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Caterina Calgaro;T Clément Cances? Emmanuel Creusé®

June 29, 2023

Abstract

A discrete order-two Gagliardo-Nirenberg inequality is established for piece-
wise constant functions defined on a two-dimensional structured mesh composed
of rectangular cells. As in the continuous framework, this discrete Gagliardo-
Nirenberg inequality allows to control in particular the L* norm of the discrete
gradient of the numerical solution by the L? norm of its discrete Hessian times
its L® norm. This result is crucial for the convergence analysis of a finite vol-
ume method for the approximation of a convection-diffusion equation involving
a Joule effect term on a uniform mesh in each direction. The convergence proof
relies on compactness arguments and on a priori estimates under a smallness
assumption on the data, which is essential also in the continuous framework.

AMS subject classification: 65M08 - 65M12

Keywords: discrete Gagliardo-Nirenberg inequality - Finite Volume scheme - Joule
effect term.

1 Introduction

Variable density low-Mach models arise in a wide range of physical phenomena, in
which the sound wave speed is much faster than the convective characteristic of the
fluids. In the case of a calorically perfect gas, an asymptotic expansion of the variables
with respect to the Mach number in the compressible Navier-Stokes equation leads to
a low-Mach system [23]. In the particular configuration where the dynamic viscosity
of the fluid can be explicitly given as a specific function of the temperature (see
[5, 6]), a change of variables can be used in order to obtain a divergence-free velocity
system. In that case, the mass conservation equation is reformulated in term of
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the temperature u instead of the density 1/u, and contains a nonlinear term called
the “Joule effect term” [8, Section 1] in analogy with systems accounting for energy
dissipation stemming from electric currents, see for instance [20]. Results on local and
global well-posedness of this system have been recently obtained under some smallness
assumptions on the initial data, see e.g. [19, 8], still based on a formulation using the
temperature as a primary variable.

From the numerical point of view, a combined finite volume - finite element scheme
was proposed in [7] to simulate such a model in terms of temperature, velocity and
pressure. The method is based on a time splitting, in which the first step consists in
solving the mass conservation by an ad-hoc finite volume scheme. In dimensionless
form, the mass conservation equation, set in a subdomain Q of R? and for positive
times, writes

Oru+ V- (uv) + A Vu? = \uAu =0, (1)

where v is a given velocity field computed in the other step of the splitting algorithm.
It is complemented by homogeneous Neumann boundary conditions and an initial
datum ug.

It has been proved in [7] that the scheme referred to as SDroyJup therein preserves
a discrete maximum principle property, as imposed by the physics of the problem.
This paper is devoted to the numerical analysis of this finite volume numerical scheme
for the approximation of the temperature, solution of (1).

Here, we rigorously establish the convergence of the finite volume solution towards
the exact continuous one in the particular case of successively refined two-dimensional
cartesian grids. As often, the method consists in deriving some a priori estimates on
the numerical solution in order to establish the existence of discrete solutions to the
scheme. Then, with the help of further estimates and of some compactness properties,
the limits are proven to be the weak solutions of the equation. The originality of this
contribution comes from the presence of the Joule effect term in the equation, leading
to some specific difficulties.

Several times in our proof, we will make use of a discrete version of the inequality

[VulZa0yz < Con|V2ull L2 @y [l e () (2)

which has not been established before up to our knowledge. At the continuous level,
some classical Gagliardo-Nirenberg interpolation inequalities for intermediate deriva-
tives in R™ have been established in the seminal papers of E. Gagliardo [15] and L.
Nirenberg [24]. The following particular case of these results is stated in [14, Theorem
1.2] in the following form.

Theorem 1.1. I[f1<q¢<ow,1<r<w, j,keN, j <k and
1 j k=7
p  kr kq ’
then there exists a constant Can independent of u such that
j j k—j n N
IV gy < CanIV¥ul gy [y Ve LIR™) n W7 (RP),

This result holds in the particular case j = 1 and k = 2, so that if
2 1
J’_

—_



we have:

[Vl Logny < Conl|V2ul g, lulsgn Vue LIRY) AW (RY).  (3)
Up to the fact that (2) holds on a bounded domain € (which does not yield particular
difficulties), (2) is a particular case of (3). In what follows, we refer to (3) as a second
order Gagliardo-Nirenberg inequality since the highest order of differentiation is k = 2.
The first goal of this paper is to establish a discrete version of (3) in the particular
case of some piecewise constant discrete functions defined on a cartesian grid. As far
as we know, only first order discrete (Sobolev-)Gagliardo-Nirenberg inequalities are
available in the literature so far, see [3, 2]. This new discrete estimate looks to us as
a key element for new contributions in the field of the numerical analysis of partial
differential equations.

The outline of the paper is the following. Section 2 introduces the discrete setting
of the problem: the meshes, the associated discrete functional spaces and the discrete
difference operators on these spaces. Section 3 is devoted to the second order discrete
Gagliardo-Nirenberg inequality which is obtained following the lines of the continuous
case detailed in [14], leading to Theorem 3.7. Then, Section 4 presents the finite
volume scheme SDy,0yJup previously introduced in [7] for the approximation of the
convection-diffusion equation involving a Joule effect term, which is here formulated
in the case of a two-dimensional Cartesian grid. We infer from the discrete maximum
principle established in Section 5 that the scheme admits a unique solution, and
further estimates of energy type are derived under some smallness assumption on
the data. Section 6 then addresses the convergence of the finite volume solution
towards the continuous one as the discretization parameters tend to 0, cf. Theorem
4.4. Some mostly elementary properties of the discrete operators are finally collected
in Appendix for the ease of reading.

2 Discrete setting

In this section, we introduce the discrete framework such as the cartesian meshes,
some discrete functional spaces as well as some differential operators needed for the
following of the paper. We consider successively the 1D case and then the 2D one.

2.1 Thecased=1

Let I =]z, Z[ be an open set of R, consisting in a union of cells M defined by (see
Figure 1):
M = {CZ :]xiflvxz#%[v i€ HlaNﬂ}a

2

with N € N*. We also define the set of shifted cells:
M ={Cyys =]zi,zisal, i€ [0,N]}.

We denote |I| = T — z the length of I and we define 9 = z; = z and a2y, 1 =
Tny41 = Z. Let x; be the center and h; = Tigl 1 the length of C; for i € [1, N].
Let x;, 1 be the center and h;, 1 = x;;1 — x; the length of C; 1 for i e [0, N].

2 2 2
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Figure 1: Notations for the grid cells of M and M in the case d = 1.

~

The spaces Haq(I), Hp(I) and ﬁ?w (I) are respectively defined by:

Hu(I) = {veL®I)|ve =veR, ie[1,N]},
A = {vel®()|vc,, = vy R ic[0,N]},
H.S)\/I(I) = {’UEHM(I)‘U%=’UN+%=0}.

The discrete operator ¢, is defined from Haq(I) in ﬁ?\/{ (I) by:

Viy1 — Uy .

———— forie[l,N —1],
dpv(x))c | = hity
0 fori=0and = N.

Similarly, the discrete gradient operator 6% is defined from H Mm(I) in Ha (1) by:

Vijpyl — V1
5:U($)|01 = hiz for i € [1, N].
The discrete second-order derivative operator . is defined from Ha((I) in Haq(I)
by:
8pzv = (6% 0 6,)v.

Now the interpolation operator 7, is defined from H(I) in Haq(I) by:

% forie 1, N —1],
(ﬂ—zU)C'H_% = v for i =0,
UN for i = N,

and the interpolation operator 7% is defined from H Mm(I) in Haq(I) by:

* 3 "~ Vits :
(miv)g, = —2—2 forie[1,N].

2.2 The case d > 1
2.2.1 Meshes and discrete functional spaces

We consider (2 a connected subset of R? consisting in a union of rectangles (d = 2) or
parallelepipeds (d = 3), possibly non-uniform. The edges (or faces) of these rectangles
(or parallelepipeds) are assumed to be orthogonal to the canonical basis vectors. All
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Figure 2: Notations for the grid cells of M, M\, M and M in the case d = 2.

the notations are given in the case d = 2, but they can be generalized to the case d = 3.

Let Q =]z, [ x| [C R? be the set of the grid cells M defined by (see Figure 2):

Y.y
{ = z——7 1,+ [ ]yj—%7yj+%[7 ZE[[LNH, ]E[[lvMﬂ}v
with N, M € N*. We also define the set of shifted cells in the z-direction:

—

M={Ciryy =loiminlxly;_yy0al i€ [0,N, j e [1,M]},
the set of shifted cells in the y-direction:

M={Ci iy =10 gominy XDy w1 € [LNT, j e [o, M7},
and the set of shifted cells in the z-y-directions:

M ={Ciry oy =lwiwin[xlys v, i€ [0,N], j e [o,M]}.
Similarly to the 1D case, we define:

hiyyr =wip1 —x; for i€ [O,N], hi =a; 1 — ;1 forie[1,N],

k‘j+% =yj+1 —yj fOTjE [[O,M]], kj =yj+% _?ij% fOI“jE [1,Mﬂ.



