Haifa Laroussi 
  
Yanis Aoudache 
  
Emilie Robert 
  
Virginie Libante 
  
Louise Thiriet 
  
Dominique Mias-Lucquin 
  
Badreddine Douzi 
  
Yvonne Roussel 
  
Isaure Chauvot De Beauchene 
  
Nicolas Soler 
email: nicolas.soler@univ-lorraine.fr
  
Isaure Chauvot De Beauch Êne 
  
Nathalie Leblond-Bourget 
email: nathalie.leblond@univ-lorraine.fr
  
Exploration of DNA processing features unravels novel properties of ICE conjugation in Gram-positive bacteria

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Horizontal gene transfer (HGT) plays an important role in the rapid evolution of bacterial genomes by driving gene exchanges between cells and therefore leading to genetic variability of bacteria. This allows a better adaptation of bacterial populations to their environment and colonization of new ecological niches [START_REF] Soucy | Horizontal gene transfer: building the web of life[END_REF][START_REF] Brito | Examining horizontal gene transfer in microbial communities[END_REF]. These HGT have also con-tributed to the emergence of new pathogenic bacteria and to the spread of antibiotic resistance.

Bacterial conjugation is considered to be one of the most important mechanisms of HGT and is defined as the transmission of genetic material from one bacteria to another by direct cell contact [START_REF] Soucy | Horizontal gene transfer: building the web of life[END_REF][START_REF] Brito | Examining horizontal gene transfer in microbial communities[END_REF][START_REF] García-Aljaro | Beyond the canonical strategies of horizontal gene transfer in prokaryotes[END_REF]. During conjugation, DNA is transported from a donor to a recipient cell through a conjugation machinery, a type IV secretion system (T4SS) [START_REF] Waksman | From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective[END_REF]. Conjugation is mediated by mobile genetic elements. There are two types of autonomous conjugative elements: conjugative plasmids which are extra-chromosomal elements, and integrative and conjugative elements (ICEs) which are integrated in bacterial chromosomes [START_REF] Bellanger | Conjugative and mobilizable genomic islands in bacteria: evolution and diversity[END_REF][START_REF] Burrus | Conjugative transposons: the tip of the iceberg[END_REF].

Genome analyses indicate that ICEs are more widespread than conjugative plasmids in most bacterial phyla, especially in Firmicutes [START_REF] Bellanger | Conjugative and mobilizable genomic islands in bacteria: evolution and diversity[END_REF][START_REF] Guglielmini | The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation[END_REF][START_REF] Cury | Integrative and conjugative elements and their hosts: composition, distribution and organization[END_REF]. A major superfamily of ICEs in Gram-positive bacteria is the ICESt3/Tn916/ICEBs1 superfamily [START_REF] Ambroset | New insights into the classification and integration specificity of streptococcus integrative conjugative elements through extensive genome exploration[END_REF]. Tn916 and its relatives are involved in the spread of various antimicrobial resistance genes, especially resistance to tetracyclines, macrolides and bacitracin [START_REF] Roberts | Tn 916 -like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance[END_REF][START_REF] Han | Functional analysis of a bacitracin resistance determinant located on ICE Cp1, a novel tn 916 -Like element from a conjugative plasmid in clostridium perfringens[END_REF][START_REF] Santoro | Variation on a theme; an overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci[END_REF].These elements were found in a large broad host range among Firmicutes, including severe multi-resistant pathogens such as Streptococcus pneumoniae, Clostridium difficile or Staphylococcus aureus [START_REF] Roberts | Tn 916 -like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance[END_REF][START_REF] Schroeder | Macrolide resistance in Streptococcus pneumoniae[END_REF]. Thus, the molecular mechanisms of conjugative transfer are worth to be investigated in this widespread superfamily of ICEs to gain future insights aiming to control its dissemination.

After excision from the bacterial chromosome, ICEs transfer to other cells by using mechanisms similar to those of conjugative plasmids. Thus, ICE conjugation is performed in two distinct steps: (i) processing of the DNA molecule to be transferred by a multi-protein complex called relaxosome, and (ii) translocation of the DNA through a T4SS apparatus from the donor to the recipient cells [START_REF] Waksman | From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective[END_REF][START_REF] Bellanger | Conjugative and mobilizable genomic islands in bacteria: evolution and diversity[END_REF]. The key enzyme of the relaxosome complex is the relaxase. It initiates conjugation by nicking the DNA at 2 Nucleic Acids Research, 2022 a specific sequence located on the origin of transfer (oriT) of the conjugative element, called the nic site. This enables its rolling-circle replication (RCR) starting from the 3 OH end of the nicked DNA [START_REF] Wawrzyniak | The different faces of rolling-circle replication and its multifunctional initiator proteins[END_REF]. As relaxases are transesterases, they usually remain covalently attached to the 5 end of the nic site by their catalytic tyrosine [START_REF] Goessweiner-Mohr | Conjugation in gram-positive bacteria[END_REF][START_REF] Guzmán-Herrador | The secret life of conjugative relaxases[END_REF]. The nascent DNA-relaxase complex is then recognized and recruited by the coupling protein encoded by the element which directs it to the conjugative T4SS [START_REF] Cabez Ón | Towards an integrated model of bacterial conjugation[END_REF]. In the recipient cell, the incoming single-stranded DNA is re-circularized by the relaxase [START_REF] Guzmán-Herrador | The secret life of conjugative relaxases[END_REF]. The complementary strand is then replicated by host enzymes, and in the case of ICEs, the DNA is then integrated in the chromosome of both recipient and donor strains [START_REF] Bellanger | Conjugative and mobilizable genomic islands in bacteria: evolution and diversity[END_REF][START_REF] Wawrzyniak | The different faces of rolling-circle replication and its multifunctional initiator proteins[END_REF].

Conjugative relaxases are classified into different MOB families according to the presence of conserved motifs, phylogenetic analysis and structural data [START_REF] Guzmán-Herrador | The secret life of conjugative relaxases[END_REF][START_REF] Garcillan-Barcia | The diversity of conjugative relaxases and its application in plasmid classification[END_REF][START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF]. The ICESt3/Tn916/ICEBs1 superfamily of ICEs encodes noncanonical relaxases that are unrelated to the canonical HUH endonucleases [START_REF] Chandler | Breaking and joining single-stranded DNA: the HUH endonuclease superfamily[END_REF]. They belong to the MOB T family [START_REF] Guglielmini | The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation[END_REF], which is distantly related to the Rep trans RCR initiators encoded by the well-studied pT181 plasmid family [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF][START_REF] Novick | Staphylococcal plasmids and their replication[END_REF][START_REF] Carr | Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication[END_REF]. The nic site was previously identified for ICEBs1 and contains a conserved CT'AA sequence located within the loop of a G/C rich hairpin [START_REF] Lee | Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of bacillussubtilis[END_REF]. This nic sequence is conserved among ICEs of the ICESt3/Tn916/ICEBs1 superfamily and is identical to the dso (double-stranded origin) sequence used by Rep trans proteins to initiate RCR [START_REF] Thomas | In vitro studies of the initiation of staphylococcal plasmid replication[END_REF][START_REF] Koepsel | Cleavage of single-stranded DNA by plasmid pT181-encoded RepC protein[END_REF], strengthening their relationship with MOB T relaxases. Indeed, beyond their role in conjugation initiation, MOB T relaxases encoded by Tn916 and ICEBs1 (Orf20 and NicK, respectively) are also involved in the autonomous RCR initiation of the ICE after excision [START_REF] Lee | Autonomous plasmid-like replication of a conjugative transposon[END_REF][START_REF] Wright | Autonomous replication of the conjugative transposon Tn916[END_REF].

