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SMOOTH MIXING ANOSOV FLOWS IN DIMENSION THREE ARE EXPONENTIALLY MIXING

We show that a topologically mixing C ∞ Anosov flow on a 3 dimensional compact manifold is exponentially mixing with respect to any equilibrium measure with Holder potential.
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that N integrates to the flow-line foliation, and there exist C, κ > 0 such that for all t > 0

Ergodic properties of Anosov flows have been studied extensively in the history of dynamical system theory, one because they exhibit a type of chaotic behavior of orbits. After the pioneering works of Hadamard [Had] and Hopf [Hop], Anosov proved in his thesis [Ano] that any C 2 volume-preserving Anosov flow is ergodic and then Anosov and Sinai [Sin, AS] proved that they are mixing unless the stable and unstable foliations are jointly integrable.

The Bowen-Ruelle conjecture states that a C r mixing Anosov flow should be exponentially mixing with respect to the so-called equilibrium measures with H ölder potentials. 1 This conjecture seems natural because an Anosov flow strongly mixes in the directions transversal to the flow lines and therefore it is difficult to imagine any reason that prevents exponentially mixing once the flow started to mix. However, by technical difficulties, there had not been much progress until the epoch-making paper of Dolgopyat [Dol], built on the work of Chernov [Che]. He established an argument, which is called Dolgopyat's argument nowadays, to derive exponential mixing (or rapid mixing) of hyperbolic flows from some estimates on joint non-integrability of the stable and unstable foliations. In particular, he proved that an Anosov flow is exponentially mixing if the stable and unstable foliations are C 1 and not jointly integrable, and the equilibrium measure satisfies certain doubling property. For instance, a geodesic flow on a surface with negative 1 Originally, Bowen and Ruelle asked in [BR] whether exponential mixing holds for topologically mixing Axiom A flows. However it turned out that a suspension flow over a full shift with locally constant roof function is never exponentially mixing, see [Rue]. The conjecture for Anosov flows remains open.

curvature satisfies these conditions. After Dolgopyat's work, there is much literature on related researches. See [START_REF] Ara Újo | Open sets of Axiom A flows with exponentially mixing attractors[END_REF][START_REF] Avila | Exponential mixing for the Teichm üller flow[END_REF][START_REF] Baladi | Exponential decay of correlations for surface semi-flows without finite Markov partitions[END_REF][START_REF] Liverani | On contact Anosov flows[END_REF][START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF][START_REF] Gouëzel | Quantitative Pesin theory for Anosov diffeomorphisms and flows[END_REF][START_REF] Pollicott | Exponential error terms for growth functions on negatively curved surfaces[END_REF][START_REF] Baladi | Exponential decay of correlations for finite horizon Sinai billiard flows[END_REF][START_REF] Field | Stability of mixing and rapid mixing for hyperbolic flows[END_REF][START_REF] Stoyanov | Spectra of Ruelle transfer operators for Axiom A flows[END_REF] for instance.

Actually the results of Dolgopyat mentioned above were still not very close to the resolution of the Bowen-Ruelle conjecture, because the C 1 assumption on invariant foliations is very strong and does not hold usually. Indeed, it was already discovered by Plante [START_REF] Plante | Anosov flows[END_REF]Example,Page 753] that non-differentiable splitting E s ⊕ N ⊕ E u can occur robustly even for 3-dimensional Anosov flows. In order to approach the conjecture, it has remained to develop detailed geometric analysis on non-integrability between the stable and unstable foliations. This is indeed the point that we focus on in this paper. A few years ago, the first author proved in [Tsu] that generic 3-dimensional volume-preserving Anosov flows are exponentially mixing with respect to the volume measure. The key idea there was to introduce "template functions"which describe variations of stable subspaces E s along unstable manifolds in some intrinsic manner and measure the non-integrability of the stable and unstable foliations. In this paper, we develop the idea much further and, together with other technical developments, we provide a positive answer to the Bowen-Ruelle conjecture in three dimensional cases, though we are still restricted to the case r = ∞ (see also Remark 1.2).

1.1. Main results. Throughout this paper, we fix a 3-dimensional compact Riemannian manifold M and a C ∞ transitive Anosov flow g on M. We say that g is topologically mixing if for any non-empty open subsets O 1 , O 2 ⊂ M there exists t 0 > 0 such that for any t > t 0 we have O 2 ∩ g t (O 1 ) = ∅. Given θ > 0 and F ∈ C θ (M), we denote by ν F the unique equilibrium measure for g with potential F (the precise definition is given in Definition 3.4). We say that g is exponentially mixing with respect to ν F and all H ölder test functions if for any β > 0 there is κ = κ(g, β) > 0 and C = C(g, β) > 0 such that for any A, B ∈ C β (M) we have

| A • g t Bdν F -Adν F Bdν F | ≤ Ce -tκ A β B β , ∀t > 0.
It is straightforward to see that g is exponentially mixing with respect to ν F and all H ölder test functions as long as the above estimate holds for some β > 0.

The main result of this paper is the following.

Theorem 1.1. Let g be a C ∞ transitive Anosov flow on a 3-dimensional compact manifold M. Then the following are equivalent:

(1) g is topologically mixing;

(2) g is exponentially mixing with respect to any equilibrium measure with Hölder potential and all Hölder test functions.

Remark 1.2. Actually we only need to assume in Theorem 1.1 that g is C r for some r sufficiently large depending only on the ratios of the exponents in (2.1)(see Remark 4.9 for an explicit bound on r).

It is clear that in the above theorem, (2) implies (1). In the rest of the paper we will show that (1) implies (2) as well.

Theorem 1.1 is deduced from Dolgopyat's estimate (Proposition 3.8). Another application of Proposition 3.8 is the error term estimate in the prime orbit theorem for 3D Anosov flows. For any periodic orbit O of g, we denote by l(O) the prime period of O. We denote

π(T) = |{O | l(O) ≤ T}|, ∀T > 0.
The usual prime orbit theorem, due to Parry and Pollicott [PP], gives a precise estimate in the case of topologically mixing hyperbolic flows: π(T) = (1 + o(1))li(e h top T ) as T → +∞ where li(y) = y 2 1 log u du ∼ y log y as y → +∞.

Earlier Margulis [START_REF] Margulis | On some problems in the theory of U-systems[END_REF][START_REF] Margulis | On some applications of ergodic theory to the study of manifolds of negative curvature[END_REF] obtained this result in the context of Anosov flows.

Their results generalize Huber's orbit counting theorem [Hub] for closed geodesics on surfaces with constant negative curvature whose proof relies on Selberg's trace formula. There are also analogous results for the asymptotics of the orbit counts within a given homotopy class, see [KS, PS, Sha, Lal, Ana]. We refer the readers to Sharp's survey in [START_REF] Margulis | On some aspects of the theory of Anosov systems[END_REF] for more references.

For geodesic flows on a surface with negative (variable) curvature, Pollicott and Sharp proved in [START_REF] Pollicott | Exponential error terms for growth functions on negatively curved surfaces[END_REF] that the error term o(1) in the above formula is actually exponentially small. More recently, this result is extended to higher dimensional contact Anosov flows by Giulietti, Liverani and Pollicott [GLP] and Stoyanov [Sto] under some additional conditions. The first author obtained in [START_REF] Tsujii | The error term of the prime orbit theorem for expanding semiflows[END_REF] more explicit estimate on the error term for expanding semiflows under a generic condition. In this paper we show the following.

Theorem 1.3. Let g be a C ∞ topologically mixing Anosov flow on a 3-dimensional compact manifold. Denote h = h top (g 1 ). Then there exists 0 < c < h such that π(T) = li(e hT ) + O(e cT ). Both the proofs of Theorem 1.1 and Theorem 1.3 will be given at the end of Section 3. 1.2. Plan of the proof. Below we explain the idea behind the proof and how we will proceed in the following sections. Note that the explanation is necessarily rather schematic and the rigorous argument in the later sections will be slightly different.

Let X be the generator of the transfer operators that describes the natural action of the flow on the space functions. The main point of Dolgopyat's argument is that once we prove uniform boundedness of the resolvent

(1.1) R(s) = (s -X) -1 = ∞ 0
e -st e tX dt for s = a + bi with |a| sufficiently small and |b| sufficiently large, we get exponentially mixing of the flow2 . We will therefore estimate the integral in (1.1). At this moment, we emphasize that uniformity of estimates on the parameter b is extremely important (note also that we will write = 1/|b|).

In order to prove uniform boundedness of the resolvent R(s), we study the temporal distance function defined as follows. Consider a point x ∈ M and its local (strong) stable and unstable manifold W s loc (x) and W u loc (x). For points x s ∈ W s loc (x) and x u ∈ W u loc (x), there exist a point q(x u , x s ) and a real number τ x (x u , x s ) so that q(x u , x s ) ∈ W u loc (x s ) and g τ x (x u ,x s ) (q(x u , x s )) ∈ W s loc (x u ). The function τ x (x u , x s ) is called the temporal distance function. The key fact to prove is that the function exp(ibτ x (x u , x s )) oscillates when (x u , x s ) varies and the oscillation is somewhat uniform with respect to point x and also for the parameter b when |b| is sufficiently large.

In Section 2, we provide some basic definitions for Anosov flows and then, in Section 3, we explain a precise framework for the proof of the main estimate, Proposition 3.8. At the end of Section 3, we present two propositions, Proposition 3.13 and 3.14. The former, Proposition 3.13, claims roughly that joint nonintegrability of the stable and unstable foliations implies some uniform estimates on the oscillation of the term exp(ibτ x (x u , x s )). But note that, as we will explain below, the uniformity only holds on some subset Ω ⊂ M and is viewed in an appropriate scale that depends on point. The latter, Proposition 3.14, claims that, once we obtain the estimates in the conclusion of Proposition 3.13, we obtain exponentially mixing of the flow. The main theorem is an immediate consequence of these propositions. Section 4 to 9 will be devoted to the proof of Proposition 3.13. The rest will be devoted to the proof of Proposition 3.14.

In Section 4, we give the main estimates on temporal distance function τ x (x u , x s ). To this end, we introduce a convenient flow box coordinates around each point p ∈ M in Lemma 4.2 and Lemma 4.3. These are a kind of "normal coordinates" that are associated to the hyperbolic structure of the flow in some canonical manner. Then we will see how the stable and unstable manifolds are transformed by the flow in such coordinates. Not surprisingly, the transformations are well approximated by the Taylor expansions of some high order, say order K, at the points along the orbit of x. Indeed we obtain a nice approximation of the temporal distance function modulo polynomials of order K. This approximation, summarized in Corollary 4.20, is given in terms of the "template function" along stable and unstable manifolds, introduced in [Tsu].

In Section 5, we show that non-integrability of the stable and unstable foliation implies some oscillation of the term exp(ibτ x (x u , x s )) uniform with respect to the point x and the parameter b. In the main step of the proof, we use Journé's regularity lemma [Jou]. From this lemma, if the stable subspace E s does not depend on points in W u loc (x) smoothly, then the stable and unstable foliations are not jointly integrable. Then we show uniformity of such irregularity using mixing property of the flow. When E s is smooth, we can use the mixing hypothesis to show the uniformity of non-integrability.

In Section 6, we will introduce a scale depending on the global parameter = 1/|b|, at which we observes the oscillation of the term exp(ibτ x (x u , x s )). Though the estimates in the previous section are basically sufficient, we face another technical problem caused by the fact that the oscillation may be sometimes too fast 3 . To avoid this problem, we set up an appropriate scale depending on points (we call it the scale function) and on the parameter = 1/|b|. The definition of the scale function, denote by Λ , is given in Definition 6.3. We will then prove that the scale is tame in the sense that the oscillation of exp(ibτ x (x u , x s )) looks tame at 3 In estimating the oscillating integral, this is usually not a problem. But since we partly consider approximation of temporal distance function in C 0 norm, it appears to be a problem. scale (Λ ) -1 . Also we can check that the scale is stable in the sense that it does not change too much along orbits so that the flow remains expanding (in the unstable direction) with respect to it.

In Sections 7 and 8, we discuss the properties of Λ . A difficulty with the scale function Λ is that its dependence on the base point is not obvious and will not be continuous. In the most subtle case, we introduce in Definition 7.3 a subset Ω (more precisely subsets Ω(n, κ) and Ω( , n, κ)) on which the derivative of the flow satisfies some mild condition on its growth along forward orbit. Then, in Lemma 7.6, we show that we observe sufficient oscillation of the temporal distance function if the base point x is sufficiently close to the subset Ω. Also, in Lemma 7.9, we show that the scale Λ is adapted to the subset Ω. This claim is a rather technical one and its meaning may not be very clear at this point. But this will play an important role in the argument in the proof of Proposition 3.14. Then we will prove in Lemma 8.1 that the orbits of the flow return often to Ω. Finally, in Section 9, we prove Proposition 3.13 summarizing arguments in the previous sections.

We start the proof of Proposition 3.14 from Section 10. The proof follows the argument in [Dol] but with some modification. The point of the modification is that we have to observe the transfer operator at the scale (Λ ) -1 . On the one hand the scale Λ (and related constructions) depends on the parameter = 1/|b| and, on the other hand, we need to get a uniform bound with respect to the parameter b for the decay of the operator e -st e tX in (1.1). So we have to keep track of dependence of constants on the parameter b carefully. However, once we keep this in mind, the proof is not too difficult because most of the necessary estimates have already been given in the conclusion of Proposition 3.13. The main line of the proof is presented in Proposition 10.2. Then the key induction step in the proof of Proposition 10.2 is presented in Lemma 10.8. In Section 11, we introduce a refinement of the Markov partition associated to Λ . In Section 12, we prove some simple decay estimates on H ölder norm. Then, finally, we prove Proposition 10.8 in Section 13, completing the proof of the main theorem. At the end, we provide appendices where we collect some elementary estimates that are used in the text.
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BASIC PROPERTIES OF ANOSOV FLOW

For 1 ≤ r ≤ ∞, let A r denote the set of C r transitive Anosov flows on M. For each g ∈ A r , we denote the generating vector field of g by V g . We denote the stable subspace, resp. unstable subspace, of g by E s , resp. E u . It is known that E s and E u uniquely integrate to the stable foliation W s and unstable foliation W u respectively. We denote by W cu , resp. W cs , the center-unstable, resp. center-stable foliation. For any > 0, for any x ∈ M, we denote by W s (x) the set of points in W s (x) within distance to x with respect to the leafwise metric d W s on W s (x). We define W u (x), etc. in an analogous way.

Given g ∈ A 1 , we may suppose, after changing the Riemannian metric if necessary, that:

(1) E s , E u and N are almost orthogonal everywhere so that for all sufficiently small > 0, for any x 1 , x 2 within distance /2 , the intersection between W s (x 1 ) and W cu (x 2 ) uniquely exists; and similarly, the intersection between W u (x 1 ) and W cs (x 2 ) uniquely exists;

(2) there exist χ s , χ u > 0, χu > χ u , χs > χ s such that for any t > 0,

e -χs t < Dg t | E s < e -χ s t , e -χu t < Dg -t | E u < e -χ u t . (2.1)
We set

χ 0 = min(χ u , χ s ), χ * = max( χu , χs ). (2.2)
For any real t ≥ 0, for any x ∈ M, we denote

Λ t (x) = Dg t | E u (x) . (2.3)
We will often consider Λ n for integer n ≥ 1. Now assume that g ∈ A r for some r ≥ 2. Let υ * > 0 be a small constant which will be determined later. It is known that there is a collection of non-stationary normal coordinates {Φ u

x : R → W u (x)} x∈M for the unstable foliation such that for each x ∈ M:

(1) Φ u x is a C r diffeomorphism with uniformly bounded C r norm. Moreover,

Φ u x (0) = x and DΦ u x (0) = υ * ; (2) (Φ u g t (x) ) -1 g t Φ u x (z) = ± Dg t | E u (x)
z for all z, t ∈ R. We have a collection of non-stationary normal coordinates {Φ s

x : R → W s (x)} x∈M for the stable foliation with analogous properties. We refer the readers to [KK] for a proof of the existence of such coordinate systems.

For each x ∈ M and > 0, we set W u (x, ) = Φ u x ((-, )) (notice that not to be confused with W u (x)). More generally, for x ∈ M and an interval J ⊂ R, we denote

W u (x, J) = Φ u
x (J). We let * > 1 be a large integer, and set W u loc (x) = W u (x, 50 * ) for all x ∈ M. Notice that by our convention, we have

W u 40 * υ * (x) ⊂ W u loc (x) ⊂ W u 60 * υ * (x)
for all sufficiently small υ * . We define Φ s x , W s loc (x), W s (x, J), W cs loc (x), etc. in a similar way. We will let υ * be sufficiently small so that several intersections in the rest of the paper are well-defined. For instance, we require the intersection between W s loc (x 1 ) and W cu loc (x 2 ) for any x 1 , x 2 within distance 20 * υ * uniquely exists (this is possible by property (1) in our choice of the metric). Moreover, we let υ * be sufficiently small so that for any x ∈ M, for any x u ∈ W u loc (x) and x s ∈ W s loc (x), we have

|D[(Φ u x u ) -1 Φ u x ](z)|, |D[(Φ s x s ) -1 Φ s x ](y)| ∈ (1/2, 2), ∀z, y ∈ (- * , * ). (2.4)
For any x ∈ M, for any T ≥ 0 we choose λ (T)

x and µ (T)

x such that for all t ∈ R (Φ u g T (x) ) -1 g T Φ u x (t) = (λ (T) x ) -1 t, (2.5) (Φ s g T (x) ) -1 g T Φ s x (t) = (µ (T) x ) -1 t. (2.6) We abbreviate λ (1)
x and µ

(1)

x as λ x and µ x respectively. By our choices, we have

|λ x | < e -χ u < 1 < e χ s < |µ x |, ∀x ∈ M. (2.7)
Our convention here makes the computations in Proposition 4.8 more comprehensible (since we can avoid using large negative powers). Later on we will use λ 0 , • • • , λ n , etc. to denote constants of absolute values strictly smaller than 1; and use µ 0 , • • • , µ n , etc. to denote constants of absolute values strictly greater than 1.

Definition 2.1. Each element of A 2 falls into one of the following three non-exclusive classes:

I. Neither E u nor E s for g is C 1+δ for any δ > 0; II. E u for g is C 1+δ for some δ > 0; III. E s for g is C 1+δ for some δ > 0.

Remark 2.2. Since the validity of Theorem 1.1 for all g in Class II implies the validity of Theorem 1.1 for all g in Class III (by considering the reversed flow), we will only consider the case where g is in Class I or II from now on. We will provide a unified framework for the proofs in both Class I and II based on a notion called uniform non-integrability (UNI for short, see Definition 3.12). However the underlying mechanisms for UNI in two cases are different. In Class I, UNI comes from certain uniform lower bound of the distance between a temporal function (see Definition 3.1 or [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Section 5]) and polynomials of certain degree (given an appropriate normalisation). In Class II, we could lose the lower bound in Class I (for instead, when g is the geodesic flow of a compact surface with constant negative curvature), but instead we get UNI from a uniform lower bound for certain angles coming from the C 1+δ smoothness of the unstable holonomy map (see Lemma 5.8 and Lemma 5.9) whenever g is topological mixing.

Remark 2.3. We notice that exponentially mixing for Anosov flow in Class III with respect to the SRB measure is already obtained in [BW]. There the authors only need to assume that the flow is C 1+δ . However they have used integration-by-part since in their case the unstable conditional measures are absolutely continuous. As we need to consider general equilibrium measures, we give an independent proof.

The following theorem due to Plante [Pla] gives a useful characterization of topologically mixing 3D Anosov flows.

Theorem 2.4 (Theorem 3.1 in [Pla]). A transitive 3D Anosov flow g is topologically mixing if and only if E s and E u are not jointly integrable.

Here we say that E s and E u are jointly integrable if there is a C 1 foliation whose tangent bundle is E u ⊕ E s . We refer the readers to [START_REF] Plante | Anosov flows[END_REF] for relevant notions.

For the rest of this paper we make the following notational conventions:

• Given an Anosov flow g, we let C > 1 denote a generic constant which depends on g, and possibly also on a given potential function F (see Definition 3.4), but is independent of everything else. We suppose that C may vary from line to line. We say that two positive constants A, B satisfy

A ∼ B if A/B ∈ (C -1 , C
). We denote by O(A) a constant of absolute value bounded from above by C |A|. We will let δ ∈ (0, 1) be small constants, which may vary from line to line, depending on g, and possibly also on a given potential F, but are independent of everything else. • For any function f : J → R defined on a subset J ⊂ R n for some n ≥ 1, we denote

Osc s∈J f = sup s∈J f (s) -inf s∈J f (s), f J = sup s∈J | f (s)|.
When the domain J is clear from the context, we may abbreviate 

(s, t) → d 1 -1 ∑ i=0 d 2 -1 ∑ j=0 a i,j s i t j .
For every C > 0, we denote by Poly <d 1 ,<d 2 C the collection of polynomials in Poly <d 1 ,<d 2 with all coefficients bounded by C in absolute value.

• We will use * , 0 , 1 , • • • to denote various radii, and use C 1 , C 2 , • • • to denote various large constants appearing in the course of the proof. All these constants can ultimately be chosen depending on the flow g, and possibly also on a potential function F, but independent of everything else.

MARKOV PARTITION AND COMPLEX RPF OPERATOR

In this section, we recall some properties of the Markov partition and the socalled complex Ruelle-Perron-Frobenius operators for Anosov flows. We follow closely the presentations in [Dol].

Throughout this section, we let g denote an Anosov flow in A 2 , and let θ ∈ (0, 1) denote a constant to be determined depending only on g and a potential F introduced in Section 3.3.

3.1. Markov partition, roof function and H ölder space. By [Bow, Rat], any transitive Anosov flow g admits a Markov partition Π = α∈I Π α satisfying the following axioms (hereafter we use the notations in [Dol], and as in [Dol], we will ignore the boundary issues since these are not relevant for the problem in this paper): (Finiteness) I is a finite set; (Local product property) For each α ∈ I, Π α is a parallelogram defined as follows: there exist some

x α ∈ M, a closed connected neighborhood U α of x α in W u loc (x),
and a closed connected neighborhood S α of x α in W s loc (x), such that

Π α = {[x u , x s ] | x u ∈ U α , x s ∈ S α }
where [x u , x s ] is the unique intersection of W s loc (x u ) and W cu loc (x s ). For different α, β ∈ I, Π α and Π β are disjoint; (Markov property) Let σ be the Poincaré map (of the flow g) on Π, and let τ be the return time function. That is, we have for any x ∈ Π that

τ(x) = inf{t > 0 | g t (x) ∈ Π}, (3.1) σ(x) = g τ(x) (x). (3.2)
Moreover, we require that τ is uniformly bounded; and we have, up to some boundary points, for each

α ∈ I, σ(S α ) is contained in Π β 1 for some β 1 ∈ I; and σ-1 (U α ) is contained in Π β 2 for some β 2 ∈ I.
We denote

U = α∈I U α , S = α∈I S α .
We denote by π U the projection from Π to U: for each α ∈ I, for each x u ∈ U α and x s ∈ S α , we set

π U ([x u , x s ]) = x u .
We define σ : U → U to be the U coordinate of σ. 4 We set

τ 0 = inf τ, τ * = sup τ. (3.3)
Without loss of generality, we may let the diameter of each Π α be sufficiently small, and let Π > 0 be a small constant depending on g and Π so that for any α ∈ I and any x ∈ U α ,

W s (x, Π ) ⊂ Π α ∩ W s loc (x) ⊂ W s (x, 1/2). (3.4)
For each integer n > 0, each α ∈ I and each x ∈ U α , we denote by σ -n (α) the set of inverse branches of σ n restricted to U α , and write σ -n x = σ -n (α). In this case, the domain of each v ∈ σ -n (α), denoted by Dom(v), is U α . The usual caveat applies: we can consider an inverse branch v ∈ σ -n (α) to be continuous on U α by only requiring the equality σ n v = Id to hold in the interior of U α . Finally, we denote

σ -n = α∈I σ -n (α).
By letting θ > 0 be a sufficiently small constant, we may assume that W cs is a C 1+θ -foliation (see [Has]). As a result, the center-stable holonomy between any two nearby unstable leaves is C 1+θ . Consequently, for every α ∈ I, every inverse branch v ∈ σ -1 (α) is a C 1+θ contracting map from U α to some U β . We have

e -nχ * d W u (x, w)/C < d W u (v(x), v(w)) < C e -nχ 0 d W u (x, w) (3.5)
for any integer n ≥ 1, any α ∈ I, any inverse branch v ∈ σ -n (α) and any x, w ∈ U α .

We define the uniform norm • C 0 and the space C 0 (U, C), or simply abbreviated as C 0 (U), of continuous complex-valued functions on U in the usual way. We denote by C 0 (U, R) the subset of real-valued functions in C 0 (U, C). We define 4 The map σ is well-defined as the stable manifold foliation is invariant under the flow.

C θ (U, R), resp. C θ (U, C) or simply C θ (U), to be the collection of ϕ ∈ C 0 (U, R), resp. C 0 (U, C), such that |ϕ| θ = sup x =w∈U α ,α∈I |ϕ(x) -ϕ(w)| d W u (x, w) θ < ∞.
We set

ϕ θ = ϕ C 0 + |ϕ| θ .
With a slight abuse of notation, for functions in C θ (J, C) where J ⊂ R we also use

• θ , resp. | • | θ or | • | θ,J
, to denote the θ-H ölder norm, resp. semi-norm.

For ϕ ∈ C θ (U, C) and an integer n ≥ 0, we denote

ϕ n (x) = n-1 ∑ i=0 ϕ • σ i (x), ∀x ∈ U.
Notice that for n > 1, ϕ n may no longer be continuous. However for any α ∈ I and v ∈ σ -n (α), the function

ϕ n • v belongs to C θ (U α , C).

Return time and temporal function.

Definition 3.1. For any x ∈ M and x s ∈ W s (x, 5 * ), the temporal function Ψ x,x s : W u (x, 5 * ) → R is defined as follows. For any x u ∈ W u (x, 5 * ), we let w be the unique intersection of W cu loc (x s ) and W s loc (x u ); let w be the unique intersection of W cs loc (x u ) and W u loc (x s ); and define Ψ x,x s (x u ) by equation w = g Ψ x,xs (x u ) (w ).

It is known that temporal functions are H ölder continuous, with H ölder exponents and H ölder norms uniformly bounded depending only on g.

The following lemma is an immediate consequence of Definition 3.1 and the flow invariance of the stable/unstable manifolds. We omit its proof.

Lemma 3.2. Let x ∈ M, x 1 s , x 2 s ∈ W s (x, * ), x 1 u , x 2 u ∈ W u (x, * ).
Then the following are true:

(1) for any t > 0 with g t (x 1 u ) ∈ W u (g t (x), 5 * ), we have

Ψ x,x 1 s (x 1 u ) = Ψ g t (x),g t (x 1 s ) (g t (x 1 u ));
(2) let w s be the unique intersection of W s loc (x 1 u ) and W cu loc (x 1 s ), then

Ψ x,x 1 s (x 2 u ) -Ψ x,x 1 s (x 1 u ) = Ψ x 1 u ,w s (x 2 u );
(3) let w u be the unique intersection of W u loc (x 1 s ) and W cs loc (x 1 u ), then

Ψ x,x 2 s (x 1 u ) -Ψ x,x 1 s (x 1 u ) = Ψ x 1 s ,x 2
s (w u ). The return time function τ is closely related to the temporal functions. Notice that τ ([x, w]) is independent of w since the stable foliation is invariant under the flow. Hence τ can be treated as a function on U. We have the following.