We introduce the following functional spaces:

HM(Q) = {’U € LOO(Q) | Y|Cy,; = Vij € R? i€ [[LNH? je [[laMﬂ}a

Hm(©) e L@ fvc,, , = viey, €R, 1€ [0,N], j € [1, M},
A% (@) = {veHu(®) | vy, =vyey, =0, 5 [1,M]},
(@) = (veL#(Q) | vo,,,, = vy €R. i€ [LN], j e [0.M]),
H{(Q) = {ve Hu(Q) | vir =viney =0, i€ 1N},
Hm(Q) = Hm(Q) x Hu(Q),
Hj(Q) = HR(Q) x HRy (),
Hum() = {veL®Q)| VO, .y = Vitha+d €R 1€ [0, N], je [0, M]},
HY(Q) = {ve Hu(Q), | VOy iy T U,y =0 € [0, M},
FIRA?/(Q) = {ve Hp(Q), | UC 11 = UCh a1 = 0, i € [0, N]},
HY (@) = Hy{ () 0 H Q).

2.2.2 Discrete differential operators
The discrete operator ¢, is defined from Hx4(2) in PAI%A (Q) for j € [1, M] (respectively
from H () in Haq() for j € [0, M] + 1) by:

Vitl,j = Vij

S e, , =1 hig
2 0 fori=0and i = N.

forie [1,N —1],

Similarly, the discrete operator J, is defined from Ha(§2) in ﬁf?v( (Q) for i € [1,N]
(vespectively from Ha() in Hay () for i € [0, N] + 1) by

Vij+1 — Vij

sy, =4 by
T 0 for j =0and j = M.

The discrete operator 6 is defined from H () in Hpg(Q) for j € [1, M] (respectively
from H () in Haq(Q) for j € [0, M] + 1) by:

for je[1,M —1],

Vipl s — U1
el e g e [1, N].
h;
Similarly, the discrete operator §; is defined from Hp(Q) in Ha(Q) for i € [1,N]
(respectively from H () in Haq () for i € [0, N] + 1) by :

5:”(‘%, y)\ci,j =

Vi i1 —V; 1
Spv(z,y)ic,, = % for j € 1, M].
j

Then, the discrete gradient operator Vy, is defined by:
Vit Hm(Q) — H3%,(Q)

g
v — Vyu = (%v) .



With a slight abuse of notation, we also denote in what follows by

Vi  HW(Q) — Hm(Q) x Hpm(Q) x Ha(Q) x Hpq(2)
_(n (kv dyun (4)
V= (’Ug) ~ th - ((596’()2 (5;;’02) ’

The operators 6., = 63 o0, and d,, = 0, o J, are defined on Hx((€2), so that the
discrete Laplace operator Ay, is defined by:

Ap: Hm(Q) — Hpm(Q)
v —  Apv = (0gz + Oyy)v.

Finally, it remains to define the cross-derivatives by the operators d,, and ¢, respec-
tively defined from Ha(92) in ﬁ?}?(ﬂ) by:

dya¥ = dzyv = (6y 0 05)v = (0 0 0y)v, (5)

and the discrete Hessian matrix V3 is defined for any v € Ha(£2) by:

V’QLU _ ((;mv 51,951)) .

OzyV  Oyy¥

2.2.3 Discrete interpolation operators

Some discrete interpolation operators are needed in order to pass from a given grid to
another one, similarly to the ones given in subsection 2.1 for d = 1. The interpolation
operator 7, is defined from Ha(Q2) in Ha(Q2) for j € [1, M] (respectively from
Hp(Q) in Hyy () for j e [0, M] + 1) by:
% for i e [1, N — 1],
(FIU)CH_%)]‘ = V1,5 for i = 0,
UN,j for i = N.

Similarly, the interpolation operator m, is defined from Hx4(f2) in H (Q) for i €
[1, N] (vespectively from Ha(Q) in Hpq(R) for i € [0, N] + 1) by:
W% for j € [1, M —1],
(ﬂ—yv)ci,j+% = (] for 7 =0,
Vi, M for j = M.

The interpolation operator 7* is defined from Hu () in Huy(Q) for j € [1,M]
(respectively from H () in Haq(€2) for j € [0, M] + 3) by:

'U,L‘,l ‘+'Ui+l ; .
D80 TR g e [1, N].

* _
(va)cz,,j = 9



Similarly, the interpolation operator 7, is defined from Ha(Q) in Hag(Q) for i €

[1, N] (respectively from H,(€2) in H (Q) for i € [0, N] + 3) by:

V; i1+ VU .1
(m¥v)c,, = % for j e [1, M].

In the following of the paper, the discrete differential and interpolation operators
fulfill some discrete properties, which are collected in Appendix A.

2.2.4 Norm definitions
Let pe R, p > 1. For any v € LP(Q), the LP norm is denoted:

1/p
[olr ey = (f |v|de) . (6)

The norm in the case p = o0 means the essential supremum over 2.
For any v = (v;)1<i<a € (LP(Q))%, we define:

d 1/p
Vlio) = (2 |vz-|’zpm)) ,

and for any v = (v; j)1<i j<a € (LP(R2))?*4, the LP norm of v is defined by:

d
H!Hi:ﬂ(ﬂ) = Z lvs,5

ij=1

. (7)

3 The discrete Gagliardo-Nirenberg inequality

3.1 The 1D case

The goal of this subsection is to establish the discrete Gagliardo-Nirenberg inequality
corresponding to the discrete 1D counterpart of (3):

Theorem 3.1. Let ve Hp(I), 1 < p,r < o0 and 1 < g < o0 such that

Then there exists Cgn independent of v such that:

1/2 1/2
1820] 2o () < Can 8aavll ry 10l er)- (8)

We start to prove Theorem 3.1, following from the discrete point of view the work of
[14] corresponding to the continuous case. We first establish some Lemma.



Lemma 3.2. For anyve Hm(I), any J < I and for any 1 < p < o0 we have:
1
= <o - |
Hv W L v(z) dxHLp(J) Qirelﬂg lv =l e

Proof. The proof is exactly the same as the one of Lemma 3.1 of [14] since Haq(I) ©
LP(J),1<p< . O

Lemma 3.3. Letre R, r > 1, ve Hy(I) and J < I such that:

J dzv(z) da = 0. (9)
J

|620(2)] < 2 [|022v]

Proof. Wenote J =]a, B[, whereaw€ C; 1 and f € C;, 1 with (i, ig) € [0, NJ?,
ig (see Figure 3). Without loss of generahty, we suppose i, < ig.

Then for any x € J we have:

Lr(J) (10)

Figure 3: Configuration J =]«, f[c I with o > Tioryand f<wm; 1.

We define ﬁiaJr% =X 41— ﬁi5+% =B —x;, and iLkJr% = hpypr, ke ia+1ig—1].
The property (9) can consequently be written as:

th+ (6:0)p41 =0 (11)

k=i,

Let z € J and j € [ia,ig] such that [(0zv);1 1] = [620]1e(s). We have:

bao(@) < 10e0);0y ) (12)
Considering now i € [iq, ig] such that:
|(51’U)J+% - (5zv)1+%| = kEI[%’}?,}i(ﬁﬂ ‘(511))]-&-% - (5zv)k+%|ﬂ

we have from (11):

[(6av)jr2l < [(0av)j41 — (ov)iy ]
J
S Z |(5wv)k+%_(5mv)k—%|
k=i+1
is
< Y @)y — Gav)iyl. (13)

k=io+1



We suppose first that o > z; atld and 08 < Tt like in Figure 3. We introduce:

- - i, +1
hia+1 = hiaJr% + 9 5
- - hig
hig = hm+1 + = 2
hi, = hy for ke [io+2,i5—1].

We know that h; 41 <2 ilia+1 and h;, < 2h;,, and consequently:

ig
3 ](51,@)“%—(5@ ey <2 2 (6% 0 8,)0)i| o
k=iqo+1 k=iq+1

By the Holder inequality we get:

ig

> [0av)igy — Gav)iy
k=iq+1
iﬂ ~ 1/’[‘ iﬁ i 'r;l
< 2( PRSI hk> ( > hk>
k=iq+1 k=iq+1
= 2[8axvlLriny [T (14)

From (12), (13) and (14) we get (10) in the case o > z; 1 and 8 <x; 1.
Then, in the case a < z; +1 and 8 > TigtL, We introduce:

hi, = Tyl —Q,
hi5+1 = 6 _xiﬁ+%7
hi = hy forke[io+1,ip].