In contrast to those of conjugative plasmids, only few relaxases from ICEs have been experimentally characterized. So far, three MOB T relaxases have been studied. In 2006, the Orf20 relaxase was surprisingly found to require the cognate Tn916 integrase for its nicking specificity [START_REF] Rocco | The integrase of the conjugative transposon Tn916 directs strand-and sequence-specific cleavage of the origin of conjugal transfer, oriT, by the endonuclease orf20[END_REF]. At that time, 19 putative nicking sites were detected within oriT Tn916 , without occurrence of the conserved CT'AA nic site among them. It is now known that, due to misidentification of the initiator codon, the protein used in the 2006 study was a truncated version of Orf20, deprived from its Nterminal HTH (Helix-Turn-Helix) domain. Therefore, this HTH domain of Orf20 could be required for identification of the nic site and for nicking at the correct and unique position, questioning the role of the integrase in this process. Subsequently, this HTH domain was shown to be critical for the RCR initiation activity of Orf20 [START_REF] Wright | Autonomous replication of the conjugative transposon Tn916[END_REF]. In 2007, the CT'AA nic site of ICEBs1 was clearly identified within the loop of a conserved GC-rich hairpin by Lee and Grossman [START_REF] Lee | Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of bacillussubtilis[END_REF], as previously shown for the dso of Rep trans proteins. The MOB T NicK relaxase from ICEBs1 was involved in this nicking activity, but it was not characterized biochemically. Recently, we characterized another MOB T representative relaxase, RelSt3 encoded by ICESt3 from Streptococcus thermophilus [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF][START_REF] Bellanger | Conjugative transfer of the integrative conjugative elements ICESt1 and ICESt3 from streptococcusthermophilus[END_REF]. RelSt3 is dimeric and harbors a catalytic PF02486 domain which is also present in Rep trans proteins. We demonstrated that RelSt3 active site, as for Rep trans proteins, contains three conserved acidic residues for the coordination of a cationic cofactor [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF]. However, little is known about how MOB T proteins interact with DNA, and whether a covalent adduct is formed between the cut DNA and a catalytic tyrosine residue of their active site. Several canonical HUH relaxases encoded by conjugative plasmids were studied in some details, revealing that they recognize a bind site located close to the nic site on the oriT sequence. Such examples include the TrwC relaxase (MOB F ) from Escherichia coli R388 plasmid [START_REF] Lucas | Relaxase DNA binding and cleavage are two distinguishable steps in conjugative DNA processing that involve different sequence elements of the nic site[END_REF], and the TraA relaxase (MOB Q ) from Enterococcus faecalis pIP501 plasmid [START_REF] Kopec | TraA and its N-terminal relaxase domain of the Gram-positive plasmid pIP501 show specific oriT binding and behave as dimers in solution[END_REF], both of which bind to a sequence located upstream of the nic site. This bind site usually contains inverted repeats. In other cases, the relaxase is assisted by auxiliary proteins, which can favor the binding and the positioning of the relaxase at oriT. For example, the relaxase PcfG (MOB P ) from the E. faecalis plasmid pCF10 is unable to bind DNA directly, but relies on its PcfF partner to do so [START_REF] Rehman | Enterococcal PcfF is a ribbon-helix-helix protein that recruits the relaxase PcfG through binding and bending of the oriT sequence[END_REF]. These auxiliary proteins often harbour a RHH (Ribbon-Helix-Helix) domain responsible for their interaction with DNA [START_REF] Rehman | Enterococcal PcfF is a ribbon-helix-helix protein that recruits the relaxase PcfG through binding and bending of the oriT sequence[END_REF][START_REF] Schreiter | Ribbon-helix-helix transcription factors: variations on a theme[END_REF][START_REF] Varsaki | Analysis of cole1 MbeC unveils an extended ribbon-helix-helix family of nicking accessory proteins[END_REF][START_REF] Miguel-Arribas | The bacillussubtilis conjugative plasmid pLS20 encodes two ribbon-helix-helix type auxiliary relaxosome proteins that are essential for conjugation[END_REF]. Instead, Rep trans proteins do not need auxiliary proteins to bind to their dso sequence [START_REF] Khan | Rolling-circle replication of bacterial plasmids[END_REF][START_REF] Wang | Origin recognition specificity in pT181 plasmids is determined by a functionally asymmetric palindromic DNA element[END_REF]. Their bind site contains an inverted repeat (ICRIII) located immediately downstream of the nic site, that allows discrimination of the cognate Rep trans protein [START_REF] Carr | Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication[END_REF][START_REF] Wang | Origin recognition specificity in pT181 plasmids is determined by a functionally asymmetric palindromic DNA element[END_REF].

Interestingly, most of the MOB T relaxases from ICEs harbour an HTH domain in their N-terminal part. It is thus expected that this HTH domain could bind DNA at oriT. In this study, we present how the relaxase RelSt3 interacts with its target binding site in the oriT region through its HTH domain. Mapping of the oriT sequence required for ICESt3 conjugative transfer revealed that the RelSt3 bind site was unusually distant from the nic site. We also reported that the binding of the HTH domain was important for conjugative transfer and for full nicking activity in vitro. By using structural modeling, we identified an alpha-helix of the HTH domain involved in the interaction with DNA, which was experimentally confirmed. In addition, we investigated the joining activity of RelSt3 and its covalent binding to the 5 end of the cleaved DNA. All these data provide significant novel information enabling a better comprehension of how MOB T relaxases are involved in DNA processing during conjugative transfer.

MATERIALS AND METHODS

Bacterial strains, cloning and mutagenesis

The bacterial strains and plasmids used in this work are listed in Supplementary Tables S1 andS2. Streptococcus thermophilus strains were grown in Lactose (0.5% w/v) M17 broth at 42 • C with, when necessary, chloramphenicol (4 g/ml) and erythromycin (5 g/ml). In case of mobilization experiments with poriT, spectinomycin was used at 500 g/ml. S. thermophilus LMG18311 harboring ICESt3 labelled with a chloramphenicol resistance gene was used as a donor strain in conjugation experiments, whereas an isogenic strain without ICESt3 but harboring the pMG36e plasmid carrying erythromycin resistance was used as recipient cell. Escherichia coli EC101 was used for cloning procedures with plasmid pG + host9. Deletion of the 5 part of the orfJ relaxase gene encoding the N-terminal HTH domain was done as already described in ref [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF], leading to the LMG18311(ICESt3orfJΔHTHcat) strain. Plasmid Downloaded from https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkac607/6645636 by UNIVERSITE DE LORRAINE user on 18 July 2022 constructs for protein over-expression were built into the E. coli DH5␣ strain and over-expression was performed in E. coli BL21(DE3).

For mobilization experiments, poriT plasmids containing various fragments of the ICESt3 oriT sequence cloned into the pOri1180 plasmid were constructed using EcoRI and ApaI restriction sites as described in [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF]. For production of recombinant proteins, the kanamycin resistant pSKB3 vector was used (gift from Stephen K. Burley), introducing a 6 His-tag and a TEV protease cleavage site in frame at the N-terminal end. The pSKB3-RelSt3 vector encoding ICESt3 orfJ gene [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF] was used as a template for the cloning of RelSt3 sub-domains using NdeI and HindIII restriction sites. This way, pSKB3 derivatives were generated to produce RelSt3 64-410 (depleted of its HTH domain) and RelSt3 1-63 (HTH domain) variants. For the generation of point substitution variants, site-directed mutagenesis was performed by overlap PCR using oligonucleotides described in Supplementary Table S3. For all constructs, the sequence of both strands of the recombinant plasmids was verified by sequencing (Genewiz Inc., Germany).

Mating experiments

Mating experiments were done as described previously [START_REF] Dahmane | Diversity of integrative and conjugative elements of streptococcussalivarius and their intra-and interspecies transfer[END_REF]. Briefly, S. thermophilus LMG18311-derived donor (containing ICESt3 and harboring a poriT construct for mobilization experiments) and recipient strains were grown overnight in the presence of the appropriate antibiotics. Overnight cultures were diluted to 1:100 and further grown without any antibiotic for the recipient strain, and if appropriate, with spectinomycin (500 g/ml) for the donor strain to maintain the poriT construct. After growth reached an OD 600 nm of 0.4, cells were mixed (1:1) and concentrated 30 times in LM17 broth. For each mating experiment, two 150 l aliquots of cells were spread separately on 0.45 m pore-size nitrocellulose filters (Millipore) deposited on soft agar (0.8%) LM17 plates and then incubated overnight at 42 • C. Transconjugant (TC) cells were recovered from the filters with 10 mL of LM17, directly spread or concentrated 10 times before plating onto LM17 plates containing chloramphenicol and erythromycin (ICE transfer), or spectinomycin and erythromycin (poriT mobilization). After a 24 hincubation at 42 • C, mating frequency was calculated as the ratio of TC per recipient cell. At least three independent biological replicates were done.

