 0.228 0.264 0.254 0.023 

ν1 (-) 0.592 0.506 0.591 0.563 0.049 

k12 (m-1) 0.898 0.707 0.823 0.809 0.096 

J (-) 5.78 × 10–4 6.86 × 10–4 8.19 × 10–4 6.94 × 10–4 1.21 × 10–4 

J1/2 (-) 2.40 × 10–2 2.62 × 10–2 2.87 × 10–2 2.63 × 10–2 2.4 × 10–3 

av 1.68% 0.72% 0.51% 0.97 × 10–2 6.3 × 10–3 

 742 

  Table 4. Goodness-of-fit indicators for experimental vs. modelled C/C0.  

Flow 

rate 
MHPM A 

 
MHPM B 

 
MHPM C 

 r2 J1/2 MBE  r2 J1/2  MBE  r2 J1/2 MBE 

Q2 0.998 5.16×10–3 1.63×10–3  0.994 1.07×10–2 1.13×10–3  0.991 2.35×10–3 7.74×10–4 
Q4 0.998 4.33×10–3 1.55×10–3  0.999 8.44×10–3 –2.17×10–4  0.997 4.34×10–3 –1.71×10–3 

Q10 0.995 4.89×10–3 3.51×10–3  0.997 7.01×10–3 8.39×10–3  0.999 3.66×10–3 9.61×10–4 

Q20 0.999 4.03×10–3 3.74×10–4  0.998 1.23×10–2 9.05×10–3  0.997 2.53×10–3 1.23×10–3 
Q40 0.999 2.87×10–3 3.04×10–4  0.999 6.33×10–3 4.83×10–3  0.999 4.80×10–3 2.11×10–3 

Q100 0.999 1.25×10–2 –1.61×10–3  0.995 8.15×10–3 7.13×10–4  0.997 1.83×10–3 6.18×10–5 

Q200 0.995 5.04×10–3 2.52×10–3  0.999 1.59×10–2 –1.05×10–3  0.992 1.08×10–2 5.17×10–3 
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 745 

Table 5. Dimensionless numbers for similarity analysis. The Reynolds number is computed as  and the 746 

Peclet number in region k as . 747 
MHPM Re (–) Pe1 (–) Pe2

 (–) 

A 1.32 – 132 9.7 44.9 

B 1.32 – 132 13.0 51.5 

C 1.32 – 132 10.1 53.0 

 748 
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 750 

Figures 751 

 752 
Figure 1. Model heterogeneous porous medium Xi (i = 1 to 3). Dashed area represents 1 mm 753 

glass beads and white area represents the heterogeneity (rectangular pore). Real photos show 754 

the column before and after filling it with 1 mm glass beads. 755 

 756 

 757 
Figure 2. Model heterogeneous porous medium Y1 where the heterogeneity (white rectangle) 758 

is located in one corner. As in Figure 1, dashed area represents 1 mm glass beads and white 759 

area represents the heterogeneity (rectangular pore). 760 
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 761 

 762 
Figure 3. Model heterogeneous porous medium Y2 where the heterogeneity (white rectangle) 763 

is located in the center of one face. As in Figure 1, dashed area represents 1 mm glass beads 764 

and white area represents the heterogeneity (rectangular pore). 765 

 766 

 767 

 768 
Figure 4. Tracer step experiment setup. 769 

 770 
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 771 
Figure 5. MRAD model definition sketch. (a) Streamlines and partition into several regions in 772 

the presence of heterogeneities. (b) Schematization in the MRAD model. Any of the fast, 773 

moderate or slow velocity regions may be partitioned into several subregions when required 774 

by the flow physics 775 

 776 

 777 
Figure 6. Influence of the MRAD parameters on the shape of the breakthrough curve. 778 
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 780 
Figure 7. Step experiments with flow rate Q100. Top: Column Y1 in Up and Down positions. 781 

Bottom: Column Y2 in Up and Down positions. 782 
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 784 
Figure 8. Experimental breakthrough curves for columns MHPM A, B, and C. The variable 785 

change ω = Qt/V0 is adopted for the abscissa axis. The three digit figures in the legend refer to 786 

the peristaltic pump setting, see Table 1 for the flow rate values. 787 

 788 

 789 
Figure 9. Experimental vs. modelled breakthrough curves for the three MHPM (A, B, and C) 790 

and for the seven tested flow rates. 791 
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