Lemma 3.3. For any α ∈ I, any x ∈ U α , any k ≥ 1, any v ∈ σ -k (α), we denote x v = g τ k (v(x)) (v(x)) ∈ W s loc (x) and we have that τ k • v(x u ) -τ k • v(x) = Ψ x,x v (x u ), ∀x u ∈ U α . (3.6)
Moreover by letting θ be sufficiently small depending only on g we have

τ k • v θ < C . (3.7)
Proof. The identity (3.6) follows from the flow invariances of the stable and unstable foliations (see [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Section 5] for the details). We can then deduce (3.7) from the H ölder bounds of the temporal functions. 

g (F) = sup ν [ Fdν + h ν (g 1 )].
Here ν ranges over all the g-invariant probability measures and h ν denotes the measuretheoretical entropy with respect to ν. It is known that for any g ∈ A 2 , there is a unique g-invariant measure, denoted by ν F , which realizes the above supremum. We say that ν F is the equilibrium measure for g with potential F.

We fix a H ölder potential F henceforth. We let θ be sufficiently close to 0 so that

F ∈ C θ (M) and τ • v ∈ C θ (U α ) for any α ∈ I and v ∈ σ -1 (α).
Let ν Π be the Borel probability measure on Π that is induced from ν F via the flow, i.e. for every Borel measurable subset Y ⊂ Π we set

ν Π (Y) = ν F (∪ 0<t<1 g t (Y)).
Here we suppress the dependence of ν Π on g, F. In the following, we let ν U denote the projection of ν Π to U via π U . Then σ preserves ν U . We denote by L 1 (U, dν U ), resp. L 2 (U, dν U ), the space of complex-valued functions on U which are integrable, resp. square-integrable, with respect to ν U .

To state various proofs in later sections in a succinct way, it is convenient to introduce the probabilistic formalism as follows. We view (U, B U , ν U ) as a probability space where B U denotes the Borel σ-algebra of U. Given a measurable space (Z, B Z ), a measurable map ϕ : U → Z is viewed as a Z-valued random variable. For any function ϕ ∈ L 1 (U, dν U ), we denote by E(ϕ) the expectation of ϕ. In other words, we have

E(ϕ) = U ϕ(x)dν U (x).
We denote the ν U -probability of a B U -measurable set A by P(A), e.g., P(A) = E(1 A ). The conditional expectation E(ϕ|A) is defined by E(ϕ|A) = P(A) -1 E(ϕ1 A ) whenever P(A) > 0 and ϕ ∈ L 1 (U, dν U ). The conditional probability P(B | A) = E(1 B | A) whenever P(A) > 0. In general, for any σ-subalgebra B 0 ⊂ B U , we may define E(ϕ | B 0 ) and P(B | B 0 ) at ν U -almost every point.

By letting θ be smaller if necessary while keeping F fixed, and by [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Proposition 1] as well as the remark below it, there exists f ∈ C θ (U, R) with f θ ≤ C and ν U satisfies the Gibbs property: give an integer n ≥ 1 and a U-valued random variable W on (U, B U ) with distribution ν U , we set W n = σ n (W). Then for any w, w ∈ U, the conditional probability P(W = w | W n = w ) exists and satisfies w) , w = σ n (w).

P(W = w | W n = w ) = 0, w = σ n (w), e fn (
By [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Proposition 7] and the fact that U is of dimension 1, we can deduce from the above that ν U satisfies the doubling property (or Federer property): there exists C > 1 such that for any x ∈ U and any > 0, we have

ν U (W u (x, /2) ∩ U) > ν U (W u (x, ) ∩ U)/C .
We introduce the following notion which divides the proof into two cases. Definition 3.5. We say that ν F is non-expanding if

divV g dν F ≤ 0.
We say that g ∈ A 2 is in Class I F if g is in Class I and ν F is non-expanding.

Remark 3.6. Notice that for any F ∈ C θ (M, R), if g is in Class I but not in Class I F , then the reversed flow g -1 is in Class I F . Thus the validity of Theorem 1.1 for all g in Class I F implies that for all g in Class I. Then by Remark 2.2, it suffices to prove Theorem 1.1 for all g ∈ A ∞ in Class I F and II.

We have the following fractional moment estimate.

Lemma 3.7. Let g ∈ A 2 and let F ∈ C θ (M, R). If ν F is non-expanding, then for any κ 0 > 0, there exist an integer n 0 > 0 and some γ 0 > 0 such that for any n > n 0 we have

(det Dg τ n ) γ 0 dν U < e nκ 0 γ 0 .
Proof. We defer the proof to Appendix A.

3.4. Complex Ruelle-Perron-Frobenius operator. By the reduction in [Dol], it is enough to study the so-called complex Ruelle-Perron-Frobenius operator L a,b for any a + ib ∈ C with |a| sufficiently small and |b| sufficiently large.

Fix a potential F ∈ C θ (M). For any complex number a + ib ∈ C, we consider the complex Ruelle-Perron-Frobenius operator L a,b :

C θ (U, C) → C θ (U, C) defined by L a,b ϕ(x) = ∑ x∈σ -1 (x) exp( f ( x) + (a + ib)τ( x))ϕ( x),
where f is related to F as in Section 3.3. Since we have seen that f ∈ C θ (U) and τ • v ∈ C θ (U α ) for any α ∈ I and v ∈ σ -1 (α), the operator L a,b is indeed a bounded linear operator on C θ (U, C).

From the Gibbs property, we see that

L 0,0 1 = 1.
From the assumption that g is transitive, L 0,0 has an isolated simple eigenvalue 1, and hence its perturbation L a,0 , for all a ∈ R close to 0, has a unique, isolated simple maximal real eigenvalue E a close to 1. Let ρ a be the normalized (i.e., ρ a dν U = 1) eigenfunction for L a,0 at E a . It is clear that ρ a is positive real-valued. Moreover by letting a be close to 0, we can ensure that ρ a > 1/2 everywhere.

The normalised complex Ruelle-Perron-Frobenius operator L a,b for a, b ∈ R with |a| sufficiently small is defined as follows:

L a,b ϕ(x) = (E a ρ a ) -1 L a,b (ρ a ϕ)(x) (3.8) = ∑ x∈σ -1 (x) exp( f (a) ( x) + ibτ( x))ϕ( x)
where we set

f (a) = f + aτ + log ρ a -log ρ a • σ -log E a .
Since ρ a ∈ C θ (U, R + ) is bounded from below by 1/2, and by hypothesis that f , τ ∈ C θ (U, R), we deduce that for any α ∈ I and any v ∈ σ -1 (α), the function

f (a) • v belongs to C θ (U α , R).
Hence L a,b is indeed a bounded linear operator on C θ (U). We can also see that

L a,0 1 = 1. (3.9)
Then by comparing the expressions of L a,0 and L a,b , we deduce that

L a,b C 0 →C 0 ≤ 1.
(3.10) 3.5. A criterion for exponential decay. The rest of the paper is dedicated to the following crucial step. For any function u ∈ C θ (U), we set

u θ,b = max( u C 0 , |b| -1 |u| θ ).
Proposition 3.8 (Dolgopyat's estimate). Given a function F ∈ C θ (M, R) for some θ > 0, and g ∈ A ∞ in Class I F or II such that E s and E u are not jointly integrable, there exist κ, C > 0 such that for all a ∈ R with |a| sufficiently small, for all b ∈ R with |b| sufficiently large, for all u ∈ C θ (U), for all n > C ln |b|, we have

L n a,b u L 2 (U,dν U ) < |b| -κ u θ,b . (3.11)
We first give some ideas on the proof of Proposition 3.8. Given a H ölder function u, we will introduce a sequence of functions which control the modulus, as well as the regularity, of L n a,b u, n ≥ 1 at a collection of appropriate scales. The main subtlety in our case is in the choice of these scales (in our case, these scales may vary from point to point):

(1) on one hand, we need to know that at the scales we choose, the temporal functions, after an appropriate normalization, has uniformly bounded H ölder norms;

(2) on the other hand, we need to show that at sufficiently many places the normalized temporal function has a definite amount of oscillation.

For any a, b under consideration, we will define a sequence of convex sets of functions. In the n-th convex set, the absolute values of the functions are bounded pointwisely by a function H n ; and certain "local H ölder norm"of these functions are bounded by CH n (see Definition 10.5 and Lemma 10.8). We will use item (1) above to show that L a,b (which will be defined as a smoothing of L a,b ) maps the n-th convex set to the (n + 1)-th one; and use item (2) to show the L 2 norms of H n decay. Indeed, one can apply Dolgopyat's argument in [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Section 7] to get certain cancellation using the inductive information about the convex sets, combined with the oscillation provided by item (2). Moreover, to get the good L 2 bound in Proposition 3.8, we need to know that the locus where we get cancellation is sufficiently rich: most of the points will run into this set at a definite frequency.

In the rest of the paper, for a given function Λ : U → R + , we denote for every α ∈ I and every x ∈ U α that

J Λ x = {s ∈ (-1, 1) | Φ u x (Λ(x) -1 s) ∈ U α }. (3.12) By definition, J Λ
x is a sub-interval of (-1, 1), and it contains either (-1, 0] or [0, 1) when inf Λ is sufficiently large. To simplify notation, we assign a map Φ Λ

x : J Λ x → U to each x ∈ U by setting

Φ Λ x (z) = Φ u x (Λ(x) -1 z), ∀z ∈ J Λ x . (3.13)
We introduce the following definitions relative to a given g ∈ A 2 . We first introduce a function that describes the scales we work on. Given a, b as in Proposition 3.8, we will suppose = |b| -1 so that > 0 is a small number and we will consider the action of the operator L = L a,b at the "scale"(Λ ) -1 . Definition 3.9. We call a sequence of functions {Λ :

U → R + } >0 in L ∞ (U)
• stable if there exist n, κ > 0 such that for all sufficiently small , we have (3.14) and for any integer m ≥ n, for any v ∈ σ -m ,

Λ (x) > -κ , ∀x ∈ U,
Dg τ m (v(x)) | E u (v(x)) -1 Λ (x) -1 < e -mκ Λ (v(x)) -1 , ∀x ∈ Dom(v). (3.15)
In this case, we also say that {Λ } >0 is (n, κ)-stable.

• n-adapted to some subset Ω ⊂ U for some integer n ≥ 1 if there is a constant C > 0 such that for all sufficiently small , for any x ∈ Ω, for any v ∈ σ -n x , for any x ∈ U such that x ∈ W u (v(x), 4Λ (x ) -1 ), we have

Λ (x) < CΛ (x ).
In this case, we also say that {Λ } >0 is (n, C)-adapted to Ω.

We introduce the following notion to describe the subset on which we can show cancellations.

Definition 3.10. Given a σ-invariant measure ν on U and an integer n ≥ 1, we say that a subset Ω ⊂ U is n-recurrent with respect to ν if there exist C, κ > 0 such that for any integer m > C we have

ν({x ∈ U | |{1 ≤ j ≤ m | σ jn (x) ∈ Ω}| < κm}) < e -mκ .
In this case, we also say that Ω is (n, C, κ)-recurrent.

To illustrate the meaning of the above definitions, let us denote by J x a segment centered at x with radius Λ (x) -1 for every x ∈ U ignoring boundary issues for simplicity. The notion of stable says that as decreases, these segments shrink; and for any inverse branch v ∈ σ -n

x , v(J x ) is exponentially small with respect to n compared to J v(x) . On the other hand, the notion of n-adaptedness implies that v(J x ) is not too small compared to J v(x) if x belongs to Ω. The meaning of n-recurrence should be rather intuitive.

Next we introduce the following notion.

Definition 3.11. We say that a sequence of functions {Λ : U → R + } >0 is tame if there exist C, κ > 0 such that for all sufficiently > 0, for every x ∈ U, for every y ∈ (-1, 1), there exists R ∈

C θ (J Λ x , R) such that R θ ≤ C|y| κ , | -1 Ψ x,Φ s x (y) (Φ Λ x (z)) -R(z)| < κ , ∀z ∈ J Λ x .
In this case, we say that {Λ } >0 is (C, κ)-tame.

Finally, we introduce the non-integrability condition which is responsible for the exponentially mixing. Definition 3.12. Given C 1 > 0 and a subset Ω ⊂ U, we say that C 1 -UNI (short for uniform non-integrability) holds on Ω at scales {Λ : U → R + } >0 if there exists κ > 0 such that for every sufficiently small > 0, for every x ∈ U with W u (x, C 1 Λ (x) -1 ) ∩ Ω = ∅, there exists ȳ ∈ (-Π , Π ) ( Π is introduced before (3.4)) such that for any y ∈ ( ȳκ, ȳ + κ), for any ω ∈ R/2πZ, for J 0 = [0, 1) and (-1, 0], there is a sub-

interval J 1 ⊂ J 0 with |J 1 | > κ such that inf z∈J 1 -1 Ψ x,Φ s x (y) (Φ Λ x (z)) -ω R/2πZ > κ.
When we want to make the dependence on C 1 and κ explicit, we say that (C 1 , κ)-UNI holds on Ω at scales {Λ } >0 .

Definition 3.11 and Definition 3.12 are about the "normalized"temporal function -1 Ψ x,Φ s x (y) (Φ Λ x (z)). The notion of tame says that these functions have controlled regularity. The notion of UNI says that these functions have a certain amount of oscillation near Ω. A similar notion was introduced in [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Section 5].

The main result of this section is the following. We show that Dolgopyat's estimate (Proposition 3.8) follows from some geometric condition on the temporal functions. We divide the proof into the following two propositions. Proposition 3.13. Given a potential function F ∈ C θ (M, R) for some θ > 0, an Anosov flow g ∈ A ∞ in Class I F or II such that E s and E u are not jointly integrable, we have that, for any C 1 > 1, for any sufficiently large integer n 1 > 0, there exist (1) a subset Ω ⊂ U which is n 1 -recurrent with respect to ν U ;

(2) a stable, tame sequence of functions {Λ : U → R + } >0 that is n 1 -adapted to Ω such that C 1 -UNI holds on Ω at scales {Λ } >0 . Proposition 3.14. Given a potential function F ∈ C θ (M, R) for some θ > 0, an Anosov flow g ∈ A ∞ , there exists C 1 > 1 such that if the conclusion of Proposition 3.13 is satisfied for C 1 and all sufficiently large n 1 , then there exist κ, C > 0 such that for all a ∈ R with |a| sufficiently small, for all b ∈ R with |b| sufficiently large, for all u ∈ C θ (U), for all n > C ln |b|, we have

L n a,b u L 2 (U,dν U ) < |b| -κ u θ,b . (3.16)
Proposition 3.13 is proved in Section 4 to 9, and Proposition 3.14 is proved in Section 10 to 14.

Proof of Proposition 3.8 and Theorem 1.1. Proposition 3.8 follows immediately from Proposition 3.13 and Proposition 3.14. It remains to give the proof of Theorem 1.1. By Remark 3.6, it suffices to prove Theorem 1.1 for g in Class I F or II. By Theorem 2.4, we may apply Proposition 3.14 to any topologically mixing g ∈ A ∞ in Class I F or II. Consequently, any such g satisfies the conclusion of Proposition 3.8. We can then deduce that g is exponentially mixing with respect to ν F and H ölder test functions following the argument in [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Section 4]. The readers can also find in [START_REF] Avila | Exponential mixing for the Teichm üller flow[END_REF]Section 7.5] such argument with more details.

Proof of Theorem 1.3. By reversing the flow if necessary, we may assume without loss of generality that g is in Class I 0 (with potential F = 0) or II. Then we can follow the argument in [START_REF] Pollicott | Exponential error terms for growth functions on negatively curved surfaces[END_REF] to deduce Theorem 1.3. The only modifications are: 1. we replace the norm • 1,t in [START_REF] Pollicott | Exponential error terms for growth functions on negatively curved surfaces[END_REF] by norm • θ,t ; 2. we replace [PS2, Proposition 4] by Proposition 3.8.

TEMPORAL FUNCTION AND NON-INTEGRABILITY

In this section, we give the main technical estimates of this paper. This will be used in Section 5 to 9 to show Proposition 3.13. Our main observation is that temporal functions can be approximated by certain finite dimensional subspace of functions which we call "templates". This idea first appeared in [Tsu] on three dimensional volume preserving Anosov flows.

4.1. Construction of charts. Throughout Section 4, we let r ≥ 2 and let g ∈ A r (later we will take r large if necessary, see Remark 4.9). Recall that * and υ * are given in the definition of non-stationary normal coordinates in Section 2. We will choose constants 0 , 1 such that * > 0 > 1 > 1. We may assume that 1 is sufficiently large depending only on g, at the cost of letting * be sufficiently large and letting υ * be sufficiently small.

We will define below a family of charts, under which we have, among other things, that the center-unstable foliation W cu is "straightened".

Definition 4.1. A family of C r-2 embeddings {ι x : (-0 , 0 ) 3 → M} x∈M is called a normal coordinate system if
(1) the C r-2 norm of ι x is bounded uniformly over all x ∈ M;

(2) for every x ∈ M, for every (z, y, t) ∈ (-0 , 0 ) 3 , we have

ι x (0, 0, 0) = x, ι x (z, 0, 0) = Φ u x (z), (4.1) ι x (0, y, 0) = Φ s x (y), ι x (z, y, t) = g t (ι x (z, y, 0)); (4.2)
(3) there is an integer K > 0 such that for every x ∈ M, the map

g x = ι -1 g 1 (x) g 1 ι x : (-2 1 , 2 1 ) 3 → (-0 , 0 ) 3 is a well-defined C r-2 embedding of the form g x (z, y, t) = ( f x (z, y), t + ψ x (z, y)) (4.3) where f x (z, y) = ( f x,1 (z, y), f x,2 (z, y)) is a C r-2 embedding mapping (-2 1 , 2 1 ) 2 into (-0 , 0 ) 2 , and ψ x is a C r-2 function on (-2 1 , 2 1 ) 2 such that ∂ y f x,2 (•, 0) ≡ µ -1 x , ∂ z f x,1 (0, •) ≡ λ -1 x , (4.4) ∂ y ψ x (•, 0) ∈ Poly <K , ∂ z ψ x (0, •) ∈ Poly <K . (4.5)
On occasion, we need to consider iterates by continuous time. For every x ∈ M and T > 0, we denote x T = g T (x), and we have

ι -1 x T g T ι x (z, y, t) = ( f T x (z, y), t + ψ T x (z, y)) (4.6)
whenever the left hand side is defined. Here f T

x is a C r-2 embedding mapping a domain V = (-2|λ andψ T x is a C r-2 function restricted to V. We write f T

(T) x | 1 , 2|λ (T) x | 1 ) × (-2 1 , 2 1 ) into (-0 , 0 ) 2 ,
x (z, y) = ( f T x,1 (z, y), f T x,2 (z, y)) in the coordinate system. Now we proceed to the construction of a normal coordinate system. We introduce a scale between * and 0 by setting = ( 0 * ) 1/2 . We then choose a family of C r flow charts {ῑ x : ( , ) 3 → M} x∈M with uniformly bounded C r norms such that for each x ∈ M the map ǧx = (ῑ g 1 (x) ) -1 g 1 ῑx is of form (4.3); and(4.1), (4.2) are satisfied for all (z, y, t) ∈ (-, ) 3 , and for ǧx in place of g x . By letting υ * be sufficiently small, we can assume that for every x ∈ M, ǧx is a C r embedding mapping (-/C, /C) 3 into (-, ) 3 where C > 1 is some constant depending only on g and {ῑ x } x∈M .

The following lemma will be proved in Appendix B.

Lemma 4.2. By letting * / 0 and 0 / 1 be sufficiently large depending only on g, for any integers r > K + 1 > χ * χ 0 + 1 (note that g ∈ A r ), there is a family of C r-2 embeddings { ȟx : (-0 , 0 ) 3 → (-, ) 3 } x∈M such that the following is true:

(1) the C r-2 norm of ȟx is bounded uniformly over all x ∈ M;

(2) for every x ∈ M, for every (z, y, t) ∈ (-0 , 0 ) 3 , we have ȟx (z, 0, 0) = (z, 0, 0), ȟx (0, y, 0) = (0, y, 0) and ȟx (z, y, t) = ȟx (z, y, 0) + (0, 0, t); (3) For any x ∈ M we have a well-defined map

ḡx = ȟ-1 g 1 (x) ǧx ȟx from (-2 1 , 2 1 ) 3 to (-0 , 0 ) 3 of form ḡx (z, y, t) = ( fx,1 (z, y), fx,2 (z, y), t + ψx (z, y)).
Moreover, we have

∂ y fx,2 (•, 0) ≡ µ -1 x , ∂ z fx,1 (0, •) ≡ λ -1 x , ∂ y ψx (•, 0) ∈ Poly <K , ∂ z ψx (0, •) ∈ Poly <K .
Let ȟx be given by Lemma 4.2. We may define our charts by

ι x = (ῑ x ȟx )| (-0 , 0 ) 3 , ∀x ∈ M.
Then all the properties of a normal coordinate system, including (4.4) and (4.5), are satisfied by {ι x } x∈M . This completes the constructions of the charts. In the rest of the paper, we let g ∈ A r where r is a large integer satisfying the condition of Lemma 4.2 (in particular, r ≥ 4), and fix a normal coordinate system {ι x } x∈M . We let K be a large integer to be determined depending only on g so that, among other things, (4.4) and (4.5) hold.

For any x ∈ M, for any (z, y, t) ∈ (-0 , 0 ) 3 , we set

W u x (z, y, t) = ι -1 x W u loc (ι x (z, y, t)). The intersection of ι -1
x (W cu loc ) with (-0 , 0 ) 2 × {0} gives a lamination of a neighborhood of (0, 0) in (-0 , 0 ) 2 × {0} by C r-2 curves in W cu . In the following lemma, whose proof is deferred to Appendix C, we introduce a special parametrisation γ x of this lamination which will lead to a rather simple equivariance relation (4.16). This simplification facilitates the proof of Proposition 4.8, the main result of this subsection.

Lemma 4.3. By letting υ * in Section 2 be sufficiently small, the following is true. There is a collection of continuous maps {γ

x = (Z x , Y x ) : (-1 , 1 ) 2 → (-2 1 , 2 1 ) 2 } x∈M and functions {φ x : (-1 , 1 ) 2 → R} x∈M satisfying that γ x (0, y) = (0, y), ∀y ∈ (-1 , 1 ), γ x (z, 0) = (z, 0), ∀z ∈ (-1 , 1 ), W u x (0, y, 0) ⊃ {(γ x (z, y), φ x (z, y)) | z ∈ (-1 , 1 )}, ∀y ∈ (-1 , 1 ), f T x (γ x (z, y)) = γ g T (x) ((λ (T) x ) -1 z, (µ (T) x ) -1 y), ∀T > 0, z ∈ (-|λ (T) x | 1 , |λ (T)
x | 1 ), y ∈ (-1 , 1 ). Moreover we may suppose that for each x ∈ M,

(1) for each y ∈ (-

1 , 1 ), |∂ z φ x (0, y)| ≤ C |y| δ ;
(2) for each y ∈ (-1 , 1 ), γ x (z, y) is C r-2 in z, and its C r-2 norm is bounded uniformly over all x, y; (3) for every z ∈ (-1 , 1 ), we have

Y x (z, y) = y + O(|y| 1+δ ), (4.7)
and for every integer 1 ≤ l ≤ r -3 and every y ∈ (-1 , 1 ), we have

∂ l z Y x (0, y) = O(|y|); (4.8) (4) for every z, y ∈ (-1 , 1 ) we have ∂ z Z x (0, y) = 1, (4.9) Z x (z, y) = z + O(|y| δ ). (4.10)
We define function φ s

x : (-1 , 1 ) 2 → R by the following relation:

W s loc (ι x (γ x (z, y), φ s x (z, y))) ∩ W u loc (x) = ∅. (4.11)
We need the following linear approximation of φ s

x . Given x ∈ M, we define v u x , v c x :

(-1 , 1 ) → R by E s (Φ u x (z)) = R(Dι x ) (z,0,0) (v u x (z), 1, v c x (z)). (4.12) It is known that v u x , v c
x are H ölder continuous functions, and the H ölder exponents and H ölder norms are bounded uniformly in x depending only on g.

Remark 4.4. We can interpret the function v c

x in the following way. Denote by PF 0 the hyperplane {(z, y, t)

| t = 0} and fix x ∈ M. For each z ∈ (-1 , 1 ), we denote PF 1 (z) = (Dι -1 x )((E s ⊕ E u )(ι x (z, 0, 0))) (notice that both PF 1 (z) and PF 0 contain the z-axis). Then we have v c x (z) = tan ∠(PF 1 (z), PF 0 )
where the angle is measured with an appropriate orientation.

Lemma 4.5. For every x ∈ M and z, y ∈ (-1 , 1 ), we have

φ s x (z, y) = yv c x (z) + O(|y| 1+δ
). Proof. We denote by ι x (z , 0, 0) the unique intersection between W cs loc (ι x (γ x (z, y), 0)) and W u loc (x). We have

φ s x (z, y) = Y x (z, y)v c x (z ) + O(|y| 2 ) = yv c x (z ) + O(|y| 1+δ ). By (4.10), we have |z -z | = O(|y| δ ). Thus we have |v c x (z) -v c x (z )| = O(|y| δ
). This concludes the proof.

Lemma 4.6. For any x ∈ M, there exists P ∈ Poly <K such that for any z ∈ (-

|λ x | 1 , |λ x | 1 ) µ -1 x v c g 1 (x) (λ -1 x z) = v c x (z) + P(z).
Proof. By definition, for any z ∈ (-|λ x | 1 , |λ x | 1 ) and any y ∈ (-1 , 1 ) we have

φ s g 1 (x) (λ -1 x z, µ -1 x y) = φ s x (z, y) + ψ x (γ x (z, y)). (4.13)
Recall that r ≥ 4. Notice that by (4.7), (4.10) and Taylor's expansion we have

ψ x (γ x (z, y)) = ∂ y ψ x (Z x (z, y), 0)Y x (z, y) + O(|Y x (z, y)| 2 ) (4.14) = ∂ y ψ x (z, 0)y + O( ψ x C 2 |y| 1+δ ) + O(|y| 2 ).
Then by Lemma 4.5, both sides of (4.13) are differentiable with respect to y at (z, 0). Then we deduce

µ -1 x v c g 1 (x) (λ -1 x z) = v c x (z) + ∂ y ψ x (z, 0).
We conclude the proof by (4.5).

Approximation of temporal function.