This time, introducing J = [x;_ $1,T, +%], we obtain by the Hélder inequality:

is
Z |(5xv)k+%_(5xv)k—%|
k=ia+1
ig r ig =

< (2 (83 0 6z )v)e|" hk) (Z hk)

k=iq+1 k=iq+1
= ||5mwv||Lr(f v

1

< ”(SfcrU”LT(J) |J| . (15)

From (12), (13) and (15) we get (10) in the case @ < x; ;1 and > z; 1. Finally,
in the two last cases (respectively a <z; 1,8 <z 1 anda>wz; 1, 8>, 1),
we proceed similarly and we obtain (10). The proof is complete. O

10



Lemma 3.4. Letre R, r =1, ve Hy(I) and J < I such that

J v(z)dx = 0. (16)
J

Then for any x € J we have:

r—1
LA

(@) < 2[020] -y |

(17)
Proof. The proof is very similar to the one of Lemma 3.3 and based on the same
arguments. We note J =]a, 8[, where a € C;, and 8 € C;, with (i, ig) € [1, N]?, iq <
i3. Without loss of generality, we suppose i, < i3.
We define h;, = x; 1 —«a, hi; = B—x;, 1 and hg = hy, k € [ia + 1,15 — 1]. The
property (16) can be written as:

7;[-; ~

2 hi v, = 0. (18)

k=iq

Now, let z € J and j € [ia,ig] such that [v;| = |v|L=(s). We have:

(@) < vl (19)
Considering now i € [iq,ig] such that |v; —v;| = i ?ax J] |vj —vi|, we have from (18):
€l2a,?B
J ip
ol < Jvj —oil < Y fok—veal <D ok — okl (20)
k=i+1 k=iq+1

We suppose first that o > x;, and 3 < x;,. We introduce:

= = hi i1
hiv1 = hi, + Tz,
- - hi, 1
"
hiﬂfé = hlﬁ + 2 : )
hyr = Py for ke fia +1,i5—2].
We know that h;_ 1 <2 ﬁi(ﬁ% and h; 1 <2 Biﬁ_%. Consequently:
ig g
Z |1}k — ’Uk_1| < 2 Z ‘(5111)/6_% hk—%'
k=iq+1 k=iq+1
By the Holder inequality we get:
ig ig - yr is =
Z g —vp—1] <2 Z ‘(590”)1@7% hy 1 Z hy 1
k=iq+1 k=ia+1 k=ia+1
r—1
= 2|6z0]preny I (21)

From (19), (20) and (21) we get (17) in the case o > x;, and 3 < x;,.

For the three other cases (o < x5, and 8 < z;,; o > x5, and 8 > x;, ; @ < x;, and
B > x;,), we proceed in the same way, similarly to Lemma 3.3. O

11



Lemma 3.5. Letp,q,reR, p=1,qg=1,r>=1, JcI. Foranyve Hp(I), there
exists C independent of v such that

1_1 _ 1_1
1020 () < C (|J|1+” " NSzwv] Ly + || TR HUHL‘I(J)> :

Proof. The proof is similar to the one of Lemma 3.2 in [14], and we give it here for
completeness. First we introduce

U= |17| JJU(IL’) dz.

From Lemma 3.2, we have:

[ =l Loy ~ nf o —cl Loy,

1
so that we may assume v = 0. We denote d = il J dzv(z) dr and X the center of
J

J, and we define

(z) = v(z) — d(x — Xo), (22)
so that
J ?(z)dx =0, (23)
J
and
J 0,0(z) dx = 0. (24)
J
From (24) and Lemma 3.3, we get:
1620 2r () < 219177 7 6020l Lo (). (25)
From (23), Lemma 3.4 and (25), we get:
~ 1,71
10 zagry < 41717557 10000] ey (26)

Finally we have:

0zvlecry < 020 Losy + ] Lo(ry
1L ze () - ld(z — Xo)|La(s)

= (00 zec) +
) & = XollLaa)
(25) 11 _q4l_1
< M 0aav ] ey + TP T (@ — Xo) Lo
(2<2) 1411 1411 ~
< TP beav] ey + IR T (0] ey + (0] 2ac)
(26) 1.1 q4l_1
< |J‘1+p ™ 6sz‘L"'(J) + |J| I4+5—3 ||’U||Lq(J).
The proof is complete. O

12



Lemma 3.6. Let ve Hp(I) and 1 < p,r < 0, 1 < g < o0 such that

S|

+

| =

2
p

Then, there exists a sequence of open intervals (I};), which covers I, such that:

1_1 _ 1_ 1
L% ™7 |00 (1) el = % 7 0] pacry),s

dMixn < 4
k

Proof. The proof is exactly the same as the one of Lemma 3.3 in [14]. We only mention
that we need the values of r and ¢ not to be equal to 400, so that the functions w, and
a,; remain continuous, since in the proof we have to replace CX(R) by Hyp(I). O

Proof. (of Theorem 3.1)

1 1
First, we consider 1 < p,,qn, 7, < 00 such that — — + —. Following the

Pn T'n dn
proof of Lemma 3.4 in [14] and using previous Lemma 3.5 and 3.6 (which respectively

correspond to the discrete versions of Lemma 3.2 and 3.3 in [14]), we obtain:

H(;Iv”iT;n(I) < ||5mrv||§n(1) ”v”Zn(I)v (27)

so that (8) holds. Then, we can write:

an=1 1
HUHL‘?"(I) < HUHLgon([) HUHZ’{U),

and thanks to (27) we get:

DPn % %(M)
162 UHLPn I = H‘SszHLm(I) HUHLm(z) HUHLl(I)
Now it remains to make g, tend towards +0co to obtain (8) in the case ¢ = co. O

3.2 The 2D case

The goal of this subsection is now to establish the discrete Gagliardo-Nirenberg in-
equality corresponding to the discrete 2D counterpart of (3):

Theorem 3.7. Let Q =]z, T[x]y,y[ be an open set of R?, ve Ha(Q), 1 < p,r < o0
and 1 < q < o0 such that

p

+

S|
Q| =

Then, we have:
_ 1 1/2 1/2
IVhvlzo() < 27% Can [V}l /Ag) [Vl ag) (28)

where Capn is the constant arising in Theorem 3.1.
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Proof. First of all, from v € Hx(§2) we define some discrete one-variable functions:
For j € [1, M], v\9) € Hp(Z,) with Z, =]z, Z[ and

5 ) = L 5,09 P da.
For i € [1,N], v € Hyp(Z,) with Z, =]y, y[ and
16,00 s,y = | 16,001 dy.

We have:
190000y = | [oeolax o+ | 5,00 dx

= Zk 160D 7. + Eh 18,0715, 7. -
Jj= 1=

From Theorem 3.1 and Hélder inequality, we get:

M N
thvﬂip(g) < Coy (Z k; Hémv(])HEr(L) HU(])HE(L) + Z h; Héyyv(l) ”zr(zy) ‘”(l) |Zq(zy)>

j=1 i=1
< Cey (Hémvui(g) + H(SyyUH§7~(gz)) HUHi(Q)
<251 OBy [V30)} o) 10l
so that (28) holds. O

Remark 3.8. In the following section, we will focus on the case p = 4,r = 2,q = o0:

1/2 1/2
IVhv]zaiey < Can VR0l o) loali% - (29)

Remark 3.9. Up to a slight modification of the prefactor 27% in 27%, the discrete
Gagliardo-Nirenberg inequality (28) also holds when the domain  is a subset of R3.
Moreover, the equality (86) also holds true in the three-dimensional context. Indeed,
the definitions of the discrete operators, scalar product and morms can be done in a
similar way to the two-dimensional case. An induction argument is used to conclude
the proof of Theorem 8.7, and a term-by-term identification can be done to obtain
(86).

4 Finite Volume scheme and a priori estimates

4.1 Model and continuous results

In this section, we are interested in a convection-diffusion equation involving a Joule
effect term, given by:

du+ V- (uv) + A Vu> = uAu = 0, ¥YxeQ, Vtelo,T], (30a)
Vu(x,t)-n = 0, Vxed, Vtel0,T], (30b)
u(x,0) = wup(x), in (30c)

14



where Q =]z, Z[x]y,7[c R?, n is the outward unit normal vector to 0Q, T > 0
is an arbitrary finite time horizon, A > 0 is a fixed parameter, and the vector field
v:Qr = Qx[0,T] — R? is divergence free and satisfies a no-slip boundary condition,
ie. v(x,t) = 0 for all x € dQ and ¢ € [0,T]. The system (30) can be seen as a
particular case of a global low-Mach model with temperature dependent viscosity, in
the case where v is a given datum of the problem (see e.g. [19, 8]). A local well-
posedness result for strong solutions to (30) has been established in [8, Theorem 1].
More precisely, assuming that

ug € H% () = {w e H*(Q) s.t. Vw(x) -n(x) = 0 for a.e. x € 0Q},
that the convective velocity satisfies

v e L20,T;Vo(R) n (H?(Q))?) with V5(Q) = {we (H}(Q)* V-w =0, in Q},
(31)
and if there exist two real numbers wu, and u? such that

0 <uy <up(x) <uf, VYxeQ, (32)

then there exists 7' > 0 such that the system (30) admits a unique solution with the
following regularity:
we L*(0,T; H*(Q)) 0 L*(0,T; HY (), opue L*(0,T; H'(Q)) (33)
with
0<u <u<u ae Qr. (34)
In this paper, we rather work with a weaker notion of solutions demanding for less

regularity than (33).