Protein expression and purification

Over-expression and purification of recombinant RelSt3 (full-length), RelSt3 64-410 , RelSt3 1-63 and RelSt3 point variant proteins were done as previously described for RelSt3 [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF].

Electrophoretic mobility shift assays (EMSA)

Electrophoretic mobility shift assays (EMSA) were performed in agarose and in acrylamide gels. For agarose EM-SAs, 400 ng of each oriT DNA produced by PCR were incubated with the indicated amount of RelSt3 protein in a final volume of 20 l. After incubation for 15 min at 37 • C, the mixture was resolved in 1.5% agarose gels in 1× Trisacetate-EDTA for 1.5 h at 11 V cm -1 . Gels were then stained with ethidium bromide and images captured with a Bio-Rad XR+ system (Bio-Rad Laboratories, California). Each experiment was reproduced at least three times.

For EMSAs performed with acrylamide gels, DNA substrates were oligonucleotides labelled at their 5 end with 6-FAM (Eurogentec, France), except for the complementary oligonucleotides that were unlabeled (see Supplementary Table S3 for the list of oligonucleotides). Reactions performed in final volume of 18 l contained 2 pmol of labelled DNA and increasing amounts of the respective proteins (RelSt3 WT or variants, see figure legends). Reaction buffer contained 20 mM Tris-HCl, 500 mM NaCl and 100 g/ml of salmon sperm DNA as competitor. The mixtures were incubated for 15 min at 37 • C prior addition of 2 l of loading buffer (2.5 mg/ml bromophenol blue and 0.4 g/ml sucrose). Prior loading samples, 5% (w/v) native polyacrylamide gels (PAGE) were pre-run using miniPROTEAN Bio-Rad cells at 4 • C for 1 h at 84 V in 0.5× Tris-Borate-EDTA buffer. Samples were then run at 4 • C for 1h 20 min at 84 V. Labelled DNA was visualized using the ChemiDoc XRS system (Bio-Rad) and band intensity was quantified with the Image Lab software (Bio-Rad). At least three replicates were performed for each experiment.

Hairpin structure of IR2

In order to investigate the putative IR2 hairpin structure, we first submitted the IR2 sequence to the RNAfold web server (39), using DNA parameters. We next performed S1 nuclease assays with the double-stranded ori41 oligonucleotide labelled at the 5 end of its plus strand with 6-FAM (Eurogentec, France). Reactions were performed in a final volume of 18 l with 2 pmol of DNA and S1 nuclease at increasing concentrations (see figure legend). Mixtures were incubated for 30 min at 37 • C before addition of the loading buffer. The samples were resolved in a 5% (w/v) native PAGE in 0.5× Tris-borate-EDTA buffer for 75 min at 84 V. Labelled DNA was visualized as described for EMSAs.

Relaxase modeling

The predicted RelSt3 model, as well as the confidence score (pLDDT score) were produced with AlphaFold v2.0 (40) using Colabfold (https: //github.com/sokrypton/ColabFold). All 3D models were handled using VMD [START_REF] Phillips | Scalable molecular dynamics on CPU and GPU architectures with NAMD[END_REF] and VMD-python (https://github.com/Eigenstate/vmd-python). The electrostatic potential was computed using the APBS server (server.poissonboltzmann.org/) [START_REF] Jurrus | Improvements to the APBS biomolecular solvation software suite[END_REF].

Construction of a DNA-HTH domain model

The HTH domain from the best scored Alphafold prediction model was extracted and screened against the protein databank (RCSB PDB) with FATCAT 2.0 (43) to search for structural homolog. The resulting hits were further filtered with the RCSB PDB in order to keep only those containing both the HTH domain and the double-stranded DNA (ds-DNA). In the best hit structure (PDB ID: 5J2Y), the HTHlike domain was replaced by the Alphafold model of RelSt3 HTH, and optimized by energy minimization with NAMD (41) using CHARMM36 force-field [START_REF] Best | Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone , and side-chain 1 and 2 Dihedral angles[END_REF].

Nicking-closing assays

Nicking-closing assays were performed in 18 l final volume reaction, with the indicated oligonucleotides (2 pmol each) and the protein (RelSt3 WT or variants, see figure legends). We used the same reaction buffer as described for EMSAs to which 5 mM MnCl 2 was added. Mixtures were incubated for 15 min at 37 • C, and treated with proteinase K (1 mg/ml, final concentration) for a second 15 min incubation at 37 • C. The resulting oligonucleotides were then run in 5% native PAGE as described for EMSAs. At least three replicates were performed for each experiment.

In order to confirm that the recombinant DNA was generated by religation of ori50 and ori57 oligonucleotides, PCR amplification was performed using a forward primer located on the 5 end of ori57 oligonucleotide and a reverse primer located on the 3 end of ori50 oligonucleotide. Amplification was done according to standard procedures provided by the manufacturer using the Phusion High-Fidelity DNA polymerase (Thermoscientific), and the nicking-closing product as template. A 10 sec extension step at 72 • C was programmed to obtain a 136-bp PCR product. Electrophoresis of PCR products was performed on 2% agarose gel in 1× Tris-borate-EDTA for 1 h at 110 V. Gels were then stained with ethidium bromide and images captured with a Bio-Rad XR+ system (Bio-Rad Laboratories, California).

Circular dichroism analysis

Far-UV circular dichroism (CD) spectra were recovered from 190 to 260 nm with a Chirascan Plus spectrophotometer (Applied Photophysics, Ltd, UK) equipped with a Peltier temperature control unit (20 • C). RelSt3 WT and variants proteins were dialyzed in CD buffer (50 mM sodium phosphate pH 7.0, 500 mM NaF) and loaded on a flat quartz cell of 0.1 mm path length. Spectra were recorded at a scan speed of 60 nm min -1 and 1 nm spectral bandwidth. The average of three scans were converted to mean residue ellipticity (deg cm 2 dmol -1 per residue) using Pro-Dara Viewer software (Applied Photophysics, Ltd, UK).

DNA-relaxase covalent complex formation

To visualize the formation of DNA-RelSt3 covalent complex, 3 labelled (6-FAM) ori50 DNA (50 M) was incubated for 15 min at 37 • C with 5 M RelSt3 (WT or variants) in the reaction buffer containing 5 mM MnCl 2 (except in the control where 1 mM EDTA was added). When indicated, samples were subsequently treated by nuclease S1 (150 units, ThermoScientific) or proteinase K (1 mg/ml, final concentration). Samples were then resolved in denaturing SDS-PAGE (12%) for 1 h at 180 V in miniPROTEAN Bio-Rad cells. The gel was analyzed using a ChemiDoc XRS system (Bio-Rad) to detect fluorescent labelled DNA and in the case of gel Figure 7A, the same gel was also stained with Coomassie blue to detect proteins.

RESULTS

Two distant DNA sequences of the oriT ICESt3 are required for in vivo mobilization by ICESt3