For any x ∈ M, and any y, z ∈ (-1 , 1 ), we denote

Ψ x (z, y) = Ψ x,Φ s x (y) (w)
where w is the unique intersection between W u loc (x) and W cs loc (ι x (γ x (z, y), 0)). Notice that the center-stable holonomy maps between two nearby local unstable manifolds are uniformly C 1+θ -smooth since W cs is a C 1+θ -foliation. Then for any x ∈ M and any z, y ∈ (-1, 1), we have

Ψ x,Φ s x (y) (Φ u x (z)) = Ψ x (h x,y (z), y) (4.15)
where h x,y : (-1, 1) → R is a C 1+θ -diffeomorphic embedding satisfying h x,y (0) = 0. In fact, by (3.4) and by letting υ * (defined in Section 2) be sufficiently small, we can assume without loss of generality that h x,y C 1 < 2 for any x ∈ M and y ∈ (-1, 1).

By Lemma 3.2 and Lemma 4.3, we have for any x ∈ M, any z, y ∈ (-1 , 1 ), for any T ≥ 0 that

Ψ x (λ (T) x z, y) = Ψ g T (x) (z, (µ (T) x ) -1 y). (4.16)
The following estimate follows from (4.10) and the H ölder property of W u and W s . We omit its proof.

Lemma 4.7.

There is δ 0 > 0 depending only on the exponents in (2.1) such that for any x ∈ M and any y ∈ (-1 , 1 )

Ψ x (•, y) (-1 , 1 ) ≤ C |y| δ 0 .
Now recall that { f x } x∈M and {ψ x } x∈M are defined in (4.3). Below we fix an arbitrary x ∈ M. Given any m ∈ Z we will denote for simplicity as follows

x m = g m (x), g m = g x m , f m = ( f m,1 , f m,2 ) = f x m , µ m = µ x m , λ m = λ x m . (4.17)
Similarly, we define ψ m , φ m , γ m , etc. (see Lemma 4.3). The main result of this subsection is the following. Proposition 4.8. There exist δ 1 , η 0 ∈ (0, 1/2) depending only on the exponents in (2.1), such that for any integers r ≥ K + 2 > 0 sufficiently large depending only on g, η 0 (recall that g ∈ A r ), there exist a constant C 2 > 0 and a sequence {D n > 0} n≥1 with lim n→∞ D n = 0 such that for any x ∈ M, for any integer n ≥ 1 the following are true:

(1) there exist functions a 1 , • • • , a K-1 : (-1 , 1 ) → R and P ∈ Poly <K such that for any z, y ∈ (-1 , 1 ), the function

ϕ x,n (z, y) = (µ 0 • • • µ n-1 ) -1 y(v c g n (x) (z) + P(z)) + K-1 ∑ i=1 a i (y)z i satisfies Ψ x (κΛ n (x) -1 •, •) -ϕ x,n (-1 , 1 ) 2 < C 2 (|µ 0 • • • µ n-1 | -1 |y|) 1+δ 1 + |λ 0 • • • λ n-1 | 2 ), ϕ x,n (•, y) (-1 , 1 ) < D n |y| δ 1 ;
(2) there is Q ∈ Poly <K such that for any y ∈ (-1 , 1 )

a 1 (y) = λ 0 • • • λ n-1 (-∂ z φ x (0, y) + Q(y)); (3) set ñ = (1 -η 0 )n . Then for any 2 ≤ i ≤ K -1, any y ∈ (-1 , 1 ), we have |a i (y)| ≤ C |y| ñ-1 ∑ m=0 |µ 0 • • • µ m-1 | -1 |λ m • • • λ n-1 | i . (4.18)
Remark 4.9. The constraint for the integer K here depends only on the exponents χ 0 and χ * of g. In fact, we find that K > 4χ 3 * (χ 0 +χ * ) χ 4 0 suffices. The only constraint for r, the regularity of g, is that r ≥ K + 2. This is consistent with Remark 1.2.

Before presenting the proof of the above proposition, we briefly state the idea behind the proof. Imagine that for a small constant > 0 we want to get an 1+δ -approximation of the temporal function Ψ x,x s (x u ) when x u ∈ W u (x, ) and x s ∈ W s loc (x). We can write Ψ x,x s (x u ) as the difference between the flow coordinate t in the coordinate charts ι x (see Definition 4.1) of the following two points:

(i) the intersection between W u loc (x s ) and W cs loc (x u ); (ii) the intersection between W cu loc (x s ) and W s loc (x u ). Notice that since the intersection in (i) is O( )-close to W s loc (x) (by the fact that W cs is a C 1 foliation), we can do some linear approximation of part (i).

To approximate part (ii), we can, for some well-chosen integer n > 0, iterate the flow by time n to show that part (ii) can be written as a sum of two parts:

(ii-a) the flow coordinate in ι g n (x) of the intersection W cu loc (g n (x s )) and W s loc (g n (x u )); (ii-b) the remaining part contributed by the "coordinate change"from ι x to ι g n (x) , or in very rough terms, the cumulative turnings of the coordinate systems along the flow from x to g n (x).

Term (ii-a) can again be approximated by linearization. To estimate part (ii-b), we notice that for any integer 0

≤ m ≤ (1 -η 0 )n, g m (x u ) is δ -close to W s loc (g m (x));
and for any integer (1

-η 0 )n < m ≤ n, g m (x s ) is 1-δ -close to W u loc (g m (x
)), at least when η 0 is small enough. Then roughly speaking, the first few turnings are along a sequence of local stable leaves, and the rest of the turnings are along a sequence of local unstable leaves. By our choices of the normal coordinate systems, we can approximate both parts by polynomials.

Proof of Proposition 4.8. Given an integer n ≥ 1, z, y ∈ (-1 , 1 ), we set

z m = λ m • • • λ n-1 z, y m = (µ 0 • • • µ m-1 ) -1 y, ∀0 ≤ m ≤ n. (4.19)
By our choices of γ m , z m , y m and by Lemma 4.3, we have

f m (γ m (z m , y m )) = γ m+1 (z m+1 , y m+1 ), ∀0 ≤ m ≤ n -1. (4.20)
By the invariance of unstable manifolds, we obtain

g m (γ m (z m , y m ), φ m (z m , y m )) = (γ m+1 (z m+1 , y m+1 ), φ m+1 (z m+1 , y m+1 )).
Then we have

φ m+1 (z m+1 , y m+1 ) = φ m (z m , y m ) + ψ m (γ m (z m , y m )).
We iterate the above equality and obtain

φ n (z, y n ) = ψ n (z, y) + φ x (z 0 , y) (4.21)
where we set

ψ n (z, y) = n-1 ∑ m=0 ψ m (γ m (z m , y m )).

Consider the decomposition ψ

n = ψ + n + ψ - n where ψ + n (z, y) = n-1 ∑ m= ñ ψ m (γ m (z m , y m )), (4.22) ψ - n (z, y) = ñ-1 ∑ m=0 ψ m (γ m (z m , y m )). (4.23)
We now collect some basic properties of the functions above.

Lemma 4.10. Let K be sufficiently large depending on g and let η 0 be sufficiently small depending on g. Then there exists P 1 ∈ Poly <K such that

ψ + n (z, y) = yP 1 (z) + O(|y n | 1+δ ), ∀z, y ∈ (-1 , 1 ), and P 1 (-1 , 1 ) ≤ C ne -nχ 0 . (4.24)
Proof. Let K be sufficiently large depending only on g so that there is a normal coordinate system for g (for instance, when the condition of Lemma 4.2 is satisfied). As in (4.14), we deduce that for any 0

≤ m ≤ n ψ m (Z m (z m , y m ), Y m (z m , y m )) = y m (∂ y ψ m )(z m , 0) + O(|y m | 1+δ ) = (µ 0 • • • µ m-1 ) -1 y(∂ y ψ m )(λ m • • • λ n-1 z, 0) + O(|y m | 1+δ ).
Then by letting η 0 be sufficiently small, we have, after changing the value of δ, that

ψ + n (z, 0) = yP 1 (z) + O(|y n | 1+δ ) (4.25)
where

P 1 (z) = n-1 ∑ m= ñ(µ 0 • • • µ m-1 ) -1 (∂ y ψ m )(λ m • • • λ n-1 z, 0)
We conclude the proof by (4.5).

Lemma 4.11. For every integer 0 < ≤ r -3, we have

|∂ z ψ - n (z, y)| < C ñ-1 ∑ m=0 |λ m • • • λ n-1 | , ∀z, y ∈ (-1 , 1 ), |∂ z ψ - n (0, y)| < C |y| ñ-1 ∑ m=0 |µ 0 • • • µ m-1 | -1 |λ m • • • λ n-1 | , ∀y ∈ (-1 , 1 ).
Moreover there exists P 2 ∈ Poly <K such that

∂ z ψ - n (0, y) = P 2 (y), ∀y ∈ (-1 , 1 ). Proof.
By definition, we have

∂ z ψ - n (z, y) = ñ-1 ∑ m=0 ∂ z (ψ m (Z m (z m , y m ), Y m (z m , y m ))).
To simplify the computation of the right hand side, we introduce the following notation. For any integer a ≥ 1, an a-multi

-index p = (p 1 , • • • , p a ) is an element of Z a + whose weight is defined by |p| = p 1 + • • • + p a . We let ∅ denote the unique 0-multi-index with weight |∅| = 0. Since ∂ z z m = λ m • • • λ n-1 , we have ∂ z (ψ m (Z m (z m , y m ), Y m (z m , y m ))) = (λ m • • • λ n-1 ) ∑ p,q |p|+|q|= c p,q D p,q (z m , y m )
where the sum is taken over all multi-indices p, q satisfying |p| + |q| = ; c p,q is an integer depending only on p, q; and for p = (p 1 , • • • , p a ) and q = (q 1 , • • • , q b ) we set

D p,q (z m , y m ) = (∂ a z ∂ b y ψ m )(γ m (z m , y m ))(∂ p 1 z Z m )(z m , y m ) • • • (∂ p a z Z m )(z m , y m ) •(∂ q 1 z Y m )(z m , y m ) • • • (∂ q b z Y m )(z m , y m ). Then we have |∂ z (ψ m (γ m (z m , y m )))| < C |λ m • • • λ n-1 | . By Lemma 4.3 (4.8), we have for any 1 ≤ ≤ r -3 that |∂ z Y m (0, y m )| ≤ C |y m |.
Thus for any multi-indices p, q with |p| + |q| = and |q| ≥ 1

|D p,q (0, y m )| ≤ C |y m |. (4.26)
We next consider the case |q| = 0. For any integer 0 ≤ a ≤ r -3, we have 

∂ a z ψ m (0, 0) = 0. Then we have |(∂ a z ψ m )(γ m (0, y m ))| = |(∂ a z ψ m )(0, y m )| ≤ C |y m |,
|∂ z (ψ m (Z m (z m , y m ), Y m (z m , y m )))| z=0 | ≤ C |λ m • • • λ n-1 | |y m |.
Consequently, we have

|∂ z ψ - n (0, y)| ≤ C |y| ñ-1 ∑ m=0 |µ 0 • • • µ m-1 | -1 |λ m • • • λ n-1 | . We claim that for all 0 ≤ m ≤ n -1 ∂ z [Z m (z m , y m )]| z=0 = λ m • • • λ n-1 . (4.28)
Indeed, for m = n -1 the above is true by (4.9) in Lemma 4.3; and the case for

m < n -1 follows from induction, ∂ y f m,1 (0, •) ≡ 0, ∂ z f m,1 (0, •) ≡ λ m and the formula Z m+1 (z m+1 , y m+1 ) = f m,1 (Z m (z m , y m ), Y m (z m , y m )).
By (4.5) and (4.28) we have

∂ z ψ - n (0, y) = ñ-1 ∑ m=0 λ m • • • λ n-1 (∂ z ψ m )(0, y m ) ∈ Poly <L (y).
This concludes the proof.

By Lemma 4.11, we have

ψ - n (z, y) = K-1 ∑ i=1 z i i! ∂ i z ψ - n (0, y) + O((λ ñ • • • λ n-1 ) K ). (4.29)
Recall that Λ n is defined in (2.3). By (4.16) and (4.19), there is κ ∈ {±1} such that

Ψ x (κΛ n (x) -1 z, y) = Ψ x n (z, y n ). (4.30)
By definition, (4.21), (4.30) and by Lemma 4.5, we have

Ψ x n (z, y n ) = φ s x n (z, y n ) -φ n (z, y n ) = y n v c x n (z) -φ n (z, y n ) + O(|y n | 1+δ ) = y n v c x n (z) -φ x (z 0 , y) -ψ + n (z, y) -ψ - n (z, y) + O(|y n | 1+δ
). We apply Taylor expansion to the function φ x (z 0 , y) as a function of z 0 to the 2nd order and use (4.29) and Lemma 4.10 to deduce that

Ψ x n (z, y n ) = y n v c x n (z) + P y (z) + O(|y n | 1+δ + (λ ñ • • • λ n-1 ) K + |z 0 | 2 ) where P y (z) = -∂ z φ x (0, y)z 0 -yP 1 (z) - K-1 ∑ i=1 z i i! ∂ i z ψ - n (0, y).
We define for every y ∈ (-1 , 1 ) that

a i (y) = -λ 0 • • • λ n-1 ∂ z φ x (0, y) -∂ z ψ - n (0, y), i = 1, -1 i! ∂ i z ψ - n (0, y), i = 2, • • • , K -1.
Notice that by letting K be sufficiently large depending only on g and η 0 , we have

|λ ñ • • • λ n-1 | K < |λ 0 • • • λ n-1 | 2 .
Then we have

Ψ x n (z, y n ) = ϕ x,n (z, y) + O(|y n | 1+δ + |λ 0 • • • λ n-1 | 2 )
where

ϕ x,n = (µ 0 • • • µ n-1 ) -1 yv c g n (x) (z) + yP 1 (z) + K-1 ∑ i=1 a i (y)z i . (4.31)
From the formula above and Lemma 4.11, we can deduce Proposition 4.8(2), (3) and the first inequality of (1).

On the right hand side of (4.31), the absolute value of the first term is at most C e -nχ 0 |y|; the absolute value of the second term is at most C ne -nχ 0 |y| by (4.24). We also see by Lemma 4.11 and Lemma 4.3(1) that

|a 1 (y)| ≤ C e -nχ 0 |y| δ + C ne -nχ 0 |y|,
and, for each 2 ≤ i ≤ K -1, we have |a i (y)| ≤ C ne -nχ 0 |y|. Putting together the above estimates, and by letting δ 1 be sufficiently small, we obtain the second inequality in Proposition 4.8(1) for some D n that tends to 0 as n tends to infinity. 5 This concludes the proof of Proposition 4.8.

Template function.

In this section, we introduce a collection of intrinsically defined objects called "stable templates"and "unstable templates", and reformulate the main result in the previous section using these new objects.

For any x ∈ M, we let Ξ u (x) denote the set of continuous sections ξ :

W u (x, 1 ) → T * M such that for all x ∈ W u (x, 1 ), ξ( x) ∈ T * x M vanishes on E u ( x). Let Ξ u 0 (x), resp. Ξ u 1 (x)
, be the subset of Ξ u (x) that consists of ξ satisfying ξ( x)(V g ( x)) = 0, resp. 1, for all x ∈ W u (x, 1 ). For 0 ≤ k < r (recall that g ∈ A r ), we denote by Ξ u,k , resp. Ξ u,k 0 , Ξ u,k 1 the subset of C k sections in Ξ u , resp. Ξ u 0 , Ξ u 1 . For any x ∈ M, any t > 0, g t induces a linear map L t

x : Ξ u (x) → Ξ u (g t (x)) given by

L t x ξ(w) = (Dg -t ) * [ξ(g -t (w))], ∀w ∈ W u (g t (x), 1 ). By definition, L t x maps Ξ u,r-1 (x), Ξ u,r-1 0 (x) and Ξ u,r-1 1 (x) into Ξ u,r-1 (g t (x)), Ξ u,r-1 0 (g t (x)) and Ξ u,r-1 1 (g t (x)) respectively.
For each x ∈ M, we denote by ξ u

x ∈ Ξ u 1 (x) the unique section such that for every x ∈ W u (x, 1 ),

Kerξ u x ( x) ⊃ E s ( x). (4.32) By the flow-invariance of E s ⊕ E u , we have L t x ξ u x = ξ u g t (x) , ∀t > 0, x ∈ M. (4.33)
Lemma 4.12. Let r ≥ 2 and g ∈ A r . There is a family of C r-2 sections {ξ u,⊥ x ∈ Ξ u,r-2 0 (x)} x∈M with uniformly bounded C r-2 norms such that

ξ u,⊥ x | E s (x) = 1, L t x ξ u,⊥ x = ±µ (t) x ξ u,⊥ g t (x) , ∀t ∈ N, x ∈ M.
Moreover, for every x ∈ M, ξ u,⊥

x is uniquely determined up to a sign.

5 Notice that this argument also implies that R(•, y) (-1 , 1 ) ≤ D n |y| δ 1 for any y ∈ (-1 , 1 ) where

R(z, y) = (µ 0 • • • µ n-1 ) -1 yv c g n (x) (z) + yP 1 (z) + a 1 (y)z.
Proof. We defer the proof to Appendix D.

An explicit choice of the family of sections in Lemma 4.12 is given as follows. On R 3 we use the coordinate (z, y, t). Then it is natural to denote by dy, dt : R 3 → R the linear maps

dy(a, b, c) = b, dt(a, b, c) = c, ∀(a, b, c) ∈ R 3 . (4.34) We define ξ ⊥ x : W u (x, 1 ) → T * M by ξ ⊥ x ( x) = (Dι -1 x ) * x dy, ∀ x ∈ W u (x, 1 ). (4.35) We will see in Appendix D that { ξ ⊥ x } x∈M satisfies Lemma 4.12 in place of {ξ u,⊥ x } x∈M . Lemma 4.13. Assume that r > K + 1 > χ * χ 0 + 1 (recall that g ∈ A r ).
Then there is a family of sections {ξ u,0

x ∈ Ξ u,K 1 (x)} x∈M such that the following is true. For any x ∈ M, any ξ ∈ Ξ u 1 (x), we denote by ϕ u x,ξ ∈ C 0 (-1 , 1 ) the unique function such that

ξ(Φ u x (z)) = ξ u,0 x (Φ u x (z)) + ϕ u x,ξ (z)ξ u,⊥ x (Φ u x (z)), ∀z ∈ (-1 , 1
). Then the following are equivalent:

(1) ϕ u x,ξ ∈ Poly <K ; (2) there exist C > 0 and a sequence of sections {ξ n ∈ Ξ u,K (g -n (x))} n≥1 such that for all n ≥ 1, we have D K ϕ u g -n (x),ξ n (-1 , 1 ) < C and L n g -n (x) ξ n = ξ. Proof.
We defer the proof to Appendix D.

An explicit choice of the family of sections in Lemma 4.13 is given as follows. We define ξ 0

x : W u (x, 1 ) → T * M by

ξ 0 x ( x) = (Dι -1 x ) * x dt, ∀ x ∈ W u (x, 1 ) (4.36)
where dt is given by (4.34). We will see in Appendix D that { ξ 0

x } x∈M satisfies Lemma 4.13 in place of {ξ u,0

x } x∈M . We have the following corollary of Lemma 4.13 which will be proved in Appendix D.

Corollary 4.14. Let {ξ x ∈ Ξ u,K 1 (x)} x∈M be a family of sections, and let us denote for any x ∈ M and any

ξ ∈ Ξ u 1 (x) the unique function ϕ x,ξ ∈ C 0 (-1 , 1 ) such that ξ(Φ u x (z)) = ξ x (Φ u x (z)) + ϕ x,ξ (z)ξ u,⊥ x (Φ u x (z)), ∀z ∈ (-1 , 1 ).
Assume that Lemma 4.13 holds for (ξ x , ϕ x,ξ ) instead of (ξ u,0 x , ϕ u x,ξ ). 6 Then for any x ∈ M we have ϕ u

x,ξ x ∈ Poly <K . Consequently, for any x ∈ M and any t > 0 we have

ϕ u x,L t g -t (x) ξ u,0 g -t (x) ∈ Poly <K .
6 In other words, we assume that for any ξ ∈ Ξ u 1 (x), we have ϕ x,ξ ∈ Poly <K if and only if there exist C > 0 and a sequence of sections {ξ n ∈ Ξ u,K (g -n (x))} n≥1 such that for all n ≥ 1, we have

D K ϕ g -n (x),ξn (-1 , 1 ) < C and L n g -n (x) ξ n = ξ.
By enlarging K if necessary, we may suppose that K satisfies the condition of Lemma 4.13. Definition 4.15. For any x ∈ M, we denote

ϕ u x = ϕ u x,ξ u x
where ξ u x is defined by (4.32). The set of stable templates at x on a local unstable manifold (or simply called stable templates at x) is given by

T s u (x) = {cϕ u x + P | c ∈ R, P ∈ Poly <K , P(0) = 0}.
By Corollary 4.14, we see that for every x ∈ M, T s u (x) is independent of the choice of {ξ u,0 w } w∈M satisfying Lemma 4.13. In a similar way, we define {ϕ s x } x∈M and the space T u s (x) of unstable templates at x on a local stable manifold (or simply called unstable templates at x) for every x ∈ M by reversing the flow and switching the roles of stable and unstable subspaces. Clearly we also have ϕ u

x (0) = ϕ s x (0) = 0 for all x ∈ M. Stable and unstable templates are related to the approximation of temporal functions, as we can see from the following two lemmas. Lemma 4.16. For any x ∈ M, there exist κ ∈ {±1} and P ∈ Poly <K with P(0

) = 0 such that v c x = κ ϕ u x + P where v c
x is given by (4.12).

Notice that if we take ξ u,0 x = ξ0

x defined in (4.36) and ξ u,⊥ = ξ⊥ x defined in (4.35), we would have equation v c

x = -ϕ u x . The point of Lemma 4.16 is that a similar equation holds for any legitimate choices of ξ u,0

x , ξ u,⊥

x and the normal coordinate system {ι x } x∈M .

Proof. Define a function ξ u

x : (-1 , 1 ) → T * R 3 by

ξ u x (z) = (Dι x ) * (z,0,0) ξ u x (Φ u x (z)) ∈ T * R 3 .
By definition, the linear map ξ u x (z) vanishes on R × {(0, 0)} for any z ∈ (-1 , 1 ). By Definition 4.1 and (4.12), we have for any z ∈ (-1 , 1 ) that

E s (Φ u x (z)) = R(Dι x ) (z,0,0) (v u x (z), 1, v c x (z)), V g (Φ u
x (z)) = R(Dι x ) (z,0,0) (0, 0, 1). Thus we have for any z ∈ (-1 , 1 ) that

ξ u x (z)(v u x (z), 1, v c x (z)) = ξ u x (Φ u x (z))((Dι x ) (z,0,0) (v u x (z), 1, v c x (z))) = 0, ξ u x (z)(0, 0, 1) = ξ u x (Φ u x (z))((Dι x ) (z,0,0) (0, 0, 1)) = 1. By linearity, we have ξ u x (z) = dt -v c x (z)dy, ∀z ∈ (-1 , 1 ). (4.37) Let ξ ⊥
x , ξ 0 x be given by (4.35) and (4.36) respectively. Recall that { ξ ⊥ x } x∈M satisfies Lemma 4.12 in place of {ξ u,⊥

x } x∈M ; and { ξ 0 x } x∈M satisfies Lemma 4.13 in place of {ξ u,0

x } x∈M . Then by Lemma 4.12 there is κ ∈ {±1} such that (4.38) and by Corollary 4.14 we obtain

ξ ⊥ x = κ ξ u,⊥ x ,
P = ϕ u x, ξ 0 x ∈ Poly <K .
Combining the above with (4.35) and (4.38) we obtain

ξ u x (z) = (Dι x ) * (z,0,0) (ξ u,0 x (Φ u x (z)) + ϕ u x (z)ξ u,⊥ x (Φ u x (z))) = (Dι x ) * (z,0,0) ( ξ 0 x (Φ u x (z)) + (ϕ u x (z) -P(z))ξ u,⊥ x (Φ u x (z))) = dt + κ(ϕ u x (z) -P(z))dy. (4.39)
The lemma then follows from combining (4.37), (4.39) and replacing κ by -κ.

Lemma 4.17. For any x ∈ M, there exist κ ∈ {±1} and P ∈ Poly <K with P(0) = 0 such that

∂ z φ x (0, •) = κ ϕ s
x + P where φ x is given by Lemma 4.3.

Proof. Notice for any x ∈ M there exists a function v s

x :

(-1 , 1 ) → R such that (Dι x ) (0,z,0) (1, v s x (z), ∂ z φ x (0, z)) ∈ E u (Φ s x (z)), ∀z ∈ (-1 , 1
) where φ x is given by Lemma 4.3. The proof then follows from a similar argument as in Lemma 4.16.

We define a function D s : M → R ≥0 as follows. For each x ∈ M, we set

D s (x) = inf P∈Poly <K , J=[0,1) or (-1,0] ϕ u x -P J .
We define D u analogously, using the unstable templates in place of stable templates.

Lemma 4.18. The functions D s and D u are continuous.

Proof. By Lemma 4.16, for any given normal coordinate system, we have

D s (x) = inf P∈Poly <K , J=[0,1) or (-1,0] v c x -P J , ∀x ∈ M.
We claim that for any x 0 ∈ M, we can arrange it so that v c x , as an element of C 0 ([-1, 1]), depends continuously (with respect to the uniform norm on C 0 ([-1, 1])) on x near x 0 . Indeed, we can first assume that the non-stationary normal coordinates along the stable manifolds, resp. unstable manifolds, depend continuously on x near x 0 ; and then assume that the coordinate system {ῑ x : (-0 , 0 ) 3 → M} x∈M below Definition 4.1 satisfies that ῑx depends continuously on x near x 0 . By the proof of Lemma 4.2, it is clear that ȟx depends continuously on ῑx . Thus ȟx depends continuously on x near x 0 . Consequently, there is a normal coordinate system ι x depending continuously on x near x 0 . Then v c

x depends continuously on x near x 0 as well. This concludes the proof.

Proposition 4.8 leads to the following class of functions which are used to approximate Ψ x (Λ n (x) -1 z, y). Definition 4.19. Given an integer n > 0 and x ∈ M, we denote

T x,n = {[(z, y) → h 1 yϕ u g n (x) (z) + h 2 zϕ s x (y) + P(z, y)] ∈ C 0 ((-1 , 1 ) 2 ) | h 1 , h 2 ∈ R, P ∈ Poly <K,<K , P(0, •) = P(•, 0) ≡ 0}.
We notice that for any x ∈ M, any integer n > 0 and any R ∈ T x,n , we have R(•, y) ∈ T s u (g n (x)) for every y ∈ (-1 , 1 ). The following is a corollary of Proposition 4.8.