Definition 4.1. A function u is said to be a global in time weak solution to Problem
(30) if u € L®(Qr;[uy,u’]) n LP((0,T); HY(Q)) with opu and V?u € L*(Qr), if
Vu-n=0 ondQx (0,T), and if (30a) holds (with each term belonging to L*(Qr)).

With such a lower regularity requirement, we are able to prove the existence of a
global-in-time weak solution.

Theorem 4.2. Suppose ug € H' () and that the assumptions (31)-(32) are satisfied.
If
uf — up, <9, (35)

for some § > 0 small enough (with a condition similar to the one of Theorem 4.4
below), then there exists a weak solution u satisfying

|u — @) Lexr,) <0,

Uy + uf

with @ = > 0. Moreover there exists C = 0 such that for allt > 0:

t

futt) — sy + |

(1Vu) ey + [0 e ) ds

t
<COw—U%mﬁJ;VWM%@@>~@®
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The existence of such a global in time weak solution is a by-product of the Theo-
rem 4.4 on the convergence of the finite volume scheme to be introduced in the next
section. Note also that the assumption (35) is necessary to prove that the system (30)
admits a unique global-in-time strong solution (33) with (34) (see [19]).

4.2 The Finite Volume scheme

We notice that V - (uVu) = |Vu|? + uAu. Then, the way to discretize the Joule
effect term |Vu|? arising in (30a) must be consistent with the non-linear diffusion
one. This is important in order to ensure some properties on the numerical solution,
such as some maximum principles which hold at the continuous level. Moreover, the
non-conservative way to write the diffusion term is consistent with the analysis that
we will do, which mimics the continuous one. A rather similar Finite Volume (FV)
scheme was initially introduced in [7].

In addition to the notations of subsection 2.2.1, we denote & = E# U £V the set
of the horizontal and vertical edges of the mesh, i.e.

" = o,y =l ymipaxlyaa) i€ [LN] G e [0, M},

1 . .
& ={oiryy = wiegd Xl vyayl i€ [0,N], je [1, M}
Now we introduce the definition of a uniform mesh in each direction.

Definition 4.3. A mesh M is said uniform in each direction if h; = h, for i€ [1,N]
and k; = hy for j € [1, M].

From now on and for the sake of simplicity, we assume that the mesh M is uniform
in each direction. As usual in the finite volume context, the size of the mesh is then
defined as the diameter of the cells, i.e.

h=4/h2+h2.

We also introduce the transmissibility coefficient, given by

ac,:@foraegv and ac,:h—xforerH.
he hy

Let us introduce the space
Veo(2) = {vh = (v1,h,V2,5) € H?VI(Q) | divpvy, = O}, (37)
where the operator divy, is defined from Ha,(£2) in Haq(£2) by
divpvy, = 0Fvyp + (52‘1)2,;1.

Let & ; be the boundary of the control volume C;; (i € [1,N],j € [1,M]). For
o € & ;, we denote by n,; ; , the exterior unit normal vector to o. Given a fixed but
arbitrary finite time horizon 7' > 0, we split the time interval [0,7"] in a uniform
partition of time step 7 = T/Nr for some Ny € N.g, we define t" = nr (0 < n <
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Nr) (so that [0,T] = Uycnen, [t",t"T]). For any velocity field v = (v, v2) €
L2(0,T;Vo(Q)), we define v, = (V1 hr,v2nr) € L2(0,T; Ve o(£2)) by setting

Ul,hT(X7 t) = U?+1/27j if (X7 t) € Ci+1/2,j X (tnatn+1)a (383)
UQ,hT(Xa t) = v2j+1/2 if (X> t) € Ci,j+1/2 X (tnatn+1)a (38b)
with
tn+1
o, = f do(x)ds, ie[l,N—1], je[1,M], (38¢)
2 n
tn+1
A J va(x,s) do(x)ds, i€[1,N], je[l,M —1].(38d)
’ 2 n

i+l

The integrands in the above formulas have to be understood as the traces of (v, v2) €
L2(0,T; (H?(2))?) on the edges. Moreover, since H?(£2) embeds in L*(2) (this also
holds true in the three-dimensional setting), then

tn+1

1
yl<z | Ol

We define moreover v € Ve o(Q2) by:

tn+1
vi(x) = (V1 (%), v5 (%)) = = vir(x,8)ds Vx e Q.
’ ’ T Jin
We infer from Jensen’s inequality that
Vil 220,050 ) < [VIlL2 0,750 @) < CalVilLeo,r:m29) (39)

with Cq being the continuity constant for the injection of H?(Q2) into L*(£2).

The initial data wug is discretized into

u?yj =7 uo(x)dx, ie[l,N],je[1,M]. (40)
xlty JC; 5

Assuming that u}} € Hpy((Q) is a known approximation of u(-,t"), we are looking for
an approximation u} ™' € Ha((Q) of u(-,t"*1), with

up(x) =ui; ifxeCi;, n=0.
The space-time approximate solution up, € L®(0,T; Hr(2)) is then defined almost
everywhere by

upr(x,t) = upt(x) ifte ("¢
The scheme is obtained by integrating (30a) on each C; ; € M, leading to

n+l —um.

U; 5 i n.ooam n u™ n
hmy%Jr PR e Nhghy (Fig(up ™) —ul T (Apup)TY) = 0.

7]0' ’L]G’
O’ESI‘TJ

(41)
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In the above equation (41), we defined v;’; ; by

n : _ 14
thy v, fo=041 ;€87
n _ -2
i,3,0 n . _ H
+h, Vil ifo=o0;,,1€&7,
and by ufj}, + the upstream choice for the convection term defined for o € &; ;:
unfll' fo=o0 _,,_; E(‘:V
n+1 eon tl,g 1T
. u; if v, , =20, . . "
n _ ; s n+l _
tiot = i ) with w7, =< uijy, ifo=0;,1€&
g otherwise, 1
e u?j if o < 0Q.
The discretization of the Joule effect term is more original as we set
n+1 n+1 n+1y+\2
Ti,j(uy, ui,j,a) ) ) (42)
" h hy
UE&J

where at = max(0,a). We also denote by
Tn(up ) (x) = Fi(up ™) ifx e Gy (43)

This discretization of the Joule effect term |Vu|? can be thought as some dual coun-
terpart of the upstream convection, see [9]. It enjoys the following key property for
the preservation of the maximum principle:

nal n+1 n+1
i Su foralloedy; = Jij(up™) =0,

transposing to the discrete setting the fact that |[Vu|? vanishes at the minima of u.

Besides the second order discrete Gagliardo-Nirenberg inequality stated in Sec-
tion 3, the main result of the paper can be gathered in the following statement.

Theorem 4.4. Let ug € H'(Q) be such that u, < ug < uf for some (strictly) positive
constants w,,u, then the numerical scheme (40)—(41)—(42) admits a unique iterated
in time solution Upr with w, < up, < ul a.e. in Qp. Moreover, if uf —w, < & with
0<d< (errar] (\/1+ 3 —1), then, up to a subsequence,

Upr — U a.e. inQr
h,7 —0

where u is a weak solution to the continuous problem in the sense of Definition 4.1.

Remark 4.5. The constraint on § might look restrictive but it is imposed by the
global well-posedness of the continuous problem. We emphasize that the proposed
convergence result applies to (30), but it is also motivated by a practical application
on a ghost effect system (see [22, 19]). Ghost effect systems are formally derived
to describe regimes in which the compressible Navier-Stokes system is incomplete, in
particular when the classical heat-conduction equation fails to correctly describe the
temperature field of the gas. In such a physical context, the parameter § is expected
to be small. The analysis done in this work can be considered as part of the analysis
of a numerical scheme for a ghost effect system or a low Mach model expressed in
velocity, pressure and temperature variables, as proposed in [7] where some numerical
tests are also presented.
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The two next sections are devoted to the proof of Theorem 4.4. Moreover, finer
convergence properties will be derived along the proof, especially in Section 6.1.

5 Numerical analysis at fixed grid

The goal of this section is to prove the well-posedness of the numerical scheme as well
as estimates which are uniform with respect to the grid. Those estimates will serve
as cornerstones for the convergence proof reported in Section 6.

5.1 Maximum principle and existence of a discrete solution

We first establish a uniform L® a priori estimate on the discrete solution, on which
we will rely to show the existence of a discrete solution u, to the scheme (41).