In a previous study, we showed that RelSt3 functions as a relaxase, displaying a relaxation activity on a supercoiled plasmid harboring the oriT ICESt3 sequence localized within the orfJ/orfK intergenic region of ICESt3 [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF]. We also demonstrated that a plasmid harboring this oriT ICESt3 sequence (corresponding to poriT1 below) was successfully mobilized in trans by ICESt3. Indeed, this sequence encompasses a conserved nic site similar to the one previously identified experimentally for ICEBs1 [START_REF] Lee | Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of bacillussubtilis[END_REF]. To determine more precisely the nucleotide sequence of the oriT ICESt3 essential for DNA transfer, 4 other overlapping segments with similar size (≈300 bp) located in the oriT ICESt3 and adjacent sequences were cloned into the nonmobilizable vector pOri1180, carrying a spectinomycin resistance marker [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF]. The recombinant plasmids each containing a different segment of oriT (oriT1 to oriT5, Figure 1A), were tested for their ability to be mobilized in trans by the transfer apparatus of ICESt3 in Streptococcus thermophilus LMG18311 (Table 1). In these assays, conjugation of ICESt3 was monitored in parallel and was found to occur at similar frequencies (about 1-2 × 10 -3 TC per recipient cell), regardless the oriT sequence present on the poriT of the donor strain. This indicates that the various oriT ICESt3 sequences carried by the plasmids did not impair ICESt3 transfer. As expected, no mobilization of poriT2 and poriT3 plasmids, both lacking the full nic site, was observed (below detection level of 10 -8 ). Interestingly, while poriT1 and poriT5 plasmids were successfully mobilized (1-2 × 10 -4 TC per recipient cell), only very few transconjugants were obtained with poriT4 (Table 1). When normalized to ICESt3 transfer, poriT4 mobilization frequency was found to be 50 times lower than that of poriT1. Yet, all three plasmids (poriT1, poriT4 and poriT5) harbor the entire nic site. Thus, these results suggested that poriT4 lacks another sequence required for full functional mobilization in vivo, which is present in poriT1 and poriT5 and therefore located downstream of the nic site. The oriT ICESt3 sequence present in poriT4 contains 51 bp downstream of the nic site, a sequence that is usually long enough to encompass the bind site (ICRIII) in the homologous RC replication driven by Rep trans proteins [START_REF] Wang | Origin recognition specificity in pT181 plasmids is determined by a functionally asymmetric palindromic DNA element[END_REF]. We deduced from these results that the in vivo mobilization by ICESt3 requires an additional sequence, which is surprisingly distant from the nic site.

To determine the location of RelSt3 bind site on oriT ICESt3 , EMSA experiments were conducted on dsDNA substrates corresponding to the five sequences cloned in the poriT plasmids (Figure 1B), produced by PCR amplifications. No shifted band was observed with oriT2 and oriT4 sequences, indicating that RelSt3 does not interact in a stable manner with the sequences located upstream nor immediately adjacent to the nic site. In contrast, strongly shifted DNA-protein complexes were observed with oriT1, oriT3 and oriT5 sequences. This localizes the bind site for RelSt3 at the 3 -end of the oriT5 segment, within the 78 bp fragment that is absent in oriT4 sequence (hatched box in Figure 1A). Altogether, these results indicated that two sequences of the oriT ICESt3 are required for DNA transfer: the nic site, and a downstream region required for the stable binding of RelSt3. The latter corresponds to an unusually bind site distantly located from nic, since relaxases from other families usually bind sequences situated in proximity to the nic site.

IR2 within oriT ICESt3 is the binding site of RelSt3

Data from the literature indicate that relaxases usually bind to inverted repeat structures located close to the nic site. Inspection of the oriT ICESt3 sequence allowed the detection of two inverted repeats: IR1 and IR2 (Figure 2A). IR1 is a 26-bp sequence, which includes a perfect 7-bp GC-rich inverted repeat (in grey) and an intervening 12 bp containing the conserved CT'AA nic site (in red and bold, Figure 2A). IR2 is located 68 bp downstream of IR1 and contains two 13-bp inverted sequences separated by 9 bp. Consider-ing these structures, we divided the oriT ICESt3 sequence into five regions: ori46 containing IR1, ori41 containing the full IR2, ori47 containing the IR1-IR2 68-bp spacer, and ori34 and ori43 encompassing one of the two parts of IR2 (IR2a and IR2b, respectively). These dsDNA sequences (labelled in 5 with 6-FAM) were used in EMSA experiments to determine which regions could interact with RelSt3. As expected, RelSt3 was able to bind the full IR2 (ori41) (Figure 2B) in a dose-dependent manner. Instead, no specific binding was observed with IR1 (ori46) (Figure 2B) nor with the spacer region between IR1 and IR2 (ori47) (data not shown). At high RelSt3:DNA ratio, almost all of the ori41 dsDNA shifted to a DNA-protein complex. The apparent Kd was estimated to be about 1.6 M (Supplementary Figure S1). No or very poor binding was observed with ori34 and ori43 (Figure 2B) indicating that the whole IR2 is necessary for RelSt3 binding. When EMSA experiments were conducted with single stranded ori41 DNA, or with another non-specific dsDNA of similar size used as a negative control, no binding was observed in both cases, even at high RelSt3 concentrations (Supplementary Figure S2). These data demonstrate that IR2 in a double-stranded form, is the bind site for RelSt3 on oriT ICESt3 .

Intact IR2 sequence is required for RelSt3 binding

The importance of each individual repeat from IR2 was analyzed by performing EMSA using oligonucleotides harboring mutations modifying one repeat or both (Figure 3A). No binding of RelSt3 was observed when either IR2a (ori41M5) or IR2b (oriM6) sequence was modified (Figure 3B). These results indicated that RelSt3 binding is sequence dependent, and requires both of IR2a and IR2b parts, possibly through the formation of a hairpin structure. The structuration of ori41 ssDNA was investigated by RNAfold using DNA parameters confirming the possible formation of a stem-loop structure at the IR2 (Supplementary Figure S3A) that could result in a cruciform structure of the ori41 dsDNA (Supplementary Figure S3B). To examine further this hypothesis, we incubated ori41 dsDNA with increasing amounts of nuclease S1, an endonuclease that degrades single-stranded DNA. As observed in Supplementary Figure S3C, cleavage products are indeed observed, whose intensity increases with the concentration of S1 nuclease. This result is consistent with the formation of a cruciform structure at IR2.

RelSt3 binding was also tested with a modified sequence harboring an IR of same length and same GC% as IR2 (ori41M11), thus able to form a similar putative hairpin structure. No binding was observed with this ori41M11 substrate, suggesting that RelSt3 binding to IR2 does not only rely on the formation of a hairpin structure but also requires the presence of a specific sequence.

The HTH domain of RelSt3 is required for oriT binding in vitro and is essential for conjugation

At its N-terminal end, from position 8 to 57, RelSt3 displays a predicted Helix-Turn-Helix domain (HTH-XRE, cd00093) that likely functions as a DNA binding domain (Figure 4A). To confirm this hypothesis, we produced a truncated variant of RelSt3 deprived of its HTH domain (RelSt3 64-410 ) and used it in EMSA experiments in the presence of ori41 dsDNA. No binding was found even when the RelSt3 64-410 protein was used at high concentration (Fig- ure 4B). To further assess the role of the HTH domain in oriT DNA binding, the variant RelSt3 1-63 , encompassing the HTH domain, was produced and used in EMSA experiments. Even at low concentration of RelSt3 1-63 , DNAprotein complexes were observed indicating the HTH domain of RelSt3 is responsible for its stable binding to oriT ICESt3 .

To test the importance of this recognition between the HTH domain and DNA in the context of in vivo conjugative transfer, a mutant strain of S. thermophilus LMG18311 harboring ICESt3 with a relSt3 (orfJ) gene depleted from its HTH domain was constructed. Mating experiments were carried out using as donor strains, either a S. thermophilus LMG18311 strain with the wild-type ICESt3 (control) or the mutated orfJΔHTH strain. While transconjugants were obtained in the control experiment, none were observed using the orfJΔHTH strain (with a detection limit <1.0 × 10 -8 TC/recipient). Altogether, these results demonstrate that the HTH domain of RelSt3 is essential for the conjugative transfer of ICESt3 since it ensures the binding of RelSt3 to its cognate oriT region. 

Modeling of RelSt3 and of the HTH-DNA complex

The structure of the full RelSt3 protein was predicted using Alphafold (40) (Supplementary Figure S4). Five distinct models were obtained, with a highest RMSD between backbones of 5.4 Å. This denotes that these models are close to each other, providing a high degree of confidence. In all these RelSt3 models, the HTH domain was clearly separated from the PF02486 domain by a flexible 10-residues linker. Looking at the electrostatic surface potential of RelSt3 (Supplementary Figure S4), two main positively charged areas were identified: one in the region surrounding the catalytic tyrosine that ensures DNA processing [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF], and a second one in the RelSt3 HTH domain that interacts with the oriT DNA.

