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Abstract. The solutions of hyperbolic systems contain discontinuities. These
weak solutions verify not only the original PDEs, but also an entropy inequal-
ity that acts as a selection criterion determining whether a discontinuity is
physical or not. Obtaining a discrete version of these entropy inequalities
when approximating the solutions numerically is crucial to avoid convergence
to unphysical solutions or even unstability. In this paper, we introduce an
optimization framework that enable to quantify a posteriori entropy. We use
it to quantify numerical diffusion and detect non-entropic schemes.

Introduction

Many physical phenomenon can be described with a hyperbolic system, also
called system of conservation laws. Some famous hyperbolic systems are the Lighthill–
Whitham–Richards or Aw-Rascle models for traffic flow model, the shallow water
equations of Barré de Saint-Venant, the Euler equation for fluids dynamics and the
inviscid magneto hydrodynamics equation.

This class of partial differential equation (PDE) does not contain any regu-
larization term such as diffusion or dispersion. Their solutions typically develop
discontinuities in finite time. These discontinuities are observed in traffic jams,
during floods caused by dam breaks, at hydraulic jumps or in aeronautics. The
PDE should be understand in the weak sense to allow such discontinuous solutions.
Doing so, it becomes possible to construct infinitely many discontinuous solutions
for the same initial data. An additional criterion should consequently be imposed
to select only the physical weak solution. It generally takes the form of an entropy
(or energy) inequality and is related to the second law of thermodynamics which
states that the entropy of the solution decreases with time.

Discretizing the PDE to obtain a numerical approximation of the solution can
be done in several ways. In this paper we focus on finite volume schemes which
are well adapted to the low regularity of the solution and built around the idea
of conservation laws. In the design of such schemes, it seems important that the
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2 HOW TO FIND A DISCRETE ENTROPY INEQUALITY

entropy also decreases at the numerical level. This condition ensures that the
scheme will not converge towards an nonphysical solution of the PDE. The loss of
entropy in each cell during one time step is called the numerical diffusion.

Discrete entropy inequalities have been mainly obtained for first order schemes
in space and time. Realistic codes use higher order discretizations and splitting
techniques and usually incorporates ideas and knowledge from the first order the-
ory. For this reason they probably verify a discrete entropy inequality in most
cases. However, no explicit formula are known in practice. This paper proposes to
quantify the numerical diffusion with an a posteriori minimization technique where
the scheme is used as a black box.

Our primary motivation is to obtain maps of numerical diffusion which quantify
in space and time the loss of energy coming from the choice of discretization. In
numerical oceanic circulation models, the numerical diffusion is linked to the unde-
sirable changes of salinity, density and temperature between two adjacent distinct
water masses, and is usually called spurious mixing. It is identified as a major issue
in numerical cores for climate application [13]. Ideally this spurious mixing would
be one order of magnitude below the physical mixing. The large time and space
scales considered in this field makes it impossible to handle with the current com-
putational cost constraints. Another approach would be to somehow parameterize
the numerical diffusion in order to re-inject the correct amount of energy into the
system. It would require the precise quantification of the spurious mixing which is
still an open issue in ocean global circulation model. We refer the reader to [5], [18]
for the quantification of spurious mixing in simplified configurations and [17] in a
realistic setting.

This paper provides a mathematical insight on the quantification of numerical
diffusion in complex codes but is still far away from oceanic applications. Maps
of numerical diffusion are obtained by minimizing a functional which takes into
account the consistency of the numerical entropy fluxes and the fact that the entropy
should decrease from one time step to the other. This minimization couples every
cells of the mesh, but we also propose a local and cheap quantification that gives
qualitatively good results. A different perspective on the same functional allows
us to construct the worst initial data in terms of entropy. We show that for gas
dynamics no discrete entropy inequality exists for the widely used MUSCL approach
with a 2 steps Runge-Kutta time discretization, as suspected in [2]. A notable
exception is the limitation in the entropic variables with a HLL first order scheme
which passes this entropy stresstest.

The minimization procedure is presented in Section 2 after a presentation of the
mathematical framework of discrete entropy inequalities for finite volume schemes
in Section 1. The links between the existence of a discrete entropy inequality and
the minimization are presented in Section 3 and numerical results for first and
second order schemes are presented in Section 4. In Section 5, we present another
minimization procedure which constructs initial data for which no discrete entropy
inequality holds at the first iteration in time.

1. Fundamentals on discrete entropy inequalities

Consider a hyperbolic system in 1 dimension (1D) in space

(1) ∂tu (x, t) + ∂xf (u (x, t)) = 0, t ∈ R+, x ∈ R,
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where the vectorial unknown u belongs to some convex domain Ω ⊂ Rd. The flux
f : Ω → Rd is C1-regular and its Jacobian matrix Df is diagonalizable with real
eigenvalues. We are only interested in weak solutions of (1) that additionally verify
the entropy inequality (or energy inequality)

(2) ∂tη (u) + ∂xG (u) ≤ 0

where the entropy η : Ω → R is strictly convex. The entropy flux G is linked to
the entropy η through the relation on their Jacobian matrices DηDf = DG.

Such hyperbolic systems arise in particular in the modeling of nonviscous flows.
In this paper, we consider the scalar (d = 1) Burgers equations, related to the
Lighthill–Whitham–Richards model for traffic flows.

(3)















∂tu+ ∂x

(

u2

2

)

= 0

∂t
(

u2
)

+ ∂x

(

2u3

3

)

≤ 0
.

We also consider the Euler equations of inviscid gas dynamics for which d = 3 and
u = (ρ, ρv, E), where ρ is the density of the fluid, v is its velocity and E its total
energy. It writes

(4)











∂tρ+ ∂x (ρv) = 0

∂t (ρv) + ∂x
(

ρv2 + p
)

= 0

∂tE + ∂x (v (E + p)) = 0

.

The pressure force p is related to ρ and E with an ideal gas equation of state

p = (γ − 1)

(

E − ρv2

2

)

where γ ∈ (1, 3]. Both the density and the pressure should remain nonnegative,
thus

Ω =

{

(ρ, ρv, E) ∈ R3 : ρ ≥ 0 and E ≥ ρv2

2

}

.

There exists an infinite number of entropy inequalities for these equations, see [1].
In the examples considered in this paper, we focus on

(5) ∂t (−ρ ln (s)) + ∂t (−vρ ln (s)) ≤ 0

where the specific entropy s is defined as s =
p

ργ
.

We now turn to the numerical discretization of (1) with a finite volume technique.
The space interval [a, b] is discretized into M intervals of the same size b−a

M for
simplicity, and we denote xj−1/2 = a + (j − 1)∆x, j ∈ {1, . . . ,M} the end points
of the cells:

a = x1/2 < x3/2 < · · · < xM−1/2 < xM+1/2 = b.

We also consider a discretization in time

0 = t0 < t1 < . . . tn < . . .

A Courant–Friedrichs–Lewy condition is imposed at each time step. It reads, for
some CFL α ∈ (0, 1) depending on the scheme,

(

tn+1 − tn
)

max
1≤j≤M

ρ
(

DF
(

Un
j

))

≤ α∆x
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where ρ
(

DF
(

Un
j

))

is the spectral radius of the Jacobian matrix DF
(

Un
j

)

. The
time step varies with the time iteration but we will denote it independently of n as
tn+1 − tn = ∆t for the sake of simplicity.

A finite volume scheme writes

(6) un+1
j = un

j − ∆t

∆x

(

fn
j+1/2 − fn

j−1/2

)

In Equation (6), the vectorial quantity un
j is a numerical approximation of the mean

of the exact solution u on the j-th cell at the n-th time step:

un
j ≈ 1

∆x

∫ xj+1/2

xj−1/2

u (x, tn) dx,

while fn
j+1/2 is an approximation of the mean flux passing through the interface

xj+1/2 on the time interval
(

tn, tn+1
)

:

fn
j+1/2 ≈ 1

∆t

∫ tn+1

tn
f
(

u
(

xj+1/2, s
))

ds.

Definition 1. A consistent finite volume scheme with a stencil of sL ∈ N cells
to the left and sR ∈ N cells to the right is the choice of a formula expressing the
numerical flux fn

j+1/2 in terms of its sL + sR neighbor cells

fn
j+1/2 = F

(

un
j−sL+1, . . . , u

n
j+sR

)

such that, for all u ∈ Ω,

F (u−sL+1, . . . , usR) → f (u) as (u−sL+1, . . . , usR) → (u, . . . , u) .

Equations (1) and (2) are understood in a weak sense to allow discontinuous
solutions. Notably the entropy inequality (2) does not hold for every discontinuity
but selects only entropy satisfying shocks. The fact that the scheme (6) is stable
and computes the physical solution, with only entropy satisfying shocks, is strongly
related to the existence of a numerical counterpart of (2) at the discrete level, called
a discrete entropy inequality

(7) η
(

un+1
j

)

≤ η
(

un
j

)

− ∆t

∆x

(

Gn
j+1/2 −Gn

j−1/2

)

.