Proposition 5.1. Assume that there exist two positive constants uy,u* such that
0 <, <up < uf. (44)

Then for all m € [1, Ny the finite volume scheme (40)—(41) admits a unique solution
uy € Hup(Q) which satisfies
<u® Vie[l,N],je[1,M], ne[l,Ng]. (45)

n
0<u <ugj

Proof. The proof is done by induction over n. The initialization for n = 0 is straight-
forward in view of (44) and the definition (40) of the initial discrete solution. We
perform a harmless modification of the scheme, which now writes

un+1
Y Y ZJ n+1
hahy D Ve Wi

o€ty ;

+ Mghy (Ji g (upth) — (u?jl) (Ahuh)"“) =0, (46)
instead of (41). Of course, once (45) is established, we get that solutions to (46) are
also solutions to (41).
The modified scheme (46) can be rewritten in the compact form
Fijuptty =wi;, i€ [1,N],je[1,M],
where Fj, = (Fi5); ; + Hm(Q) — Ham(9) is increasing wer.t. u”+1 and non-increasing

w.r.t. uZng as soon as (k,?) # (i,j).Moreover, since v} is dlscrete divergence free,

one has for all x € R that
Fij(kn) = K, i€ [1,N],je[1,M], (47)

where &, is the element of Hx(€2) which is constant equal to k. The Jacobian matrix

J(u2+1):: (Qfgl(uz+l

T is a M-matrix in the sense of [18, Definition 4.8].

)) (4:5), (k)
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Let u V”’Ll be another solution to (46) corresponding to some previous step value 4y,
then
]:h(UZJrl) ]:h(UZJrl) J(uZJrl ,a;htl)(uzwrl az+1) uh _ az’

where
J(uzﬁ-l’ vn+1 f J n+1 n+1 _ ﬂZ+l))dt
is also a M matrix. It is in particular invertible with J(uy**, 4} "')~! > 0 component-

wise. Therefore,
up = ay o= uptt = aptt
This yields in particular the uniqueness of the solution to (46), as well as the maximum
principle (45) thanks to (47) if one chooses @} = @} constant equal to u, or uf.
Finally, the existence of a solution to the modified scheme (46), and thus to the
original one (41) is obtained thanks to some classical topological degree argument.
We refer to [21, 10] for a general presentation of the topological gradient theory, and

to [11] for its first (up to our knowledge) use in the context of finite volumes. O

5.2 Further estimates

The goal of this section is to establish the next estimates required to establish the
convergence of the scheme. The main and next one is a L (H') n L2 (H%) estimate
obtained under some smallness assumption on the data.

Proposition 5.2. Assume that (44) holds. Then, there exists § > 0 such that if
uf —u, <0, (48)

loc

then there exists ¢ > 0 only depending on Q, ug, v, A\, § and T such that the solu-
tion u)} € Ha(Q) of the scheme (41) built at Proposition 5.1 satisfies the following
estimates:

HV}LU?LHLZ(Q) < ¢ Vn e [LNT]]v (49)

NTfl
Y, 7 (180wt ey + 170 () ey ) < e (50)
n=0

Proof. Before addressing the properties of uj, n > 1, induced by the scheme, let us
first remark that
[Vupz2(a) < [Vuolrzo (51)

thanks to the definition (40) of u and to successive uses of Jensen’s inequality and
Fubini’s theorem. We refer for instance to [12, Lemma 9.4] for an extension of (51)
to the more complex case of non-structured grids.

Given n € [0, Ny — 1], we multiply (41) by (— Ahuh)"Jr1 and we sum for i =
1,....Nand j=1,..., M:

ul Tt —
— f b AP dx + A f up T (Apup ) dx
Q T Q

Z Z Vo ”a+(AhUh )it +)\J J () Apupttdx.  (52)
Cz,jeM O'Egiyj

20



b2 a?

Owing to (85) and to the convexity inequality (b — a)b > 5 "5 the first term in
the left-hand side can be underestimated by
u’rL+1 _ u n N 1 N
_L A 7|\vhu oy = 5o IVneE oy (53)

For the second term of the left-hand side, the maximum principle (see Proposition
5.1) implies that

M ou AR t)2dx = Auy [Apup 2 q). (54)
Q

For the convection term, we have two contributions corresponding respectively to
the centered approximation for the convection and to the numerical diffusion stem-
ming from the upwinding, see (98). We recall that the properties of the discrete
interpolation operators are collected in Appendix A. Concerning the centered part,
we deduce from (97), (99) and Lemma B.1 that

SNt (M)t = 1 - TR A P (55)

Ci ;eM o€t ;
with:
T(1 2) J T (0507 p, - Ty (On u”“)) 5zu2+1 dx,
Q
T(22 _ 5 n+1
| = 7r vgh Tz (0y uh ))~5xuh dx,
Q
T(l 2) 5 +1 n+1
5 YU Ty (0s uh ) - Oyup ™ dx,
Q
and

T2(2’2) = fQ Ty (0505, - o (Byup™ YY) - d,uptt dx.

The combination of Proposition A.5, standard Holder inequalities together with Propo-
sition A.6 yields

T2 < 180 ey 172 Gaup )30y
< 850l e [02up ™ HL4(Q)a

T2 < 0208 ] 2 [ma(Byup ) Loy Iy (Bous ™) (o)
< 6205 lr2@) 10yup Lae) [16a Uh+ Iz29),

T2 < 1,07 ey Imy(Goup ™) sy e (Oyus ™) 2oy
< [0yl L2y 102up sy I10yup L),

2 < o mumm 7 (8, 2
S @ loyup™ HL4 Q)
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whence the estimate

Z Z U,jO' ZL;r;c(Ahu )n+1

C;i  eMoe&; ;

1 n n 2
< oy Vv gy + 5 (1805 By + 10,8 o)

n (uj:1 - ub) u®
< ﬂ”vhvh 1720 + )‘(CGN)4T||AII P e (56)

For the last inequality we used the Gagliardo-Nirenberg inequality (29) applied to

f
uptt — % € Hpm(Q)) combined with identity (86). Let us now focus on the

numerical diffusion part corresponding to the second term in (98). Since

n+l _ n+l |7 |n+1 n+1|7 Vae&j,

‘“i,j,a,+ Ui j,o,c Ui g0

one can rewrite

Z Z Yij,o n,zflr,+ - uz;r,clr,c) (Ahuh)nﬂ‘

CijeMoet;

hzh
< S )Y Wl - it
CLJ'EM 0657‘,79

which together with Young’s inequality leads to
€
A < BE + Z“Ahun+l“L2(Q

with
2

1
_ n n+1 n+1
Be = hahy > PIRC ey et I
Cj,ijM O’Egiwj

and where € > 0 will be fixed later on. Using now the elementary (a + b + ¢ + d)?
4(a® + b% + ¢ + d?) and Young’s inequality, we get that

n+l

Be < DD “Uijo
C, GEMOEE; ;
«
< v 2 2 il Chahy 3 3l -l
CL JEMOoEE; ; CijeM o€ ;

1 200 104
S e ~—Ivh ||L4 @ 1 —h4|\thZ+ |22

(Cs)*
< oo IVavh 12200y + 6(Cc:z\f)4h4(uN — )| Apup 72 )

where the last inequality is a consequence of the discrete Sobolev inequality (see for
instance [13])
IVilra@) < CsVavilrz
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and of the discrete Gagliardo-Nirenberg inequality (29) combined with identity (86).
For the parameter a > 0, we choose a = \e/(4h?), so that

2h*(Cs A n
Be< 20 0 iy + 2 (Con) 0 = )2 Sna
Setting € = A(Can)*(u* — u,)?, one gets that

3\

hCs !
A<\ R g 2 A n+1 22 )
(x\(C’GN)Z(uﬂ _Ub)> IVivilz o T < (CGN) (u' = up)"[Apuy ™7 (sz) )
57

Finally, applying Cauchy-Schwartz inequality to the last term in (52) leads to
M| T A < NS ey | () 2.

The definition (42) and (43) of J}, is so that

1 2
1T ey = 7 2 | 2 ae (=)
Yy C1‘7jEM 0'657;,]‘

4 1 1 4
< W a?, ((u?]+ —uZ?U)J’)
Y Ci.’jEM O'G:‘:i,j
1 4
< DI <nﬂ “ﬁoVr)
)

Cl GEMOEE; ;

with hy = hy if o € EV and h, = hyifo e EH is the distance between the cell centers

|Xi; — Xi ;0| Due to the positive part, each edge o is counted once in the last sum,
and we deduce that

1/2

n+1 un+1 4
T (™) | p200) < 2 | hahy Z ( b2 ) = 2|V, un+1“L4
oe€
Applying again (29) and (86), one gets that
[T (i) L2 () < 2(Can)?(uf = w) | Apup ™| 2 (0 (58)
and then that
J Tn(up ™) Apup ™ dx < 2M(Con ) (uf — w) [Anup 720 (59)

Eventually, combining (53)—(59) in (52) leads to
1 n+1 n|2
A O R A )

1 1 h\*
+/\HAth+1HQL2(Q) (ub — g(CGN)4§2 — 2(CGN)2§> < <2>\ +C (5) > thvm‘iz(g)
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with C depending only on Q (Vlia Cen and Cg) and on A\. For § < ﬁ(« /14 5 —
n+ HQ

1), the term in front of |Ajuy is positive. Owing to Lemma B.2, the above right-
hand side is bounded by some quantity not depending on the mesh.
O

From the above estimate, we deduce a uniform L?(Qr) estimate on S up, €
L*®(0,T; Haq) defined by

n+l _ . n
Sruny (1) = o " Uh ey g gy, (60)
T
Then the following estimate directly follows from the use of the estimates of Propo-
sition 5.2 in the scheme (41).

