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Abstract

A discrete order-two Gagliardo-Nirenberg inequality is established for piece-
wise constant functions defined on a two-dimensional structured mesh composed
of rectangular cells. As in the continuous framework, this discrete Gagliardo-
Nirenberg inequality allows to control in particular the L4 norm of the discrete
gradient of the numerical solution by the L2 norm of its discrete Hessian times
its L8 norm. This result is crucial for the convergence analysis of a finite vol-
ume method for the approximation of a convection-diffusion equation involving
a Joule effect term on a uniform mesh in each direction. The convergence proof
relies on compactness arguments and on a priori estimates under a smallness
assumption on the data, which is essential also in the continuous framework.

AMS subject classification: 65M08 - 65M12

Keywords: discrete Gagliardo-Nirenberg inequality - Finite Volume scheme - Joule
effect term.

1 Introduction

Variable density low-Mach models arise in a wide range of physical phenomena, in
which the sound wave speed is much faster than the convective characteristic of the
fluids. In the case of a calorically perfect gas, an asymptotic expansion of the variables
with respect to the Mach number in the compressible Navier-Stokes equation leads to
a low-Mach system [23]. In the particular configuration where the dynamic viscosity
of the fluid can be explicitly given as a specific function of the temperature (see
[5, 6]), a change of variables can be used in order to obtain a divergence-free velocity
system. In that case, the mass conservation equation is reformulated in term of
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the temperature u instead of the density 1{u, and contains a nonlinear term called
the “Joule effect term” [8, Section 1] in analogy with systems accounting for energy
dissipation stemming from electric currents, see for instance [20]. Results on local and
global well-posedness of this system have been recently obtained under some smallness
assumptions on the initial data, see e.g. [19, 8], still based on a formulation using the
temperature as a primary variable.

From the numerical point of view, a combined finite volume - finite element scheme
was proposed in [7] to simulate such a model in terms of temperature, velocity and
pressure. The method is based on a time splitting, in which the first step consists in
solving the mass conservation by an ad-hoc finite volume scheme. In dimensionless
form, the mass conservation equation, set in a subdomain Ω of R2 and for positive
times, writes

Btu`∇ ¨ pu vq ` λ |∇u|2 ´ λu∆u “ 0, (1)

where v is a given velocity field computed in the other step of the splitting algorithm.
It is complemented by homogeneous Neumann boundary conditions and an initial
datum u0.

It has been proved in [7] that the scheme referred to as SDmoyJup therein preserves
a discrete maximum principle property, as imposed by the physics of the problem.
This paper is devoted to the numerical analysis of this finite volume numerical scheme
for the approximation of the temperature, solution of (1).

Here, we rigorously establish the convergence of the finite volume solution towards
the exact continuous one in the particular case of successively refined two-dimensional
cartesian grids. As often, the method consists in deriving some a priori estimates on
the numerical solution in order to establish the existence of discrete solutions to the
scheme. Then, with the help of further estimates and of some compactness properties,
the limits are proven to be the weak solutions of the equation. The originality of this
contribution comes from the presence of the Joule effect term in the equation, leading
to some specific difficulties.

Several times in our proof, we will make use of a discrete version of the inequality

}∇u}2L4pΩq2 ď CGN }∇2u}L2pΩq2ˆ2}u}L8pΩq (2)

which has not been established before up to our knowledge. At the continuous level,
some classical Gagliardo-Nirenberg interpolation inequalities for intermediate deriva-
tives in Rn have been established in the seminal papers of E. Gagliardo [15] and L.
Nirenberg [24]. The following particular case of these results is stated in [14, Theorem
1.2] in the following form.

Theorem 1.1. If 1 ď q ď 8, 1 ď r ă 8, j, k P N, j ă k and

1

p
“

j

kr
`
k ´ j

kq
,

then there exists a constant CGN independent of u such that

}∇ju}kLppRnq ď CGN }∇ku}jLrpRnq }u}
k´j
LqpRnq @u P LqpRnq XW k,rpRnq.

This result holds in the particular case j “ 1 and k “ 2, so that if

2

p
“

1

r
`

1

q
,
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we have:

}∇u}LppRnq ď CGN }∇2u}
1{2
LrpRnq }u}

1{2
LqpRnq @u P LqpRnq XW 2,rpRnq. (3)

Up to the fact that (2) holds on a bounded domain Ω (which does not yield particular
difficulties), (2) is a particular case of (3). In what follows, we refer to (3) as a second
order Gagliardo-Nirenberg inequality since the highest order of differentiation is k “ 2.
The first goal of this paper is to establish a discrete version of (3) in the particular
case of some piecewise constant discrete functions defined on a cartesian grid. As far
as we know, only first order discrete (Sobolev-)Gagliardo-Nirenberg inequalities are
available in the literature so far, see [3, 2]. This new discrete estimate looks to us as
a key element for new contributions in the field of the numerical analysis of partial
differential equations.