To get further information on the RelSt3 HTH-DNA complex, structural homologs of RelSt3 were recovered from databases (2560 hits, see Materials and Methods) and later filtered to keep only those consisting of protein structures bound to double-stranded DNA (149 hits). The best confidence score (p-value of 2.27 × 10 -08 ) was found with the PDB ID 5J2Y, a structure of the DNA-bound RsaL repressor of Pseudomonas aeruginosa [START_REF] Fan | Mechanisms of RsaL mediated tolerance to ciprofloxacin and carbenicillin in pseudomonasaeruginosa[END_REF]. In the absence of an experimental RelSt3-oriT complex structure, we investigated which amino acids of the RelSt3 HTH domain could interact with oriT. A model was constructed by replacing the HTH structure of 5J2Y by the HTH model of RelSt3 obtained by Alphafold. The superimposition of the RelSt3 HTH with RsaL HTH domain was carried out by aligning their respective ␣-helices (Figure 4C). It is important to notice that the DNA structure used in our modeling corre-sponds to the DNA from the 5J2Y and it is only used as a structural reference to predict the putative amino acids closest to the DNA. The ␣-helix encompassing residues 37-45 in the 5J2Y structure was found facing the DNA major groove. This region corresponds to the residues 30-38 in the RelSt3 HTH model. Among these amino acids, two arginine residues (R32 and R35) harbor their side-chain towards the major groove of the DNA, and thus could play a role in DNA binding (Figure 4C).

To experimentally assess the potential implication of R32 and R35 in DNA-binding, the variant protein R32A-R35A was produced and tested in EMSAs. Substitution of these residues completely abolished ori41 binding (Figure 4D), indicating that this alpha-helix, and more precisely these arginine residues are important for the recognition of IR2 by the HTH domain.

Binding to IR2 is required for full RelSt3 nicking activity

We previously demonstrated that RelSt3 relaxes supercoiled DNA by introducing a single-stranded nick at the nic site of oriT [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF]. This nicking reaction requires a divalent metal ion as cofactor such as Mn 2+ . To assess whether RelSt3 binding to IR2 was required for its nicking activity, we designed the chimeric ori50 substrate (Figure 5A). This ori50 DNA substrate contains (i) the nic region as a single-stranded DNA to allow easy visualization of the cleavage and (ii) the binding region (IR2) as a double-stranded DNA to ensure the proper fixation of RelSt3 through its HTH domain. We beforehand checked that RelSt3 could bind to ori50 by EMSA experiments (Figure 5B). We found that RelSt3 was able to bind ori50 with an apparent K d of 3.2 M (Supplementary Figure S1), in a similar range to that obtained for ori41 binding.

To examine RelSt3 nicking activity, the wild-type protein was incubated with ori50 in the presence of Mn 2+ . After treatment with proteinase K (thus eliminating DNAprotein complexes), the sample was electrophoresed in native condition. With RelSt3 present at concentrations above 0.4 M, we obtained a 22 nt DNA, corresponding to the cleavage product at the nic site by RelSt3 (Figure 5C). As expected, proportion of this cleavage product increased with concentration of RelSt3. When the RelSt3 64-410 variant was used in this nicking assay, no cleavage product was observed even at high protein concentrations (Figure 5C). Because this truncated version of RelSt3 lacks the HTH domain, this suggests a direct link between binding and nicking processes. Nicking experiments were also carried out using the ori50M11 as the substrate DNA. Like ori41M11, ori50M11 carries the same modified IR2 (Figure 3A), which was shown to prevent RelSt3 binding. Although a residual nicking activity was observed (Figure 5D), the use of ori50M11 caused a severe decrease of RelSt3 nicking activ-ity. Overall, these results indicate that binding of RelSt3 to IR2 is required for an efficient nicking activity at the nic site of oriT ICESt3 .

RelSt3 catalyzes strand transfer reaction

During the conjugation process, relaxases not only initiate DNA transfer in the donor cell but are also thought to recircularize the transferred single-stranded DNA in the recipient cell [START_REF] Waksman | From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective[END_REF][START_REF] De La Cruz | Conjugative DNA metabolism in Gram-negative bacteria[END_REF]. This occurs through a strand transfer reaction mediated by the catalytic tyrosine. In order to explore the putative closing activity of RelSt3, strand transfer reaction experiments were conducted in the presence of two labeled oligonucleotides, ori50 (described in the previous section) and ori57. The ori57 is a 59-mer oligonucleotide corresponding to the sequence upstream of the nic position (Figure 6A), so that the 3 end of this ori57 corresponds to the 22 nt sequence located in 5 -end of ori50 (left hand of nic site). Data from these experiments indicate that RelSt3 was able to generate recombinant ori57-ori50 molecules in the presence of Mn 2+ (red box, lanes 6 and 7, Figure 6B), whereas such product was not observed in the absence of Mn 2+ cofactor (lanes 8 and 9). We ver- ified by PCR amplification followed by sequencing that it was a genuine recombinant ori57-ori50 molecule (Figure 6C). In the absence of ori57 (lanes 4 and 5, Figure 6B), only the nicking reaction took place, and the initial ori50 substrate should be restored by the strand transfer reaction. This is supported by the fact that the ori50 band remains at a steady intensity with high RelSt3 concentrations. Interestingly, when the strand transfer reaction was done with a truncated version of ori50 (ori56), deprived of the 5 arm of the nic site, no recombinant product was observed (Supplementary Figure S5). This result suggests that a complete nic site is needed to be cleaved by RelSt3, this cleavage being the consequence of transesterification by the relaxase active site, which is required to enable strand transfer activity.

Tyrosine 252 is involved in nicking-closing reactions

Nicking and strand transfer reactions are transesterifications usually involving catalytic tyrosine residues in relaxases active sites (except for MOB V relaxases for which a histidine residue is involved) [START_REF] Guzmán-Herrador | The secret life of conjugative relaxases[END_REF][START_REF] Pluta | Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance[END_REF]. In a previous study, we have assigned the conserved tyrosine 252 (Y252) as the catalytic residue of RelSt3 through plasmid relaxation assays [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF]. Here, we assessed the involvement of Y252 in the nicking but also in the strand transfer activity of RelSt3 using oligonucleotides. As expected, the replacement of the Y252 by a phenylalanine residue (RelSt3-Y252F) fully abolished the RelSt3 nicking activity, and as a consequence its strand transfer activity (Figure 6D). Unexpectedly, the variant RelSt3-Y252A still showed a low nicking activity, but did not exhibited any strand transfer activity. This result raised the possibility that another catalytic residue could be responsible for the residual nicking activity of the RelSt3-Y252A mutant, and/or possibly participate in the strand transfer activity. In RelSt3, Y252 is enclosed within a conserved motif (motif III) found in both MOB T relaxases and Rep trans proteins. Careful analysis of protein sequence alignments allowed us to identify another conserved tyrosine residue (Y256 for RelSt3) in motif III of MOB T proteins (Supplementary Figure S6, Supplementary Table S4). Even if this residue was not conserved in Rep trans proteins, the motif YxxxY is typical for the Rep proteins of the superfamily I (Rep 1) [START_REF] Ilyina | Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria[END_REF][START_REF] Koonin | Computer-assisted dissection of rolling circle DNA replication[END_REF], whose prototype is the protein A of E. coli virus X174 [START_REF] Van Mansfeld | Two juxtaposed tyrosyl-OH groups participate in X174 gene a protein catalysed cleavage and ligation of DNA[END_REF]. Indeed, viral Reps of this superfamily I use two adjacent tyrosine residues to initiate RCR, alternatively for each replication cycle. In the case of RelSt3, variant Y256F exhibited the same activity profile as the wild type protein (Figure 6BD), indicating that the Y256 is not involved in strand transfer activity. We also used a RelSt3 variant affected on the two tyrosine residues, RelSt3 Y252A-Y256F, to investigate a possible role of Y256 in the low nicking activity observed in the RelSt3 Y252A variant. However, the RelSt3 Y252A-Y256F variant displayed the same nicking-closing activity as the Y252A variant (Figure 6D), indicating that Y256 would not be involved in catalysis. Thus, this residual nicking activity observed with Y252A variant could be due to another residue of the active site, or alternatively, by the nucleophilic attack of a water molecule activated by the metallic cofactor (see Discussion section). This latter hypothesis would also be consistent with the absence of strand transfer activity in RelSt3 Y252A and Y252A-256F variants. We exclude that activity differences found with our variants could be due to major incorrect folding as they displayed similar circular dichroism spectra compared to that of the WT protein (Supplementary Figure S7).