Corollary 5.3. Under the assumptions of Proposition 5.2, there exists C = 0 de-
pending only on Q, ug, v, A\, 0 and T such that

J |6, un,|” dxdt < C.
Qr

6 Convergence of the finite volume scheme

The purpose of this section is to establish the convergence of the scheme thanks to
compactness arguments. Given (Mm)m>0 a sequence of admissible meshes with size
hy, tending to 0 as m tends to +o0, and given (7,,),,~, be a sequence of positive
time steps tending to 0, then denoting by (un,,,,),>o the corresponding sequence
of approximate solution provided by Proposition 5.1, then one aims to show that, up
to the extraction of a subsequence, uy,, -, tends to a weak solution u to (30) in the
sense of Definition 4.1. Our proof is based on compactness arguments. We start in
Section 6.1 to establish some compactness properties on the approximate solutions
(Uhy 7 )m» then the limit value will be identified as a weak solution to the problem
in Section 6.2.

6.1 Some compactness properties

First, it follows from Proposition 5.1 that there exists u € L®(Qr) with u, < u < u
such that, up to a subsequence, there holds

U =2 U in the L®(Q)-weak-* sense. (61)
m——+0o0

Moreover, thanks to the (uniform w.r.t. m) L?(Qr) bounds on Vj, up, ,. and
67'muh

.7 Tespectively established in Proposition 5.2 and Corollary 5.3, we can mimic
the technics detailed in [12] to get estimates on the space-and-time translates

T—¢
J J [Wh e (X+E ) —tp,, 1, (%, 1) Pdxdt < C (P + |€]°), ¢€(0,T), £E€R?,
0 Q¢
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with C not depending on m, and with Q¢ = {x € Q| x + £ € Q}. This in particular
yields the relative compactness of the sequence (up,,r,.),, in L?(Q7) thanks to Kol-
mogorov’s compactness criterion. Therefore, up to the extraction of a subsequence,
we get that

up — u ae. in Q. (62)

-
I s 400

Besides, we deduce from Estimate (50) that, still up to a subsequence, there holds

An, un, - —> Au weakly in L*(Qr). (63)

m—+0

Indeed, the (uniform w.r.t. m) L?(Qr) bound on Ay, us, -, ensures the existence of
some weak limit @ € L?(Qr). Then following the program of [12], the identification
of 0 = Aw is then obtained in the distributional sense. Similarly, we deduce from
Corollary 5.3 that

Sr U, 7 — Owu weakly in L2(Qr). (64)

+00

Concerning the sequence (Vy,, up,,r,.),,,» e have the uniform L% (0,T; L*(2))? esti-
mate (49) as well as a L*(Qr)? estimate stemming from the combination of (29), (45)
and (50). After identifying the weak limit in the distributional sense once again, one
gets that

Vi, Un, 7, —> Vu inthe L*(Qr)-weak and L®(0,T; L*())?-weak-* senses.

m——+00
(65)
Further compactness is required to pass in the limit in the Joule effect term Jy,, (un,,+,, ),
whence next lemma.

Lemma 6.1. Up to extraction of a subsequence, the following convergence holds:

— Vu a.e. in Q.

Vi, Un
m— -+

mTm
Proof. The proof relies on some discrete Aubin-Lions-Simon lemma. In the proof, we
make use of the result presented in [1] but we stress that a proof building on [17, 16]
is also possible.

We proceed direction-wise, proving that dyup,, -, € ﬁjowm (Q) converges pointwise

towards d,u. Of course, proving the convergence of d,up,, -, € ﬁj)\/tm (Q) towards dyu
is similar.
The combination of Estimate (50) with identity (86) provides that

IV 1 6th 7, ”L2(QT)2 <C

for some C not depending on m, providing some compactness with respect to the
space variable on (6,up,, 7, ),,- On the other hand, given ¢ € C*(Qr), and denoting
by @n,,r,, the piecewise constant in time and space function defined by

1 (n+1)‘f'm
Phpr (X, 1) = 7] J p dxdt,
Cit12,5

T m oy m NTm
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then

Jf §£5Tmuhm7mga dxdt = Jf 5157-muhm7m QmaTm dxdt = — Jf 5Tmuhm‘rm5::@hm‘rm dxdt.
Qr Qr

Qr

Applying Cauchy-Schwarz inequality and using Corollary 5.3 and [12, Lemma 9.4]
yields

f f 5287, 1t o dxdt < OV, B l2(0my2 < CIVllL2(0mye-
Qr

We can thus apply Theorem 3.9 of [1] which ensures that d,uy,, -,, converges pointwise.
Because of (65), the limit is d,u. O

Notice that thanks to (65) and Lemma 6.1, we can apply Vitali’s convergence
theorem and claim that

Vi, Un, . — Vu in L*(Qr). (66)

m m m—+0

With the above compactness properties, we have enough material to pass to the limit
in the scheme. This is the purpose of next section.

6.2 Limits are weak solutions

As a preliminary to the identification of any limit value u of uy, -, as in Section 6.1
as a weak solution, let us first show the consistency of the discretization (42) and (43)
of the Joule term.

Lemma 6.2. Up to a subsequence there holds

Ih,, (Un,,r,,) — |Vu\2 weakly inLQ(QT).

m—+00

Proof. First, it follows from (66) that

2 m:w |Vu|2 in Ll(QT) (67)

mTm |

|V, un

On the other hand, we deduce from (50) that there exists some J € L?(Q7) such that

T (Whpyr) —> J weakly in L*(Qr).
m——+00
Let us now identify J as |Vu|? in the distributional sense. Let ¢ € C(Qr), and
define ¢p,,-,, by setting ¢}, = ¢(x;;,t") for all C; ; € M, and all n € [1, N ],
then

j j (T () — [Vt 2) 0 dxdt < Ron(9) + Sunl(9), (68)
Qr

with
Ron(p) = f f (Too nrns) + Vit o ) [0 — o]
Qr
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and

Sn() = || (T (Wnn,) = V0,7,
Qr
Due to the regularity of ¢ and to the boundedness in L'(Q7) of Jy, (un, -,.) and
|Vh, un, -, |%, we infer that

R ()| < Clhm + 7)) —> 0. (69)

m——+00

2) Phyor, dxdt

Since )
2
L | [V, up, [Pdx = 3 Z as (ul; — i)

7 o€
one deduces from the definition (43) of Jy,, (un,,r,, ) that

NT,m

2 1
[Sm(@)l = | 2 T 2, @l D e [((U?,N—U?,jf) —2(“21,0—“%)2]
n=1 Ci,je/\/lm 0657‘,,,‘
Nt m
1 : n n 2 n n
S 3 Z Tm Z Z o (Uige = uiy)" 97 = ol
n=1 Ci‘jEMm g€€
NT,7n
< Chw DT ) D) 4 (“ﬁj,o_u?,j)2<0hm — 0, (70)

n=1  Ci €My 0€Em mete
the last inequality being a consequence of (49). Then we deduce from (67)—(70) that
J = |Vul?, concluding the proof of Lemma 6.2. O

Our next lemma is about the boundary conditions for the limit u, which is shown
to belong to L?(0,T; HZ(£2)).

Lemma 6.3. Let u be a limit of (up,,+,,)
o0 x (0,7).