In this expression, un+1
j and un

j are known and linked by the choice of scheme (6).

The function η is the continuous entropy function of (2). The difficulty is to find
the numerical entropy fluxes Gn

j+1/2 and Gn
j−1/2 such that the inequality holds. In

the spirit of Definition 1, we introduce the notion of entropy satifying scheme.

Definition 2. Consider a consistent finite volume scheme of sL ∈ N cells to the
left and sR ∈ N. It F is an consistent entropy satisfying scheme if there exists a
numerical entropy flux function G such that the following two points are verified.

• Inequality (7) holds for all j with Gn
j+1/2 = G

(

un
j−sL+1, . . . , u

n
j+sR

)

. In

other words, the numerical diffusion on cell j at time tn

(8) Dn
j = η

(

un+1
j

)

− η
(

un
j

)

+
∆t

∆x

(

Gn
j+1/2 −Gn

j−1/2

)

is nonpositive everywhere.
• The numerical entropy flux function G is consistent: for all u ∈ Ω,

G (u−sL+1, . . . , usR) → G (u) as (u−sL+1, . . . , usR) → (u, . . . , u) .
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There exists several schemes (6) for which an explicit formula for G yielding
to nonpositive diffusion Dn

j is known. They mainly fall into the two following
categories.

• for scalar equations d = 1, monotone schemes of order 1, see [14];
• for hyperbolic systems d ≥ 2 the Godunov and HLL schemes are en-
tropy satisfying; see [14]. In the specific case of gas dynamics, the HLLC
scheme and some relaxation or kinetic schemes are also entropy satisfying
see [3], [20] and references therein. All those schemes are first order and
sL = sR = 1.

For schemes of ordrer larger than 1 the specific form of (7) seems out of reach
for hyperbolic systems and the question is still largely open. Some works present
results in that direction, mainly for second order schemes.

• In [4], [9] and [1], Inequality (7) is slightly modified. The schemes are either
difficult to implement or there is no guarantee that they capture physical
solution.

• The local discrete entropy inequality (7) can be replaced by the decay of
the total entropy

(9)
∑

j

η
(

un+1
j

)

≤
∑

j

η
(

un
j

)

This is achieved in [10] for the multilayer shallow water equations in [20]
and [16] for gas dynamics and in [6] for a conservation law with nonconvex
flux.

• A different approach consists in using a second order scheme and to go back
to first order if (7) does not hold. The MOOD technique (see [7, 11]) was
initially developed to ensure the positiveness of some quantities like the
density and the pressure, as well as some discrete maximum principle. This
method was later extended in [2] to ensure the discrete entropy inequalities
(7) hold. However it is limited to the gas dynamics (4).

On the other hand many schemes of order 2 or more are employed in trusted codes
for their good results despite the lack of discrete entropy inequality. Typically they
are designed to be of high order when the solution is smooth. They integrate ideas to
ensure stability, such as limiters or explicit numerical diffusion. Positivity and lack
of spurious oscillations are also often taken into account. In other words, a great deal
of work is done in the direction of a discrete entropy inequality even though there is
no guarantee that there is indeed one. We can mention for instance the Piecewise
Parabolic Method (PPM) [8] or the (Weighted) Essentially Non Oscillatory method
(ENO/WENO); see [15, 21, 25].

In this work we are concerned with the a posteriori quantification of the numeri-
cal diffusion Dn

j and numerical entropy fluxes Gn
j+1/2. These quantities are related

by the definition of the numerical diffusion (8). We fix a PDE of the form described
in (1) endowed with an entropy inequality (2) and the choice of a consistent nu-
merical flux F used in the update (6). We attempt to find numerical entropy fluxes
(

Gn
j+1/2

)

j
such that (7) holds by a minimization procedure. In the case where an

explicit formula for G (and thus for Gn
j+1/2) is known, the minimization will reach

its lower bound 0 and return consistent numerical entropy flux and nonpositive
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numerical diffusions. In general the minimization ensures that these two properties
are satisfied as much as possible.

2. Minimization procedure

We consider a regular space discretization in 1D with M cells as described in
Section 1. For the sake of simplicity, we consider periodic boundary conditions,
i.e., fn

1/2 = fn
M+1/2. For j outside of {1, · · · ,M}, un

j is set by un
j = un

mod(j,M). We

also impose periodic boundary condition on the numerical entropy fluxes, and one
should read γn

1/2 = γn
M+1/2 and Gopt,n

1/2 = Gopt,n
M+1/2 when it appears in the sequel. We

recall that the sequence
(

un
j

)

j
is known and Scheme (6) is used to obtain

(

un+1
j

)

j
.

In this section the time iteration n is fixed and referred to as “the initial data”.
The exponent n plays no particular role and one can fix n = 0. The question in
that case is “is the scheme entropy satisfying at the first iteration?”.

In this section, the numerical entropy flux is given by a minimization procedure

(10)
(

Gopt,n
j+1/2

)

1≤j≤M
= argmin

γ=
(

γn
3/2

,...,γn
M+1/2

)

∈RM

{J (γ)} .

The function J : RM → R is defined by the sum of two contributions

(11) J (γ) = JD (γ) + JC (γ) .

The first part JD gathers the undesirable contribution of positive numerical diffu-
sions

JD (γ) =
M
∑

j=1

max

(

0, η
(

un+1
j

)

− η
(

un
j

)

+
∆t

∆x

(

γn
j+1/2 − γn

j−1/2

)

)2

.

Following (8), if the numerical entropy fluxes were Gn
j+1/2 = γn

j+1/2 the associated

numerical diffusion would be η
(

un+1
j

)

− η
(

un
j

)

+
∆t

∆x

(

γn
j+1/2 − γn

j−1/2

)

. In partic-

ular, JD (γ) is null if and only if this choice of numerical entropy fluxes only gives
nonpositive numerical diffusion Dn

j .
It remains to take into account the consistency property of the numerical entropy

fluxes of Definition 2 and this is the role of the second part of the functional. The
key point is that we are able to find some a priori bounds Mn

j+1/2 and mn
j+1/2 on

the flux Gn
j+1/2, which depend on the sL + sR neighbor cells

Mn
j+1/2 = MC

(

un
j−sL+1, . . . , u

n
j+sR

)

mn
j+1/2 = mC

(

un
j−sL+1, . . . , u

n
j+sR

)

.

These bounds verify the following consistency property

∀u ∈ Ω, MC (u, . . . , u) = mC (u, . . . , u) = G (u) .

This motivates the choice

JC (γ) =

(

∆t

∆x

)2




M
∑

j=0

max
(

0, γn
j+1/2 −Mn

j+1/2

)2

+max
(

0,mn
j+1/2 − γn

j+1/2

)2





which vanishes if and only if

∀j ∈ {1/2, . . . ,M + 1/2}, mn
j+1/2 ≤ γn

j+1/2 ≤ Mn
j+1/2.



HOW TO FIND A DISCRETE ENTROPY INEQUALITY 7

In the particular case where un
j−sL+1 = · · · = un

j+sR
= u, the j-th term of JC (γ)

vanishes if and only if γn
j+1/2 = G (u), which is nothing but the consistency require-

ment for the numerical entropy flux.
The function J is nonnegative, C1-regular and convex with respect to γ, but

the set where it vanishes has no reason neither to exist nor to be reduced to a single
point. In the next sections we precise the construction of the consistency bounds
MC and mC . We also explore the strong link between the existence of a discrete
entropy inequality (7) and the fact that an optimum Gopt,n such that J (Gopt,n) = 0
can be found.

2.1. Consistency bounds for 2-points fluxes. We first consider the simplest
case of a flux that depends only on its two neighboring cells (sL = sR = 1):

fn
j+1/2 = F

(

un
j , u

n
j+1

)

.

The formulas are shorter than in the general case of Section 2.2 but the fundamental
ideas are the same.

Lemma 3. Consider a two points flux F, and suppose that the finite volume
scheme (6) is entropy satisfying in the sense of Definition 2. Then for all j,
mn

j+1/2 ≤ Gn
j+1/2 ≤ Mn

j+1/2 with

(12)











Mn
j+1/2 = G

(

un
j

)

+
∆x

∆t

(

η
(

un
j

)

− η
(

û
j+1/2
j

))

mn
j+1/2 = G

(

un
j+1

)

+
∆x

∆t

(

η
(

û
j+1/2
j+1

)

− η
(

un
j+1

)

)

where










û
j+1/2
j = un

j − ∆t

∆x

(

fn
j+1/2 − f

(

un
j

)

)

û
j+1/2
j+1 = un

j+1 −
∆t

∆x

(

f
(

un
j+1

)

− fn
j+1/2

)

un
j

un
j+1

un
j+2

un
j−1

j + 1/2

Figure 1. The fluxes fn
j+1/2 and Gn

j+1/2 at interface j + 1/2 are

the same regardless of the values in cells j−1 and j+2. The use of
the modified data (black) instead of the initial data (grey) allows
to use the consistency at interfaces j − 1/2 and j + 3/2
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Remark 4. Lemma 3 is a necessary condition for a scheme to be entropy satisfying.
This is what F. Bouchut calls an ”interface entropy inequality” in [3, Definition
2.7]. It implies the desired discrete entropy inequality (7) at the cost of a time step
∆t twice smaller [3, Proposition 2.9].