Trapping the covalent RelSt3-DNA complex

It is generally assumed that relaxases generate covalent protein-DNA complexes that constitute the substrate for conjugative transfer through T4SS apparatus [START_REF] Waksman | From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective[END_REF][START_REF] Guzmán-Herrador | The secret life of conjugative relaxases[END_REF]. However, in many cases this protein-DNA complex has never been identified experimentally. We thus aimed to capture such a complex formed by RelSt3 and its cognate oriT. As the protein is supposed to bind covalently at the 5 end of the nick, we used an ori50 substrate labelled with 6-FAM at its 3 -end, allowing detection of the protein-DNA complex by fluorescence. Analysis of the gel by fluorescence imaging followed by a Coomassie blue staining would allow both DNA and protein detection to verify the nucleoprotein nature of the complex. As shown in Figure 7, a DNA-RelSt3 complex (red stars in Figure 7A, lane 4) was detected by denaturing SDS-PAGE in the presence of RelSt3 and high concentrations of ori50 (50 M). The band corresponding to this complex was found to increase with DNA concentration (Supplementary Figure S8). When assays were performed with subsequent incubations with nuclease S1 or with proteinase K, this led to the disappearance of the band corresponding to the nucleoproteic complex (Figure 7A, lanes 5 and 6). This complex appeared only in the presence of the cofactor (Mn 2+ ) but not in the presence of EDTA, confirming that its formation relies on the transesterase activity of RelSt3. As expected, when our catalytic tyrosine Y252 variants were used in similar experiments, no complex was detected (Figure 7B). Instead, the relaxase-oriT covalent complex was formed with the Y256F variant, where the Y252 tyrosine is intact.

DISCUSSION

In this work, we have demonstrated that binding of RelSt3 to oriT relies on its N-terminal HTH domain, and that RelSt3 binding is a prerequisite for efficient cleavage of the nic site in vitro. Conjugation experiments also indicated that (i) the binding sequence is required for functional mobilization, and (ii) the HTH domain of RelSt3 is essential for conjugation. These results altogether led us to propose that the binding of RelSt3 through its HTH domain on the bind site is an essential prerequisite for subsequent nicking of oriT at the nic site. As previously observed with other relaxases [START_REF] Lucas | Relaxase DNA binding and cleavage are two distinguishable steps in conjugative DNA processing that involve different sequence elements of the nic site[END_REF], binding and cleavage would be sequential and distinct steps for the initiation of RelSt3-mediated conjugative transfer. It is reasonable to predict that this sequential process observed for RelSt3 would also be embraced by most of the MOB T relaxases, those harbouring an N-terminal HTH domain [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF][START_REF] Wright | Autonomous replication of the conjugative transposon Tn916[END_REF].

Our EMSA experiments showed that RelSt3 was not able to stably bind neither to its nic site nor to closely adjacent sequences. We demonstrated instead that RelSt3 only bound to its bind site located 68 nt further downstream of its nic site. Noteworthy, when we compared ICESt3 oriT sequence with those of other related ICEs, we found similar IR2 sequences located at a similar distance downstream from nic (Supplementary Figure S9). A minimal consensus sequence 'TGTCAC' is almost systematically present, and this may correspond to the basic recognition sequence of the HTH domain of these MOB T relaxases. Interestingly, such IR2 sequence was also detected in the oriT of Tn916, which is more distantly related (Supplementary Figure S9). This fairly large distance between nic and bind sites of MOB T relaxases was unexpected. Indeed, many relaxases bind to a sequence close to their nic target, directly or through the use of auxiliary proteins. For example, the MobM (MOB V family) and TraA (MOB Q family) relaxases, encoded by the pMV158 and pIP501 plasmids respectively, both bind to an IR adjacent to their respective nic site [START_REF] Kopec | TraA and its N-terminal relaxase domain of the Gram-positive plasmid pIP501 show specific oriT binding and behave as dimers in solution[END_REF][START_REF] Lorenzo-Díaz | The MobM relaxase domain of plasmid pMV158: thermal stability and activity upon Mn2+ and specific DNA binding[END_REF]. However, in other cases, the oriT binding step relies on relaxosome auxiliary proteins. In the F plasmid model, even if the mapped binding site of the TraI relaxase (MOB F family) is adjacent to the nic site, TraI is thought to be recruited through its auxiliary proteins [START_REF] Williams | TraY and integration host factor oriT binding sites and f conjugal transfer: sequence variations, but not altered spacing, are tolerated[END_REF]. Especially, the primary binding site of the auxiliary protein TraY (sbyA) is located 60-90 bp upstream of the nic site, and the major binding sites of TraM (sbmA and sbmB) are located 200-250 bp upstream of the nic site [START_REF] De La Cruz | Conjugative DNA metabolism in Gram-negative bacteria[END_REF]. Taking the relaxosome as a whole and considering other systems using auxiliary proteins, the distance between the binding and nic sites of oriT would not be such an exception. Some relaxosome auxiliary proteins have been shown to bend DNA, thus enhancing the nicking activity of the dedicated relaxase. This is the case of TraY, TraM and the cellular IHF protein, which thus facilitate the nicking activity of TraI [START_REF] Ragonese | The f plasmid-encoded TraM protein stimulates relaxosome-mediated cleavage at oriT through an interaction with traI[END_REF][START_REF] Rice | Crystal structure of an IHF-DNA complex: a protein-induced DNA U-Turn[END_REF][START_REF] Luo | Mutational and physical analysis of f plasmid traY protein binding to oriT[END_REF][START_REF] Tsai | Intrinsic bends and integration host factor binding at f plasmid oriT[END_REF][START_REF] Nelson | The traY gene product and integration host factor stimulate escherichia coli DNA helicase I-catalyzed nicking at the f plasmid oriT[END_REF]. Several other auxiliary proteins were also shown to bend DNA, including for examples the NikA protein from the R64 plasmid [START_REF] Yoshida | Structural basis of the role of the NikA ribbon-helix-helix domain in initiating bacterial conjugation[END_REF] or the PcfF protein from pFC10 of Enterococcus faecalis [START_REF] Rehman | Enterococcal PcfF is a ribbon-helix-helix protein that recruits the relaxase PcfG through binding and bending of the oriT sequence[END_REF]. Most of these proteins display an RHH DNA binding domain, and their action is important for the recruitment and/or the positioning of the respective relaxase active site towards the nic site of oriT. In the case of HTH-harbouring MOB T relaxases, the HTH domain likely plays a similar role by binding and probably bending the DNA at the IR2 bind site. Indeed, several HTH domains have been shown to bend DNA [START_REF] Gao | Structural insights into VirB-DNA complexes reveal mechanism of transcriptional activation of virulence genes[END_REF][START_REF] Steinmetzer | CopR binds and bends its target DNA: a footprinting and fluorescence resonance energy transfer study[END_REF]. To better understand the interplay between RelSt3 and oriT DNA, a 3D model of RelSt3 using Alphafold was obtained. This model indicates that the HTH domain could be separated from the catalytic domain by a flexible linker, and would be located at one extremity of the crescent shape of the catalytic domain. Using the best structural homolog of the RelSt3 HTH domain from the PDB, we built-up a DNA-HTH model leading to the identification of an ␣-helix probably interacting with the DNA major groove. Suppression of DNA binding using a modified RelSt3 variant (R32A-R35A) affected in this alpha helix confirmed the involvement of these two positively charged arginine residues in DNA binding. Interestingly, electrostatic analysis of the surface of our RelSt3 model highlighted two distinct positively charged regions, which correspond to the two major DNA-interacting regions, the HTH domain and the catalytic site. The absence of other positively charged surfaces on the model suggests that DNA is not bound by the relaxase between the bind and the nic site. Given the distance between the IR2 bind site and the IR1 nic site of ICESt3, we propose that a fairly large loop may be formed between the IR1-HTH and IR2-active site interfaces. This loop corresponds to the so called 'spacer' DNA segment of 68 bp in oriT (see our proposed model in Figure 8). We do not exclude that other relaxosome partners could be recruited to bend this DNA region to assist in correct positioning of the IR1 hairpin loop (the CT'AA nic site) into the relaxase active site in vivo, although they were not strictly required for nicking-closing activities in vitro. These putative partners remain to be identified, and could be encoded by the ICE and/or by the bacterial genome.