Corollary 4.20. Let δ 1 , η 0 and K be given by Proposition 4.8. Then there exists a sequence {D n > 0} n≥1 with lim n→∞ D n = 0 such that for all sufficiently small > 0, for any x ∈ M, for any integer n ≥ 1 satisfying Dg

n | E s (x) , Dg n | E u (x)
-1 < , there exist κ ∈ {±1}, and functions a 2 , • • • , a K-1 : (-1 , 1 ) → R satisfying (4.18), and

R = h 1 yϕ u g n (x) (z) + h 2 zϕ s x (y) + P(z, y) ∈ T x,n with |h 1 | = Dg n | E s (x) , |h 2 | = Dg n | E u (x)
-1 and P ∈ Poly <K,<K such that for any y ∈ (-1 , 1 ) 4.17) for the notation). Then by Proposition 4.8 and our choices of δ 1 , η 0 and K, we see that ϕ x,n (z, y) is of form R(z, y) + ∑ K-1 i=2 a i (y)z i given in Corollary 4.20, and

|Ψ x (κΛ n (x) -1 z, y) -R(z, y) - K-1 ∑ i=2 a i (y)z i | < C (( |y|) 1+δ 1 + 2 ), ∀z ∈ (-1 , 1 ), R(•, y) (-1 , 1 ) ≤ D n |y| δ 1 . Proof. Since Dg n | E s (x) , Dg n | E u (x) -1 < , we have that |λ 0 • • • λ n-1 |, |µ 0 • • • µ n-1 | -1 < (see (
Ψ x (κΛ n (x) -1 •, •) -ϕ x,n (-1 , 1 ) 2 ≤ C (( |y|) 1+δ 1 + 2 ).
Finally we deduce the last claim on R(•, y) (-1 , 1 ) from Proposition 4.8 and the footnote at the end of its proof.

FROM NON-SMOOTH DISTRIBUTION TO NON-INTEGRABILITY

5.1. A regularity result.

Definition 5.1. Given κ > 0 and integers r > K ≥ 1, we denote by A r +,K,κ the subset of flows in A r verifying that for any x ∈ M, for any polynomial P ∈ Poly <K , we have

ϕ u x + P J > κ for J = [0, 1) and J = (-1, 0]. We set A r +,K = κ>0 A r +,K,κ .
In a similar way, we define A r -,K,κ and A r -,K using unstable templates instead of stable templates.

We begin with an important property of the stable/unstable templates.

Lemma 5.2. Let g ∈ A r \ A r +,K for some integers r > K + 1 > χ * χ 0 + 1. Then for every x ∈ M, we have ϕ u

x ∈ Poly <K . In other words, A r +,K is the subset of flows in A r verifying that 0 / ∈ T s u (x) for any x ∈ M. We have a similar statement for A r -,K .

Proof. Let c ∈ (0, 1], we denote by X c the set of x ∈ M such that

ϕ u x | (-c,0] or ϕ u x | [0,c) ∈ Poly <K . Since the uniform norm of ϕ u
x on [-1, 1] is uniformly bounded for all x ∈ M, we deduce that for some C g,K > 0 depending only on g and K, for any c ∈ (0, 1) and any x ∈ X c , we have

ϕ u x | (-c,0] or ϕ u x | [0,c) ∈ Poly <K C g,K
. By Lemma 4.18, X 1 is a closed set. By Lemma 4.6 and Lemma 4.16, there exists t 0 > 0 such that for any integer t > t 0 we have

g t (X 1/2 ) ⊂ X 1 . (5.1) By hypothesis, X 1 = ∅. Let x ∈ X 1 .
Then by Lemma 4.13, we notice that X 1/2 contains an open set W of W u loc (x) close to x. By (5.1), X 1 contains the union of g t (W) for all t > t 0 . But since g is transitive, this union is dense, and consequently we have X 1 = M.

We have the following observation.

Lemma 5.3. Given g ∈ A r for some integers r

> K + 1 > χ * χ 0 + 1. If g ∈ A r \ A r +,K , then the subspace E s is C 1+δ for some δ > 0. Similarly, if g ∈ A r \ A r -,K , then the subspace E u is C 1+δ for some δ > 0.
Proof. Let g ∈ A r \ A r +,K for some integers r > K + 1 > χ * χ 0 + 1. By Lemma 5.2 and Remark 4.4, we see that for every x ∈ M, E s ⊕ E u is uniformly C r-2 restricted to W u (x, 1 ). On the other hand, we know that E cs is C 1+δ everywhere. Consequently, E s , as the intersection between E u ⊕ E s and E cs , is uniformly C 1+δ restricted to W u (x, 1 ) for every x ∈ M. It is clear that E s is uniformly C 2 restricted to W cs . Moreover, W cs and W u are continuous foliations with uniformly C r leaves. Then by Journé's lemma in [Jou], we conclude that E s is C 1+δ everywhere on M.

The case where g ∈ A r \ A r -,K follows from a similar argument. By Lemma 5.2 and Lemma 5.3, we obtain the following.

Corollary 5.4. If g ∈ A ∞ belongs to Class I, then for any integer

K ≥ 1, g ∈ A ∞ +,K ∩ A ∞ -,K .
As an immediate consequence, we have the following.

Corollary 5.5. Any g ∈ A ∞ in Class I is topologically mixing.

Proof. Let K be the integer given by Corollary 4.20 that is sufficiently large depending only on g. Take an arbitrary x ∈ M and set y = Φ s x (1). Then we take a small constant > 0, and let n be the smallest positive integer such that

Dg n | E s (x) , Dg n | E u (x)
-1 < (in other words n = k (x) given in Definition 6.3(1)). By Corollary 4.20, there exist some δ, C > 0 depending only on g, and some R ∈ T x,n satisfying R(z, y) = h 1 yϕ u g n (x) (z) + h 2 zϕ s x (y) + P(z, y)

with max(|h 1 |, |h 2 |) ≥ /C and P ∈ Poly <K,<K such that

Ψ x (κΛ n (x) -1 •, y) -R(•, y) (-1 , 1 ) < C 1+δ .
On the other hand, by Corollary 5.4, we have g ∈ A ∞ +,K,κ ∩ A ∞ -,K,κ for some κ > 0. Hence we have

R (-1 , 1 ) 2 > κ/C .
By letting be sufficiently small, we conclude that the function Ψ x,y is not identically zero in any neighborhood of x in W u (x). Consequently, E s and E u are not jointly integrable. By Theorem 2.4, g is topologically mixing.

Non-integrability condition revisited.

In this subsection, we define the nonintegrability condition for an Anosov flow g in Class II.

For any x ∈ M, any w ∈ W u loc (x), we denote by H u x,w : W cs loc (x) → W cs (w) the unstable holonomy map. Since E u is C 1+δ , we deduce that H u

x,w has uniformly bounded C 1+δ norm for all x ∈ M and w ∈ W u loc (x). We let {ξ u

x } x∈M be given by (4.32) and let {ξ u,⊥ x } x∈M be given by Lemma 4.12. For each x ∈ M we let ξ U

x denote the unique element in

Ξ u 1 (x) satisfying DH u x, x (E s (x)) ⊂ Kerξ U x ( x), ∀ x ∈ W u (x, 1 ). (5.2)
Definition 5.6. For any x ∈ M, we define φ u

x : (-1, 1) → R by equation

ξ u x (Φ u x (z)) = ξ U x (Φ u x (z)) + φ u x (z)ξ u,⊥ x (Φ u x (z)), ∀z ∈ (-1, 1). (5.3)
Remark 5.7. Similar to Lemma 4.18, we can show that the function D : M → R ≥0 defined by

D(x) = min(Osc (-1,0] φ u x , Osc [0,1) φ u x ), ∀x ∈ M (5.4) is continuous. We define V u x , V c x : (-1, 1) → R for all x ∈ M by DH u x,Φ u x (z) (E s (x)) = R(Dι x ) (z,0,0) (V u x (z), 1, V c x (z)), ∀z ∈ (-1, 1). (5.5) It is known that both V u x , V c
x are H ölder continuous functions, and the H ölder exponent and the H ölder norms are bounded uniformly depending only on g. Lemma 5.8. There is θ ∈ (0, 1) depending only on g such that for any x ∈ M, there is κ ∈ {±1} such that for any y, z ∈ (-1, 1) we have

Ψ x (z, y) = κyφ u x (z) + O(|y| 1+δ
) and φ u x θ < C where C > 0 depends only on g.

Proof. We fix z, y ∈ (-1, 1). As in the proof of Lemma 4.5, we denote by ι x (z , 0, 0) the unique intersection between W cs loc (ι x (γ x (z, y), 0)) and W u loc (x). By (4.10) in Lemma 4.3, we deduce that

|z -z | = O(|y| δ ). (5.6)
We denote the ι x -coordinate of the intersection between W s (ι x (z , 0, 0)) and W cu (ι x (0, y, 0)) by (Z x (z, y), Y x (z, y), t 1 ); and denote the ι x -coordinate of the intersection between W cs (ι x (z , 0, 0)) and W u (ι x (0, y, 0)) by

(Z x (z, y), Y x (z, y), t 2 ).
By definition, we have

Ψ x (z, y) = t 1 -t 2 . (5.7) Recall that v u x , v c
x are defined in (4.12). Since W s (ι x (z , 0, 0)) is a uniformly C r curve and v c

x is uniformly H ölder, we have, by (4.7) and (5.6), that andV c x is uniformly H ölder, again by (4.7) and (5.6), we deduce that

t 1 = Y x (z, y)v c x (z ) + O(|Y x (z, y)| 2 ) = yv c x (z) + O(|y| 1+δ ). (5.8) Since H u x,Φ u x (z ) has uniformly bounded C 1+δ norm,
t 2 = Y x (z, y)V c x (z ) + O(|Y x (z, y)| 1+δ ) = yV c x (z) + O(|y| 1+δ ). (5.9)
Then by (4.35) and (4.38) there is κ ∈ {±1} such that

ξ u,⊥ x ((Dι x ) (z,0,0) (v u x (z), 1, v c x (z))) = κ. (5.10) By evaluating (5.3) at (Dι x ) (z,0,0) (v u x (z), 1, v c
x (z)) and by (5.10), we obtain 0

= ξ U x (Φ u x (z))[(Dι x ) (z,0,0) (v u x (z), 1, v c x (z))] + κφ u x (z).
On the other hand, by (5.2), (5.5) and ξ

U x ∈ Ξ u 1 (x) we obtain that ξ U x (Φ u x (z))[(Dι x ) (z,0,0) (1, 0, 0)] = 0, ξ U x (Φ u x (z))[(Dι x ) (z,0,0) (V u x (z), 1, V c x (z))] = 0, ξ U x (Φ u x (z))[(Dι x ) (z,0,0) (0, 0, 1)] = 1. Thus we have φ u x (z) = κ(V c x (z) -v c x (z)). (5.11)
We conclude the proof by (5.7), (5.11), (5.8) and (5.9). Lemma 5.9. If there exists x ∈ M such that φ u

x | J = 0 for the interval J = [0, 1) or (-1, 0], then for every w ∈ M we have φ u w = 0. In this case, E u and E s are jointly integrable.

Proof. The proof is similar to that of Lemma 5.2. Denote by X the set of x ∈ M such that φ u

x | J = 0 for the interval J = [0, 1) or (-1, 0]. By Remark 5.7, the function D defined by (5.4) is continuous. Then by definition it is clear that X is a forward invariant closed set. Moreover, if x ∈ X, then there exist > 0 and some w ∈ W u loc (x) such that W u (g 1 (w), ) ⊂ X. But since g is transitive, the union of the forward iterates of any local unstable leave is dense in M. By Remark 5.7 we have X = M whenever X = ∅. This gives the first statement. Now assume that X = M. To show the joint integrability, we notice that for any x ∈ M and any w ∈ W u (x, 1), we have DH u

x,w (E s (x)) = E s (w). It is known that for any x ∈ M, E s is a C r-1 line field on W cs (x) which uniquely integrates to the stable foliation W s on W cs (x). Then for any x ∈ M, for any w ∈ W u (x, 1), H u

x,w maps W s on W cs (x) to W s on W cs (w). This implies that E s and E u are jointly integrable.

Corollary 5.10. If E u and E s are not jointly integrable, then there is κ > 0 such that for any x ∈ M, for J = [0, 1) and (-1, 0], we have Osc J φ u x > κ.

Proof. Recall that the function D defined by (5.4) is continuous. Then by Lemma 5.9, we see that Osc J φ u x > 0 for every x ∈ M and for J = [0, 1) and (-1, 0] whenever E u and E s are not jointly integrable. The corollary then follows from the compactness of M.

STANDING ASSUMPTIONS

From Section 6 and Section 7, we fix a topologically mixing Anosov flow g and a H ölder potential F. The following notations will be used throughout these sections. We let

• K be an integer depending only on g so that Corollary 4.20 holds for K;

• θ ∈ (0, 1) be a small constant depending only on g and F. In the course of the proof we will reduce θ if necessary, but will only do this finitely many times. In particular, all the smallness requirements about θ in Section 3 are satisfied, e.g., F ∈ C θ (M, R) and Lemma 5.8 holds for θ.

CHOOSING THE CORRECT SCALES

6.1. Slowly growing sequence and stable sequence. In this section, we will introduce the scales at which the cancellations for L a,b take place.

Definition 6.1. We say that a sequence of L ∞ functions {h : M → Z + } >0 is slowly growing for an Anosov flow g if there is κ > 0 such that for all sufficiently small inf x∈M h (x) > κ| log |, and for any integer p > 0, for any sufficiently large real constant k > 0, for any sufficiently small h (g -k (x)) ≤ h (x) + kp, ∀x ∈ M. (6.1)

We have the following. Lemma 6.2. For any slowly growing sequence {h : M → Z + } >0 , the sequence of functions {Λ : U → R + } >0 defined as follows (see (2.3) for the definition of Λ n (x))

Λ (x) = sup w∈W s (x,1) Λ h (w) (x) (6.2)
is stable (given in Definition 3.9).

Proof. Let κ > 0 be given by Definition 6.1 for {h : M → Z + } >0 . Then for all sufficiently small , there exists C > 0 such that

C > Λ (x) > -κ χu , ∀x ∈ U.
Indeed, the left inequality follows from that h ∈ L ∞ (M), and the right inequality above follows from (2.1) and the first inequality in Definition 6.1. This gives (3.14).

Let p > 0 be a large integer constant to be determined. Let n > 1 be a large integer, and denote t = τ n (x). Clearly, t ≥ nτ 0 . By (3.4) and the Markov property, we have g t (W s (x, 1)) ⊂ W s (σ n (x), 1) by letting n be sufficiently large. Take an arbitrary w ∈ W s (x, 1). By letting n be sufficiently large, and letting be sufficiently small, we have h (w) ≤ h (g t (w)) + tp. Consequently, by distortion estimates, we have

Λ (x)e pχ 0 ≤ C Λ (σ n (x)) sup w∈W s (x,1) Dg t | E u (w) , sup w∈W s (x,1) Dg t | E u (w) ≤ C inf w∈W s (x,1) Dg t | E u (w) .
By letting p be sufficiently large, we obtain for all sufficiently small that

Λ (x) ≤ 1 2 Λ (σ n (x)) inf w∈W s (x,1) Dg τ n (x) | E u (w) .
By (3.4), we can iterate the above inequality to show that {Λ } >0 is stable.

6.2. Choosing the correct scales -Class I. In this subsection, we assume that g ∈ A ∞ is in Class I. By Corollary 5.4, we see that g ∈ A ∞ +,K ∩ A ∞ -,K . By Lemma 5.2, we can choose κ 1 > 0 such that g ∈ A ∞ +,K,κ 1 ∩ A ∞ -,K,κ 1 . Let C 3 > 1 and δ 2 > 0 be constants to be determined in due course. Definition 6.3. Given a sufficiently small > 0, for any x ∈ M, we let

(1) k (x) be the smallest integer n ≥ 1 such that Dg n | E s (x) , Dg n | E u (x) -1 < ; (2) the matching time of order at x, denoted by ς (x), be the smallest integer n ≥ k (x) satisfying that there is κ ∈ {±1} such that for every y ∈ (-1, 1), there exists ϕ ∈ T s u (g n (x)) such that

Ψ x (κΛ n (x) -1 •, y) -ϕ (-2,2) ≤ C 3 (( |y|) 1+δ 2 + 2 ), (6.3) ϕ (-2,2) ≤ max( |y| δ 2 /2 , C 3 |y|). (6.4)
For every x ∈ U, the matching scale of order at x is defined as

Λ (x) = sup w∈W s (x,1)
Λ ς (w) (x). (6.5) Remark 6.4. It is not hard to see that k (x) varies by at most a uniform constant (independent of ) as x moves along a local stable manifold. The same is true for ς though this is not so obvious: one needs Lemma 7.1 to deduce this. A posteriori, we can use Λ ς (x) (x) instead of Λ (x). We will not provide the proof here since these facts are not needed for the main theorem. The terms on the right hand side of (6.3) and (6.4) are chosen related to Corollary 4.20.

The following lemma shows that for suitable choices of C 3 and δ 2 , the sequence of matching time ς (x) of order > 0 defined above is slowly growing. We will show at the end of this section that the matching scale of order for > 0 is a stable sequence. Lemma 6.5. Let δ 2 > 0 be sufficiently small depending only on the exponents in (2.1), let K > 0 be given by Proposition 4.8, and let C 3 > 1 be sufficiently large depending on the constants in Lemma 4.7 and Corollary 4.20 denoted by C . Then the sequence of functions {ς } >0 in Definition 6.3 is slowly growing. Remark 6.6. In the rest of the paper, for an Anosov flow g ∈ A ∞ in Class I, we will always choose C 3 and δ 2 such that Lemma 6.5 holds. We will enlarge C 3 and reduce δ 2 if necessary, but we will only do this finitely many times, and both C 3 and δ 2 depend only on g. Proof of Lemma 6.5. We first notice the following lemma. Lemma 6.7. There exist increasing functions c 0 , c 1 : (0, 1] → (0, 1] with lim s→0 c 1 (s) = 0 such that for any > 0, any x ∈ M, any ϕ ∈ T s u (x) or T u s (x) and any z 0 ∈ (-1 + , 1 -), we have ϕ B(z 0 , ) ≥ c 0 ( ) ϕ B(0, 1 ) , (6.6) ϕ B(0, ) ≤ c 1 ( ) ϕ B(0, 1 ) . (6.7)

Proof. Fix x ∈ M. Without loss of generality, let us assume that ϕ ∈ T s u (x) \ Poly <K and ϕ = ϕ u

x + P where P ∈ Poly <K and P(0) = 0. The argument for ϕ ∈ Poly <K is straightforward; and the argument for ϕ ∈ T u s (x) is similar to the one below. For simplicity, let us also assume that z 0 = 0. The argument for general z 0 is similar to the one below.

We collect some basic properties of polynomials that follow from the fact that all norms are equivalent on finite-dimensional spaces: for any ∈ (0, 1 ), D > 0 and any integer L > 1,

(1) there is a constant C ,D,L > 0 such that every P ∈ Poly <L \ Poly <L C ,D,L satisfies

P (-, ) > D.
(2) there is a constant B ,L > 0 such that every P ∈ Poly <L satisfies P (-, ) ≥ B ,L P (-1 , 1 ) .

(3) there is a constant E L > 0 such that every P ∈ Poly <L with P(0) = 0 satisfies

P (-, ) ≤ E L | | P (-1 , 1 ) .
We set

D = 1 + sup x∈M ϕ u x C θ (-1 , 1 ) .
Let us first detail the proof of the first inequality. We first assume that P ∈ Poly <K \ Poly <K C ,10D,K . Then we have

P (-, ) > 10D, P (-, ) ≥ B ,K P (-1 , 1 ) .
Then

ϕ (-1 , 1 ) ≤ 2 P (-1 , 1 ) , P (-, ) ≤ 2 ϕ (-, ) .
Thus we have

ϕ (-, ) > 1 2 P (-, ) > 1 2 B ,K P (-1 , 1 ) > 1 4 B ,K ϕ (-1 , 1 ) .
Now we consider the case where P ∈ Poly <K C ,10D,K

. Clearly there is M ,D,K > 0 such that we have

ϕ (-1 , 1 ) ≤ P (-1 , 1 ) + D < M ,D,K .
It remains to show that there exists κ > 0 such that for any P ∈ Poly <K , we have

ϕ (-, ) > κ .
Define λ m and µ m as in (4.17). We let q ≥ 1 be an integer such that

|λ 0 • • • λ q-1 | < ≤ |λ 0 • • • λ q-2 |.
It is clear that we have

|µ 0 • • • µ q-1 | -1 ≥ C /C .
By Lemma 4.6, there exists Q ∈ Poly <K such that for every z ∈ (-1 , 1 )

ϕ(z) = ϕ u x (z) + P(z) = µ -1 0 • • • µ -1 q-1 (ϕ u g q (x) (λ -1 0 • • • λ -1 q-1 z) + Q(z)
). Thus by g ∈ A r +,K,κ 1 and Definition 5.1 we have

ϕ (-, ) ≥ |µ 0 • • • µ q-1 | -1 ϕ u g q (x) + Q(λ 0 • • • λ q-1 •) (-1,1) ≥ C κ 1 /C .
This concludes the proof of the first inequality.

We now give the proof of the second inequality. Since ϕ u x (0) = 0 and ϕ u x θ < D, we have

ϕ (-, ) ≤ ϕ u x (-, ) + P (-, ) ≤ D| | θ + E L | | P (-1 , 1 ) . (6.8) If P (-1 , 1 ) > 10D, then ϕ (-1 , 1 ) ≥ 1 2 P (-1 , 1 )
, and consequently

ϕ (-, ) ≤ (| | θ + E L | |) P (-1 , 1 ) ≤ 2(| | θ + E L | |) ϕ (-1 , 1 )
.

If P (-1 , 1 ) ≤ 10D, then by (6.8) and g ∈ A ∞ +,K,κ 1 , we have

ϕ (-, ) ≤ 10(| | θ + E L | |)D ≤ 10(| | θ + E L | |)Dκ -1 1 ϕ (-1 , 1 ) .
Combining the above estimates, we conclude the proof of the second inequality.

We now start with the proof of Lemma 6.5. We fix x ∈ M and x m , λ m and µ m as in (4.17). Let > 0 be a small constant. We set n = ς (x).

By Definition 6.3, we have n ≥ k (x) and hence

|λ 0 • • • λ n-1 |, |µ 0 • • • µ n-1 | -1 < . Then clearly we have n > (C ) -1 | log |.
By Lemma 4.7 and (4.16), for any n > 0 sufficiently large depending on g and , we have

Ψ x (Λ n (x) -1 •, y) (-2,2) ≤ C e -n χ 0 δ 0 < 2 , ∀y ∈ (-1, 1).
This implies that ς ∈ L ∞ (M).

We now verify (6.1) for ς in place of h . Fix an arbitrary y ∈ (-1, 1), an integer p > 0, and let k > 0 be a large real number to be determined depending on g and p. We denote as follows:

m = n -p, q = k + m , ȳ = (µ (k) x -k ) -1 y.
Note that m > 0 since we assume that is small. By (4.16), there exists κ 1 ∈ {±1} such that for any z ∈ (-1 , 1 )

Ψ g -k (x) (Λ k+m (g -k (x)) -1 z, y) = Ψ x (κ 1 Λ m (x) -1 z, ȳ). (6.9)
Then by Definition 6.3, it remains to show that (6.3) and (6.4) hold for (g -k (x), k + m) in place of (x, n).

If |y| δ 2 < , then by Lemma 4.7 and by letting δ 2 < δ 0 /3 where δ 0 is given by Lemma 4.7, we obtain for all sufficiently small that

Ψ g -k (x) (κ 1 Λ k+m (g -k (x)) -1 •, y) (-2,2) < C |y| δ 0 ≤ C δ 0 /δ 2 < 2 .
In this case we may take ϕ = 0 in (6.3) and (6.4). Now assume that |y| δ 2 ≥ and δ 2 < δ 1 where δ 1 is given by Corollary 4.20. By letting k be sufficiently large depending only on g, p, we have

Dg q | E s (x -k ) , Dg q | E u (x -k ) -1 < .
Then by applying Corollary 4.20 to (x -k , q) in place of (x, n), there exist

κ 3 ∈ {±1}, ϕ 1 ∈ T s u (x q-k ) such that Ψ x -k (κ 3 Λ q (x -k ) -1 •, y) -ϕ 1 (-2,2) ≤ C (( |y|) 1+δ 1 + 2 ). (6.10) By Definition 6.3, there exist κ 4 ∈ {±1} and ϕ 2 ∈ T s u (x n ) such that Ψ x (κ 4 Λ n (x) -1 •, ȳ) -ϕ 2 (-2,2) < C 3 (( | ȳ|) 1+δ 2 + 2 ), (6.11) ϕ 2 (-2,2) < max( | ȳ| δ 2 /2 , C 3 | ȳ|) < e -kχ 0 δ 2 /2 max( |y| δ 2 /2 , C 3 |y|). (6.12)
Then by (6.9), (6.10) and (6.11) we have

ϕ 1 (κ 3 •) -ϕ 2 (κ 1 κ 4 •) (-2,2) < (C 3 + C )(( |y|) 1+δ 2 + 2 ) (6.13) where = Λ q (x -k )Λ k+n (x -k ) -1 ∈ (e -(p+1)χ * , 1).
Since |y| δ 2 ≥ , we have for all sufficiently small that ( |y|) 1+δ 2 + 2 < 1+δ 2 /2 |y| δ 2 /2 . (6.14) By Lemma 6.7, (6.12), (6.13) and (6.14) we obtain

ϕ 1 (-2,2) ≤ c 0 ( ) -1 ϕ 1 (-, ) ≤ c 0 ( ) -1 ( ϕ 1 (κ 3 •) -ϕ 2 (κ 1 κ 4 •) (-2,2) + ϕ 2 (-2,2) ) ≤ c 0 ( ) -1 ((C + C 3 )(( |y|) 1+δ 2 + 2 ) + e -kχ 0 δ 2 /2 max( |y| δ 2 /2 , C 3 |y|)) ≤ c 0 (e -(p+1)χ * ) -1 ((C + C 3 ) δ 2 /2 + e -kχ 0 δ 2 /2 ) max( |y| δ 2 /2 , C 3 |y|).
By letting k be sufficiently large depending on g, δ 2 and p, and by letting be small depending on g, C 3 and p, we have

ϕ 1 (-2,2) < max( |y| δ 2 /2 , C 3 |y|).
In this case, we may let ϕ = ϕ 1 in (6.3) and (6.4).

Since y is taken arbitrarily in (-1, 1), we have, from Definition 6.3 with g -k (x) in place of x, that ς (g -k (x)) ≤ q ≤ ς (x) + kp. Thus {ς } >0 is slowly growing.

We obtain the following corollary. Corollary 6.8. For any g ∈ A ∞ in Class I, the sequence of functions {Λ } >0 defined by (6.5) is stable and tame.