Proof. First note that since Au belongs to L?(Qr), cf. (63) and since € is convex,
then u belongs to L2(0,T; H?(Q)) and Vu € L*(0,T; H*(2))? admits strong traces
in L2(0,T; HY?(09Q))? < L?(0Q x (0,T))?. Let us show that —d,u = Vu-n = 0 on
({g} x (y, y)) x (0,7, the treatment of the other parts of the boundary being similar.
We proceed as in [4, Section 4.2]. Fix e > 0, then the triangle inequality gives

m @S in Section 6.1, then Vu-n = 0 on

T ry Tl € rY
j f su((@, ), £)|dydt = f ! j f 0su((z, ). B)|dydsdt < A+ BS, +C5,, (71)
0 Jy o €JoJy

with

=
I

T € ry
f 1” Bpul(z ). t) — dvu((z + 5,), 0)|dydsdr,
o €JoJy

T € Py
1 € 1Y

B, = j 1 f f Oau((& + 5,9), 1) — Sattn (@ + 5,), £)|dydsdt,
o €JoJy

Q
I

T 1 € ryY
o J - J f |0zun.. -, ((z + s,y),t)|dydsdt.
o €JoJy
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Applying Cauchy-Schwarz inequality, one gets that

Tl € rY S
J *j j j [Opzu((z + 7, 7),t)| drdydsdt
o €JoJy Jo
1/2

(LTiLEﬁLS |0zau((z + r,y), 1) drdydsdt> @

We then infer from the lower semi-continuity of the norm for the weak conver-
gence (63) that
)

A< Cve, Ye>O. (72
towards d,u in L2(Q7)

For the second term By,, the strong convergence of d,up
(thus also in L'(Q7)) stated in (66) implies that

mTm

lim B;, =0, Ve>0. (73)

m—+00

For the third term C7f,, we use the fact that uj ; = ug ; to write that

| Nem My, [ ]
€
Cm < E Tm hy,m Z |u2+1 J u )jl
n=1  j=1 i=0
1 Nr,m M, [h;,m]
n
< g Tm hy,m Z Z (ul+17j QUZJ tup g ])
n=1 j=1 i=0 [{=1
1 Nt .m M,, [hm‘m-l i
< . Tm D, hym \“ul,j 2ugj +up_y J‘
n=1 Jj=1 i=0 (=1

Nr,m M, [hzm 2
1 m uy —2uy .+ u}
() < | 2 2 T D byl ( A )
S R i= 0 =1
Nt m M,, Rz,
1 N
1 _. &) €(2)
| = 1 E E E = Co x Co= 0 (74)
n= ]: 1=0 :

The first term in the above right-hand side can be overestimated by

ha .o h
e < MJ |66 Uhmrm| dxdt < <1 + xm) |Apun,, -, HLz Q1)

Hence we infer from (50) that

limsup C5Y < +o0. (75)

m—+00
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€ (2)

Concerning Cr;'™, we first use the elementary inequality [#]b < a + b to write

hl‘m
> Zh %e+hr’m)(e+2hx’m).
=0 (=1

Therefore, we obtain that

h 1 hen
Ci® <TG -y) (1 ' m) (2 e ) |

limsup C5?) < Ce. (76)

m——+00

Combining (72)—(76) in (71) yields

and thus that

T ry
L f |0:u((z,y),t)|dydt < Cv/e

for any € > 0, whence the desired result. O

It only remains to prove the following proposition to conclude the proof of Theo-
rem 4.4.

Proposition 6.4. Let u be a limit value of (up,,r,,),, as in Section 6.1, then u is a
weak solution to (30) in the sense of Definition 4.1.

Proof. With Lemma 6.3 in addition to the compactness result stated in Section 6.1,
we know that the limit u belongs to the right space to be a weak solution. We only
have to check that (30a) is fulfilled by the limit u. To this end, denote by

1
n+1 __ n n+1
Wit = o—— D} Wlouiion
zmiby,m ee.

for i € [1, Ny ], j € [1, My,], and n € [1, Ny, ], then define Wy, -, by
Whopr (%, 1) = WP if (x,8) € Cy 5 x ("1, ¢"].
The scheme (41) then rewrites under the compact form
Ory Uhprry + Whro + A (T, (Uh, 7, ) — Uhyr Dby Uhyo 7 ) = 0. (77)

Due to (61), (62) and (63), we can easily check that

Uh 7y Db, U 7o, __’_’OO uAu  weakly in L (QT)

Bearing in mind (64) and Lemma 6.2, it only remains to prove the

Wiz — V-(uv)=v-Vu weakly in L*(Qr), (78)

—+00

to pass to the limit in (77) to recover (30a).
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. o . n . n+1 .
Since v} is divergence free, one has Zoe&;,f vi'j - = 0, so that W;';"" rewrites

1
n+1 _ n n+1 _,,n+l
A . - D, Vi (W gy —uifh).
’ ’ O'Egiyj

Then it follows from the definition of «?! . that

,3,0,+
n n+l _  n+ly _ /,n —(,n+1l _  n+l
Vi Wijos — Uiy ) = (Ui0) " (U5 —uijo),
n - _ ) : n
where (v}'; ,)~ = max(0, —v}; ;) denotes the negative part of v}, .

NT,m

f|Whme|2dxdt: Mo Y X b @ -t

he.mh
o n=1 Ci j€Mpy TEMTY A\ geg;

NT, m

1 12 2
<4 Z Tm Z o h Z ((”zn];) ) ((U?J - U?JU)) :
n=1 Ci’jEM'm ,mity,m O’G(c,‘iyj
Bearing in mind the definition of v}, _, we get that

1,3,07

NT,m
ff|Whme|2dxdt <2 Z TmHvZch Z Z ag(uﬁj —u2j70)2.
Or n=1

Ci,jeMm, O'ES,',J

Making use of (49) and (39), one eventually gets that

J‘J‘ | Wh mTm
QT

In particular, there exists some W* € L?(Qr) such that

24xdt < C.

Wy, — W* weakly in L*(Qr). (79)

T
mTm m—+00

Let us identify W* as v - Vu in the distributional sense. Let ¢ € CP(Qr), then
defining ¢y, -,, as the piecewise constant in time and space function built from the
cell values ¢}'; = p(x;,;,t"), then

] Wi = onm x| < [[ Wil = o, it (s0)
Qr Qr

Due to the regularity of ¢ and the boundedness in L?(Q7) of W,
right-hand side tends to 0 as m tends to +00. We write

the above

mTm)

J Whmegphme dxdt = Tn(zl) (80) + T17(12) (QO)
Qr
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with

NTm
1 _ n— 1 n
7'7,(1)(@) 9 2 Tm 2 %J Z Vi jo Ucr_ui,j)
n=1 Ci,j€EMm o€&;

Jf Vit * VY i Uho T Pl 7, AXAE,

and
1 N1,m
TD@) =5 20 mm X5 Vi (uiy = ulse) (915 = #ia) -
n=1 o€Em

In particular, by similar arguments to those which lead to (79) combined with the
regularity of ¢, one gets that

’T,,(f)(go)( < C(hm + ). (81)

Besides, mimicking the calculations in the proof of Lemma B.2, one readily shows
that vy, -, tends to v in L?(Qr) as m goes to +o0. Together with (65) and with the
uniform convergence of <ph -, towards ¢ stemming from its regularity, this allows to

m

pass to the limit in 75" (p):

T f f v - Vu e dxdt,
m‘)‘FOO

concluding the proof of (78) and thus of Proposition 6.4. O
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A Properties of discrete differential and interpola-
tion operators for the 2D case

We give some properties related to the differential and interpolation operators.

Proposition A.1. We have the following properties:

For any v e ﬁM(Q), (0y 0 6%)v = (6% 0 dy)w. (82)
For any v e Huy(Q), (0,0 dy)v = (6 00z)v

Proof. The proof is direct from the above definitions of spaces and operators. O
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Proposition A.2. The following discrete Stokes formula hold:

)
)
J Srvw = J

Q
* — i
5va = f
Q Q

For any (v,w) € (Hp ()2, JQuAhw _ _L

Forany(v,w)EHM(Q)xfng(Q), Jvé;';w = —
Q

Forany(v,w)eHM(Q)xfIgA(Q), Jvcs;w = —
Q

For any (v,w) € Hy () x Ha(9),

2

For any (v,w) € HY, () x Ham(Q),

020 W.
Oyv w.
v OpW.

v dyw.

th . Vhw.

Proof. The proof is direct from the above definitions of spaces and operators.

Consequently, we can also verify the following norms equality:

Proposition A.3. For any v € Hp (), we have:

HV}%UHB(Q) = HAhUHL2(Q)~

Proof. Let us consider v € Ha(2). We write:

J Opz¥ Oyyvdx = f (63 00z )v (65 0 dy)vdx
Q Q

(83) f
Q

(82) _f (6% 08, 0 0, )v §,v dx
Q

(0 0 0% 0 8,)v dyvdx

e J (8, 0 8.)v (6, 08, )vdx
Q

®)
= H‘sry””i?(g) = H‘Sysz%Z(Q)'

Consequently, from the definitions (6) and (7), (86) holds.