In turn, the Rep trans RCR initiators from the pT181 family are known to recognize their IRIII bind site located next to their IRII nic site, via a short string of residues in the C-terminal part of the protein [START_REF] Novick | Contrasting lifestyles of rolling-circle phages and plasmids[END_REF][START_REF] Wang | Specificity of origin recognition by replication initiator protein in plasmids of the pT181 family is determined by a six amino acid element[END_REF]. This Rep-bind site recognition was shown to be responsible for the specificity between the Rep protein and the cognate origin of replication [START_REF] Wang | Origin recognition specificity in pT181 plasmids is determined by a functionally asymmetric palindromic DNA element[END_REF]. In a seminal study, Carr et al solved the 3D crystallographic structure of three Rep trans proteins. Notably, in the RepDE and RepDN structures, it was found that this C-terminal DNA-binding domain was formed by four ␣helices arranged similarly to HTH domains [START_REF] Wintjens | Structural classification of HTH DNA-binding domains and protein -DNA interaction modes[END_REF]. These proteins are also dimeric, and surprisingly, the symmetry axis of the DNA-binding domain is tilted 128 • with respect to the symmetry axis of the PF02486 catalytic domain. This tilt led the authors to propose a RepDE model interacting with its DNA substrate considering the proximity of the bind and the nic sites in the dso. This is quite different from our presented data. As previously indicated, this DNAbinding domain is located at the C-terminal part of the Rep trans proteins whereas the HTH domain is located at the N-terminal part of the MOB T relaxases. Taken together, all these data are indicative of two different evolutionary pathways leading to the DNA binding function of these transesterases.

Unlike RelSt3, some MOB T relaxases lack the HTH domain, such as the NicK relaxase from ICEBs1 [START_REF] Auchtung | Biology of ICEBs1, an integrative and conjugative element in bacillussubtilis[END_REF]. As no obvious DNA binding domain has been identified in the genetic context of nick gene on ICEBs1 genome (65), further studies are needed to understand how these proteins recognize oriT DNA. Interestingly, the Rep trans protein RepSTK1 from Geobacillus stearothermophilus harbour a C-terminal extended loop in place of the DNA-binding domain of the staphylococcal proteins of the pT181 family [START_REF] Carr | Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication[END_REF]. The DNA binding interface of RepSTK1 has never been investigated so far, however, this loop could indeed functionally replace the HTH-like DNA-binding domain of its counterparts as it is predicted to be located at a similar position in the 3D structure, and to be positively charged. It is therefore tempting to speculate that MOB T relaxases lacking a HTH domain could bind DNA using a similar loop located in the C-terminal part of these relaxases. With the hypothesis of the presence of such a loop in the 3D structure of NicK in mind, we used Alphafold to obtain a model of NicK (Supplementary Figure S10). Interestingly, a positively charged loop is indeed found for this model, in the same location of the loop found in the RepStK1 structure and the HTH-like DNA-binding domain of RepDE. Even though this loop is much smaller, this result provides clues to the putative DNA-binding domain of MOB T relaxases lacking an HTH domain like NicK, but this remains to be verified experimentally. When we analysed which catalytic tyrosine residue of RelSt3 were important for nicking-closing activities, a residual nicking activity was unexpectedly found with the Y252A variant. This raised the hypothesis of another intervening residue. As the conserved motif YxxxY had already been described in the active site of some transesterases using two active tyrosine residues (Rep SFI) (48-50), we tested the putative role of the Y256 residue. This was reinforced by the fact that the YxxxY motif was found to be conserved among MOB T proteins. However, the Y256F variant was not altered in its nicking-closing activities, ruling out a catalytic role of Y256 residue in these reactions. This was confirmed with the analysis of the Y252A-Y256F variant, which exhibited the same residual activity observed for the Y252A variant. The residual nicking activity found with the Y252A variant could either be by the of another residue in this process, or alternatively, by the action of a water molecule. Indeed, it is possible that in the Y252A variant, the slightly modified folding of the active site would allow the positioning of a metal-activated water molecule in front of the nic site. This water molecule could trigger nucleophilic attack when the nic site is correctly positioned in the active site. Such metal induced activation of a water molecule has already been described for several types of enzymes, including nucleases [START_REF] Beese | Structural basis for the 3 -5 exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism[END_REF][START_REF] Yang | Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity[END_REF][START_REF] Woolley | Models for metal ion function in carbonic anhydrase[END_REF][START_REF] Cui | How water molecules affect the catalytic activity of hydrolases -A XANES study of the local structures of peptide deformylase[END_REF]. In line with this hypothesis, we observed no formation of covalent protein-DNA adduct nor religation activity with the Y252A variant. Indeed, such religation can only occur in the case of energy conservation of the ester bond, which is not the case if the nick is catalysed by a water molecule. Taken together, these data argue for a single catalytic tyrosine in MOB T proteins, as previously observed for Rep trans proteins of the pT181 family [START_REF] Carr | Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication[END_REF][START_REF] Thomas | In vitro studies of the initiation of staphylococcal plasmid replication[END_REF].

Our biochemical data demonstrated that the conserved catalytic tyrosine Y252 of RelSt3 was essential for its nicking-closing activities, and for the formation of a stable protein-DNA covalent adduct. These characteristics are shown here for the first time for a MOB T relaxase, they are likely to be generalizable to other relaxases of the same family. Given that conjugative transfer requires the formation of a stable covalent ssDNA-relaxase adduct, the religation activity described here could be an obstacle to the conjugation process, favouring instead the RCR in the donor cell [START_REF] Lee | Autonomous plasmid-like replication of a conjugative transposon[END_REF][START_REF] Wright | Autonomous replication of the conjugative transposon Tn916[END_REF]. Thus, as yet unidentified regulatory factors may be involved in maintaining the covalent relaxase-DNA complex to promote its recruitment to the T4SS apparatus. Such factors could take part, even transiently, in formation of the relaxosome complex.