Proof. By Lemma 6.2 and Lemma 6.5, we see that the sequence of functions {Λ } >0 is stable. Take an arbitrary x ∈ U, and denote m = ς (x). Then by Definition 6.3, there exist an integer n ≥ m and κ ∈ {±1} such that Λ (x) = Λ n (x) and for any y ∈ (-1, 1), there exists ϕ ∈ T s u (g m (x)) with

Ψ x (κΛ m (x) -1 •, y) -ϕ (-2,2) < 2C 3 1+δ 2 , ϕ (-2,2) < C 3 |y| δ 2 /2 . Since Λ n (x) = Λ m (x) • |λ g n-1 (x) • • • λ g m (x)
|, there exists some κ ∈ {±1} such that

Ψ x (κ Λ (x) -1 •, y) -ϕ (-2,2) < 2C 3 1+δ 2 , (6.15) ϕ (-2,2) < C 3 |y| δ 2 /2 (6.16) where ϕ(z) = ϕ(λ g n-1 (x) • • • λ g m (x) z), ∀z ∈ (-1 , 1 ).
Then by Lemma 4.6 and Lemma 4.16, we have ϕ ∈ T s g n (x) . Write ϕ = hϕ u g n (x) + P for some h ∈ R and P ∈ Poly <K . By g ∈ A ∞ +,K,κ 1 we have ϕ (-2,2) ≥ hκ 1 and consequently, by (6.16), we have h < C C 3 κ -1 1 |y| δ 2 /2 . Again by (6.16), we see that

P (-2,2) ≤ hϕ u g n (x) (-2,2) + ϕ (-2,2) ≤ C C 3 |y| δ 2 /2 .
Thus

ϕ θ ≤ κ -1 1 C C 3 |y| δ 2 /2
. (6.17) By (4.15) and the properties of h x,y , we see that for all sufficiently small ∈ (0, 1), for any x ∈ M and any z, y ∈ (-1, 1), we have

Ψ x,Φ s x (y) (Φ Λ x (z)) = Ψ x (κ Λ (x) -1 h x,y (z), y)
where h x,y (z) = κ Λ (x)h x,y (Λ (x) -1 z) is a diffeomorphism mapping (-1, 1) into (-2, 2) satisfying h x,y (0) = 0 and h x,y C 1 < 2. Then by (6.15) and (6.17), we see that for all sufficiently small > 0, for any x ∈ M and y ∈ (-1, 1)

Ψ x,Φ s x (y) (Φ Λ x (•)) -ϕ • h x,y (-1,1) ≤ 2C 3 1+δ 2 , ϕ • h x,y θ ≤ 2κ -1 1 C C 3 |y| δ 2 /2 .
Consequently {Λ } >0 is tame.

6.3. Choosing the correct scales -Class II. In this subsection, we assume that g ∈ A ∞ is in Class II. In other words, E u is C 1+δ for some δ > 0.

Definition 6.9. For any > 0 we define ϑ : M → Z + by

ϑ (x) = inf{k ≥ 1 | Dg k | E s (x) < }. (6.18) We define Λ (x) = Λ ϑ (x) (x).
Lemma 6.10. By letting θ be sufficiently small depending only on g, the following is true. For any x ∈ M, there is a

function R ∈ C θ (-2, 2) such that R θ < C , -1 Ψ x (Λ (x) -1 z, y) = yR(z) + O( δ ), ∀y ∈ (-1, 1), z ∈ (-2, 2).
Moreover, if E s and E u are not jointly integrable, then there is C > 1 such that for all sufficiently small > 0, for J 0 = [0, 1) or (-1, 0], we have

Osc J 0 R > 1/C .
Proof. Denote n = ϑ (x) and x n = g n (x). As before we denote λ i = λ g i (x) and µ i = µ g i (x) for all integer i. By (4.16), there is κ ∈ {±1} such that for all z ∈ (-2, 2), y ∈ (-1, 1) we have

Ψ x (Λ (x) -1 z, y) = Ψ x (κλ 0 • • • λ n-1 z, y) = Ψ x n (κz, (µ 0 • • • µ n-1 ) -1 y).
By Lemma 5.8, we have

-1 Ψ x n (z, (µ 0 • • • µ n-1 ) -1 y) = cyφ u
x n (z) + O( δ ) where we have, by (6.18), that

|c| = | -1 (µ 0 • • • µ n-1 ) -1 | ∼ 1.
By Lemma 5.8 and by letting θ be sufficiently small depending only on g, we have φ u

x n θ < C . Then the first statement of the lemma is satisfied for R(z) = cφ u x n (κz), ∀z ∈ (-2, 2). The last statement then follows from Corollary 5.10.

We have the following. Corollary 6.11. For any g ∈ A ∞ in Class II, the sequence of functions {Λ } >0 given by Definition 6.9 is stable and tame.

Proof. It is straightforward to verify that the sequence {ϑ } >0 is slowly growing. Moreover, by distortion estimates, we see that for any > 0

sup x∈M sup w∈W s (x,1) |ϑ (x) -ϑ (w)| < C .
Then by (3.4) and distortion estimates we can deduce that {Λ } >0 is stable.

To deduce that {Λ } >0 is tame, it suffices to apply Lemma 6.10 and the argument in the last paragraph of the proof of Corollary 6.8.

UNIFORM NON-INTEGRABILITY ON UNIFORM SET

7.1. Uniform non-integrability in Class I F . In this subsection, we assume that g is in Class I. We let K be an integer satisfying the condition in Proposition 4.8. By Corollary 5.4, there is κ 1 > 0 so that g ∈ A ∞ +,K,κ 1 ∩ A ∞ -,K,κ 1 . We first state two properties of the functions defined in Definition 4.19.

Lemma 7.1. For any ∈ (0, 1 ), there exists κ > 0 depending only on g, K, and κ 1 such that for any (z 0 , y 0 ) ∈ (-1 + , 1 -) 2 , any integer n > 0, any x ∈ M, and any R ∈ T x,n , we have

Osc B(z 0 , )×B(y 0 , ) R ≥ κ R (-1 , 1 ) 2 .
Proof. Denote x n = g n (x). Take an arbitrary R(z, y) = h 1 yϕ u

x n (z) + h 2 zϕ s x (y) + P(z, y) ∈ T x,n (7.1) with P ∈ Poly <K,<K . Without loss of generality, we assume that R (-1 , 1 ) 2 = 1.

We let C > 1 be a large constant to be determined depending only on g, and K. By letting C be large, we may assume that

ϕ u w (-1 , 1 ) , ϕ s w (-1 , 1 ) < C 1/2 , ∀w ∈ M. (7.2)
We divide the proof into two cases.

(1) We first assume that |h

1 | > C -1 or |h 2 | > C -1 . We consider the case |h 1 | > C -1
as the other case can be handled in a similar way. Since g ∈ A ∞ +,K,κ 1 , by (6.6) in Lemma 6.7 as well as the formula (7.1), we deduce for any y with /2 < |y -

y 0 | < that Osc B(z 0 , ) (R(•, y) -R(•, y 0 )) ≥ c 0 ( ) κ 1 2C .
(2) Now assume that |h 1 |, |h 2 | ≤ C -1 . Then by (7.2) we have

R -P (-1 , 1 ) 2 < 2C -1/2 1 . (7.3)
By letting C be sufficiently large depending on 1 (which is determined by g), we have

P (-1 , 1 ) 2 ≥ R (-1 , 1 ) 2 -R -P (-1 , 1 ) 2 ≥ 1 2 .
Since P ∈ Poly <K,<K , we deduce from the above the existence of a constant c > 0 depending only on K, , 1 such that Osc B(z 0 , )×B(y 0 , ) P > c.

Lemma 7.1 in this case follows from (7.3) by letting C be sufficiently large depending on g, K, .

Lemma 7.2. There exists a constant C > 0 depending only on g, K such that the following is true. Let n > 0 be an integer and let R ∈ T x,n satisfy that R (-2,2) 2 ≤ 1. Then there

exist h 1 , h 2 ∈ R with |h 1 |, |h 2 | < C, and some P ∈ Poly <K,<K C such that R(z, y) = h 1 yϕ u g n (x) (z) + h 2 zϕ s x (y) + P(z, y).
By Lemma 7.1, we can replace (-2, 2) 2 in the above lemma by any B(z 0 , ) × B(y 0 , ) ⊂ (-1 , 1 ) 2 with > 0 (in this case we need to make C depends on as well).

Proof. By definition, there exist h 1 , h 2 ∈ R and P ∈ Poly <K,<K such that the equation in the lemma holds. If |h 1 | > κ -1 1 , then by g ∈ A ∞ +,K,κ 1 we deduce that

R(•, 1) (-2,2) > 1.
This would be a contradiction. In a similar way we deduce that |h 2 | ≤ κ -1 1 . Consequently, we have

P (-2,2) 2 ≤ R (-2,2) 2 + 2κ -1 1 ϕ u g n (x) (-2,2) + 2κ -1 1 ϕ s x (-2,2) ≤ 1 + 4C κ -1 1 .
This implies that P ∈ Poly <K,<K

C

for C > 0 sufficiently large depending only on g and K.

We consider the following subsets of M. Definition 7.3. Given , κ > 0 and an integer n > 0, we define the (n, κ), resp. ( , n, κ)non-expanding uniform set by Ω(n, κ) = {x | det Dg j (x) < e jκ for any integer j > n}, resp. Ω( , n, κ) = {x | det Dg j (x) < e jκ for any integer j ∈ (n, ς (x)]}.

We will show in Section 8 that Ω(n, κ) is n 1 -recurrent for any n 1 > 0 whenever g is in Class I F and n is large.

Lemma 7.4. Let η 0 be given by Proposition 4.8. If we let κ > 0 and δ > 0 be sufficiently small depending on η 0 , then, for any integer n 0 > 0 and C > 0, the following holds for sufficiently small > 0: if x ∈ M and an integer n > 0 satisfy either of the conditions (1) x ∈ Ω( , n 0 , κ) and k (x) -C ≤ n ≤ ς (x) + C, or (2) x ∈ Ω(n 0 , κ) and n ≥ k (x) -C, then there exist R ∈ T x,n and κ ∈ {±1} such that

Ψ x (κΛ n (x) -1 •, •) -R (-1 , 1 ) 2 = O( 1+δ ).
Moreover, there is C 4 > 0 depending only on g such that if in addition to the above conditions we also have

Ψ x (Λ n (x) -1 •, •) (-2,2) 2 < /C 4 , (7.4) then n ≥ ς (x).
Proof. Given x ∈ U, let us denote λ i , µ i as in (4.17). By Corollary 4.20, there exist functions a 2 , • • • , a K-1 : (-1 , 1 ) → R satisfying (4.18), κ ∈ {±1} and R ∈ T x,n such that for any z, y ∈ (-1 , 1 )

Ψ x (κΛ n (x) -1 z, y) = R(z, y) + K-1 ∑ i=2 a i (y)z i + O(( |y|) 1+δ + 2 ). (7.5)
We have the following.

Claim 7.5. For 2 ≤ i ≤ K -1 and y ∈ (-1 , 1 ), we have

|a i (y)| = O( 1+δ |y|). (7.6)
Proof of the claim. Under either (1) or (2) of the lemma, we have |λ 0

• • • λ n-1 | ≤ C and |µ 0 • • • µ m-1 λ 0 • • • λ m-1 | -1 ∼ det Dg m (x) ≤ C e mκ , ∀1 ≤ m ≤ n
for some C depending on g, C and n 0 . Moreover, we may assume without loss of generality that n < C | log |, for otherwise the claim is trivial by (4.18).

Recall that η 0 is given by Proposition 4.8. By (4.18), for any 2 ≤ i ≤ K -1, for any y ∈ (-1 , 1 ), we have

|a i (y)| ≤ C |y| (1-η 0 )n -1 ∑ m=0 |µ 0 • • • µ m-1 | -1 |λ m • • • λ n-1 | i ≤ C |y| (1-η 0 )n -1 ∑ m=0 |λ 0 • • • λ n-1 ||µ 0 • • • µ m-1 λ 0 • • • λ m-1 | -1 |λ m • • • λ n-1 | i-1 ≤ C C 1+δ e nκ |y|.
Here δ depends on η 0 , and in the last inequality we have used that i ≥ 2, m ≤ (1η 0 )n as well as that n ≥ k (x). By letting κ be sufficiently small depending only on g and η 0 we obtain the claim after reducing the size of δ. By (7.5) and Claim 7.5, we obtain the former part of Lemma 7.4. To see the last statement, we let C 4 > 0 be a large constant to be determined in due course, and we assume that (7.4) holds. Notice that by (7.5) and Claim 7.5

R (-2,2) 2 ≤ Ψ x (Λ n (x) -1 •, •) (-2,2) 2 + C 1+δ < 2 /C 4 (7.7)
for all sufficiently small > 0. We claim that n ≥ k (x).

Assuming otherwise. Then by g ∈ A ∞ +,K,κ 1 ∩ A ∞ -,K,κ 1 , Lemma 7.1 and by a similar argument as the one in Corollary 5.5, we deduce that

R (-2,2) 2 ≥ R (-1 , 1 ) 2 /C ≥ κ 1 /(C ) 2 .
This contradicts with (7.7) once C 4 is sufficiently large.

Moreover, we claim that, by letting C 3 in Definition 6.3 be sufficiently large and by R(•, 0) ≡ 0, we have for any y ∈ (-1, 1) that

R(•, y) (-2,2) ≤ 1 2 max( |y| δ 2 /2 , C 3 |y|). (7.8)
Indeed, by Lemma 7.2 and (7.7), we have

R(z, y) = h 1 yϕ u g n (x) (z) + h 2 zϕ s x (y) + P(z, y) with |h 1 |, |h 2 | ≤ C 0 /C 4 and P ∈ Poly <K,<K C 0 /C 4
for some C 0 depending only on g, K. Then (7.8) follows from the uniform H ölder bounds of ϕ s

x and ϕ u g n (x) . For any y ∈ (-1, 1), by taking

ϕ(z) = R(z, y) + K-1 ∑ i=2 a i (y)z i ,
and taking C 3 and C 4 large, we see that (6.3) and (6.4) follow from (7.5), (7.8) and Claim 7.5.

The following is the main lemma of this section. Recall that the notion C-UNI is introduced in Definition 3.12. Lemma 7.6. For any sufficiently small κ > 0, C 1 -UNI holds on Ω(n 0 , κ) ∩ U at scales {Λ } >0 for any C 1 , n 0 > 0.

Proof. To verify C 1 -UNI, we take an arbitrary x ∈ U with

W u (x, C 1 Λ (x) -1 ) ∩ Ω(n 0 , κ) ∩ U = ∅.
(7.9) By Definition 6.3, there exists x ∈ W s (x, 1) so that for n = ς ( x) we have

Λ (x) = Λ n (x) ∼ Λ n ( x).
By (2.4), there exists a unique ŷ ∈ (-2, 2) so that

x = Φ s
x ( ŷ). (7.10) Moreover, by (7.9) and by distortion estimates, we have that

x ∈ Ω( , n 0 + C 1 , 2κ)
for some C 1 > 0 depending on g, κ and C 1 . Note that Ω( , n 0 + C 1 , 2κ), unlike Ω(n 0 , κ), depends on an additional parameter (recall Definition 7.3).

We denote xn = g n ( x), and for each integer m we abbreviate λ g m ( x) and µ g m ( x) as λm and μm respectively.

Recall that by Definition 6.3, for all sufficiently small , we have 7.12) By Lemma 7.4, there exist κ ∈ {±1} and R(z, y) = h 1 yϕ u xn (z) + h 2 zϕ s x (y) + Q(z, y) ∈ T x,n (7.13) where h 1 , h 2 ∈ R and Q ∈ Poly <K,<K satisfy that

| λ0 • • • λn-1 |, | μ0 • • • μn-1 | -1 < , (7.11) Ψ x (Λ n ( x) -1 •, y) (-2,2) < 2C 3 , ∀y ∈ (-1, 1). (
Ψ x (κΛ n ( x) -1 z, y) = R(z, y) + O( 1+δ ), ∀z ∈ (-1 , 1 ). (7.14)
Let C 4 be given by Lemma 7.4. Since ς ( x) = n, we have from Lemma 7.4 that

Ψ x (Λ n-1 ( x) -1 •, •) (-2,2) 2 ≥ /C 4 .
Then by Lemma 7.1 and Lemma 7.4, we see that

Ψ x (Λ n ( x) -1 •, •) (-2,2) 2 ≥ /C 4 C .
Along with (7.12) and (7.14), we see that for all sufficiently small

3C 3 > R (-2,2) 2 ≥ /C 4 C . (7.15)
Then by Lemma 7.2 there is C 2 > 0 depending only on g, K and C 3 such that (7.16) By Lemma 7.1 and (7.15), there exists ȳ ∈ B( ŷ, Π /4) such that

Q ∈ Poly <K,<K C 2 and |h 1 |, |h 2 | ≤ C 2 .
R(•, ȳ) -R(•, ŷ) (-2,2) > /C 3 C 4
for some C 3 > 0 depending only on g, Π . By (7.15) and (7.16), for any y ∈ (-1 , 1 ) we have

R(•, y) -R(•, ȳ) (-2,2) < C |y -ȳ| θ + C C 2 |y -ȳ|.
By reducing κ if necessary, depending only on g, Π , C 2 , C 4 , we have for any y ∈ (7.17) Notice that by (2.4) and (7.10), we have Φ s

B( ȳ, κ) that R(•, y) -R(•, ŷ) (-2,2) > (2C 3 C 4 ) -1 .
x ( ȳ) ∈ W s (x, Π ). Let us fix an arbitrary ω ∈ R/2πZ and let J 0 = [0, 1) or (-1, 0]. Then by Lemma 7.1 and (7.17), for any y ∈ B( ȳ, κ) we have

R(•, y) -R(•, ŷ) J 0 > (2C C 3 C 4 ) -1 .
By continuity there exists z ∈ J 0 such that

R(z , y) -R(z , ŷ) -ω R/2πZ > (4C C 3 C 4 ) -1 . By (7.16), we have sup y ∈(-1 , 1 ) |R(•, y )| δ < C C 2 .
Consequently, there is an interval J 1 ⊂ J 0 containing z such that |J 1 | ≥ κ for a small constant κ > 0 depending only on g, C 4 , C 2 , C 3 , such that for any z ∈ J 1 we have

R(z, y) -R(z, ŷ) -ω R/2πZ > (8C C 3 C 4 ) -1 .
Then by (7.14) and Lemma 7.1, for all sufficiently small we have

Ψ x (κΛ n ( x) -1 z, y) -Ψ x (κΛ n ( x) -1 z, ŷ) -ω R/2πZ ≥ R(z, y) -R(z, ŷ) -ω R/2πZ -O( 1+δ ) ≥ (16C C 3 C 4 ) -1 .
By distortion estimates, we may replace Λ n ( x) by Λ n (x) in the above formula at the expense of reducing both κ and the size of J 1 by factors depending only on g, F.

Our claim then follows from Lemma 3.2.

7.2. Uniform non-integrability in Class II. For g in Class II, we have the following analogous statement.

Lemma 7.7. Define {Λ } >0 by Definition 6.9. Then for any C 1 > 0, C 1 -UNI holds on U at scales {Λ } >0 .

Proof. This is an immediate consequence of Lemma 6.10.

7.3. {Λ } >0 is adapted to Ω. The following lemma is an immediate consequence of the distortion estimates. We omit its proof.

Lemma 7.8. If g is in Class II, then for any sufficiently large integer n 1 > 0, the sequence {Λ } >0 , defined in Definition 6.9, is n 1 -adapted to U.

We have the following parallel statement when g is in Class I F . However the proof is more involved. Lemma 7.9. If g is in Class I F , then for any κ > 0, for any sufficiently large integer n 1 > 0, for any integer n > 0, the sequence {Λ } >0 , defined in Definition 6.3, is n 1adapted to Ω(n, κ) ∩ U.

Proof. Take x ∈ Ω(n, κ) ∩ U and an inverse branch v ∈ σ -n 1 x . We denote w * = v(x). By construction, we have

x * = g t (w * ) ∈ W s (x, 1) where t = τ n 1 (w * ).
Denote m = t and x = g m (w * ).

By distortion estimates, there is an integer n 0 > 0 depending only on g, n, κ and n 1 such that x * , w * , x ∈ Ω(n 0 , 2κ).

We take an arbitrary w ∈ U such that w ∈ W u (w * , 4Λ (w) -1 ). (7.18)

In the following, we will show that Λ (x) < CΛ (w) for some C > 0 independent of x, w and .

By definition, there exists w ∈ W s (w, 1) such that

ς ( w) = N 0 := sup w ∈W s (w,1) ς (w ). (7.19)
Recall that by (6.5) we have

Λ (w) = Λ N 0 (w).
(7.20) By (7.18), w ∈ W s (w, 1) and by distortion estimates, we have

Λ N 0 (w * ) ∼ Λ N 0 (w) ∼ Λ N 0 ( w). (7.21)
We also have w ∈ Ω( , n 0 + C , 3κ) for some C depending only on g.

By distortion estimates, we see that

N 0 -m ≥ k ( w) -t ≥ max(k (w * ), k ( x), k (x * )) -C t -C .
Then by Lemma 7.4, there exist

R 1 ∈ T w,N 0 , R 2 ∈ T w * ,N 0 , R 3 ∈ T x * ,N 0 and R 4 ∈ T x,N 0 such that Ψ w(Λ N 0 ( w) -1 •, •) -R 1 (-1 , 1 ) 2 = O( 1+δ ), (7.22) Ψ w * (Λ N 0 (w * ) -1 •, •) -R 2 (-1 , 1 ) 2 = O( 1+δ ), (7.23) Ψ x * (Λ N 0 -m (x * ) -1 •, •) -R 3 (-1 , 1 ) 2 = O( 1+δ ), (7.24) Ψ x (Λ N 0 -m ( x) -1 •, •) -R 4 (-1 , 1 ) 2 = O( 1+δ ). (7.25)
By (6.3), (6.4) in Definition 6.3 and by (7.19), we have

Ψ w(Λ N 0 ( w) -1 •, •) (-1,1) 2 < 2C 3 . (7.26)
Then by making smaller and making 1 larger if necessary, both depending only on g, we have

Ψ w * (Λ N 0 (w * ) -1 •, •) (-, ) 2 ≤ Ψ w(Λ N 0 ( w) -1 •, •) (-1 , 1 ) 2 .
(7.27) By (7.22), (7.23) and Lemma 7.1, we can compare, up to error O( 1+δ ), the following: (1) LHS of (7.26) and RHS of (7.27); (2) LHS of (7.27) and

Ψ w * (Λ N 0 (w * ) -1 •, •) (-1 , 1 ) 2 .
Then by (7.26) and (7.27), we obtain

Ψ w * (Λ N 0 (w * ) -1 •, •) (-1 , 1 ) 2 ≤ C C 3 . (7.28)
By Lemma 3.2(1) and x * = g t-m ( x) (notice that tm ∈ [0, 1)), there exists C > 1 depending only on g such that

Ψ x * (C -1 Λ N 0 -m (x * ) -1 •, C -1 •) (-1 , 1 ) 2 < Ψ x (Λ N 0 -m ( x) -1 •, •) (-1 , 1 ) 2 .
Then by (7.24), (7.25) and Lemma 7.1, we have

Ψ x * (Λ N 0 -m (x * ) -1 •, •) (-1 , 1 ) 2 ≤ C Ψ x (Λ N 0 -m ( x) -1 •, •) (-1 , 1 ) 2 + O( 1+δ ).
(7.29) By (4.16), (7.25), (7.28) and Lemma 7.1, there exists C n 1 > 0 depending only on g and n 1 such that

Ψ x (Λ N 0 -m ( x) -1 •, •) (-1 , 1 ) 2 (7.30) < C C n 1 Ψ x (Λ N 0 -m ( x) -1 •, µ -1 0 • • • µ -1 m-1 •) (-1 , 1 ) 2 + O( 1+δ ) < C C n 1 Ψ w * (Λ N 0 (w * ) -1 •, •) (-1 , 1 ) 2 + O( 1+δ ) < C C n 1 C 3 .
By letting p be a large integer depending only on g and n 1 , we have

N 1 = N 0 + p > sup x ∈W s (x,1) k (x ). (7.31)
By letting 1 be large depending only on g, we have sup

x ∈W s (x,1) Ψ x (Λ N 1 (x ) -1 •, •) (-2,2) 2 ≤ Ψ x * (Λ N 1 (x * ) -1 •, •) (-1 , 1 ) 2 . (7.32) By (7.31), we have Λ N 1 (x * ) -1 < e -χ 0 (p+m) Λ N 0 -m (x * ) -1 .
Then by (7.24) and Lemma 6.7, we have

Ψ x * (Λ N 1 (x * ) -1 •, •) (-1 , 1 ) 2 ≤ c 1 (e -χ 0 (p+m) ) Ψ x * (Λ N 0 -m (x * ) -1 •, •) (-1 , 1 ) 2 + O( 1+δ ).
By (7.29) and (7.30), we have

Ψ x * (Λ N 1 (x * ) -1 •, •) (-1 , 1 ) 2 ≤ c 1 (e -χ 0 (p+m) )C n 1 C C 3 + O( 1+δ ).
We let C 4 be as in Lemma 7.4. By letting p be sufficiently large depending only on g, n 1 , C 4 and C 3 , and by letting be sufficiently small, we have

Ψ x * (Λ N 1 (x * ) -1 •, •) (-1 , 1 ) 2 < /C 4 .
By (7.31), (7.32) and Lemma 7.4, this implies that

N 1 ≥ sup x ∈W s (x,1) ς (x ). (7.33) Hence Λ N 1 (x) ≥ Λ (x).
On the other hand, it is clear that there exists C n 1 > 1 depending only on g and n 1 such that

Λ N 0 (w * ) ≥ Λ N 1 (x)/C n 1 .
The proof of Lemma 7.9 then follows from (7.20), (7.21) and (7.33).

THE RECURRENCE PROPERTY

In this section, we fix a H ölder potential F and assume that g is in Class I F . The following lemma is a consequence of Lemma 3.7.

Lemma 8.1. For any κ > 0, for any integer n 1 > 0, for all sufficiently large integer n > 0, the set Ω(n, κ) ∩ U (see Definition 7.3) is n 1 -recurrent (see Definition 3.10) with respect to ν U .

Proof. Define for any integer m > 0 and η ∈ (0, 1)

B m,η = {x ∈ U | |{1 ≤ j ≤ m | σ jn 1 (x) ∈ Ω(n, κ)}| < ηm}.
We have inf

w∈W s loc (x) det Dg τ(x) (w) > e -C .
By (3.4), and by letting n be large depending on g, κ and n 1 , we can see that for each x ∈ U \ Ω(n, κ) there exists l ≥ 1 such that inf

y∈W s loc (x)
det Dg τ ln 1 (y) (y) > e ln 1 κ/2 .