O

Proposition A.4. Let assume that the mesh M is uniform in each direction in the

sense of Definition 4.3. Then:

For any ve Hy(Q), (Bpon®)v = (mpo00*),
For any v € Hum(Q), (650 v = (7 0d.)v,
For any v € ﬁM(Q), (Fomyv = (myodi)v,
For any v € Hpu(9), (0 o)y = (mgp 00,0,
For any (v,w) € (ﬁM 0)2, oF(vw) = wrvdfw + FFurtw

For any (v,w) € (Hum

Tp¥ 0 W + 0pU Tpw



Proof. The proof is direct from the above definitions of spaces and operators. O

Proposition A.5. Let assume that the mesh M is uniform in each direction in the
sense of Definition 4.3. Then:

For any (v, w) € Ha(Q) x Haq (), JQ m(V)wdx = JQ v (w)dx  (92)
For any (v, w) € Ha() x Hpg(9), JQ my(v)wdx = JQ vy (w)dx  (93)
For any (v, w) € Hap(Q) x Haq (), J\Qﬂ' Jwdx = Jﬂva(w) dx (94)
For any (v,w) € Ha(Q) x Hpy (), fQ Tr(v)wdx = JQ vy (w)dx  (95)
Proof. The proof is direct from the above definitions of spaces and operators. O

Proposition A.6. Let assume that the mesh M is uniform in each direction in the
sense of Definition 4.3. Then:

For anyve Hu(Q), |7(0)|pa0) < [v]12a),
For any ve Hpm(Q), |7y (v)os) < vl
For any v e Ham(€), [z (V)lla) < [vlza),

~

For anyve Hpm(Q),  |my(v)lza) < [vllpa)

Proof. The proof is direct from the above definitions of spaces, operators and the
Young inequality. O

B Some technical lemmas

Prior to the statement of Lemma B.1 to which this section is devoted, one needs to
define some quantities. For the convection term, we define v, - Vyu, € Ha(Q) by
setting

vy - Vyup = W: ('Ul,h 5muh) + W; (’Ugyh 5yuh) (96)

A simple calculation gives

Z Vi, j,0 Wi j,0,cs (97)

(Vh . thh)|ci i
Y o€y,

hh

with the centered choice
2
Wi s =
nhe Uij + Uit
2

if 0= 01125,
if o = Ji,jJ_rl/2'
Finally, for the upwind choice used in the scheme (41), we have:

D) Vi Uit = hahy (Vi Vaun)io 4 D Vigo (Uit — i) (98)

G‘Ggi’j G‘Ggi)j
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We then deduce from (85) that

‘[ (Vh . thh) Ahuh dx = —f Vh(Vh . thh) . thh dx. (99)
Q Q

We are now in position to state the following technical lemma to be used for the
numerical analysis of the scheme (41).

Lemma B.1. For any uy, € Hyp(Q) and vy, = (v1,h,2,5) € Ve,0(Q) we have:

f Vi(Vh - Viup) - Viuy dx = T1(1’2) + T1(272) + TQ(LQ) + 112(2’2)7 (100)
Q
with:
T1(172) - J T (0701, + Ty (6zun)) - Ozun dx,
Q
T = J 7y (0zv2,n - o (Oyun)) - Opup dx,
Q
TQ(LQ) - f Ty (Oyv1n - Ty (dzun)) - dyup dx,
Q
and

T2(2’2) = JQ my(Opva - Ty (Oyun)) - Oyup dx.
Proof. From the definition of the discrete gradient Vj, we have
| Van - D) - Vi ax = 71 + 7
with
T = JQ 0z (Vi - Vyup) - 6pupdx  and Th = JQ Oy (Ve - Vipup) - Syup dx
Moreover from (96), (87) and (88), the term T; = Tl(l) + Tl(z) splits into
1~ | w02 dndx and T = [ 7500 v2ad,un)) - Seundx

Q

Now from (90) and (91), these expressions further decompose as
M =1t 7 and TP = Y 4 73?
. (1,2) 2,2) -
with 7777 and 7777 as in the statement of Lemma B.1 above, and
Tl(l’l) = J 7 (T (V1,1 Ogwtin) - Opup dx,
Q

TED [ ai(mtena) 68 ) o
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Since (0gun)1 j = (6zun)y 41,5 = 0, we can write:

1
27

11 hohy o
T = S I ) asun )i+ () Basun)ica ] (Baun)i
1=27=1
h N M
= 7y2 Dk wrn))i ((6x Un)iys ;= (Oatn)i1 ;)(0atn);_1 ;
1=27=1
h N M
Eyz 2 (V1,))i—1,5 ((0zun);— (6wuh)i—%,j)(6wuh)i—%,j
7:2]:1
1
= _if 8o (m¥v1 1) (65up)? dx. (101)
Q

As highlighted in (5), 6, and J, commute, so that
o= | 5,08 Sptin d
1 = 0 Ty (WZE(UQJL) ( y © z)uh) * 0z Up AX.

Since (yun); 1 = (Oyun); pr41 = 0, one can proceed as for Tl(l’l) to get that

T1(2’1) = —% JQ (5; (Tpvo.n) (0pup)? dx. (102)
Finally, summing up (101)—(102) and using (87) and (89) yields
7D L&D —% L [0u(TEvnn) + 0 (mv2,0)] (0pup)? dx
- —% Jﬂ[ﬂe(@sivl,h + §;v27h)](5zuh)2 dx =0

since vy, € Vg o(R?). Therefore Ty = T1(1,2) + Tl(z,z)’ as well as Ty = T2(1’2) + T2(2’2)
thanks to similar calculations. Consequently (100) holds. O

Lemma B.2. Let v € Vo(Q) n H2(Q)?, and let vy, € Ve o(Q) be defined by (38), then

B2 1/2
IVilLz)2 < [V]re)2 + 5 (Hamvl 17202 + HayyUQH%?'(Q)?) (103)
Moreover, we have the following estimate on YV vy, defined by (4):
thvh||L2(Q)2><2 < ||VVHL2(Q)2><2 + h||0x6vaL2(Q)z. (104)
Proof. Let us start by establishing (103). Denote by
_ 1 _ 1
Vir1/2,5 = Ty v1dx, Vijr1/2 = hohy v2dx,
Citvi/2,5 Cij+1/2

and by 71,72 and ¥, the corresponding elements in H (Q), Hp(Q) and Huy ().
Then Jensen’s inequality gives that

[¥rlz2)2 < |ViiL ()2
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So (103) holds true provided that

_ h? 1/2
vn = Valzz@p < 5 (1satnl3acays + I0mval3ay) - (105)

To establish (105), let us remark that

T 1
Ui+1/2’j - ,Ui+1/2’j B hmhy J\J\ (Ul (Qf, y) — U1 (171;+1/27 y))dl}dy
Civiy2,
1 ha/2 €
B H f J O2aV1(Ti1/2 + 5, y)dsdEdady.
hahy 0 e
Citi/2,j

As a consequence

_ h
[Vit1/2,; — Vig1/2,5] < ﬁ fj |0zzv1 (x)] dx,
y

Civi/2,j

hence the Cauchy-Schwarz inequality provides

_ h3 2
|Ui+1/2,j — ’Ui+1/2,j|2 < E ff |aa::1:’l)1<X)| dx.
Yy

Ciy1/2,5
Finally, summing up over Cj; /2, € M leads to

_ h
[T1n = Va2 < f”am”l 1720
whereas similar computations yield

4
[D2,n = vo,nl72(0) < ZyHayyWH%%Qy

Therefore, (105) holds true, and thus (103) too.
We now focus on inequality (104). Let us first show some control on the first
diagonal term of Vj, vy, the second being similar. Let C; ; € M, then

1 Yj+1/2

dxv = —
» Mo, hzhy

Yj—1/2

1
(W1(f€z‘+1/27y) - U1(33z'—1/273/)) dy = ol Jj Ozv1(z,y)dx.
zlty
Ci,,j

Then we deduce from Jensen’s inequality that

1 )
< 7 1 xT ) 9
i H\a oz, y)|? dx

53
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*
5361117}”0“

and thus, after summing up over C; ; € M, that

H(;:Ul,h”Lz(Q) < HaﬂcleL2(Q)v ”5;1’2,%1, L2(Q) S ||ayUQHL2(Q)~ (106)
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Let us focus now on the extra-diagonal terms, and particularly on d,v1 5, the case
of d,v p, being similar. We denote by d,v1,, the element of H o((Q2) defined by

Syvin yULh| Oyv1(x)dx, vci+1/2,j+1/2 eM,
Cit1/2,5+1/2

Civ1/2,5+1/2

then owing to Jensen’s inequality, we get that

10yv1nllL2 (@) < [0yv1]L2(0)- (107)
On the other hand,

(5yv1,h - 5yv1,h)

|c¢+1/2 i+1/2
hy/2

" ha h —hy/2

Yj+1 Tit+1

Oy(v1(ZTig1/2,y +5) —vi(x,y + s))dzdyds

hy /2 Yi+1 [Ti+1
b h; J J J f 020yv1(&,y + s)dédadyds,
hy/2 z

i+1/2

whence

_— 1
|(SyU1,h N 5yvl’h|‘c7‘,+1/2 j+1/2 s E ff |6z6yvl (X)| dx.
C

i+1/2,5+1/2

Applying Jensen’s inequality, we obtain that

|6,v1,1n — Oyv1 h‘lc i fj 020,01 (%)) dx,

Civ1/2,5+1/2

leading to
@) < ha|0z0yv112(0) (108)

|61, — 6y

after summation over ¢ € [1, N — 1] and j € [1, M — 1]. Similarly, we get that

Q) < hIH@mayngLz(Q). (109)

(Q) Ha ’U2||L2(Q) and H(va2,h — Og

The combination of (107), (108) and (109) gives (104). O
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