During the 90 s, a peculiar regulation mechanism for DNA replication was uncovered for RepC encoded by the pT181 staphylococcal plasmid. The initially active RepC was shown to be converted into a new form after a round of RCR, the inactive RepC* [START_REF] Novick | Contrasting lifestyles of rolling-circle phages and plasmids[END_REF][START_REF] Rasooly | Replication-specific conversion of the Staphylococcus aureus pT181 initiator protein from an active homodimer to an inactive heterodimer[END_REF][START_REF] Rasooly | Replication-specific inactivation of the pT181 plasmid initiator protein[END_REF]. The latter is still covalently bound through its active tyrosine to a 10-12 oligonucleotide corresponding to the sequence immediately downstream of the nic site. Thus, each dimer of RepC can only perform one cycle of pT181 replication, participating in the copy number regulation. Such regulation has never been observed for conjugative relaxases. Given that Rep trans and MOB T proteins share conserved protein sequence motifs and similar 3D folding and as they target identical sequence at nic sites [START_REF] Soler | Characterization of a relaxase belonging to the MOBT family, a widespread family in firmicutes mediating the transfer of ICEs[END_REF][START_REF] Carr | Structures of replication initiation proteins from staphylococcal antibiotic resistance plasmids reveal protein asymmetry and flexibility are necessary for replication[END_REF][START_REF] Zock | Specificity of RepC protein in plasmid pT181 DNA replication[END_REF][START_REF] Puymège | Analysis of streptococcusagalactiae pan-genome for prevalence, diversity and functionality of integrative and conjugative or mobilizable elements integrated in the tRNALys CTT gene[END_REF], a similar regulation of ICE DNA copy number could also be reasonably postulated for MOB T relaxases. Furthermore, as they have already been implicated in autonomous RCR [START_REF] Lee | Autonomous plasmid-like replication of a conjugative transposon[END_REF][START_REF] Wright | Autonomous replication of the conjugative transposon Tn916[END_REF], several circular copies of ICE could accumulate in the cell, and thus this copy number has to be controlled in some way.
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 1 Figure 1. A binding site for RelSt3 distantly located downstream of ICESt3 nic site is required for functional conjugation. (A) Mapping of the different sequences of the oriT ICESt3 used for trans mobilization assays and EMSA assays, whose results are respectively summarized on the left and on the right. The lines representing each oriT segment are to scale. The nic site is indicated, flanked by the conserved inverted repeat shown as small arrowheads on the line representing oriT1 sequence. The box with hatched lines materializes the inferred RelSt3 binding site. (B) EMSA assays performed with RelSt3 protein on PCR products of each oriT sequence on agarose gel. For each oriT segment, no RelSt3, 0.5 M and 1.5 M of RelSt3 were mixed with DNA (400 ng) respectively for the left, middle and right lanes. The ladder is the GeneRuler 100 bp Plus from ThermoFisher.
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 12 Mapping of oriT ICESt3 by plasmid mobilization in trans Plasmid a ICESt3 transfer b Plasmid mobilization c Mobilization ratio d Empty plasmid 1.8 × 10 -4 ± 1.5 × 10 -4 <1.0 × 10 -8 -poriT1 2.8 × 10 -3 ± 1.6 × 10 -3 9.5 × 10 -5 ± 5.0 × 10 -5 3.4 × 10 -2 poriT23.9 × 10 -4 ± 9.9 × 10 -5 <1.0 × 10 -8 -poriT31.9 × 10 -3 ± 2.0 × 10 -3 <1.0 × 10 -8 -poriT4 7.7 × 10 -4 ± 1.9 × 10 -3 4.8 × 10 -7 ± 2.5 × 10 -8 6.3 × 10 -4 poriT5 7.8 × 10 -3 ± 4.2 × 10 -3 1.9 × 10 -4 ± 8.2 × 10 -5 2.5 × 10 -Plasmids harbouring oriT1 to oriT5 sequences as indicated in Figure1A. b ICESt3 transfer frequency: number of (EryR-CmR) transconjugants (TC) divided by the number of recipient cells. c Mobilization frequency: number of (EryR-SpecR) transconjugants divided by the number of recipient cells. d Mobilization frequency divided by the ICE transfer frequency.
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 2 Figure 2. Identification of IR2 as the RelSt3 binding sequence. (A) Map of IR and oligonucleotides used in EMSA assays. The position of the IR1 and IR2 are shown on the oriT ICESt3 DNA sequence. The nic site is indicated as a short and red arrowhead within IR1. Solid horizontal lines materialize the dsDNA oligonucleotides used in EMSA experiments, labelled with 6-FAM at the 5 end. (B) EMSA assays illustrating the specific binding of IR2 by RelSt3. The dsDNA-relaxase mixtures were electrophoresed as described in Materials and Methods. Increasing concentrations of RelSt3 were applied as follows: lane 1, 0 M; lane 2, 0.1 M; lane 3, 0.2 M; lane 4, 0.4 M; lane 5, 0.8 M; lane 6, 1.6 M; lane 7, 3.2 M; lane 8, 6.4 M. The dsDNA oligonucleotides concentration was 0.11 M.

Figure 3 .

 3 Figure 3. Substitutions in IR2 sequence impair RelSt3 binding. (A) Sequence of each substitution mutants used for EMSA assays. IR2a and IR2b are in bold, and substitutions are indicated in bold red and underlined characters. In the upper yellow part, arrows correspond to IR2a and IR2b. Stars indicate the 6-FAM labeling positions. (B) EMSA experiments were done as described in Figure 2 with the indicated ds oligonucleotides.

Figure 4 .

 4 Figure 4. RelSt3 binds to IR2 by its N-terminal HTH domain. (A) Organization of the different domains of RelSt3 protein. (B) EMSA assays were performed with increasing amounts of RelSt3 64-410 (left panel) or RelSt3 1-63 (right panel) incubated with ds ori41 DNA. DNA-protein complexes are observed with the HTH domain of RelSt3 (RelSt3 1-63 ) but not with RelSt3 depleted from this N-terminal domain (RelSt3 64-410 ). Lane 1, 0 M; lane 2, 0.5 M; lane 3, 1 M; lane 4, 1.25 M; lane 5, 1.75 M of protein. (C) Model of RelSt3 HTH-DNA complex based on 5J2Y PDB structure. The ␣-helix extending from residues 30 to 38 of RelSt3 HTH Alphafold model is found in the DNA major groove. The R32 and R35 side chains are shown in yellow and red, respectively. (D) EMSA assay performed as described in Figure 2B using the RelSt3 R32A-R35A variant.

Figure 5 .

 5 Figure 5. Effective nicking activity of RelSt3 relies on IR2 binding. (A) Organization of ori50 substrate. The IR1 nic site (single-stranded) and the IR2 binding site (double-stranded) are indicated by arrows above the sequence. The 22 nt single-stranded DNA marker corresponds to the left part of the IR1, generated after RelSt3 cleavage. Stars indicate the 6-FAM labeling positions. (B) EMSA experiment performed with ori50 in the conditions described in Materials and Methods. Increasing concentration of RelSt3 were used as in Figure 2. (C) Nicking assays were performed in the conditions described in Materials and Methods with the indicated proteins using ori50 as substrate. The same range of increasing concentrations of RelSt3 was used. In the first lane of the RelSt3 gel (on the left), the labeled 22 nt ss-DNA was load alone as marker. (D) RelSt3 nicking activity was also assayed with the ori50M11 substrate, and was plotted as a percentage of cleavage of the substrate. Standard deviation of at least 3 replicates are shown.

Figure 6 .

 6 Figure 6. RelSt3 strand transfer activity. (A) Position of ori57 with respect to ori50. The organization of ori50 is the same as describe in Figure 5A. Stars indicate the 6-FAM labeling positions. (B) Nicking-closing assays performed with RelSt3 WT, in the presence of ori50 and ori57. Lane 1, 22 nt ss-DNA marker; lane 2, 59 nt ss-DNA ori57; lane3, ori50; lanes 4 and 5, ori50 in the presence of RelSt3; lanes 6 and 7, ori50 and ori57 in the presence RelSt3; lanes 8 and 9, ori50 and ori57 in the presence of RelSt3 but in the absence of MnCl 2 (control). Lanes 4, 6 and 8: 0.8 M RelSt3. Lanes 5, 7 and 9: 3.2 M RelSt3. The recombinant DNA obtained by strand transfer is boxed by a red rectangle. (C) Electrophoretic migration of the PCR amplifications following strand transfer assays using ori50 and ori53 (lane 1), or ori50 and ori57 (lane 2) oligonucleotides. See Materials and Methods for details. 10 l of PCR product were loaded on 1% agarose gel. (D) Nicking-closing assays performed with RelSt3 active site variants in the presence of ori50 and ori57. The Information concerning the lanes is given in B. The name of the variants is indicated above the vertical lines.

Figure 7 .

 7 Figure 7. Highlight of RelSt3-DNA covalent complex. (A) RelSt3 WT and 3 labelled ori50 were incubated as described in Materials and Methods in the presence of Mn 2+ . Lane 1: Spectra multicolor broad range protein ladder (ThermoFischer); lane 2: RelSt3 (5 M, 48 kDa) alone; lane 3: ori50 (50 M) alone; lanes 4 to 7: RelSt3 and ori50. Control lanes were performed with the addition of EDTA (1 mM) in the absence of Mn 2+ (lane 7) or with subsequent incubation of nuclease S1 (lane 5) or proteinase K (lane 6). Upper panel: fluorescent imaging. Bottom panel: same gel stained with Coomassie blue. The red star indicates the covalent RelSt3-DNA covalent complex. (B) Comparison of covalent complex formation with RelSt3 WT, RelSt3 Y252A, RelSt3 Y252F, RelSt3 Y256F and RelSt3 Y252A-Y256F variants. Red stars indicate covalent RelSt3-DNA covalent complexes.

Figure 8 .

 8 Figure 8. Proposed schematic model for RelSt3 interaction with its oriT DNA substrate. The RelSt3 model was obtained using Alphafold. DNA strands are materialized with red and orange lines. The first contact of the relaxase with oriT would be mediated by the HTH domain (upper part of the dimer, yellow and light blue), which binds IR2 (bind site) with high affinity. Then putative relaxosome partners could bind the DNA in the spacer region (pink and purple), and help bending it in such a way that the induced DNA twists result in IR1 hairpin protrusion inside the relaxase active site. Thus, the active tyrosine of the catalytic domain of RelSt3 (red) would nick the oriT at the conserved nic site.
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