The outline of the paper is the following. Section 2 introduces the discrete setting
of the problem: the meshes, the associated discrete functional spaces and the discrete
difference operators on these spaces. Section 3 is devoted to the second order discrete
Gagliardo-Nirenberg inequality which is obtained following the lines of the continuous
case detailed in [14], leading to Theorem 3.7. Then, Section 4 presents the finite
volume scheme SDmoyJup previously introduced in [7] for the approximation of the
convection-diffusion equation involving a Joule effect term, which is here formulated
in the case of a two-dimensional Cartesian grid. We infer from the discrete maximum
principle established in Section 5 that the scheme admits a unique solution, and
further estimates of energy type are derived under some smallness assumption on
the data. Section 6 then addresses the convergence of the finite volume solution
towards the continuous one as the discretization parameters tend to 0, cf. Theorem
4.4. Some mostly elementary properties of the discrete operators are finally collected
in Appendix for the ease of reading.

2 Discrete setting

In this section, we introduce the discrete framework such as the cartesian meshes,
some discrete functional spaces as well as some differential operators needed for the
following of the paper. We consider successively the 1D case and then the 2D one.

2.1 The case d “ 1

Let I “sx, xr be an open set of R, consisting in a union of cells M defined by (see
Figure 1):

M “ tCi “sxi´ 1
2
, xi` 1

2
r, i P v1, Nwu,

with N P N˚. We also define the set of shifted cells:

xM “ tCi` 1
2
“sxi, xi`1r, i P v0, Nwu.

We denote |I| “ x ´ x the length of I and we define x0 “ x 1
2
“ x and xN` 1

2
“

xN`1 “ x. Let xi be the center and hi “ xi` 1
2
´ xi´ 1

2
the length of Ci for i P v1, Nw.

Let xi` 1
2

be the center and hi` 1
2
“ xi`1 ´ xi the length of Ci` 1

2
for i P v0, Nw.
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x0 “ x 1
2
“ x

x
i´ 1

2
x
i` 1

2 x “ x
N` 1

2
“ xN`1

Ci

xi
‚

xi`1

C
i` 1

2

‚
x1
‚

xN
‚

Figure 1: Notations for the grid cells of M and xM in the case d “ 1.

The spaces HMpIq, pHMpIq and pH0
MpIq are respectively defined by:

HMpIq “ tv P L8pIq | v|Ci “ vi P R, i P v1, Nwu,
pHMpIq “ tv P L8pIq | v|C

i` 1
2

“ vi` 1
2
P R, i P v0, Nwu,

pH0
MpIq “ tv P pHMpIq | v 1

2
“ vN` 1

2
“ 0u.

The discrete operator δx is defined from HMpIq in pH0
MpIq by:

δxvpxq|C
i` 1

2

“

$

&

%

vi`1 ´ vi
hi` 1

2

for i P v1, N ´ 1w,

0 for i “ 0 and i “ N.

Similarly, the discrete gradient operator δ˚x is defined from pHMpIq in HMpIq by:

δ˚xvpxq|Ci “
vi` 1

2
´ vi´ 1

2

hi
for i P v1, Nw.

The discrete second-order derivative operator δxx is defined from HMpIq in HMpIq
by:

δxxv “ pδ
˚
x ˝ δxqv.

Now the interpolation operator πx is defined from HMpIq in pHMpIq by:

pπxvqC
i` 1

2

“

$

’

&

’

%

vi ` vi`1

2
for i P v1, N ´ 1w,

v1 for i “ 0,
vN for i “ N,

and the interpolation operator π˚x is defined from pHMpIq in HMpIq by:

pπ˚xvqCi “
vi´ 1

2
` vi` 1

2

2
for i P v1, Nw.

2.2 The case d ą 1

2.2.1 Meshes and discrete functional spaces

We consider Ω a connected subset of Rd consisting in a union of rectangles (d “ 2) or
parallelepipeds (d “ 3q, possibly non-uniform. The edges (or faces) of these rectangles
(or parallelepipeds) are assumed to be orthogonal to the canonical basis vectors. All
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xi

yj

x “ x0 “ x 1
2

x
i´ 1

2
x
i` 1

2

hi

x “ x
N` 1

2
“ xN`1

y0 “ y 1
2
“ y

y
j´ 1

2

y
j` 1

2

kj

yM`1 “ y
M` 1

2
“ y

Ci,j

σ
i` 1

2
,j
P EV

σ
i,j` 1

2
P EH

C
i` 1

2
,j

C
i,j` 1

2
C
i` 1

2
,j` 1

2

Figure 2: Notations for the grid cells of M, xM, ĂM and ĎM in the case d “ 2.

the notations are given in the case d “ 2, but they can be generalized to the case d “ 3.

Let Ω “sx, xrˆsy, yrĂ R2 be the set of the grid cells M defined by (see Figure 2):

M “

!

Ci,j “sxi´ 1
2
, xi` 1

2
rˆsyj´ 1

2
, yj` 1

2
r, i P v1, Nw, j P v1,Mw

)

,

with N,M P N˚. We also define the set of shifted cells in the x-direction:

xM “

!