Proof. The numerical flux fn
j+1/2 and numerical entropy flux Gn

j+1/2 at interface

j + 1/2 are the same if we start with the initial data

un =
(

. . . , un
j−1, u

n
j , u

n
j+1, u

n
j+2, . . .

)

or the modified initial data

ũj+1/2 =
(

ũ
j+1/2
k

)

k
=
(

. . . , un
j , u

n
j , u

n
j+1, u

n
j+1, . . .

)

=

{

un
j if k ≤ j

un
j+1 if k > j.

The evolution in time with this modified initial data is particularly simple. All

the fluxes f̂
j+1/2
k+1/2 are computed by consistency except at interface j + 1/2 where it

is the same that for the original initial data

f̃
j+1/2
k+1/2 = F

(

ũ
j+1/2
k , ũ

j+1/2
k+1

)

=











f
(

un
j

)

if k < j

fn
j+1/2 if k = j

f
(

un
j+1

)

if k > j + 1

.

It yields the update

û
j+1/2
k =



























un
j if k < j

un
j − ∆t

∆x

(

fn
j+1/2 − f

(

un
j

)

)

if k = j

un
j+1 −

∆t

∆x

(

f
(

un
j+1

)

− fn
j+1/2

)

if k = j + 1

un
j+1 if k > j + 1

.

The consistency can be applied similarly at interfaces j − 1/2 and j + 3/2 for
the entropy evolution. If the scheme is entropy satisfying, then the two following
inequalities hold











η
(

û
j+1/2
j

)

≤ η
(

un
j

)

− ∆t

∆x

(

Gn
j+1/2 −G

(

un
j

)

)

η
(

û
j+1/2
j+1

)

≤ η
(

un
j+1

)

− ∆t

∆x

(

G
(

un
j+1

)

−Gn
j+1/2

)

and the bounds on Gn
j+1/2 of Lemma 3 follow. �

2.2. Extension to larger stencils. We now generalize Lemma 3 or the notion
of interface entropy inequality of [3] to arbitrary stencils. We follow exactly the

same steps than for two points schemes. First, a modified initial data
(

ũ
j+1/2
k

)

k
is

constructed for each interface j + 1/2 in such a way that the consistency property
can be used for interfaces far enough from j+1/2. Then the finite volume scheme (6)

applied to this new initial data gives numerical fluxes
(

f̃
j+1/2
k+1/2

)

k
. They are used to

compute the update
(

û
j+1/2
k

)

k
. Eventually two local budgets of entropy allows to

bound Gn
j+1/2.
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Lemma 5. Consider a consistent entropy satisfying scheme in the sense of Defi-
nition 2. Then for all j ∈ {0, . . . ,M} we have mn

j+1/2 ≤ Gn
j+1/2 ≤ Mn

j+1/2, with

the bounds

(13)



























Mn
j+1/2 = G

(

un
j−sL+1

)

+
∆x

∆t

j
∑

k=j−sL−sR+2

η
(

ũ
j+1/2
k

)

− η
(

û
j+1/2
k

)

mn
j+1/2 = G

(

un
j+sR

)

+
∆x

∆t

j+sL+sR−1
∑

k=j+1

η
(

û
j+1/2
k

)

− η
(

ũ
j+1/2
k

)

where

(14a) ũ
j+1/2
k = un

min(max(k,j−sL+1),j+sR)

(14b) f̃
j+1/2
k+1/2 = F

(

ũ
j+1/2
k−sL+1, . . . , ũ

j+1/2
k , ũ

j+1/2
k+1 , . . . , ũ

j+1/2
k+sR

)

(14c) û
j+1/2
k = ũ

j+1/2
k − ∆t

∆x

(

f̃
j+1/2
k+1/2 − f̃

j+1/2
k−1/2

)

Proof. We focus on the flux at the interface j + 1/2. This flux is indifferent to the
values in cells j − sL and smaller, and in cells j + sR + 1 and larger. Thus, we
modify the initial data by prolongated it by un

j−sL+1 on its left and by un
j+sR on

its right

ũ
j+1/2
k =











un
j−sL+1 if k ≤ j − sL

un
k if j − sL + 1 ≤ k ≤ j + sR

un
j+sR

if j + sR + 1 ≤ k

which writes (14a) in short. The numerical fluxes applied to this modified data are

f(uL) f(UR)

un
j

un
j+1

un
j+sR

un
j−sL+1

sL cellssL cells

sR cells
sR cells

fj+1/2

Figure 2. Modification of the initial data away from the stencil.
Consistency can be used to compute the fluxes at interfaces j +
3/2− sL − sR and j − 1/2 + sL + sR.

given by (14b) and yields the update (14c).

The interest of the modified initial data
(

ũ
j+1/2
k

)

k
is that the fluxes at interfaces

j − sL − sR + 3/2 (and before) and j + sR + sL − 1/2 (and after) are given by
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consistency:

f̃
j+1/2
j−sL−sR+3/2 = F

(

ũ
j+1/2
j−2sL−sR+2, . . . , ũ

j+1/2
j−sL+1

)

= F
(

un
j−sL+1, . . . , u

n
j−sL+1

)

= f
(

un
j−sL+1

)

and

f̃
j+1/2
j+sL+sR−1/2 = F

(

ũ
j+1/2
j+sR

, . . . , ũ
j+1/2
j+sL+2sR−1

)

= F
(

un
j+sR , . . . , u

n
j+sR

)

= f
(

un
j+sR

)

.

It follows that û
j+1/2
k = ũ

j+1/2
k for all k ≤ j−sL−sR+1 and for all k ≥ j+sL+sR.

Now, suppose that the scheme is entropy satisfying, i.e. that

η
(

û
j+1/2
k

)

≤ η
(

ũ
j+1/2
k

)

− ∆t

∆x

(

G̃
j+1/2
k+1/2 − G̃

j+1/2
k−1/2

)

where once again

G̃
j+1/2
k+1/2 = G

(

ũ
j+1/2
k−sL+1, . . . , ũ

j+1/2
k , ũ

j+1/2
k+1 , . . . , ũ

j+1/2
k+sR

)

for some function G, see Definition 2. These inequalities are not of much use because

we do not know an explicit formula for G. However, the construction of
(

ũ
j+1/2
k

)

k
gives us three information. The consistency yields

G̃
j+1/2
j−sL−sR+3/2 = G

(

un
j−sL+1

)

and G̃
j+1/2
j+sL+sR−1/2 = G

(

un
j+sR

)

.

On the other hand the flux at interface j + 1/2 remains unchanged

G̃
j+1/2
j+1/2 = G

(

ũ
j+1/2
j−sL+1, . . . , ũ

j+1/2
j+sR

)

= G
(

un
j−sL+1, . . . , u

n
j+sR

)

= Gn
j+1/2.

We eliminate the other numerical entropy fluxes by summation:

j+sL+sR
∑

k=j

η
(

û
j+1/2
k

)

≤





j+sL+sR
∑

k=j

η
(

ũ
j+1/2
k

)



− ∆t

∆x

(

G
(

un
j+sR

)

−Gn
j+1/2

)

and
j
∑

k=j−sL−sR+2

η
(

û
j+1/2
k

)

≤
j
∑

k=j−sL−sR+2

η
(

ũ
j+1/2
k

)

− ∆t

∆x

(

Gn
j+1/2 −G

(

un
j−sL+1

)

)

We can now bound Gn
j+1/2 from above and below and conclude. �

3. Main results

3.1. Entropy dissipation and zero minimization.

Proposition 6. Consider a finite volume scheme (6) that admits a discrete entropy

inequality (7) for some numerical entropy fluxes
(

Gn
j+1/2

)

j
. Then J

(

(

Gn
j+1/2

)

j

)

=

0 for all initial data
(

un
j

)

j
, where the functional J is defined with (6) and (13).

Proof. This property follows from the definition of the functional. If (7) holds,

clearly JD

(

(

Gn
j+1/2

)

j

)

= 0. It remains to prove that the second part also van-

ishes, which is the case if and only if mn
j+1/2 ≤ Gn

j+1/2 ≤ Mn
j+1/2. This holds

by construction on the bounds mn
j+1/2 and Mn

j+1/2. The scheme is also entropy
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diminishing on the modified initial data
(

ũ
j+1/2
k

)

k
. The lower (resp. upper) bound

comes from the diminution of total entropy during in the sL+sR−1 cells on the left
(resp. right cells) during the time step. Details are given in the proof of Lemma 5
in the previous section. �

Proposition 7. Fix the initial data
(

un
j

)

j
. Suppose that there exists

(

Gopt,n
j+1/2

)

j

such that J

(

(

Gopt,n
j+1/2

)

j

)

= 0. Then the scheme dissipates the entropy:

η
(

un+1
j

)

≤ η
(

un
j

)

− ∆t

∆x

(

Gopt,n
j+1/2 −Gopt,n

j−1/2

)

.