We can find a collection of disjoint intervals

[c 1 , d 1 ), • • • , [c k , d k ) with endpoints in N, whose union contains at least (1 -η)m elements in {0, • • • , m}, such that for each i = 1, • • • , k, we have σ c i n 1 (x) ∈ U \ Ω(n, κ) and inf w∈W s loc (σ c i n 1 (x)) det Dg τ (d i -c i )n 1 (w) (w) > e (d i -c i )n 1 κ/2 .
Then we can deduce that for any sufficiently small η > 0, for any sufficiently large integer m 0 > 0, for any x ∈ B m 0 ,η , there exists an integer m > m 0 such that det Dg τ mn 1 (x) (x) > e (1-η)mn 1 κ/2-ηmn 1 C > e mn 1 κ/4 . (8.1) By Lemma 3.7 with κ 0 = κ 8 we obtain γ 0 > 0 such that for all sufficiently large m

(det Dg τ mn 1 (x) (x)) γ 0 dν U (x) < e mn 1 γ 0 κ 0 . (8.2)
Then, by letting m 0 be sufficiently large, and by (8.1), (8.2) along with Markov's inequaltiy, we deduce that

ν U (B m 0 ,η ) ≤ ∑ m>m 0 ν U ({x ∈ U | det Dg τ mn 1 (x) (x) > e mn 1 κ/4 }) < ∑ m>m 0 e -mn 1 γ 0 κ/8 < C e -m 0 n 1 γ 0 κ/8 .
This concludes the proof. 9. PROOF OF PROPOSITION 3.13 In this section, we use the results we obtained from Section 6 to Section 8 to deduce Proposition 3.13.

Assume that g is in Class I F . We choose K, C 3 , δ 2 so that Lemma 6.5 is applicable. We define {Λ } >0 by Definition 6.5 for C 3 , δ 2 . By Corollary 6.8, the sequence of functions {Λ } >0 is stable and tame.

We let κ satisfy the condition of Lemma 7.6, and let n 1 > 0 be a sufficiently large integer so that Lemma 7.9 is applicable. By Lemma 8.1, the set Ω = Ω(n, κ) is n 1 -recurrent with respect to ν U for some integer n sufficiently large depending only on g, κ and n 1 . By Lemma 7.9, we can see that the sequence of functions {Λ } >0 is n 1 -adapted to Ω. This verifies Proposition 3.13(1),(2). The conclusion of Proposition 3.13 then follows from Lemma 7.6. Now assume that g is in Class II. For all sufficiently small > 0, we define ϑ and {Λ } >0 by Definition 6.9. We set Ω = U. Let n 1 > 0 be a sufficiently large integer so that Lemma 7.8 is applicable. The conclusion of Proposition 3.13 then follows by combining Corollary 6.11 and Lemma 7.7. 10. PROOF OF PROPOSITION 3.14 In this section, we will give the proof of Proposition 3.14 based on several lemmas whose proofs compass Section 11 to 14. 10.1. Smoothing. Recall that constant θ ∈ (0, 1) given in Section 3 is sufficiently small, depending only on g and F, so that various objects in this paper are θ-H ölder. We will mainly consider L n a,b for n of size C log |b|, hence it is harmless to consider a small perturbation of the operator which only creates a negligible error up to time C log |b| (the rigorous argument will be given later). We indeed consider such a perturbation to make the real part of the coefficients of L a,b differentiable functions. This will make the argument in Sections 10-13 simpler.

We follow the smoothing procedure in [Dol]. Let δ 3 ∈ (0, 1) be a small constant depending only on g, F which will be determined in due course. For any B > 1, we choose f (B) , τ (B) ∈ C 1 (U, R), obtained from f , τ respectively by making convolution with an appropriate C 1 mollifier function with support of size

|B| -δ 3 /2 . It is direct to verify that f -f (B) θ/2 ≤ C |B| -δ 3 θ/4 , f (B) θ < C , f (B) C 1 ≤ C |B| δ 3 , (10.1) τ -τ (B) θ/2 ≤ C |B| -δ 3 θ/4 , τ (B) θ < C , τ (B) C 1 ≤ C |B| δ 3 . (10.2) For any a, b, B ∈ R with B = 0 we set L a,b,B ϕ(x) = ∑ x∈σ -1 (x) exp( f (B) ( x) + aτ (B) ( x) + ibτ( x))ϕ( x).
Notice that L a,b,B preserves C θ (U, C). Moreover, L a,0,B preserves C 1 (U, C) as well.

In the rest of this section, we always let a ∈ R be a constant with |a| sufficiently small, and let b ∈ R be a constant with |b| sufficiently large, both depending only on g. In order to distinguish between the amplitude of the phase and the size of the mollifier, we will also let B ∈ R denote a constant with large |B|, even though in application we will simply set B = b. In this case, L a,0,B is close to L 0,0 as linear operators on C θ (U, C) by (10.1) and (10.2). Thus L a,0,B has a unique, isolated, simple maximal real eigenvalue E a,B close to 1. In particular, the spectral radius of L a,0,B in C θ (U, C) equals to E a,B . As before, we let ρ a,B be the normalized eigenfunction for L a,0,B at E a,B . For all B with |B| sufficiently large, ρ a,B is a positive function with a lower bound independent of both a and B, e.g., we may assume ρ a,B > 1/3. We have that E -n a,B (L a,0,B ) n 1 tends to ρ a,B in C θ (U, C) as n tends to infinity, and

(L a,0,B ) n 1 C 0 ≤ C |E a,B | n , ∀n ≥ 1.
We then deduce by combining (10.1) and (10.2) that for any ϕ ∈ C 1 (U, C) and any integer n ≥ 1

E -n a,B (L a,0,B ) n ϕ C 1 ≤ C e -nχ 0 ϕ C 1 + C |B| δ 3 ϕ C 0 . (10.3)
Thus for all B ∈ R with |B| sufficiently large we have (10.4) From now on we will always set B = b, and write E a,B , ρ a,B , etc. as E a,b , ρ a,b , etc. We set

ρ a,B θ < C , ρ a,B C 1 < C |B| δ 3 .
L a,b ϕ(x) = (E a,b ρ a,b ) -1 L a,b,b (ρ a,b ϕ)(x) (10.5) = ∑ x∈σ -1 (x) exp( f (a,b) ( x) + ibτ( x))ϕ( x)
where

f (a,b) = f (b) + aτ (b) + log ρ a,b -log ρ a,b • σ -log E a,b . (10.6)
We also set 

M a,b ϕ(x) = ∑ x∈σ -1 (x) exp( f (a,b) ( x))ϕ( x). (10.7) Clearly, we have f -f (a,b) C 0 → 0 as |a| → 0, |b| → ∞. ( 10 
L a,0 ϕ -L a,0,b ϕ θ/2 ≤ C max( f -f (b) θ/2 , τ -τ (b) θ/2 ) ϕ θ/2 (10.11) ≤ C |b| -δ 3 θ/4 ϕ θ/2 .
Then the claim follows from the standard perturbation theory (see [Kat]) by considering L a,0 and L a,0,b as bounded linear operators in C θ/2 (U, C).

By definition and (10.10) we have

f (a,b) ∈ C 1 (U, R) and f (a,b) -f (a) C 0 < C |b| -δ 3 θ/4 .
Then similar to (10.11), we also have for any (10.12) We can also deduce the following from (10.1), (10.2), (10.4) and (10.12). We omit the proof.

ϕ ∈ C 0 (U, C) that L a,b ϕ -L a,b ϕ C 0 ≤ C |b| -δ 3 θ/4 ϕ C 0 .
Lemma 10.1. For all a, b ∈ R with |a| sufficiently small and with |b| sufficiently large, we have

f (a,b) θ < C , D f (a,b) C 0 < C |b| δ 3 .
10.2. An inductive scheme for the decay. We give a variant of the inductive scheme of Dolgopyat (see [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Lemma 10"]) for controlling the iterates of L a,b using majorant sequence and certain recurrence estimate. Let θ ∈ (0, 1) be as in Proposition 3.14. In the course of the proof, we may reduce θ if necessary, but will only do this finitely many times. This will not affect the generality of the result.

Proposition 10.2. Under the hypothesis of Proposition 3.13 for some sufficiently large C 1 > 1, there exist C 5 > 1, κ 2 , κ 3 , δ 3 > 0 and an integer n 1 > 0 such that the following is true. For any a ∈ R with |a| sufficiently small, for any b ∈ R with |b| sufficiently large, define f (a,b) as in Section 10.1 for δ 3 , and denote 10.7) and (10.5)).

= |b| -1 , L = L a,b , L = L a,b , M = M a,b (see (3.8), (
(10.13) Then for any u ∈ C θ (U), for any integer n b > C 5 ln |b|, there is a sequence of functions b , and (1) for any 0 ≤ n ≤ ln |b| we have

{H n } 0≤n≤ ln |b| in C 0 (U, R + ) such that H 0 ≤ u θ,
| L nn 1 L n b u(x)| ≤ H n (x), ∀x ∈ U; (2) for any 1 ≤ n ≤ ln |b| there is a subset Ω n ⊂ U such that H 2 n (x) ≤ (1 -κ 3 )M n 1 H 2 n-1 (x), if x ∈ Ω n , M n 1 H 2 n-1 (x), otherwise;
(3) for any 1 2 ln |b| ≤ n ≤ ln |b|, we have

ν U ({x ∈ U | |{1 ≤ j ≤ n | σ jn 1 +n b (x) ∈ Ω j }| < κ 2 n}) < e -nκ 2 .
We are ready to deduce Proposition 3.14 from Proposition 10.2.

Proof of Proposition 3.14. Let C 1 > 1 be sufficiently large so that Proposition 10.2 is applicable. We let n 1 , C 5 , κ 2 , κ 3 , δ 3 > 0 be given by Proposition 10.2. We define f (a,b) , L, L, M as in Proposition 10.2. We set L = ln |b| . Given an integer n > (n 1 + C 5 ) ln |b|, we set

n b := n -Ln 1 > C 5 ln |b|.
We define a U-valued random process X on the space (U, ν U ) by {X m (x) = σ mn 1 +n b (x)} 0≤m≤L where x has distribution ν U . We see that for any 1 ≤ m ≤ L, X m = σ n 1 (X m-1 ); and the marginal distribution of X m equals ν U since ν U is σ-invariant. Then by the Gibbs property, for any 0 ≤ m ≤ L -1, we have

P(X m = w | X m+1 = ŵ) = 0, ŵ = σ n 1 (w),
e fn 1 (w) , ŵ = σ n 1 (w). (10.14) Let κ * > 0 be a small constant so that

1 + κ * < min(e κ 2 /2 , ( 1 -κ 3 /4 1 -κ 3 /2 ) κ 2 ). (10.15)
We define a R-valued random process G = {G m } 0≤m≤L on the same probability space of X by setting

G 0 (x) = H 2 0 (X 0 (x)), G m+1 (x) = (1 -κ 3 /2)G m (x), if X m+1 ∈ Ω m+1 , (1 + κ * )G m (x), otherwise, ∀0 ≤ m ≤ L -1.
Claim 10.3. For any 0 ≤ m ≤ L we have

E(G m | X m ) ≥ H 2 m (X m ). (10.16)
Proof. It is direct to see that the claim holds for m = 0. Now assume that we have shown the claim for some 0 ≤ m < L.

For any ŵ ∈ U, we have

E(G m+1 | X m+1 = ŵ) = ∑ w∈σ -n 1 ( ŵ) E(G m+1 | X m+1 = ŵ, X m = w)P(X m = w | X m+1 = ŵ).
We first assume that ŵ ∈ Ω m+1 . Notice that for all a, b ∈ R with |a| sufficiently small and |b| sufficiently large we have that

E(G m+1 | X m+1 = ŵ) = (1 -κ 3 /2) ∑ w∈σ -n 1 ( ŵ) E(G m | X m+1 = ŵ, X m = w)P(X m = w | X m+1 = ŵ) (by (10.14)) = (1 -κ 3 /2) ∑ w∈σ -n 1 ( ŵ) E(G m | X m = w)e fn 1 (w) (by induction) ≥ (1 -κ 3 /2) ∑ w∈σ -n 1 ( ŵ)
H 2 m (w)e fn 1 (w)

(by (10.8)) ≥ (1

-κ 3 ) ∑ w∈σ -n 1 ( ŵ) H 2 m (w)e f (a,b) n 1 (w) = (1 -κ 3 )(M n 1 H 2 m )( ŵ) ≥ H 2 m+1 ( ŵ).
The last inequality follows from Proposition 10.2(2). Now assume that ŵ / ∈ Ω n+1 . By a similar argument as above, we deduce that

E(G m+1 | X m+1 = ŵ) ≥ (1 + κ * ) ∑ w∈σ -n 1 ( ŵ) H 2 m (w)e fn 1 (w) ≥ (M n 1 H 2 m )( ŵ) ≥ H 2 m+1 ( ŵ).
The last inequality follows from Proposition 10.2(2), and the second inequality follows from (10.8), since we have w) , ∀w ∈ U whenever |a| is sufficiently small and |b| is sufficiently large.

(1 + κ * )e fn 1 (w) ≥ e f (a,b) n 1 (
By definition, for any x ∈ U we have

G L (x) ≤ (1 + κ * ) L G 0 (x). ( 10 
.17) By Proposition 10.2(3), and by letting be sufficiently small, we see that

ν U ({x ∈ U | |{1 ≤ j ≤ L | X j (x) ∈ Ω j }| < κ 2 L}) < e -Lκ 2 .
On the other hand, by (10.15), for any x ∈ U satisfying

|{1 ≤ j ≤ L | X j (x) ∈ Ω j }| ≥ κ 2 L,
we have the following (see (10.15) for the bound on κ * )

G L (x) ≤ (1 -κ 3 /2) κ 2 L (1 + κ * ) L G 0 (x) ≤ (1 -κ 3 /4) κ 2 L G 0 (x).
(10.18) By (10.12), (3.10), (10.9), Proposition 10.2(1),( 3), (10.16), (10.17) and (10.18), for any u ∈ C θ (U) we have

L Ln 1 +n b u 2 L 2 (U,dν U ) ≤ 2 ( L Ln 1 -L Ln 1 )L n b u 2 C 0 + 2 L Ln 1 L n b u 2 L 2 (U,dν U ) ≤ 2C Ln 1 |b| -δ 3 θ/4 L n b u 2 C 0 + 2 H L 2 L 2 (U,dν U ) ≤ 2C Ln 1 |b| -δ 3 θ/4 u 2 C 0 + 2 G L L 1 (U,dν U ) ≤ 2C Ln 1 |b| -δ 3 θ/4 u 2 C 0 + 2((1 -κ 3 /4) Lκ 2 + (1 + κ * ) L e -Lκ 2 ) G 0 C 0 ≤ 2C Ln 1 |b| -δ 3 θ/4 u 2 C 0 + 2((1 -κ 3 /4) Lκ 2 + (1 + κ * ) L e -Lκ 2 ) H 0 2 C 0 ≤ [2C Ln 1 |b| -δ 3 θ/4 + 2((1 -κ 3 /4) Lκ 2 + (1 + κ * ) L e -Lκ 2 )] u 2 θ,b .
By L > 1 2 ln |b| and (10.15), the right hand side of the last inequality above is bounded by |b| -κ for some κ > 0 depending only on n 1 , δ 3 , θ, κ 2 and κ 3 . This concludes the proof. 10.3. Cancellation on uniform set. We now reduce further Proposition 10.2 to Lemma 10.8 and Lemma 10.10 below. Recall that for any function Λ : U → R + and any x ∈ U, J Λ

x , Φ Λ x are defined by (3.12) and (3.13) respectively.

Definition 10.4. We denote by K Λ the set of C 1 functions h : U → R + such that for any x ∈ U, any z ∈ J Λ x , we have (10.19) Consequently, for every h ∈ K Λ we have (10.20) Definition 10.5. Let Λ, W, H : U → R + be three arbitrary functions. We denote by H Λ W,H the set of functions u ∈ C θ (U) such that for any x ∈ U, there exists u

|∂ z [log h • Φ Λ x ](z)| ≤ 1.
(C ) -1 < h(Φ Λ x (z)) h(x) < C , ∀x ∈ U, z ∈ J Λ x .
x ∈ C θ (J Λ x ) satisfying |u x | θ ≤ H(x), |u(Φ Λ x (z)) -u x (z)| ≤ W(Φ Λ x (z)), ∀z ∈ J Λ x .
Definition 10.6. Given a ν U -measurable finite partition P of U and an integer m ≥ 0, we denote by σ -m {P } the ν U -measurable finite partition consisted of atoms of the form v(V ) where V is an atom of P and v ∈ σ -m with domain containing V.

Definition 10.7. Given a measurable finite partition P of U, we say that a subset A ⊂ U is P-measurable if A is measurable with respect to the σ-algebra generated by P modulo ν U -null subsets. A measurable set B ⊂ U in a P-measurable subset is (P, c)-dense for some c > 0 if, for ν U -almost every x ∈ A, we have ν U (P (x) ∩ B) > c • ν U (P (x)), where P (x) denotes the atom of P containing x.

We now state the inductive step for verifying Proposition 10.2(1),(2).

Lemma 10.8. Under the hypothesis of Proposition 3.13 for some sufficiently large C 1 > 1, there exist δ 3 , η 1 > 0 such that for all sufficiently large C 6 > 1, for all sufficiently large integer n 1 > 0, for all sufficiently small κ 4 > 0, for any a ∈ R with |a| sufficiently small, and any b ∈ R with |b| sufficiently large, the following is true. Define f (a,b) as in Section 10.1 for δ 3 , define = |b| -1 , L, L, M as in (10.13), and define Ω, {Λ } >0 by Proposition 3.13 for C 1 , n 1 . Then for any u ∈ C θ (U), for any integer n b > C 6 ln |b|,

(1) we have

u 0 := L n b u ∈ H Λ η 1 u C 0 ,C 6 u θ,b ;
(2) there is a ν U -measurable finite partition P 0 of U (depending on b) with P 1 = σ -n 1 {P 0 } P 0 such that for any integer n ≥ 0, for any (10.23) there exists a function P n ∈ C 1 (U, [1κ 4 , 1]) ∩ K Λ such that (2a) for every x ∈ Ω, there exist a P 1 -measurable connected subset A x ⊂ P 0 (x), and an inverse branch v ∈ σ -n 1

H n ∈ K Λ satisfying | L nn 1 u 0 (x)| ≤ H n (x) ≤ u θ,b , ∀x ∈ U, (10.21) L nn 1 u 0 ∈ H Λ (n+1) η 1 u θ,b ,C 6 H n , (10.22) H n (x) ≥ (n + 1) η 1 /2 u θ,b , ∀x ∈ U,
x such that we have diamA x > κ 4 diamP 0 (x), (10.24) and P n

(z) = 1 -κ 4 , ∀z ∈ v(A x ), (10.25) (2b) the function H n+1 = M n 1 (P n H n ) satisfies H n+1 ∈ K Λ , (10.26) | L (n+1)n 1 u 0 (x)| ≤ H n+1 (x) ≤ u θ,b , ∀x ∈ U, (10.27) L (n+1)n 1 u 0 ∈ H Λ (n+2) η 1 u θ,b ,C 6 H n+1 . (10.28)
The proof of Lemma 10.8 is deferred to Section 13 after some preparations in Section 11 and 12.

As an immediate corollary of Lemma 10.8, we have the following.

Corollary 10.9. For any sufficiently large integer n 1 > 0 and sufficiently small κ 4 > 0, there exist some κ 3 > 0 depending only on g, F, κ 4 and n 1 ; and some κ 5 > 0 depending on g, F and κ 4 such that the following is true. For H n , H n+1 , P 0 , P 1 , Ω in Lemma 10.8 (for κ 4 and n 1 ), denote by Ω the minimal (with respect to inclusion) P 0 -measurable subset of U containing Ω. Then, for any n ≥ 0, there is a P 1 -measurable and (P 0 , κ 5 )-dense subset Ω n+1 of Ω such that

H 2 n+1 (x) ≤ (1 -κ 3 )M n 1 H 2 n (x), if x ∈ Ω n+1 , M n 1 H 2 n (x), otherwise.
Proof. Let P n be given by Lemma 10.8. By Cauchy's inequality, we have

(M n 1 (P n H n )) 2 ≤ (M n 1 P 2 n )(M n 1 H 2 n ). It is clear that M n 1 P 2 n ≤ 1.
11. PARTITION Definition 11.1. For any integer k ≥ 1, for any x ∈ U satisfying

σ i (x) ∈ Int(U α i ), ∀0 ≤ i ≤ k for a sequence (α 0 • • • α k ) ∈ I k+1
, there exist a unique inverse branch

v i : U α i → U α i-1
for each 1 ≤ i ≤ k. In this case, we define the k-th cylinder at x by

U x k = v 1 • • • v k (U α k ).
It is clear that for any integer k ≥ 1, the k-th cylinder is well-defined for a ν U -full measure subset. Clearly, for any integer k ≥ 1, for any x ∈ U such that the k-th cylinder at x is well-defined, we know that the k-th cylinder is also well-defined at any w ∈ Int(U x k ), and U x k = U w k . In the next lemma, we construct a partition P of U depending on the parameter (or b). The pieces of P will enjoy some uniform estimates with respect to . The stable property of {Λ } >0 will play the key role in its proof.

Lemma 11.2. There exists C 1 > 1 depending only on g such that the following is true. Given a (n, κ)-stable sequence of functions {Λ : U → R + } >0 for some integer n > 0 and some κ > 0, there is an integer n > 1 such that for all sufficiently small > 0, there is a finite partition P of a ν U -full measure subset of U into cylinders

P = {V i | 1 ≤ i ≤ l}, such that
(1) each V i ∈ P contains some x * ∈ V i satisfying

V i ⊂ W u (x * , C 1 Λ (x * ) -1 ); (11.1)
(2) for every x ∈ V i , we have either W u (x, [0, Λ (x) -1 )) or W u (x, (-Λ (x) -1 , 0]) ⊂ V i ; (11.2)

(3) for any n > n , for ν U -a.e. x ∈ U, every v ∈ σ -n x induces a C 1 -contraction from P (x) to P (v(x)) (in particular, σ -n (P ) P). Moreover we have Dv| P (x) diam(P (x)) < C e -n κ diam(P (v(x))). (11.3) Proof. For any integer k ≥ 1, for any x ∈ U at which the k-th cylinder is welldefined, we define

D(x, k) = inf w∈U x k inf{ | U x k ⊂ W u (w, )}.
We have seen that D(x, k) depends on x through U x k . By (3.5) and distortion estimates, we know that there is C > 1 depending on g such that for ν U -a.e. x ∈ U, D(x, k + 1) ≥ (C ) -1 D(x, k), ∀k ∈ N. By (3.5), diam(U x k ) goes to 0 as k goes to infinity. Hence, D(x, k) goes to 0 as k goes to infinity.

For ν U -a.e. x ∈ U, we set

k x = inf{k ≥ 1 | D(x, k) ≤ C sup w∈U x k Λ (w) -1 }.
It is clear that k x is finite since Λ ∈ L ∞ (U). Hence diam(U x k x ) is uniformly lower bounded. Moreover, for ν U -a.e. x, we have (11.4) Notice that the last inequality is a consequence of the choice C above.

C sup w∈U x kx Λ (w) -1 ≥ D(x, k x ) ≥ (C ) -1 D(x, k x -1) ≥ sup w∈U x kx Λ (w) -1 .
For ν U -a.e. x, for any w ∈ U x k x , we have k x = k w and U x k x = U w k w ; and for any w / ∈ U x k x at which U w k w is defined,

Int(U x k x ) ∩ Int(U w k w ) = ∅. Then P = {U x k x | x ∈
U} is a finite partition of a ν U -full measure subset of U into cylinders. By (11.4), we obtain (11.2).

For a ν U -typical x ∈ U, we select an arbitrary x * ∈ U x k x such that

Λ (x * ) -1 > 1 2 sup w∈U x kx Λ (w) -1 .
Then by the first inequality in (11.4), we have

2C Λ (x * ) -1 ≥ D(x, k x ).
By the definition of D(x, k x ), there exists x ∈ U x k x such that

U x k x ⊂ W u (x , 2C Λ (x * ) -1
). In particular, for all sufficiently small , we have x * ∈ W u (x , 1). Then by (2.4)

W u (x , 2C Λ (x * ) -1 ) ⊂ W u (x * , 8C Λ (x * ) -1 ).
As a result, we obtain (11.1) with C 1 = 8C .

We now show (11.3). Let n be a large integer and denote P = σ -n {P }. Let x be a ν U -typical point in U. Then we have P (x) = v(P (σ n (x))) where v ∈ σ -n satisfies that x = v(σ n (x)). By construction, for some w ∈ P (x), we have P (x) = v(P (σ n (w))) = g -τ (W u (g τ (w), J)) where τ = τ n (w) ∈ (n τ 0 , n τ * ); and some interval J containing 0 satisfying |J| ≤ C C 1 Λ (σ n (y)) -1 (here we use the C 1 bound of the center-stable holonomy maps between W u loc (σ n (w)) and W u loc (g τ (w))). By the hypothesis that Λ is (n, κ)-stable and by distortion estimates, for all n sufficiently large depending on g and {Λ } >0 , for all sufficiently small , we have

diam(P (x)) ≤ C Dv| P (σ n (x)) diam(P (σ n (x))) ≤ C Dg τ | E u (w) -1 |J| ≤ C C 1 Dg τ | E u (w) -1 Λ (σ n (w)) -1 ≤ C C 1 e -n κ Λ (w) -1
≤ C C 1 e -n κ diam(P (w)) < diam(P (w)).

By definition, P (w) = P (x) and both P (x) and P (x) are cylinders at x. Consequently, P (x) ⊂ P (x).

BOUNDS FOR SMOOTHNESS

In this section, we consider how the operators M a,b , L a,b and L a,b modify regularity of functions viewed at the scale (Λ ) -1 . For each integer n > 0, for each collection of functions {ϕ v : Dom(v) → C} v∈σ -n , we denote for each α ∈ I and

x ∈ U α that ∑ * v∈σ -n ϕ v (x) = ∑ v∈σ -n (α) ϕ v (x). (12.1)
12.1. Mapping between the cones. For each C 1 function ψ : U → R + , we define a linear operator

I ψ : C 1 (U, R + ) → C 1 (U, R + ) by I ψ h(x) = h(x)ψ(x).
Lemma 12.1. For any g ∈ A 2 , any F ∈ C θ (M, R + ), and any stable sequence of functions {Λ : U → R + } >0 the following is true if we let δ 3 ∈ (0, 1) be given in Section 10.1 and let integer n 1 > 0 be large. For all a, b ∈ R with |a| sufficiently small, and with |b| sufficiently large, we define f (a,b) as in Section 10.1 for δ 3 , and set , M as in (10.13).

Then for any sufficiently small , for any m > n 1 , any ψ ∈ K Λ , we have

M m I ψ (K Λ ) ⊂ K Λ .
Proof. There is κ 6 > 0 such that {Λ } >0 is (n 1 , κ 6 )-stable for all sufficiently large n 1 . We put

δ 3 = κ 6 /2. (12.2)
In the following, we let be a small constant, and abbreviate Λ , J Λ

x , Φ Λ x as Λ, J x , Φ x respectively.