It is also consistent in the sense that if un
j−sL+1 = · · · = un

j = · · · = un
j+sR , then

Gopt,n
j+1/2 = G

(

un
j

)

.

This results only says that it is possible to find numerical entropy fluxes yielding
to nonpositive numerical diffusion for the particular choice of initial data

(

un
j

)

j
. It

does not mean that the scheme is always entropy satisfying.

Proof. Suppose that J

(

(

Gopt,n
j+1/2

)

j

)

= 0. The first contribution JD is zero thus

∀j η
(

un+1
j

)

− η
(

un
j

)

+
∆t

∆x

(

Gopt,n
j+1/2 −Gopt,n

j−1/2

)

≤ 0

which is exactly (7). The last contribution JC is also zero, thus

mn
j+1/2 ≤ Gopt,n

j+1/2 ≤ Mn
j+1/2.

If
(

un
j−sL+1, . . . , u

n
j+sR

)

=
(

un
j , . . . , u

n
j

)

, the modified initial data
(

ũ
j+1/2
k

)

k
is con-

stant equals to un
j and so is

(

û
j+1/2
k

)

k
. Thus mn

j+1/2 = Mn
j+1/2 = G

(

un
j

)

and

Gopt,n
j+1/2 = G

(

un
j

)

. �

3.2. Discrepancy between global minimizers. The function J

(

(

Gn
j+1/2

)

j

)

vanishes if and only if (7) holds and for all j, mn
j+1/2 ≤ Gn

j+1/2 ≤ Mn
j+1/2. When

this set of inequalities is nonempty it most likely contains several solutions. We
first quantify how close they are from each other.

Proposition 8. Suppose that J

(

(

Gn
j+1/2

)

j

)

= 0 and J

(

(

Ḡn
j+1/2

)

j

)

= 0, and

that the numerical flux F used in (6) is consistent and Lipschitz regular. Then for
all j,

|Gn
j+1/2 − Ḡn

j+1/2| =
∑

k∈{j−sL+1,...,j+sR}

O
(

|un
k − un

j |2
)

When the scheme is known to have a discrete entropy inequality, this shows that
when the solution is smooth, the difference between the numerical entropy flux
found in the literature and the one returned by the minimization procedure is of
order ∆x2.
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Proof. Suppose that the minimization procedure has two different global minimizers

J
(

Gn
j+1/2

)

= 0 and J
(

Ḡn
j+1/2

)

= 0. Then mn
j+1/2 ≤ Gn

j+1/2 ≤ Mn
j+1/2 and

mn
j+1/2 ≤ Ḡn

j+1/2 ≤ Mn
j+1/2, thus

|Ḡn
j+1/2 −Gn

j+1/2| ≤ Mn
j+1/2 −mn

j+1/2.

Let us extend the latter term

Mn
j+1/2 −mn

j+1/2 = G
(

un
j−sL+1

)

−G
(

un
j+sR

)

+
∆x

∆t

j+sL+sR
∑

k=j−sL−sR+2

η
(

ũ
j+1/2
k

)

− η
(

û
j+1/2
k

)

By convexity of the entropy η,

η
(

û
j+1/2
k

)

= η

(

ũ
j+1/2
k − ∆t

∆x

(

f̃k+1/2 − f̃k−1/2

)

)

≥ η
(

ũ
j+1/2
k

)

− ∆t

∆x
Dη
(

ũ
j+1/2
k

)(

f̃k+1/2 − f̃k−1/2

)

We arrive at

Mn
j+1/2 −mn

j+1/2 ≤ G
(

un
j−sL+1

)

−G
(

un
j+sR

)

+

j+sL+sR
∑

k=j−sL−sR+2

Dη
(

ũ
j+1/2
k

)(

f̃k+1/2 − f̃k−1/2

)

≤ G
(

un
j−sL+1

)

−G
(

un
j+sR

)

+Dη
(

un
j

) (

f
(

un
j+sR

)

− f
(

un
j−sL+1

))

+

j+sL+sR
∑

k=j−sL−sR+2

(

Dη
(

ũ
j+1/2
k

)

−Dη
(

un
j

)

)(

f̃k+1/2 − f̃k−1/2

)

If the numerical flux is Lipschitz regular, the last sum is
∑

k∈{j−sL+1,j+sR}

O
(

|un
k − un

j |2
)

.

A second order expansion at point un
j of the first line is

(

DG
(

un
j

)

− Dη
(

un
j

)

Df
(

un
j

)) (

un
j−sL+1 − un

j+sR

)

+O
(

|un
j−sL+1 − un

j |2
)

+O
(

|un
j+sR − un

j |2
).

It yields the result because DηDf = DG.
�

3.3. Lax-Wendroff theorem. One of the main theoretical results about numer-
ical schemes for systems of conservation laws is the Lax-Wendroff theorem. This
result ensures that if a numerical scheme converges in a certain sense, then the limit
is a weak solution. In addition, if the scheme satisfies relevant discrete entropy in-
equalities, then the limit is an entropy solution.

This last statement usually requires the numerical entropy flux to be a contin-
uous and consistent function of the neighboring approximations. This is not the
case in this work, since the numerical entropy fluxes are obtained through a mini-
mization procedure. However, it is possible to adapt the Lax-Wendroff theorem to
the framework of this paper.
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Since the time discretization will be important in this section, the objects related
to the optimization problem (10) at time tn, i.e., with initial data

(

un
j

)

j
, will be

noted with an exponent n.
For a discretization ∆ = (∆x,∆t), we introduce the piecewise constant function

u∆ defined a.e. in R× [0,+∞) by

u∆ (x, t) = un
j , xj−1/2 < x < xj+1/2, tn ≤ t < tn+1.

Theorem 1. Assume the numerical flux F to be continuous and consistent. Con-
sider a sequence ∆k = (∆xk,∆tk) which converges to (0, 0) with the ratio λ = ∆tk

∆xk

being constant. Assume that

• there exists a compact K ⊂ Ω such that u∆k
(x, t) ∈ K for a.e. (x, t) ∈

R× [0,+∞) and for all k ∈ N;
• the sequence u∆k

converges in L1
loc (R× (0,+∞)) to a function u.

Then u is a weak solution of (1).
Furthermore, if for a given entropy pair (η,G) and for all n ∈ N, there exists

a sequence
(

Gopt,n
j+1/2

)

j
such that J

(

(

Gopt,n
j+1/2

)

j

)

= 0, then the solution u satisfies

the entropy inequality (2) in the sense of distributions on R× (0,+∞).

Proof. For the sake of simplicity, the subscript k in ∆k will be ommited all along
the proof. The first part of the theorem is exactly the same as in the original Lax-
Wendroff theorem. The reader is referred for instance to [19, 14] for a complete
proof.

Concerning the entropy inequality, let us consider a test function ϕ ∈ C1
c (R× (0,+∞)),

with ϕ ≥ 0. Since JD

(

(

Gopt,n
j+1/2

)

j

)

= 0, we have for all j and n

η
(

un+1
j

)

− η
(

un
j

)

+ λ
(

Gopt,n
j+1/2 −Gopt,n

j−1/2

)

≤ 0.

Multiplying this inequality by ∆xϕ (xj , t
n), summing over j and n and performing

a summation by parts, we obtain

∆x
∑

j,n

η
(

un+1
j

) (

ϕ
(

xj , t
n+1
)

− ϕ (xj , t
n)
)

+∆t
∑

j,n

Gopt,n
j+1/2 (ϕ (xj+1, t

n)− ϕ (xj , t
n)) ≥ 0.

Introducing the piecewise constant functions

ϕ∆ (x, t) = ϕ (xj , t
n) , xj−1/2 < x < xj+1/2, tn ≤ t < tn+1,

Gopt,n
∆ (x, t) = Gopt,n

j+1/2, xj < x < xj+1, tn ≤ t < tn+1,

where xj =
xj−1/2+xj+1/2

2 , the last inequality writes

(15)

∫

R×[∆t,+∞)

η (u∆ (x, t))
ϕ∆ (x, t)− ϕ∆ (x, t−∆t)

∆t
dxdt

+

∫

R×R+

Gopt
∆ (x, t)

ϕ∆ (x+∆x/2)− ϕ∆ (x−∆x/2)

∆x
dxdt ≥ 0.
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As in the classical Lax-Wendroff theorem, the first integral converges to
∫

R×R+

η (u (x, t)) ∂tϕ (x, t) dxdt.

The difference with the classical Lax-Wendroff theorem lies in the second integral
of (15). Since ϕ is smooth, the term

ϕ∆ (x+∆x/2)− ϕ∆ (x−∆x/2)

∆x

uniformly converges to ∂xϕ (x, t). Moreover, according to (13) and (??) and since

the ratio λ is constant, MC,n
j+1/2 and mC,n

j+1/2 are continuous functions of a finite

number of un
k , that all lie in the compact K. Therefore the MC,n

j+1/2 and mC,n
j+1/2 are

uniformly bounded. Since JC

(

(

Gopt,n
j+1/2

)

j

)

= 0, it follows that the inequalities

(16) mn
∆ (x, t) ≤ Gopt

∆ (x, t) ≤ Mn
∆ (x, t)

hold for a.e. (x, t) ∈ R × [0,+∞). As a consequence, the function Gopt
∆ is also

uniformly bounded and therefore

(17)

∫

R×R+

Gopt
∆ (x, t)

(

ϕ∆

(

x+ ∆x
2

)

− ϕ∆

(

x− ∆x
2

)

∆x
− ∂xϕ (x, t)

)

dxdt → 0.

Next, we need to introduce the following piecewise constant functions:

M∆ (x, t) = MC,n
j+1/2, xj < x < xj+1, tn ≤ t < tn+1,

m∆ (x, t) = mC,n
j+1/2, xj < x < xj , tn ≤ t < tn+1,

ũ
j+1/2
∆ (x, t) = ũ

j+1/2
k , xk−1/2 < x < xk+1/2, tn ≤ t < tn+1,

(18) f̃
j+1/2
∆ (x, t) = f̃

j+1/2
k+1/2 , xk < x < xk+1, tn ≤ t < tn+1,

(19) û
j+1/2
∆ (x, t) = û

j+1/2
k , xk−1/2 < x < xk+1/2, tn ≤ t < tn+1.

According to (??), we have

ũ
j+1/2
∆ (x, t) = u∆ (x+min (max (k, j − sL + 1) , j + sR)∆x− k∆x, t) ,

f̃
j+1/2
∆ (x, t) = F

(

ũ
j+1/2
∆ (x− (sL − 1/2)∆x, t) , · · · , ũj+1/2

∆ (x+ (sR − 1/2)∆x, t)
)

,

û
j+1/2
∆ (x, t) = ũ

j+1/2
∆ (x, t)− λ

(

f̃
j+1/2
∆ (x+∆x/2, t)− f̃

j+1/2
∆ (x−∆x/2, t)

)

.

It follows from (13) that

(20)

M∆ (x, t) = G
(

u∆ (x− (sL − 1/2)∆x, t)
)

+ λ





j
∑

k=j−sL−sR+2

η
(

ũ
j+1/2
∆ (x− (j + 1/2− k)∆x, t)

)

−η
(

û
j+1/2
∆ (x− (j + 1/2− k)∆x, t)

)]

.

Since u∆ converges in L1
loc (R× (0,+∞)) to u, then up to a subsequence, ũ

j+1/2
∆

converges to u almost everywhere (a.e.). Thanks to the continuity and the consis-

tency of F, we get from (18) that f̃
j+1/2
∆ converges a.e. to f (u). Then according
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to (19), we deduce that û
j+1/2
∆ also converges a.e. to u. Finally, it comes from (20)

that M∆ converges a.e. to G (u). A similar process shows that up to a subsequence,

m∆ converges a.e. to G (u). We deduce from (16) that up to a subsequence, Gopt
∆

converges a.e. to G (u). The dominated convergence theorem then ensures that

(21)

∫

R×R+

Gopt
∆ (x, t) ∂xϕ (x, t) dxdt →

∫

R×R+

G (u) ∂xϕ (x, t) dxdt.

Summing (17) and (21), we obtain
∫

R×R+

Gopt
∆ (x, t)

ϕ∆ (x+∆x/2)− ϕ∆ (x−∆x/2)

∆x
dxdt

→
∫

R×R+

G (u) ∂xϕ (x, t) dxdt.

Hence the limit of (15) writes
∫

R×R+

η (u (x, t)) ∂tϕ (x, t) dxdx+

∫

R×R+

G (u) ∂xϕ (x, t) dxdt ≥ 0,

which concludes the proof. �

4. A posteriori quantification of the numerical diffusion: numerical

results

4.1. Continuous solution of the Burgers equation. In this first test case, we
consider the Burgers equation (3) with the initial data

(22) u0 (x) =

{

−2− x if − 2 < x ≤ 0

3− 3
2x if 0 < x ≤ 2

and periodic boundary conditions. The inner discontinuity creates a rarefaction
fan, its left extremity travels at speed −2 and its right extremity at speed 3. The
exact solution is piecewise linear, and for t < 2

3 is given by

u0 (x) =























− (x+ 2)

1− t
if − 2 ≤ x ≤ −2t

x

t
if − 2t ≤ x ≤ 3t

−3 (x− 2)

2− 3t
if 3t ≤ x ≤ 2

.

The results for different numerical schemes are given on Figure ??. The space inter-
val [−2, 2] is discretized with 50 or 100 cells, and the functional (11) is minimized
at the last iteration at T = 0.4. The time step is restricted with the CFL condition

∆t =
0.5∆x

maxj |un
j |

and we use periodic boundary conditions.
Four first order schemes are compared: the Rusanov, Godunov, Roe and Mac-

Cormack schemes with a forward Euler march in time, see the appendix for the
definitions of the corresponding fluxes F. The stencil is sL = sR = 1. The first
two schemes are entropy satisfying: an explicit formula for G yielding nonposi-
tive numerical diffusions (8) is known. The last two schemes are known to fail in
sonic rarefactions (smooth part of the solution crossing u = 0) because they create
nonphysical stationary discontinuities that violate the second equation of (3). We
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-2 0 2
-2

0

2

4
Rusanov

-2 0 2
-2

0

2

4
Godunov

-2 0 2
-2

0

2

4
Roe

-2 0 2

-2

0

2

MacCormack

-2 0 2
-0.02

-0.01

0

-2 0 2
-0.02

-0.01

0

-2 0 2
0

0.2

0.4

0.6

-2 0 2
0

0.5

1

Figure 3. Entropy satisfying and entropy violating numerical
schemes on Testcase (22). Lines 1 and 3: approximate solution
at the last iteration in time. Lines 2 and 4: a posteriori quantifica-
tion of the numerical diffusion Dopt,n. Results for M = 50 in blue,
M = 100 in red, exact solution in black.

also tested the Osher and Lax-Wendroff fluxes. They give results very similar to
the Rusanov and MacCormack schemes respectively and are not represented on
Figure 3.
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We define the a posteriori entropy fluxes as the results of the minimization (10),
and define the a posteriori numerical diffusion according to (8) as

(23) Dopt,n
j = η

(

un+1
j

)

− η
(

un
j

)

+
∆t

∆x

(

Gopt,n
j+1/2 −Gopt,n

j−1/2

)

.

The minimization procedure detects the two previous behaviors: Dopt,n
j remains

nonpositive everywhere for the Rusanov and Godunov flux, while it has large strictly
positive values localized around the stationary entropy creating shocks at the sonic
point.

-2 -1 0 1 2
-2

0

2

4
Euler

-2 -1 0 1 2
-2

0

2

4
RK2

-2 -1 0 1 2
0

2

4

6

10-3

-2 -1 0 1 2

-10

-5

0
10-3

Figure 4. Influence of the time discretization for a second or-
der scheme in space. First line: approximate solution at the last
iteration in time. Second line: a posteriori quantification of the
numerical diffusion Dopt,n. Results for M = 50 in blue, M = 100
in red, exact solution in black.

The two plots of Figure 4 show the results for MUSCL second order flux in space
based a Rusanov flux and a minmod limiter (see the appendix for details). Together
with a forward Euler march in time, (7) is grossly false in the sense that the total
energy increases with time:

∑

j η
(

un+1
j

)

>
∑

j η
(

un
j

)

. Combined with a RK2 time

stepping, the a posteriori procedure finds a discrete entropy inequality (7).
In the case of the Rusanov flux (32) combined with a forward Euler march in

time, we indicate on Figure 5 the evolution of the total diffusion

∆x

∣

∣

∣

∣

∣

∣

∑

j

(

un+1
j

)2 −
(

un
j

)2

∣

∣

∣

∣

∣

∣

and the total discrepancy ∆x
∑
∣

∣Dopt,n
j −Dn

j

∣

∣. The numerical diffusion Dn
j is given

by (8) with the standard numerical entropy fluxes (33), for which the discrete
entropy inequality (7) holds. The figure illustrates Proposition 8: the exact solution
is regular, the scheme is entropy satisfying, and the discrepancy decreases one



18 HOW TO FIND A DISCRETE ENTROPY INEQUALITY

10
-5

10
-4

10
-3

10
-2

mesh size

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

L
1

 n
o

rm

Rusanov+ Euler

L
1

 n
o

rm

Figure 5. Total numerical diffusion (red crosses) and total dis-
crepancy between the diffusion (blue circles) at the last iteration
of the Testcase 22 with finer and finer grids.

order faster than the total diffusion. Here the orders are 3 and 2 because they are
integrated on a grid of size ∆x and on a time step of ∆t = O (∆x).