Take an arbitrary h ∈ K Λ , and let m > n 1 be an integer. We set

H = M m I ψ h.
Let x ∈ U and let v ∈ σ -m x . By the hypothesis that {Λ } >0 is (n 1 , κ 6 )-stable, and by letting n 1 be sufficiently large depending on g, κ 6 and {Λ } >0 , the map

B v = Φ -1 v(x) vΦ x satisfies B v (J x ) ⊂ J v(x)
, and we have

DB v C 0 < C e -n 1 κ 6 < 1/4. (12.3)
We have for any z ∈ J x that

H(Φ x (z)) = M m (I ψ h)(Φ x (z)) = ∑ * v∈σ -m (e f (a,b) m hψ)(Φ v(x) (B v (z))).
Then for any z ∈ J x we have

∂ z [H(Φ x (z))] = ∑ * v∈σ -m [e f (a,b) m hψ] • v(Φ x (z))DB v (z) •(D[ f (a,b) m • Φ v(x) ] + D[log h • Φ v(x) ] + D[log ψ • Φ v(x) ])(B v (z)).
Since {Λ } >0 is (n 1 , κ 6 )-stable, we have DΦ x ≤ C Λ (x) -1 ≤ C |b| -κ 6 . Then by Lemma 10.1, (3.5) and (12.2), we have

DB v (z)D[ f (a,b) m • Φ v(x) ](B v (z)) = D[ f (a,b) m vΦ x ](z) ≤ C |b| δ 3 DΦ x < C |b| δ 3 -κ 6 < 1/2. Since h, ψ ∈ K Λ , we have |D[log h • Φ v(x) ]| ≤ 1, |D[log ψ • Φ v(x) ]| ≤ 1.
Summarizing the above estimates, we obtain

∂ z [H(Φ x (z))] ≤ 1 2 H(Φ x (z)) + 1 2 H(Φ x (z)) = H(Φ x (z)), ∀z ∈ J x .
This concludes the proof.

12.2. Decay of H ölder semi-norms.

Lemma 12.2. For a stable and tame sequence of functions {Λ : U → R + } >0 , there is η 1 > 0 such that for any sufficiently large C 6 > 1 and integer n 1 > 0 the following is true. For all a ∈ R with |a| sufficiently small, and all b ∈ R with |b| sufficiently large, we define f (a,b) as in Section 10.1 for δ 3 given by Lemma 12.1, and set , L, L and M as in (10.13). Then for any sufficiently small > 0 we have the following:

(1) for any integer m ≥ C 6 ln |b|, for any u ∈ C θ (U) we have

L m u ∈ H Λ η 1 u C 0 ,C 6 u θ,b
;

(2) for any functions W, H ∈ K Λ and u ∈ H Λ W,C 6 H satisfying |u(x)| ≤ H(x), ∀x ∈ U, (12.4) we have

L n 1 u ∈ H Λ M n 1 (W+ η 1 H), C 6 4 M n 1 (H+W)
.

Proof. We fix n 1 , κ 6 , C 7 , η 1 > 0 such that {Λ } >0 is (n 1 , κ 6 )-stable and (C 7 , η 1 )tame. Let m ≥ 1 be an arbitrary integer. We set

ρ = e f (a) m , ρ = e f (a,b) m .
By definition, we have

L m u = ∑ * v∈σ -m (uρe ibτ m ) • v, L m u = ∑ * v∈σ -m (u ρe ibτ m ) • v.
Recall that = |b| -1 and |b| is assumed to be large. As in Lemma 12.1, we abbreviate Λ , J Λ x , Φ Λ x as Λ, J x , Φ x respectively. Fix an arbitrary x ∈ U. We set

u v = u • vΦ x , ρ v = ρ • vΦ x , ρv = ρ • vΦ x , θ v = e ibτ m • vΦ x .
Then, using the notation (12.1), we may write

L m u • Φ x = ∑ * v∈σ -m u v ρ v θ v , L m u • Φ x = ∑ * v∈σ -m u v ρv θ v . (12.5) By definitions, we have ∑ * v∈σ -m ρ v = ∑ * v∈σ -m ρv = 1. (12.6) Notice that by Lemma 3.3 for every v ∈ σ -m x there exists c ∈ R such that τ m • vΦ x (z) = c + Ψ x,x v (Φ x (z)), ∀z ∈ J x .
Then, since {Λ } >0 is (C 7 , η 1 )-tame, for every x ∈ U and every v ∈ σ

-n 1 x , there exists Θ v ∈ C θ (J x ) such that Θ v C 0 = 1, |Θ v | θ < 2πC 7 , θ v -Θ v C 0 < η 1 . (12.7)
Since {Λ } >0 is (n 1 , κ 6 )-stable, by letting |b| be sufficiently large and by m ≥ C 6 ln |b|, the map (12.11) Since {Λ } >0 is (n 1 , κ 6 )-stable, by enlarging m if necessary we obtain DB v C 0 < C e -mκ 6 . (12.12) By direct computation, we can choose C 8 > 1 depending only on g, F and θ such that (12.14) Then by (12.5) and (12.7) we have

B v = Φ -1 v(x) vΦ x satisfies B v (J x ) ⊂ J v(x) . Hence ρ v J x ≤ ρ • Φ v(x) J v(x) , ρv J x ≤ ρ • Φ v(x) J v(x) . (12.8) By Lemma 10.1, we have |ρ • v| θ ≤ C ρ • v C 0 , | ρ • v| θ ≤ C ρ • v C 0 . (12.9) Then we have |ρ v | θ ≤ DΦ x θ |ρ • v| θ ≤ C Λ(x) -θ ρ v C 0 , (12.10) | ρv | θ ≤ DΦ x θ | ρ • v| θ ≤ C Λ(x) -θ ρv C 0 .
ρ v (z) ρ v (0) , ρv (z) ρv (0) ∈ (C -1/2 8 , C 1/2 8 ), ∀z ∈ J x . (12.13) Proof of item (1): Set u = ∑ * v∈σ -m u v ρ v Θ v .
|L m u • Φ x -u | < η 1 u C 0 .
By (12.12), we deduce

|u v | θ ≤ C e -mκ 6 θ |u| θ .
Then by (12.6), (12.7), (12.11) and (12.13) we have

|u | θ ≤ ∑ * v∈σ -m [|u v | θ ρ v C 0 + u v C 0 |ρ v | θ + u v C 0 ρ v C 0 |Θ v | θ ] ≤ C C 8 e -mκ 6 θ |u| θ + C C 8 C 7 u C 0 .
By letting C 6 be sufficiently large depending only on g, κ 6 , C 8 and C 7 , and by letting m ≥ C 6 ln |b|, we deduce

|u | θ < C 6 u θ,b .
This concludes the proof of item (1).

Proof of item (2): Fix an arbitrary v ∈ σ -m

x . By hypothesis, we have that |u v (z)| ≤ H(v(Φ x (z))), ∀z ∈ J x . (12.15) By (10.20) and by enlarging C 8 if necessary we have

C -1/2 8 < H(Φ v(x) (z)) H(v(x)) < C 1/2 8 , ∀z ∈ J v(x) . (12.16) Since u ∈ H Λ W,C 6 H , there is ũv ∈ C θ (J v(x) ) such that | ũv | θ ≤ C 6 H(v(x)), (12.17) |u(Φ v(x) (z)) -ũv (z)| ≤ W(Φ v(x) (z)), ∀z ∈ J v(x) . (12.18)
Thus for every z ∈ J x , we have

|u v (z) -ũv • B v (z)| = |(u • Φ v(x) -ũv ) • B v (z)| ≤ W(Φ v(x) (B v (z))) = W(v(Φ x (z))). (12.19)
By (12.12) and (12.17), we have

| ũv • B v | θ ≤ C e -mκ 6 θ | ũv | θ ≤ C 6 C e -mκ 6 θ H(v(x)). (12.20) Set u = ∑ * v∈σ -m ( ũv • B v )( ρv Θ v ). (12.21)
Then by (12.5), (12.19), (12.15), (12.4) and (12.7), for every z ∈ J x we have

| L m u • Φ x (z) -u (z)| ≤ ∑ * v∈σ -m |(u v ρv θ v )(z) -( ũv • B v ρv Θ v )(z)| (12.22) ≤ ∑ * v∈σ -m (|u v (z) -ũv • B v (z)||Θ v (z)| ρv (z) + |θ v (z) -Θ v (s)||u v (z)| ρv (z)) ≤ ∑ * v∈σ -m ρv (z)(W(v(Φ x (z))) + η 1 |u v (z)|) ≤ [M m (W + η 1 H)](Φ x (z)).
By (12.7), (12.19), (12.20), (12.11) and (12.13), we have

| ũv • B v ρv Θ v | θ ≤ | ũv • B v | θ ρv Θ v C 0 + | ρv | θ ũv • B v Θ v C 0 + |Θ v | θ ũv • B v ρv C 0 ≤ C C 6 C 8 e -mκ 6 θ H(v(x)) ρv (0) + C C 8 Λ(x) -θ (H + W)(v(x)) ρv (0) +C 7 C 8 (H + W)(v(x)) ρv (0) ≤ C 8 (C C 6 e -mκ 6 θ + C Λ(x) -θ + C 7 )(H + W)(v(x)) ρv (0).
By taking |b| sufficiently large depending on g, we can make Λ(x) -θ arbitrarily small. Then by making |b| sufficiently large depending on g, C 7 , and by making m, C 6 sufficiently large depending on g, C 8 , C 7 , we have 

| ũv • B v ρv Θ v | θ ≤ C 6 4 ((H + W) ρ)(v(x)
L m u • Φ x ∈ H Λ M m (W+ η 1 H), C 6 4 M m (H+W)
. This concludes the proof of item (2).

13. PROOF OF LEMMA 10.8

In this section we will prove Lemma 10.8. This will complete the proof of Proposition 10.2 (and hence Proposition 3.14 as well).

Notice that Lemma 10.8(1) follows from Lemma 12.2(1). It remains to show Lemma 10.8(2). We will verify Lemma 10.8(2) by an argument similar to the one in [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Lemma 10"].

Let n 1 be a large integer to be determined in due course. By hypothesis, there exist constants C 9 > 0, κ 6 , κ 7 ∈ (0, 1 10 ) such that (1) {Λ } >0 is (n 1 , κ 6 )-stable and is (n 1 , C 9 )-adapted to Ω;

(2) (C 1 , κ 7 )-UNI holds on Ω at scales {Λ } >0 . Notice that: we first choose κ 6 depending only on {Λ } >0 ; then we ask n 1 to be sufficiently large so that {Λ } >0 is (n 1 , κ 6 )-stable; and finally we let C 9 be sufficiently large so that {Λ } >0 is (n 1 , C 9 )-adapted to Ω. We fix a constant δ 3 > 0 given by Lemma 12.1, and fix a constant η 1 > 0 given by Lemma 12.2.

Let a, b, u, n, H n be given by Lemma 10.8. We may assume without loss of generality that u = 0 otherwise there is nothing to prove. Recall that f (a,b) is defined for δ 3 ; and , L and M are given by (10.13). We let C 1 be sufficiently large so that Lemma 11.2 is applicable, and define P 0 by Lemma 11.2 applied to Λ . We will abbreviate Φ Λ

x , J Λ x as Φ x , J x respectively. Let C 6 > 1 be a large integer to be determined depending on g and {Λ } >0 , and take an arbitrary integer n

b > C 6 ln |b|. Recall that u 0 = L n b u. Denote ũ = L nn 1 u 0 .
By the assumptions (10.21) and (10.23), we have for all x ∈ U that

| ũ(x)| ≤ H n (x) ≤ u θ,b , H n (x) ≥ (n + 1) η 1 /2 u θ,b . (13.1)
Assume that for some κ 4 ∈ (0, 1/4) we have found P n ∈ C 1 (U, [1κ 4 , 1]) ∩ K Λ satisfying (10.25) and (10.27). By letting n 1 be sufficiently large, we may apply Lemma 12.1 to see that for all sufficiently small ,

H n+1 = M n 1 (P n H n ) ∈ K Λ . (13.2)
Moreover, by κ 4 < 1/4 we have

H n+1 ≥ 1 2 M n 1 H n . (13.3)
Let C 6 and n 1 be sufficiently large depending on g and {Λ } >0 so that Lemma 12.2 is applicable. Then by applying Lemma 12.2 to W = (n + 1) η 1 u θ and H = H n , we obtain that

L (n+1)n 1 u 0 ∈ H Λ M n 1 ((n+1) η 1 u θ,b + η 1 H n ), C 6 4 M n 1 (H n +(n+1) η 1 u θ,b ) ⊂ H Λ M n 1 ((n+2) η 1 u θ,b ), C 6 4 M n 1 (H n +(n+1) η 1 u θ,b ) ⊂ H Λ (n+2) η 1 u θ,b ,C 6 H n+1 .
The last two inclusions above follow from (13.1) and (13.3). This gives (10.28).

We now proceed to the proof of (10.27). We define P n , by specifying the values of P n on each atom of σ -n 1 {P 0 }. Let P 0 (x 0 ) be an atom of P 0 where x 0 is in the ν U -full measure set in Lemma 11.2. If P 0 (x 0 ) is disjoint from Ω, then we set

P n | σ -n 1 (P 0 (x 0 )) ≡ 1.
Now we assume in the rest of the proof that P 0 (x 0 ) meets Ω. In this case, we can assume without loss of generality that x 0 ∈ Ω. By Lemma 11.2, there exist x ∈ P 0 (x 0 ) and an interval J ⊂ (-C 1 , C 1 ) containing either [0, 1) or (-1, 0], such that P 0 (x 0 ) = P 0 (x) = W u (x, Λ (x) -1 J). (13.4) Below we suppose [0, 1) ⊂ J, but the other case can be treated in a parallel manner. Consequently we have [0, 1) ⊂ J x and Φ x induces a diffeomorphism from [0, 1) to a subset of P 0 (x). By Lemma 11.2(2), (2.4) and (13.4), we have

Λ (x) < 2C 1 Λ (x 0 ). (13.5)
In the following, we denote by Arg(γ) the argument of a complex number γ ∈ C \ {0}, i.e., the unique element of R/2πZ with γ = |γ|e iArg(γ) . Lemma 13.1. There exists C 10 > 1 depending only on g such that for all n 1 sufficiently large depending only on g, κ 7 and {Λ } >0 , for any v ∈ σ -n 1 x , we have either (1) it holds for any w ∈ Φ

x ([0, 1)) that |(e f (a,b) n 1 ũ)(v(w))| ≤ 3 4 (e f (a,b) n 1 H n )(v(w)), or (2) 
there exists ω ∈ R/2πZ such that for any w ∈ Φ x ([0, 1))

|(e f (a,b)

n 1 ũ)(v(w))| > C -1 10 (e f (a,b) n 1 H n )(v(w))
and Arg((e f (a,b)

n 1 ũ)(v(w))) -ω R/2πZ < 1 100 κ 7 .
Proof. Already in the proof of Lemma 12.2 (see (12.13) and (12.16)), we have seen that there is C 8 > 1 depending only on g, F and θ such that for any x ∈ U and any z

∈ J x H n (Φ x (z)) H n (v(x)) , e f (a,b) n 1 •v(Φ x (z)) e f (a,b) n 1 (v(x)) ∈ (C -1/2 8 , C 1/2 8 ). (13.6) We fix some v ∈ σ -n 1 x . Assume that item (1) does not hold. Then there exists z ∈ [0, 1) such that w = Φ x (z) satisfies that |(e f (a,b) n 1 ũ)(v(w))| > 3 4 (e f (a,b) n 1 H n )(v(w)). (13.7)
By letting n 1 be sufficiently large, we have

v(P 0 (x)) ⊂ v(W u (x, C 1 Λ (x) -1 )) ∩ U ⊂ W u (v(x), Λ (x) -1 ) ∩ U.
Then by (13.6) and (13.7) we have )) . (13.8) By Definition 10.5 (applied to the point v(x)), (10.22), (13.1) and Lemma 11.2, there is a function ûv ∈ C θ (J) such that

|(e f (a,b) n 1 ũ)(v(w))| ≥ 3 4C 8 (e f (a,b) n 1 H n ) • v Φ x ([0, 1 
| ûv | θ ≤ C 6 C e -n 1 κ 6 θ H n (v(x)), (13.9) ũ • v(Φ x (•))) -ûv J ≤ (n + 1) η 1 u θ,b < η 1 /2 H n (v(x)). (13.10)
Here we deduce (13.9) by

D[(Φ v(x) ) -1 vΦ x ] ≤ C e -n 1 κ 6 ,
which follows from the fact that {Λ } >0 is (n 1 , κ 6 )-stable. Then by (10.21), (13.6) and (13.10), we have ûv J ≤ 2C 8 H n (v(x)). (13.11) By (13.10) and (13.6) we have

( ũe f (a,b) n 1 ) • v • Φ x -ûv e f (a,b) n 1 • v • Φ x [0,1) ≤ C 8 η 1 /2 (H n e f (a,b) n 1 )(v(x)
). (13.12) By (13.11), (13.9), (12.11) and the hypothesis that {Λ } >0 is (n 1 , κ 6 )-stable, for all sufficiently small we have

| ûv e f (a,b) n 1 (v(Φ x (•)))| θ,[0,1) ≤ ûv [0,1) |e f (a,b) n 1 (v(Φ x (•)))| θ,[0,1) + | ûv | θ e f (a,b) n 1 (v(Φ x (•))) [0,1) ≤ C Λ (x) -θ e f (a,b) n 1 • v Φ x ([0,1)) ûv J + C 6 C e -n 1 κ 6 θ H n (v(x)) e f (a,b) n 1 • v Φ x ([0,1)) ≤ 10(C 8 ) 2 C ( θκ 6 + C 6 e -n 1 κ 6 θ )(H n e f (a,b) n 1 )(v(x)).
By letting n 1 be sufficiently large depending on g, κ 6 , κ 7 , C 8 , C 6 , θ, and by letting be sufficiently small (or equivalently, letting |b| be sufficiently large) depending on g, κ 6 , κ 7 , C 8 , θ, we have

| ûv e f (a,b) n 1 (v(Φ x (•)))| θ,[0,1) ≤ κ 7 20 4 (C 8 ) 2 (e f (a,b) n 1 H n ) • v Φ x ([0,1)) . (13.13)
Then by (13.12) and by letting be sufficiently small, we obtain

Osc [0,1) ( ũe f (a,b) n 1 )(v(Φ x (•))) ≤ 2κ 7 20 4 (C 8 ) 2 (e f (a,b) n 1 H n ) • v Φ x ([0,1)) . (13.14) Consider an arbitrary w ∈ Φ x ([0, 1)). We have |( ũe f (a,b) n 1 )(v(w ))| ≥ |( ũe f (a,b) n 1 )(v(w))| -Osc [0,1) ( ũe f (a,b) n 1 )(v(Φ x (•))) (by (13.8), (13.14)) ≥ 3 4C 8 (e f (a,b) n 1 H n )(v(w )) - 2κ 7 20 4 (C 8 ) 2 (e f (a,b) n 1 H n ) • v Φ x ([0,1)) (by (13.6)) ≥ (100C 8 ) -1 (H n e f (a,b) n 1 )(v(w )). (13.15)
Suppose that item (2) fails. Then there would exist w 1 , w (13.16) Then by (13.12), (13.15) and (13.16) for all sufficiently small > 0 we have

2 ∈ Φ x ([0, 1)) such that Arg((e f (a,b) n 1 ũ)(v(w 1 ))) -Arg((e f (a,b) n 1 ũ)(v(w 2 ))) R/2πZ > 1 100 κ 7 .
|(e f (a,b) n 1 ũ)(v(w 1 )) -(e f (a,b) n 1 ũ)(v(w 2 ))| ≥ 2κ 7 20 4 (C 8 ) 2 (e f (a,b) n 1 H n ) • v Φ x ([0,1)) .
Clearly this contradicts (13.14) and therefore we obtain item (2).

We now define P n on σ -n 1 (P 0 (x 0 )) in the case where P 0 (x 0 ) meets Ω. We have the following two cases to consider.

(1) If there exists an inverse branch v ∈ σ -n 1 x such that Lemma 13.1(1) holds, then we may construct P n as follows. 1/4, 3/4), andζ equals 1 on [0, 1/8] ∪ [7/8, 1). Moreover, we may also require that ζ C 1 ≤ 10κ 4 . Then for any w ∈ σ -n 1 (P 0 (x 0 )) we set

Let ζ ∈ C ∞ ([0, 1), [1/2, 1]) such that ζ(z) = 1 -κ 4 for all z ∈ (
P n (w) = 1, w / ∈ v(Φ x ([0, 1))), ζ((Φ x ) -1 (σ n 1 (w))), w ∈ v(Φ x ([0, 1))
). (13.17) By Lemma 13.1(1), (13.1) and by κ 4 < 1 4 , we have

|(e f (a,b) n 1 ũ)( ṽ(w))| ≤ (e f (a,b) n 1 P n H n )( ṽ(w)), ∀ ṽ ∈ σ -n 1 x , w ∈ Dom( ṽ).
By requiring n 1 to be sufficiently large depending only on g, the atoms of P 1 within the same atom of P 0 are much smaller than this atom of P 0 . Thus for sufficiently large n 1 depending only on g and κ, and for sufficiently small κ 4 depending only on g, there exists a P 1 -measurable connected subset A x ⊂ P 0 (x)

such that diamA x > κ 4 diamP 0 (x), P n | v(A x ) = 1 -κ 4 .
In this case, we clearly have (10.27) for all x ∈ P 0 (x 0 ).

(2) We now assume that Lemma 13.1(1) fails for every v ∈ σ -n 1

x . Then for every v ∈ σ -n 1 x , there exists ω v ∈ R/2πZ such that Lemma 13.1(2) holds with ω v in place of ω.

By Lemma 3.3, for any inverse branch v ∈ σ -n 1

x , we have

τ n 1 (v(w)) -τ n 1 (v(x)) = Ψ x,x v (w). (13.18)
By the hypothesis that {Λ } >0 is (C, η)-tame for some C, η > 0, we have

Ψ x,Φ s x (y) (Φ x (•)) [0,1) < C |y| η + 1+η .
Then by (13.18), we obtain for every v

2 ∈ σ -n 1 x that Osc J [bτ n 1 (v 2 (Φ x (•)))] = O(d W s (x, x v 2 ) η + η ).
In particular, by letting n 1 be sufficiently large, and letting be sufficiently small, there exists some

v 2 ∈ σ -n 1 x so that Osc J [bτ n 1 (v 2 (Φ x (•)))] < 1 100 κ 7 .
By the hypothesis that (C 1 , κ 7 )-UNI holds on Ω at scales {Λ } >0 , there is ȳ ∈ (-Π , Π ) such that for any y ∈ ( ȳκ 7 , ȳ + κ 7 ), for any ω ∈ R/2πZ, there is a sub

-interval J 1 ⊂ [0, 1) with |J 1 | > κ 7 such that inf z∈J 1 bΨ x,Φ s x (y) (Φ x (z)) -ω R/2πZ > κ 7 .
In particular, by (3.4) and by letting n 1 be sufficiently large depending only on g and κ 7 , we can choose v 1 ∈ σ -n 1

x with x v 1 ∈ W s (x, ( ȳκ 7 , ȳ + κ 7 )), and a subinterval J 1 ⊂ [0, 1) with |J 1 | > κ 7 such that inf z∈J 1 bΨ x,x v 1 (Φ x (z))ω R/2πZ > κ 7

We now show that |∂ z [log P n • Φ x ](w)| ≤ 1, ∀w ∈ (Φ x ) -1 (U ). (13.22) We can assume that Λ ( x) < Λ (x), for otherwise (13.22) is clear by (13.17), (13.20), and by letting κ 4 be sufficiently small depending on n 1 and C 1 . Then we have x ∈ W u (v(x 0 ), 4Λ ( x) -1 ). By (13.5) and by the hypothesis that Ω is (n 1 , C 9 )-adapted to Λ , we have

Λ (x) < 2C 1 Λ (x 0 ) < 2C 1 C 9 Λ ( x).
Then by (13.17), (13.20), and by letting κ 4 be smaller if necessary, but depending only on n 1 , C 1 and C 9 , we obtain (13.22).

Finally, notice that P n ∈ K Λ follow from (13.21) and (13.22).

14. PROOF OF LEMMA 10.10

Recall that P 0 , P 1 are ν U -measurable finite partitions, and we have

P 1 = σ -n 1 {P 0 } P 0 .
By Definition 3.10, there exist C 5 > 1 and η 2 > 0 such that Ω, and hence the P 0 -measurable set Ω as well, are (n 1 , C 5 , η 2 )-recurrent with respect to ν U .

For each x ∈ U, we denote the first return time and the first return map to Ω by τ Ω (x) = inf{n ≥ 1 | σ nn 1 (x) ∈ Ω}, σ Ω = σ n 1 τ Ω (x) (x). We define R 0 (x) = 0, R k (x) = R k-1 (σ Ω (x)) + τ Ω (x), ∀k ≥ 1, x ∈ U.

We define Q 0 = P 0 | Ω and

Q m = σ -m Ω {Q 0 }, ∀m ≥ 1.
Clearly we have

Q n Q n-1 , ∀n ≥ 1.
We begin with a rather general lemma which only uses the fact that Ω is a P 0measurable non-empty subset. Let {Ω n } n≥1 be given by the lemma. Then by definition, for each n ≥ 1, Ω n is Q 1 -measurable and Q 0 -dense in Ω. For any m > 0, any integer l ≥ 0 and any η > 0, we set

C m,l,η = {x ∈ Ω | |{1 ≤ j ≤ m | σ j Ω (x)
∈ Ω l+R j (x) }| < ηm}. (14.1) Lemma 14.1. There is η 3 > 0 depending only on g, F, n 1 and Ω such that for any integer ≥ 0 ν U (C m,l,η 3 ) < e -mη 3 , ∀m > C .

Proof. We adopt the probabilistic notations introduced in the proof of Proposition 10.2. We define for each integer l, k ≥ 0 that

Ω l,k = {x ∈ Ω | σ k Ω (x)
∈ Ω l+R k (x) }. Lemma 14.2. There is η 4 > 0 depending only on g, F and n 1 such that for any integers l, k ≥ 0, Ω l,k is Q k+1 -measurable, and we have

E(1 Ω l,k | Q k ) ≥ η 4 .
Proof. First notice that for any x ∈ Ω and any w ∈ Q k (x), we have τ Ω (σ j Ω (x)) = τ Ω (σ j Ω (w)), 0 ≤ j ≤ k -1.

Hence R k (x) = R k (w).

Let x ∈ Ω and let w ∈ Q k+1 (x). By definition, we have

σ j Ω (w) ∈ Q 0 (σ j Ω (x)), 0 ≤ j ≤ k + 1.
In particular, we have w) . This proves the Q k+1 -measurability of Ω l,k .

σ k Ω (w) ∈ Q 1 (σ k Ω (x)). Since Ω l+R k (x) is Q 1 -measurable,
To show the last inequality, notice that for a ν U -typical x ∈ Ω, we have

E(1 Ω l,k | Q k )(x) = P(Q k (x)) -1 P(Ω l,k ∩ Q k (x)).
Since σ k Ω is invertible restricted to Q k (x), by the Gibbs property of ν U we have

P(Q k (x)) -1 P(Ω l,k ∩ Q k (x)) ≥ (C ) -1 P(σ k Ω Q k (x)) -1 P(σ k Ω (Ω l,k ∩ Q k (x)
)) = (C ) -1 P(Q 0 (x )) -1 P(Ω n ∩ Q 0 (x )) (14.2) where x = σ k Ω (x), n = l + R k (x). By hypothesis, Ω n is P 1 -measurable and (Q 0 , κ 5 )-dense. Then by the Federer property of ν U , the right hand side of (14.2) is bounded from below by some constant η 4 > 0 depending only on g, F and n 1 .