4.2. Gas dynamics. We now turn to the Euler equations (4). The method is
indifferent to the number of unknowns d, since the a posteriori quantification of
the numerical diffusion only concerns the scalar equation (2). We focus on a widely
chosen scheme of order two in space and time, namely the Van Leer version of the
MUSCL scheme [24].

In this scheme the piecewise constant in space approximation
(

un
j

)

j
by a recon-

structed piecewise affine data. In spirit the fluxes would be computed as the exact
flux of (1) with this new detailed initial data. This is only feasible for some par-
ticular hyperbolic systems and incredibly costly; a second order approximation is
sufficient and can be obtained with a two step Runge Kutta (RK2) time discretiza-
tion. Bibliographic references and some details are given in the Appendix.

For scalar equations d = 1, this reconstruction procedure heavily relies on the
fact that the exact solutions of (1) verify a maximum principle property and are
total variation diminishing (TVD). A family of functions called limiters is considered
to determine the slopes in each cell [14] and allows to keep these features at the
discrete level. Both properties are lost for hyperbolic systems d ≥ 2. Limiters are
also used but several choices are possible. We investigate the effects of some of
them in this section.

The discrete entropy inequalities found in the literature for the MUSCL ap-
proach differ from (7). The quantity η

(

un
j

)

is replaced with a linear approximation

in [4, Equation (1.9)] for scalar equations or with a nonlinear entropy diminish-
ing projection operator in [9, Theorem 2.9] for systems. Those schemes rely on
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generalized Riemann problems and are difficult to implement in practice. In the
more convenient strategy described above, Berthon obtained some variation of (7)
for the Euler equation, where η

(

un
j

)

is replaced by a convex combination of three

terms that depends not only of un
j but also on un

j−1 and un
j+1, see [1, Equations

(2.7) and (2.10)]. However, these modified entropy inequalities are not sufficient to
prove a Lax–Wendroff like theorem. In [2], several numerical simulations indicates
that there is most likely no such theorem, and that the MUSCL+RK2 scheme may
converge to incorrect solutions.

We first reproduce the Sod tube testcase of Toro

(24)











ρ0 (x) = 1x<0 + 0.125× 1x≥0

u0 (x) = 0.75× 1x<0

p0 (x) = 1x<0 + 0.1× 1x≥0

on the time interval [0, 0.2] and the space interval [−1, 1], with periodic boundary
condition. The CFL number is 1/6 and M = 400. The discontinuity at x =
0 creates a 1-rarefaction wave, a 2-contact discontinuity a 3-shock. We stick to
periodic boundary condition, so there is another discontinuity at x = −1. It creates
a 1-shock, a 2-contact discontinuity and a 3-rarefaction wave.

On Figure 6 we compare the first order HLLC scheme [23, Section 10.4.2] and
the Roe scheme without entropy fix [23, Section 11.2] with a forward Euler time
stepping. Then we consider the second order MUSCL scheme with a RK2 time
stepping. The slopes are limited on the primitive variable (ρ, u, p) and the underly-
ing first order scheme is the HLLC scheme. We compare the results obtained with
a minmod limiter and a superbee limiter.

The a posteriori quantification of the numerical diffusion gives once again positive
values near the stationary nonphysical shock created by the Roe scheme. It also
detects the overcompressive behavior of the superbee limiter, with a spike of positive
numerical diffusion located on the oscillations in density around the central contact
discontinuity. The superbee limiter is often too strong and may prevent the scheme
from converging, see [2]. For second order schemes, the numerical diffusion is
located in two spikes around each discontinuity. This depends on the initialization,
see Figure 9 below.

Then we consider a testcase where the solution does not contain a shock, but
only a contact discontinuity. In this case the entropy should be conserved on the
choosen time interval. The velocity and the pressure are initially constant, equal
to 0.1 and 1. The initial density is

(25) ρ0 (x) = 1 + 0.2x+ 0.05 sin (6πx) + 0.4× 1x<0

The final time is 2 seconds, the CFL number is 0.75. We compare the Rusanov
scheme and the HLLC scheme, and find unsurprisingly that the latter is much
less diffusive. The same holds for their second order extensions with a MUSCL
procedure, using either the Rusanov or the HLLC flux as the underlying first order
scheme. The slope limitation is on the conservative variables (ρ, ρu,E) and we use
a minmod limiter.

4.3. A naive a priori quantification of the numerical diffusion. The mini-
mization procedure presented above finds numerical entropy fluxes and couples all
the cells of the mesh. We used the blackbox fminunc of matlab, with the initial
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Figure 6. Densities (lines 1 and 3) and a posteriori numerical
diffusion (lines 2 and 4) for several numerical schemes on Test-
case (24).

guess γj+1/2 =
1

2

(

mn
j+1/2 +Mn

j+1/2

)

. The cost grows quadratically with the mesh-

size, and becomes larger than the minute for meshes with more than 4 000 cells,
see Figure 8, left. Here we present a much cheaper way to quantify the numerical
diffusion. It does not inherit the good mathematical properties of the minimization
procedure, but the numerical results are quite similar and the computational cost
is drastically reduced.
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Figure 7. Densities (first line) and numerical diffusion (second
line) for Testcase (25). The discontinuity is a slowly moving con-
tact.

In the derivation of the consistency part of the functional JC , we proposed
bounds on the numerical entropy flux Gn

j+1/2 ∈ [mn
j+1/2,M

n
j+1/2]. Under the hy-

pothesis that the bounds are correctly ordered, it follows that Dn
j ≤ Dopt,n

j ≤ D̄n
j ,

with

(26) Dn
j = η

(

un+1
j

)

− η
(

un
j

)

+ λ
(

mn
j+1/2 −Mn

j−1/2

)

and

D̄n
j = η

(

un+1
j

)

− η
(

un
j

)

+ λ
(

Mn
j+1/2 −mn

j−1/2

)

An important point is that Dn
j and D̄n

j are computationally affordable. Indeed,

mn
j+1/2 and Mn

j+1/2 are computed with the scheme (6), on a small initial data

centered around the interface j+1/2, with sL+ sR cells on its left and on its right,
see Lemma 5.

Numerically, we observed than the lower bound (26) is particularly interesting
for two reasons. First, if the left hand side is positive it indicates than (7) does
not hold on this particular cell. We detail and capitalize on that idea in Section 5.
Second, even though it is much lower than Dopt,n

j , the variations of Dn
j are similar.

As a final stage, we perform a naive renormalization of Dn
j by a constant coeffi-

cient α, in such a way that the total amount of numerical diffusion is correct:

α
∑

j

Dn
j =

∑

j

Dopt,n
j =

∑

j

η
(

un+1
j

)

− η
(

un
j

)

.
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Figure 8. Computational cost of the minimization procedure
(left) and of the a priori guess (right) at the first iteration of Test-
case (25)

It yields to the a priori quantification of the numerical diffusion

Dpriori,n
j =

∑

k

η
(

un+1
k

)

− η (un
k )

∑

k

Dn
k

Dn
j .

On Figure 9 we compare Dpriori,n
j and Dopt,n

j . The a posteriori quantification

Dopt,n
j depends on the initialization of the minimization procedure and produces

narrow spikes of numerical diffusion. The a priori quantification Dpriori,n
j gives

smoother results, with a diffusion spread out the whole length of the discrete dis-
continuity.

To conclude, the computation of Dpriori,n
j is pertinent if one is only interested in

the numerical diffusion and not in the numerical entropy fluxes, which have been
completely forgotten here. The results are visually satisfactory. Note that we are
not able to extend Proposition 8.

5. An entropy stress test for numerical schemes

5.1. Worst initial data in terms of entropy.

Proposition 9. Consider a numerical flux F with a stencil of sL points on the left
and and sR on the right. Then the finite volume scheme does not have a discrete
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Figure 9. Comparison of Dopt,n
j and Dpriori,n

j on Testcase (24).

The optimization is initialized with (a) γn
j+1/2 = mn

j+1/2 or (b)

γn
j+1/2 =

1

2

(

mn
j+1/2 +Mn

j+1/2

)

or (c) γn
j+1/2 = Mn

j+1/2

entropy inequality if and only if there exists an initial data
(

u0
−sL , u

0
−sL+1, . . . , u

0
0, . . . , u

0
sR−1, u

0
sR

)

such that
(27)

min

(

η
(

u0
0

)

− ∆t

∆x

(

m0
1/2 −M0

−1/2

)

− η
(

u1
0

)

,m0
1/2 −M0

1/2,m
0
−1/2 −M0

−1/2

)

< 0

where M0
1/2, m

0
1/2, M

0
−1/2 and m0

−1/2 are given by (13) with n = 0.

Proof. If the scheme if entropy satisfying, for all choice of initial data
(

u0
−sL , u

0
−sL+1, . . . , u

0
0, . . . , u

0
sR−1, u

0
sR

)

,

there exist two consistent entropy numerical fluxes G0
1/2 and G0

−1/2 such that

(28) η
(

u1
0

)

≤ η
(

u0
0

)

− ∆t

∆x

(

G0
1/2 −G0

−1/2

)

.

Moreover, we know from Lemma 5 that G0
±1/2 ∈ [m0

±1/2,M
0
±1/2].

Thus there are two possibilities for a scheme to be non entropy satisfying. First,
a set of bounds can be incorrectly ordered M0

1/2 < m0
1/2 or M0

−1/2 < m0
−1/2. Going

back to the definition it simply means that there is a sL + sR initial data
(

u0
−sL , u

0
−sL+1, . . . , u

0
0, . . . , u

0
sR−1

)
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such that the total entropy increases in one iteration

sR−1
∑

k=−sL

η
(

u1
k

)

>

sR−1
∑

k=−sL

η
(

u0
k

)

− ∆t

∆x

(

G
(

u0
sR−1

)

−G
(

u0
sL

))

where the Neumann boundary conditions

u0
k =

{

u0
−sL for k < −sL

u0
sR−1 for k > sR − 1

are used to update the solution. The second possibility is that the bounds are
correctly ordered but

η
(

u1
0

)

> η
(

u0
0

)

− ∆t

∆x

(

m0
1/2 −M0

−1/2

)

.

In that case for all choice
(

G0
−1/2, G

0
1/2

)

∈ [m0
−1/2,M

0
−1/2]× [m0

1/2,M
0
1/2],

η
(

u1
0

)

> η
(

u0
0

)

− ∆t

∆x

(

G0
1/2 −G0

−1/2

)

,

and (7) cannot hold.
�

5.2. RK2+MUSCL. The procedure of Section 5.1 is applied to the equation of
gas dynamic (4) approximated by the common MUSCL scheme in space and a
two step Runge-Kutta march in time. We consider the limitations in primitive
variables (ρ, v, p), entropic variables (ρ, v, s) and conservative variables (ρ, q, E)
of [1]. The underlying first order scheme is either the Rusanov scheme, the HLL
or the HLLC scheme. We implemented two versions of the latter: one based on
a pressure estimate and the other one on the estimation of extremal wave speeds.
Details and references are given in the appendix. For the overall scheme we have
sL = sR = 4 and the minimization of Proposition 9 has a total of 18 parameters
with the positiveness of density and pressure as constraints.

We focus on counterexamples with small total variation. The unknowns are
constraint to belong to

∀j ∈ {−4, · · · , 4}
(

ρ0j , u
0
j , p

0
j

)

∈ (ρ0, u0, p0) + [−0.1, 0.1]3

where (ρ0, u0, p0) is selected randomly in a larger domain. The main reason for
considering almost constant initial data is that if

(

u0
−sL = u0

−sL+1 = . . . , u0
0 = · · · = u0

sR−1 = u0
sR

)

then M0
±1/2 = m0

±1/2 and η
(

u1
0

)

= η
(

u0
0

)

and the three components of Propo-

sition 9 vanish. Thus counterexamples may be found in the vicinity of constant
states if the scheme is not entropy satisfying. This region somehow corresponds to
regular solutions.

We chose randomly 30 000 initializations in the region

(29) (ρ0, u0, p0) ∈ [0.11, 5]× [−0.2, 10]× [0.11, 10].

and another 30 000 initializations in the smaller region

(30) (ρ0, u0, p0) ∈ [0.8, 1.2]× [−0.2, 1]× [0.8, 1.2].

On local extremum the MUSCL scheme is identical to the chosen first order scheme.
Thus is seems more likely to find counterexamples on monotonic data. Thus half of
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Figure 10. Counterexamples on the region [0.11, 5]× [−0.2, 10]×
[0.11, 10]. The limited variables are (ρ, q, E) in the first line,
(ρ, u, p) in the second line, (ρ, u, s) in the third line. The first
order underlying scheme is HLL on the left and HLLC on the right.

the initialization are modified so that each variable is increasing or decreasing. The
rearrangement is made either in the primitive, entropic or conservative variables,
in equal proportion.

The minimization procedure constructs numerous initial data that violate (7) in
the first time step. They are gathered on Figure 10 when (ρ0, u0, p0) belongs to the
large region (29) and on Figure 11 when it belongs to the smaller region (30). For
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the latter the Mach number |v|/
√

γp
ρ does not exceed 1.04 while it can reach 60 in

the large region.
Each point on these Figures represents the mean value

(

1

9

4
∑

k=−4

ρ0j ,
1

9

4
∑

k=−4

v0j ,
1

9

4
∑

k=−4

p0j

)

of a counterexample. The results for the two versions of the MUSCL schemes are
very similar and we include only the version based on the wave-speed estimates.
Similarly the Rusanov and HLL schemes behave similarly and we only include the
HLL scheme.

The influence of the choice of the set variables which are limited is striking on
Figure 10, with more counterexamples for the conservative variables (ρ, q, E) than
for the primitive variables (ρ, v, p). There is even less counterexamples for the
entropic variables (ρ, v, s). This hierarchy is less clear on the zoom of Figure 11.
The distribution on counterexamples around |v| = 0 depends on the numerical
choices: sometimes there is a gap around v = 0 and sometimes not.

The counterexample isolated on Figure 12 has a very small total variation and a
null velocity. We checked that it remains a counterexample for smaller and smaller
timestep (or equivalently for smaller and smaller CFL number). This may indicate
that the limit ∆t → 0 in (7) does not hold for the MUSCL+RK2 scheme based on
a HLL Riemann solver with a limitation on the conservative variables.

On the other hand we see many counterexamples with large Mach number on
Figure 10. The chosen first order scheme is not to blame for the lack of discrete
entropy inequality. Indeed in that case the exact flux is fn

j+1/2 is either f
(

un
j

)

or f
(

un
j+1

)

depending on the sign of the velocity and most numerical schemes
reproduce that.

Eventually Functional (27) remains nonnegative for all the random initializations
when the limitation is in the entropic variable (ρ, v, s) and the first order scheme is
HLL or Rusanov. To explore further if this scheme is entropy satisfying, we relaxed
the constraint on the total variation and search for counterexamples in the much
larger domain

∀j ∈ {−4, · · · , 4}
(

ρ0j , u
0
j , p

0
j

)

∈ [0.001, 10]× [−50, 50]× [0.001, 20].

This search was unsuccessful with 25 000 random initializations. Interestingly it
holds for the overlimited version of the MUSCL scheme of [1] for which a modified
version of (7) is proven, but also for the simpler original scheme. It supports the
following conjecture.

Conjecture. The RK2+MUSCL scheme for the gas dynamic equation (4) with

(1) a MUSCL scheme in space based on a HLL first order scheme with a min-
mod limiter on the entropic variables (ρ, u, s)

(2) the RK2 march in time described in the Appendix

verifies a discrete entropy inequality for a CFL number α of 0.1.

The same type of numerical experiment has been performed for the scalar Burg-
ers equation 3. Three entropy satisfying (Rusanov, Osher and Godunov) and three
non entropy satisfying (Roe, Lax-Wendroff and Mac Cormack) first order schemes
have been tested.
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Conjecture. Consider the RK2+MUSCL scheme for the Burgers equation (4)
with a minmod limiter on u and the RK2 march in time described in the appendix.
For a Courant number up to 1, this scheme is entropy satisfying when the chosen
underlying first order scheme is entropy satisfying, and non entropy satisfying when
it is not.
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densities. J. Comput. Phys., 92(2):273–295, 1991.
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Description of the numerical schemes

In this section we describe the schemes used in the numerical simulations.

Time step restriction. The time step is fixed proportionally to the space: a
Courant number α ∈ (0, 1) is fixed and we take for the Burgers equation

∆t = tn+1 − tn =
α∆x

maxj |un
j |

and for gas dynamics

(31) ∆t = tn+1 − tn =
α∆x

maxj

(

|vnj |+
√

γpnj /ρ
n
j

) .

First order schemes.

The Rusanov scheme. This scheme is one of the simplest approximate Riemann
Solver, see [14]. The numerical flux is

(32) F (uL, uR) =
f (uL) + f (uR)

2
− A (uL, uR)

2
(uR − uL)

and the numerical entropy flux is

(33) G (uL, uR) =
G (uL) +G (uR)

2
− A (uL, uR)

2
(η (uR)− η (uL)) .