Fix an integer l ≥ 0. We define the process {X n (x)} n≥0 by X j (x) = 1 σ j Ω (x)∈Ω l+R j (x) (x), ∀j ≥ 0 where x has distribution ν U . By Lemma 14.2, we see that {X n (x)} n≥0 stochastically dominate an i.i.d. coin-flipping process with rate η 4 . The proof then follows from the Large Deviation Principle for such process.

Proof of Lemma 10.10. For any integer L ≥ 0 and η ∈ (0, 1), we set

A L,η = {x ∈ U | |{1 ≤ j ≤ L | σ jn 1 (x) ∈ Ω j }| < ηL}, B L,η = {x ∈ U | |{1 ≤ j ≤ L | σ jn 1 (x) ∈ Ω}| < ηL}.
We set κ 2 = min(η 2 , η 2 η 3 )/2. (14.3)

We now show that, by enlarging C 5 if necessary, for all sufficiently small > 0 we have that ν U (A L,κ 2 ) < e -Lκ 2 , ∀L ≥ C 5 . By the hypothesis that Ω is (n 1 , C 5 , η 2 )-recurrent with respect to ν U , we have Since gx = h-1 g 1 (x) ǧx hx , we have for every z, y ∈ (-0 , 0 ) that fx,1 (z, y) = fx,1 (z, e ρx (z) y), (B.4) fx,2 (z, y) = e -ρg 1 (x) ( fx,1 (z,e ρx (z) y)) fx,2 (z, e ρx (z) y), (B.5) ψx (z, y) = ψx (z, e ρx (z) y) + ξx (z)y -ξg 1 (x) ( fx,1 (z, e ρx (z) y)) (B.6)

•e

-ρg 1 (x) ( fx,1 (z,e ρx (z) y)) fx,2 (z, e ρx (z) y).

Differentiate (B.5) with respect to y and evaluate at y = 0, we obtain ∂ y fx,2 (z, 0) = ∂ y fx,2 (z, 0)e ρx (z)-ρg 1 (x) (λ -1 x z) . (B.7) By (B.2), the right hand side of (B.7) equals µ -1

x . This shows the first equality of the lemma.

Differentiate (B.6) with respect to y and evaluate at y = 0, we obtain ∂ y ψx (z, 0) = e ρx (z) ∂ y ψx (z, 0) + ξx (z) -ξg 1 (x) (λ -1 x z)e ρx (z)-ρg 1 (x) (λ -1

x z)

∂ y fx,2 (z, 0)

= e ρx (z) ∂ y ψx (z, 0) + ξx (z)µ -1

x ξg 1 (x) (λ -1 x z).

Differentiate the above equality K times with respect to z, we obtain

∂ K z ∂ y ψx (z, 0) = ∂ K z (e ρx (z) ∂ y ψx (z, 0)) + ∂ K z ξx (z) -λ -K x µ -1 x ∂ K z ξg 1 (x) (λ -1 x z).
Substitute (B.3) into the above equality, we obtain ∂ K z ∂ y ψx (z, 0) = 0, ∀z ∈ (-0 , 0 ).

In other words, ∂ y ψx (•, 0) ∈ Poly <K .

Similar to Lemma B.1, by switching z, y coordinates, we have the following statement for gx obtained in Lemma B.1. We omit its proof. Lemma B.2. For any integers r > K + 1 > χ * χ 0 + 1, by letting D be sufficiently large depending only on g and letting 0 / 1 be sufficiently large depending on g and D, the following is true. For any x ∈ M, there are functions ρx , ξx ∈ C r-2 (-0 , 0 ) with ρx C r-2 , ξx C r-2 < C such that the map ĥx : (-0 , 0 ) 3 → (-0 , 0 ) 3 of form ĥx (z, y, t) = (e ρx (y) z, y, t + ξx (y)z) (B.8) is a C r-2 embedding, and the map ḡx = ĥ-1 g 1 (x) gx ĥx is a C r-2 embedding mapping (-2 1 , 2 1 ) 3 into (-0 , 0 ) 3 of form ḡx (z, y, t) = ( fx,1 (z, y), fx,2 (z, y), t + ψx (z, y)) satisfying that ∂ z fx,1 (0, •) ≡ λ -1 x and ∂ z ψx (0, •) ∈ Poly <K .

To finish the proof of Lemma 4.2, it suffices to take ȟx = hx • ĥx , ∀x ∈ M.

APPENDIX C.

Proof of Lemma 4.3. Let us freely use the notations in (4.17) throughout the proof. Denote by π 1,2 , resp. π 1 , the projection of (-0 , 0 ) 3 to the first two coordinates, resp. the first coordinate. For each y ∈ (-2 1 , 2 1 ), we set Γ x,y = π 1,2 ( W u

x (0, y, 0)). The parametrization z → Φ u ι x (0,y,0) (z) gives rise to the vector field DΦ u ι x (0,y,0) (∂ z ) on W u (ι x (0, y, 0)). We define a vector field Ω x,y on each Γ x,y by Ω x,y = D(π 1,2 ι -1

x )DΦ u ι x (0,y,0) (∂ z ). Denote by [Ω x,y ] the set of vector fields which are positively proportional to Ω x,y . It is direct to verify that for any T > 0 Let U x,y ∈ [Ω x,y ] be the unique vector field such that for each y ∈ (-2 1 , 2 1 ), we have π 1 U x,y (0, y) = 1, ∀y ∈ (-2 1 , 2 1 ). (C.2) We define γ x (z, y) = φ z U x,y (0, y), ∀y, z ∈ (-1 , 1 )

where φ t U x,y denote the local flow generated by U x,y . Clearly, we have item (2). We also deduce (4.9) in item (4) from (C.2). Now we can deduce item (1) from (2) along with the fact that E u is a H ölder continuous distribution and the map ι -1 x has uniformly bounded C 1 norm.

By (C.1), (C.2) and the equality ∂ z f T x,1 (0, y) = (λ (T)

x ) -1 , ∀y ∈ (-2 1 , 2 1 ),

we can verify that for any z ∈ (-2|λ (T)

x | 1 , 2|λ

(T)

x | 1 ) and y ∈ (-2 1 , 2 1 ) f T x (γ x (z, y)) = γ g T (x) ((λ (T)

x ) -1 z, (µ (T)

x ) -1 y). In particular we have Y g T (x) ((λ (T)

x ) -1 z, (µ (T)

x ) -1 y) = f T x,2 (Z x (z, y), Y x (z, y)) (C.3) whenever both sides are well-defined.

We can verify (4.10) in item ( 4) by the H ölder continuous dependence of the non-stationary parametrizations Φ u

x on x (here we tacitly identify two parametrisations which only differ in orientations).

To prove item (3), we first show that ∂ y Y x (z, 0) exists for all z ∈ (-1 , 1 ). Notice that f x,2 (z, 0) = 0, ∀z ∈ (-2 1 , 2 1 ). (C.4) Since W cu is a C 1+θ -foliation with C r leaves, we deduce that F x = {Γ x,y } y∈(-1 , 1 ) is also a C 1+θ -foliation of a subset Γ x ⊂ (-2 1 , 2 1 ) 2 with C r-2 leaves. Moreover, by letting ν * in Section 2 be sufficiently small, we can see that for every (z, y) ∈ (-1 , 1 ) 2 , there is a well-defined map H x,z : (-1 , 1 ) → (-2 1 , 2 1 ) given by equation (z, H x,z (y)) = ({z} × (-2 1 , 2 1 )) ∩ Γ x,y .

By definition, we have Y x (z, y) = H x,Z x (z,y) (y). (C.5) As the holonomy map along F x from {0} × (-1 , 1 ) to {z} × (-2 1 , 2 1 ) is C 1+θ with C 1+θ norm bounded uniformly in x, y, z, we have the following:

(1) for all z ∈ (-1 , 1 ), y ∈ (-1 /C , 1 /C ), we have Indeed, the first equality follows from (C.3), (C.4), (C.6) and the Taylor expansion of f x,2 at (Z x (z, y), 0); and the second equality follows from (4.10) and the Taylor expansion of ∂ y f x,2 at (z, 0). Then by (4.4), we have (µ -1 x y) -1 Y g 1 (x) (λ -1 x z, µ -1 x y) = µ x ∂ y f x,2 (z, 0)y -1 Y x (z, y) + O(|y| δ ) = y -1 Y x (z, y) + O(|y| δ ). (C.9) For each x ∈ M, we define a function q x : (-1 , 1 ) → R by q x (z) = lim inf y→0 y -1 Y x (z, y), ∀z ∈ (-1 , 1 ).

where we use C n to denote a constant depending only on g, n and r (we suppress the dependence on g, r in notation) in this section. It is direct to show by induction that ∂ y F n,2 (z, 0) = µ -1 0,n .

Hence by a similar argument as above we obtain

∂ i z ∂ y F n,2 (0, y) = O(C n |y|), ∀1 ≤ i ≤ r -4.
By Taylor expansion of F n,2 at (0, y), we obtain We then conclude the proof of (4.8) following the proof of [START_REF] Hasselblatt | Regularity of the Anosov splitting and of horospheric foliations[END_REF]Prop 2.1] using the above estimate instead of [START_REF] Hasselblatt | Regularity of the Anosov splitting and of horospheric foliations[END_REF]Lemma 2.2].

Y(z) = µ -1 0,n y + r-3 ∑ i=1 ∂ i z F n,
Proof of Corollary 4.14. By definition, for any x ∈ M and any ξ ∈ Ξ u 1 (x) we have ϕ u

x,ξ = ϕ u x,ξ x + ϕ x,ξ .

Take ξ = ξ u,0 x . Then the above equation gives 0 = ϕ u x,ξ u,0 x = ϕ u x,ξ x + ϕ x,ξ u,0

x . By Lemma 4.13, we deduce that there exist C > 0 and a sequence of sections {ξ n ∈ Ξ u,K (g -n (x))} n≥1 such that for all n ≥ 1, we have D K ϕ u g -n (x),ξ n (-1 , 1 ) < C and L n g -n (x) ξ n = ξ u,0 x . Then by our hypothesis on {ξ x } x∈M , we deduce that ϕ

x,ξ u,0 x ∈ Poly <K . Consequently, ϕ u x,ξ x ∈ Poly <K . To deduce the last statement, we let ξ x = L t g -t (x) ξ u,0 g -t (x) for every x ∈ M. It is straightforward to see that {ξ x } x∈M satisfies the conditions of the corollary.

3. 3 .

 3 Equilibrium measure. Definition 3.4. Let F be a real-valued Hölder function on M. The pressure of F is defined by Pr

  .8) Moreover, we have M a,b 1 = 1. Then by comparing the expressions of M a,b and L a,b , we deduce that L a,b C 0 →C 0 ≤ 1. (10.9) We claim that for all b with |b| sufficiently large ρ aρ a,b C 0 , |E a -E a,b | < C |b| -δ 3 θ/4 . (10.10) Indeed, by (10.1) and (10.2), for any ϕ ∈ C θ/2 (U, C) we have

  thus either both σ k Ω (x) and σ k Ω (w) belong to Ω l+R k (x) = Ω l+R k (w) , or both σ k Ω (x) and σ k Ω (w) belong to Ω c l+R k (x) = Ω c l+R k (

  ν U (B L,η 2 ) < e -Lη 2 , ∀L > C 5 .Proof of Lemma B.1. Given x ∈ M, we denote for every z ∈ (-, ) thatz m = λ m • • • λ -1 z, ∀m < 0. We set ρx (z) = ∑ n≥1 (log ∂ y f-n,2 (z -n , 0)log µ -1 -n ). (B.2)By definition, we see that ρx (0) = 0 andρx C r-1 < C , ∀x ∈ M.For any x ∈ M and z ∈ (-, ) we setξx (z) = λ K -i )∂ K u (e ρx -n (u) ∂ y ψ-n (u, 0))| u=w -n dw. (B.3)Then it is direct to verify that ξx C r-1 < C , ∀x ∈ M.

  |y|/C < |Y x (z, y)| < C |y|; (C.6)(2) for any κ > 0, there exists η > 0 such that(1κ)|y| < |Y x (z, y)| < (1 + κ)|y|, ∀z ∈ (-η, η); (C.7)(3) for any z ∈ (-1 , 1 ), we haveH x,z C 1+θ < C . (C.8) We claim that for any z ∈ (-|λ x | 1 , |λ x | 1 ) and y ∈ (-1 , 1 ) we have Y g 1 (x) (λ -1 x z, µ -1 x y) = ∂ y f x,2 (Z x (z, y), 0)Y x (z, y) + O(|y| 2 ) = ∂ y f x,2 (z, 0)Y x (z, y) + O(|y| 1+δ ).

  2 C n |y| 2 )z i + O((C n + |µ -1 0,n |C + CC n |y|)|z| r-2 ) = µ -1 0,n y + O(C n |y| + |µ -1 0,n |C|y|)z + |C|y| + C n |y| + C 2 C n |y| 2 )z i +O((C n + |µ -1 0,n |C + CC n |y|)|z| r-2 ).By letting C be sufficiently large depending on g, C n , and by letting |y| be sufficiently small depending on g, C, C n , we haveY(z) = µ -1 0,n y + |C|y|)z i + O(|µ -1 0,n |C|z| r-2 ). (C.10) It is straightforward to see that z = O(|λ 0,n |)Z + • • • + O(|λ 0,n |)Z r-3 + O(C n |Z| r-2 ). (C.11)By substituting (C.11) into (C.10), and by letting |y| be sufficiently small, we obtainY(z) = µ -y|C|λ 0,n |)Z i + O((|µ -1 0,n |C + C n )|Z| r-2 ).By letting n be sufficiently large, and by letting C be sufficiently large depending on g, C n , we haveY = µ -1 0,n y + O(|µ -1 0,n y|C)Z + • • • + O(|µ -1 0,n y|C)Z r-3 + O(C|Z| r-2 ).

  • J as • or • C 0 . • For any integer d ≥ 1, we denote by Poly <d the set of real polynomials in one variable with degree less than d. We write Poly <d (s) when we indicate that the independent variable is denoted by s. For every C > 0 we denote by Poly <d C the collection of polynomials in Poly <d with all coefficients bounded by C in absolute value. Similarly, for any integers d 1 , d 2 > 0, we denote by Poly <d 1 ,<d 2 the set of real polynomials of the form

In order to realize this idea directly, we would need to consider some functions spaces called anisotropic Sobolev (or Banach) spaces. But we will take an alternative way as in[Dol] that uses reduction by Markov partition which we will describe in Section

By Lemma 10.8, there is κ 3 > 0 depending on g, F, κ 4 and n 1 such that (M n 1 P 2 n )(z) < 1κ 3 , ∀z ∈ A x where A x is given by Lemma 10.8(2a).

It suffices to take Ω n+1 to be the union of all A x given by Lemma 10.8(2). By definition, Ω n+1 is P 1 -measurable and (P 0 , κ 5 )-dense in Ω.

10.4. Fast recurrence to uniform set. We can verify Proposition 10.2(3) using the following lemma.

Lemma 10.10. For an integer n 1 > 0, a real number κ 5 > 0, and a n 1 -recurrent subset Ω ⊂ U, there exist κ 2 , C 5 > 0 depending on g, F, n 1 and Ω such that the following is true. Let P 0 be a ν U -measurable finite partition such that P 1 = σ -n 1 {P 0 } P 0 , let Ω be a P 0 -measurable subset containing Ω, let {Ω n } n≥1 be a sequence of P 1 -measurable and (P 0 , κ 5 )-dense subsets of Ω. Then for any L ≥ C 5 , we have

We defer the proof of Lemma 10.10 to Section 14. 10.5. Concluding the proof of Proposition 10.2. Now we can provide the proof of Proposition 10.2.

Proof of Proposition 10.2. Under the hypothesis of Proposition 3.13 for a sufficiently large C 1 > 0, we let C 6 > 1, δ 3 , η 1 > 0 be given by Lemma 10.8; let integer n 1 > 0 be sufficiently large so that Proposition 3.13 and Lemma 10.8 are applicable; let {Λ } >0 and the n 1 -recurrent subset Ω with respect to ν U be given by Proposition 3.13 for C 1 , n 1 ; let κ 2 , C 5 be given by Lemma 10.10; and let κ 4 > 0 be sufficiently small so that Lemma 10.8 is applicable. We let C 5 > C 6 . Given a with |a| sufficiently small, b with |b| sufficiently large, and an integer n b > C 5 ln |b|. We consider an arbitrary u ∈ C θ (U) and we define H 0 ≡ u θ,b . Then Proposition 10.2(1) holds for n = 0. By Lemma 10.8(1), we have (10.21)-(10.23) for n = 0.

Define P 0 , P 1 by Lemma 10.8. We can apply Lemma 10.8 to u and H 0 to obtain P 0 and H 1 satisfying (10.26) to (10.28) for n = 0. Let κ 3 be given by Corollary 10.9 depending only on g, F, κ 4 and n 1 ; and let κ 5 be given by Corollary 10.9 depending only on g, F, κ 4 . Let Ω be the minimal P 0 -measurable subset containing Ω. Then Corollary 10.9 gives a P 1 -measurable (P 0 , κ 5 )-dense subset Ω 1 of Ω such that Proposition 10.2(2) holds for n = 1.

Iterate the above argument, we can apply Lemma 10.8 and Corollary 10.9 successively to define P n , H n , Ω n for all n ≥ 1 as long as we have (10.23). In particular, by letting κ 4 < η 1 /C , we have (10.23) whenever n ≤ ln |b| by inequalities

Proposition 10.2(1), (2) then follow from Lemma 10.8 and Corollary 10.9.

By our construction, Ω n is P 1 -measurable and (P 0 , κ 5 )-dense in Ω for each n ≥ 1. Note that for any U-random variable X with distribution ν U , we know that σ n b X has distribution ν U as above. Then we can apply Lemma 10.10 to show that Proposition 10.2(3) is satisfied for κ 2 . This concludes the proof.

where

Then for our choice of J 1 , v 1 , v 2 , κ 7 we have for every w ∈ Φ x (J 1 ) ⊂ P 0 (x)

The other case is handled similarly. We may define P n on σ -n 1 (P 0 (x 0 )) by

where ζ J 1 is defined in analogy of ζ. That is, ζ J 1 equals 1κ 4 in the center halfinterval of J 1 ; equals 1 near the boundary; and has C 1 norm bounded by 10κ 4 /κ 7 (notice that |J 1 | ≥ κ 7 ). As before, by requiring n 1 be sufficiently large depending on g and κ 7 , and for sufficiently small κ 4 depending only on g, there exists a P 1 -measurable connected subset By (13.6),(13.19) and by an elementary observation (see for instance [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF]Proposition 8]), we have for every

if κ 4 is chosen sufficiently small depending on C 8 , C 10 and κ 7 . Then by (13.2), we see that (10.27) holds for all x ∈ P 0 (x 0 ).

We have defined P n on the interior of every atom of σ -n 1 {P 0 }. Moreover, P n equals to 1 near the boundary of every atom of σ -n 1 {P 0 }. By our definition of P n on the complement of the interior of the union of all atoms of σ -n 1 {P 0 }, it is clear that P n is a C 1 function. We can conclude the proof by the following.

Lemma 13.2. By letting n 1 be sufficiently large depending on g and C 1 , by letting κ 4 be sufficiently small depending on n 1 , C 1 and C 9 , we have P n ∈ K Λ .

Proof. We fix an arbitrary x ∈ U. Let x 0 ∈ U and v ∈ σ -n 1

x 0 satisfy that v(P 0 (x 0 )) intersects W u ( x, Λ ( x) -1 ). We set

(13.21) If P 0 (x 0 ) intersects Ω, then without loss of generality we may assume that x 0 ∈ Ω. Then we let x ∈ P 0 (x 0 ) be given by the text above (13.4). In particular, (13.4) and (13.5) hold, and the values of P n on σ -n 1 (P 0 (x 0 )) is given by (13.17) if we are in case (1); and is given by (13.20) if we are in case (2).

By (13.4), (13.5) and (2.4), we have P 0 (x 0 ) ⊂ W u (x 0 , 4C 1 Λ (x) -1 ). Then, by letting n 1 be sufficiently large depending on g, C 1 , we have v(P 0 (x 0 )) ⊂ W u (v(x 0 ), Λ (x) -1 ).

For any

Consequently, by ( 14.3) we have

By (14.4), Lemma 14.1 and by enlarging C 5 if necessary, we have for all L > C 5 that

This concludes the proof.

APPENDIX A.

Proof of Lemma 3.7. Let P = {U α } α∈I be the natural partition of U. For any integer n ≥ 1 that is sufficiently large depending only on g and Π, we have the following (see Definition 10.6 for the notation)

In this case, for any γ > 0, we let S n,γ : U → R be the function defined ν U -almost everywhere by

Clearly, we have

By (3.4), we have for all sufficiently large n, and for every

Then by definition, we have for any sufficiently large integer n ≥ 1, any integer k ≥ 1, and ν U -a.e. x ∈ U S kn,γ (x) ≤ S (k-1)n,γ (x)S n,γ (σ (k-1)n (x)).

Then we have

where we denote for any integer m ≥ 1 that

The notation ∑ * here is defined by (12.1) in Section 12.

Notice that for every v ∈ σ -m , S m,γ • v is constant on each U α . Then by distortion estimates, we see that for every α ∈ I and any x, w ∈ U α

Thus for all sufficiently large integer n ≥ 1 we have

and consequently we have for any k ≥ 1

By distortion estimates, we have for any integer n ≥ 1 and for every x ∈ U that

for some C > 0 depending only on g. We let C > 1 be a large constant depend only on g and the parameter κ 0 in the lemma, and let m 0 ≥ 1 be a large integer depend only on g, κ 0 and C . Both parameters will be determined in due course. We set

Then, by setting n = m 0 in (A.3), we have for every

where

Recall that π U the canonical projection from Π to U. By (A.3), we deduce by distortion estimates that for any x ∈ Π, for any n > 0, we have

On the other hand, by the fact that the flow g is ergodic with respect to ν F , we know that for ν Π -almost every x ∈ Π

we deduce from (A.6), (A.8) and (A.7) that for every w ∈ U, for ν U -almost every x ∈ U, we have lim sup

Thus by (A.5), we have

Then by the Dominated Convergence Theorem, (A.5) and (A.9), we deduce that lim sup

Now fix an arbitrary κ 0 > 0. By (A.2), (A.4), (A.10), by letting C be sufficiently large depending on g, κ 0 , and by letting m 0 be sufficiently large depending on g, κ 0 and C , we obtain for any k ≥ 1 that

Then by letting n 0 be sufficiently large depending on g, κ 0 and m 0 , we have for any

This concludes the proof by (A.1).

APPENDIX B.

Proof of Lemma 4.2. Given any x ∈ M and m ∈ Z we will denote for simplicity that

We define ψm , fm , fm,1 , fm,2 analogously. We let D > 1 be a large constant to be determined in due course depending only on g, and denote

We will let * be sufficiently large depending on g, 0 and D so that

and is much larger than 0 . We will let υ * in Section 2 be sufficiently small depending on g, * such that the range of any chart ι x is contained in a small ball of M. Lemma B.1. For any integers r > K > χ * χ 0 , by letting D be sufficiently large depending only on g and letting * / 0 be sufficiently large depending on g and D, the following is true. For any x ∈ M, there are functions ρx , ξx

is a C r-1 embedding, and the map gx = h-1 g 1 (x) ǧx hx is a C r-1 embedding mapping (-0 , 0 ) 3 into (-, ) 3 of form gx (z, y, t) = ( fx,1 (z, y), fx,2 (z, y), t + ψx (z, y)) satisfying that

By (C.9), for all x ∈ M we have q g 1 (x) (z) = q x (λ x z), ∀z ∈ (-1 , 1 ).

Thus we have the following (see (4.17))

On the other hand, by (C.7) and Y x (0, y) = y we have lim z→0 q x (z) = q x (0) = 1, and the convergence of the above limit is uniform in x ∈ M. Thus q x (z) = 1, ∀z ∈ (-1 , 1 ).

Similarly, we can show that lim sup

Then (4.7) in item (3) follows from (C.5) and (C.8).

It remains to show (4.8) in item (3). In the following, we use notation

Let C > 1 be a large constant to be determined later. Given y ∈ (-1 , 1 ). Assume that the function p : (-1 , 1 ) → R satisfies

Let n ≥ 1 be an integer to be determined. Recall the notations in (4.17). We denote

We let

By definition, we have F n Diff r-2 < (C ) n for some C depending only on g, r.

Notice that we have F n,2 (z, 0) = 0, ∀z ∈ (-1 , 1 ).

Then we have

Proof of Lemma 4.12. The existence of ξ u,⊥

x follows from Lemma 4.2. Indeed, for each x ∈ M, we define ξ ⊥

x ∈ Ξ u,r-2 0 (x) by (4.35). More explicitly, we have for any

Then it is direct to verify that { ξ ⊥ x } x∈M satisfies the required properties. To show the uniqueness, we notice that any {ξ u,⊥

x } x∈M in the lemma can be expressed as

. Moreover, we have the following properties:

(1) for any x ∈ M, we have ϕ x (0) = ±1;

(2) for any x ∈ M, any n > 0, we have

Then it is easy to conclude that for any x ∈ M, we have ϕ x ≡ ±1. This concludes the proof.

Proof of Lemma 4.13. For each x ∈ M, we define ξ 0

x ∈ Ξ u,r-2 1 (x) by (4.36), and define ξ u,⊥ x = ξ ⊥

x ∈ Ξ u,r-2 0 (x) by (4.35). More explicitly, we have for any z ∈ (-1 , 1 ) that ξ 0

x (Φ u x (z)), (Dι x ) (z,0,0) (a, b, c) = c. Take an arbitrary x ∈ M. Let ϕ ∈ C r-2 (-1 , 1 ) and set ξ(Φ u x (z)) = ξ 0 x (Φ u x (z)) + ϕ(s)ξ u,⊥ x (Φ u x (z)), ∀z ∈ (-1 , 1 ). Let {ξ n ∈ Ξ u,r-2 (g -n (x))} n≥1 be a sequence of sections such that for all n ≥ 1, we have L n g -n (x) ξ n = ξ. For each n ≥ 1 we choose ϕ n ∈ C r-2 (-1 , 1 ) such that ξ n (Φ u g -n (x) (z)) = ξ 0 g -n (x) (Φ u g -n (x) (z)) + ϕ n (z)ξ u,⊥ g -n (x) (Φ u g -n (x) (z)). (D.1) Then by (4.4) we have

If ϕ ∈ Poly <K , then by (D.2), for any n ≥ 1, the restriction of ϕ n to the interval (-|λ 

coincides with the restriction of some P ∈ Poly <K . We are free to choose ϕ n = P at the beginning, and redefine ξ n by (D.1) if needed.

Conversely, if D K ϕ n (-1 , 1 ) is uniformly bounded in n, then by (D.2) and by K > χ * χ 0 , we see that D K ϕ = 0. Hence ϕ ∈ Poly <K .