The scalar quantity A (uL, uR) should be large enough to stabilize the centered flux
f (uL) + f (uR)

2
. For scalar equation, we set

A (uL, uR) = max (|f ′ (uL) |, |f ′ (uR) |) .
For the equation of gas dynamic (4) (with the classical notation of [23, Chapter 4])
the optimal choice would be

(34)

A (uL, uR) = max

(∣

∣

∣

∣

vL −
√

γpL
ρL

∣

∣

∣

∣

,

∣

∣

∣

∣

v∗ −
√

γp∗
ρL∗

∣

∣

∣

∣

,

∣

∣

∣

∣

v∗ +

√

γp∗
ρR∗

∣

∣

∣

∣

,

∣

∣

∣

∣

vR +

√

γpR
ρR

∣

∣

∣

∣

)

However, Formula (34) requires to solve a Riemann problem at each interface to
compute the middle velocity and pressure (v∗, p∗), which is very costly. Here we
simply use

A (uL, uR) = max

(

|vL|+
√

γpL
ρL

, |vR|+
√

γpR
ρR

)

.
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The HLL scheme. This scheme is also a simple two waves approximate Riemann
solver. We present the scheme for gas dynamic. Following [23, Section 10.3] we
denote by a the sound speed

aL =
√

γpL/ρL and aR =
√

γpR/ρR

and the Roe averages

ā =

√
ρLaL +

√
ρRaR√

ρL +
√
ρR

and v̄ =

√
ρLvL +

√
ρRvR√

ρL +
√
ρR

.

The wave speed are estimate as

SL = min(vL − aL, vR − aR, v̄ − ā) and SR = min(vL + aL, vR + aR, v̄ + ā)

the flux is given by [23, Equation (10.21)].

The HLLC scheme for gas dynamics. This scheme is commonly used for numerical
simulations of (4). This approximate Riemann solver contains two intermediate
states and is by construction exact on isolated contact discontinuities. As a conse-
quence it is much less diffusive than the Rusanov or HLL schemes?

It relies on an approximation of the exact solution of the solution with piecewise
constant initial data centered in each interface of the mesh. The strength of this
solver is that some important particular solution of (4), the stationary contact
discontinuities, are exactly captured by this scheme. We implemented two versions
of the schemes. The first one corresponds to [23, Paragraph 10.4.2]. The extremal
wave speed are estimated with [23, (10.49)] and the pressure and velocities are
constant in the ”star region”. The second one is based on a pressure estimate and
corresponds to [23, Paragraph 10.6, variant 1].

The Roe scheme. In the case of scalar conservation laws the numerical scheme is

F (uL, uR) = f (uL)1σ≥0 + f (uR)1σ<0

where σ =
f (uR)− f (uL)

uR − uL
. We refer the reader to [22] and [23, Chapter 11] for

the presentation of the Roe scheme for the Euler equations (4).
This scheme does not have an discrete entropy inequality since it preserves en-

tropy violating shock (f (uL) = f (uR), G (uR) > G (uL)). In can also produce neg-
ative pressure [12] when applied to the equation of gas dynamics, in which case the
simulation fails entirely. However, this scheme and its various correction behaves
appropriately in some regimes, with a low numerical diffusion and a reasonable
computational cost.

Lax Wendroff scheme and MacCormack scheme. For scalar conservation laws the
Lax Wendroff scheme is given by

F (uL, uR) =
f (uL) + f (uR)

2
− λ

2
f ′

(

uL + uR

2

)

(

f (uR)− f
(

uL

))

The MacCormack scheme is given by

F (uL, uR) =
f(uR) + f

(

uL − ∆t
∆x

(

f(uR)− f(uL)
))

2

These schemes do not have a discrete entropy inequality since they are exact on
stationnary entropy violating shocks.
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The second order MUSCL scheme. The MUSCL procedure is a commonly
used procedure to obtain a second ordre scheme in space, and is easily combined
with a second order time scheme such as a 2 step Runge-Kutta method.

For scalar conservation law, the procedure is the following. At the beginning of
each time step, the constant value un

j in cell Cj = [xj − ∆x
2 , xj − ∆x

2 ] is replaced by
the affine function

x 7→ un
j + σn

j (x− xj)

where σj ∈ R is a slope, determined in such a way that no new extrema are
created and the scheme remains total variation diminishing. For example, σn

j =

minmod
(

un
j − un

j−1, u
n
j+1 − un

j

)

where the minmod limiter is defined as

minmod (a, b) = max (0,min (a, b)) + min (0,max (a, b)) .

Other limiters are possible, see [23, Section 13.7.3]. The MUSCL flux is given by

(35) Fj+1/2 = F
(

un
j,+, u

n
j+1,−

)

, un
j,± = un

j ± ∆x

2
,

where F is a first order two points scheme. Note that un
j,+ depends on un

j−1, u
n
j

and un
j+1, while uj+1,− depends on un

j , u
n
j+1 and un

j+2. Thus (35) is a 4-points flux
with sL = sR = 2.

In the case of hyperbolic system with p > 1, this strategy is mimicked compo-
nentwise. For the Euler equation (4) we followed the strategy of [1]. The piecewise
linear reconstruction with a minmod limiter can be applied on the three conser-
vative variables (ρ, ρv, E). It is also common to reconstruct the primitive vari-

ables (ρ, v, p) or in the entropic variables

(

ρ, v, s =
p

ργ

)

and to deduce the values

(ρv)nj,± = ρnj,±v
n
j,± with

En
j,± =

pnj,±
γ − 1

+
ρnj,±

(

vnj,±
)2

2
or En

j,± =
(ρnj,±)

γsnj,±
γ − 1

+
ρnj,±

(

vnj,±
)2

2
.

A variation of the discrete entropy inequality (7) is obtained in [1] when F is
an entropy satisfying first order flux. In the case of the limitation of conservative
variables it has the form

η
(

un+1
j

)

≤
η
(

un
j,−

)

+ η
(

un
j,+

)

2
− ∆t

∆x

(

G
(

un
j,+, u

n
j+1,−

)

−G
(

un
j−1,+, u

n
j,−

))

which does not imply the original (7) since the reconstruction step increases the
entropy:

η
(

un
j

)

≤
η
(

un
j,−

)

+ η
(

un
j,+

)

2
The restriction on the time step encompasses the reconstructed states un

j,± in the
computation of the maximal wavespeed.

A second order Runge-Kutta method in time. To achieve second order in
time one can use a two step Runge Kutta method in time. Consider a numerical
flux F with a stencil of sL points to the left and sR points to the right. We first
compute

ūn
j = un

j − ∆t

∆x

(

F
(

un
j−sL+1, . . . , u

n
j+sR

)

−F
(

un
j−sL , . . . , u

n
j+sR−1

))

.
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In a second step we compute

¯̄un
j = ūn

j − ∆t

∆x

(

F
(

ūn
j−sL+1, . . . , ū

n
j+sR

)

F
(

ūn
j−sL , . . . , ū

n
j+sR−1

))

The final update is

un+1
j =

un
j + ¯̄un

j

2
.

The whole procedure rewrites in a compact form as

un+1
j = un

j − ∆t

∆x

(

F̄
(

un
j−2sL+1, . . . , u

n
j+2sR

)

− F̄
(

un
j−2sL , . . . , u

n
j+2sR−1

))

with

F̄
(

un
j−2sL+1, . . . , u

n
j+2sR

)

=
F
(

un
j−sL+1, . . . , u

n
j+sR

)

+F
(

ūn
j−sL+1, . . . , ū

n
j+sR

)

2
This is indeed a numerical flux with 2sL points to the left and 2sR points to the
right since the computations of ūn

j−sL+1 to ūn
j+sR

uses the values from ūn
j−2sL+1 to

ūn
j+2sR .
If the numerical flux F is entropy satisfying with a numerical entropy flux G,

the same holds for F̄ with the numerical entropy flux

Ḡ
(

un
j−2sL+1, . . . , u

n
j+2sR

)

=
G
(

un
j−sL+1, . . . , u

n
j+sR

)

+G
(

ūn
j−sL+1, . . . , ū

n
j+sR

)

2
.

For scalar conservation laws d = 1, the maximum of the wave speeds decreases
with time, thus the CFL restriction for the computation of ūj is more restrictive
than the one for ¯̄u. This is not true when p ≥ 2, and we adopt the time evolution
of [1, Equation (2.12)], with the slight modification that ∆t2 cannot exceed ∆t1.
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Figure 11. Zoom on a the region [0.8, 1.2]× [−0.2, 1]× [0.8, 1.2].
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ρ 0.9985 0.9991 0.9998 0.9998 1.0005 1.0005 1.0009 1.0018
v 0 0 0 0 0 0 0 0
p 1.2519 1.2531 1.2549 1.2566 1.2584 1.2601 1.2618 1.2635
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Figure 12. The MUSCL+RK2 scheme with this initial data is
non entropy satisfying, with an HLL first order scheme
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