Ci` 1
2 ,j
“sxi, xi`1rˆsyj´ 1

2
, yj` 1

2
r, i P v0, Nw, j P v1,Mw

)

,

the set of shifted cells in the y-direction:

ĂM “

!

Ci,j` 1
2
“sxi´ 1

2
, xi` 1

2
rˆsyj , yj`1r, i P v1, Nw, j P v0,Mw

)

,

and the set of shifted cells in the x-y-directions:

ĎM “

!

Ci` 1
2 ,j`

1
2
“sxi, xi`1rˆsyj , yj`1r, i P v0, Nw, j P v0,Mw

)

.

Similarly to the 1D case, we define:

hi` 1
2
“ xi`1 ´ xi for i P v0, Nw, hi “ xi` 1

2
´ xi´ 1

2
for i P v1, Nw,

kj` 1
2
“ yj`1 ´ yj for j P v0,Mw, kj “ yj` 1

2
´ yj´ 1

2
for j P v1,Mw.
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We introduce the following functional spaces:

HMpΩq “ tv P L8pΩq | v|Ci,j “ vi,j P R, i P v1, Nw, j P v1,Mwu,
pHMpΩq “ tv P L8pΩq | v|C

i` 1
2
,j
“ vi` 1

2 ,j
P R, i P v0, Nw, j P v1,Mwu,

pH0
MpΩq “ tv P pHMpΩq | v 1

2 ,j
“ vN` 1

2 ,j
“ 0, j P v1,Mwu,

rHMpΩq “ tv P L8pΩq | v|C
i,j` 1

2

“ vi,j` 1
2
P R, i P v1, Nw, j P v0,Mwu,

rH0
MpΩq “ tv P rHMpΩq | vi, 12 “ vi,M` 1

2
“ 0, i P v1, Nwu,

HMpΩq “ pHMpΩq ˆ rHMpΩq,

H0
MpΩq “ pH0

MpΩq ˆ
rH0
MpΩq,

sHMpΩq “ tv P L8pΩq | v|C
i` 1

2
,j` 1

2

“ vi` 1
2 ,j`

1
2
P R, i P v0, Nw, j P v0,Mwu,

sH0,x
M pΩq “ tv P sHMpΩq, | v|C 1

2
,j` 1

2

“ v|C
N` 1

2
,j` 1

2

“ 0, j P v0,Mwu,

sH0,y
M pΩq “ tv P sHMpΩq, | v|C

i` 1
2
, 1
2

“ v|C
i` 1

2
,M` 1

2

“ 0, i P v0, Nwu,

sH0,0
M pΩq “ sH0,x

M pΩq X sH0,y
M pΩq.

2.2.2 Discrete differential operators

The discrete operator δx is defined from HMpΩq in pH0
MpΩq for j P v1,Mw (respectively

from rHMpΩq in sHMpΩq for j P v0,Mw ` 1
2 ) by:

δxvpx, yq|C
i` 1

2
,j
“

$

&

%

vi`1,j ´ vi,j
hi` 1

2

for i P v1, N ´ 1w,

0 for i “ 0 and i “ N.

Similarly, the discrete operator δy is defined from HMpΩq in rH0
MpΩq for i P v1, Nw

(respectively from pHMpΩq in sHMpΩq for i P v0, Nw ` 1
2 ) by :

δyvpx, yq|C
i,j` 1

2

“

$

&

%

vi,j`1 ´ vi,j
kj` 1

2

for j P v1,M ´ 1w,

0 for j “ 0 and j “M.

The discrete operator δ˚x is defined from pHMpΩq in HMpΩq for j P v1,Mw (respectively

from sHMpΩq in rHMpΩq for j P v0,Mw ` 1
2 ) by:

δ˚xvpx, yq|Ci,j “
vi` 1

2 ,j
´ vi´ 1

2 ,j

hi
for i P v1, Nw.

Similarly, the discrete operator δ˚y is defined from rHMpΩq in HMpΩq for i P v1, Nw

(respectively from sHMpΩq in pHMpΩq for i P v0, Nw ` 1
2 ) by :

δ˚y vpx, yq|Ci,j “
vi,j` 1

2
´ vi,j´ 1

2

kj
for j P v1,Mw.

Then, the discrete gradient operator ∇h is defined by:

∇h : HMpΩq Ñ H0
MpΩq

v ÞÑ ∇hv “

ˆ

δxv
δyv

˙

.
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With a slight abuse of notation, we also denote in what follows by

∇h : H0
MpΩq Ñ HMpΩq ˆ sHMpΩq ˆ sHMpΩq ˆHMpΩq

v “

ˆ

v1

v2

˙

ÞÑ ∇hv “

ˆ

δ˚xv1 δyv1

δxv2 δ˚y v2

˙

.
(4)

The operators δxx “ δ˚x ˝ δx and δyy “ δ˚y ˝ δy are defined on HMpΩq, so that the
discrete Laplace operator ∆h is defined by:

∆h : HMpΩq ÝÑ HMpΩq

v ÝÑ ∆hv “ pδxx ` δyyqv.

Finally, it remains to define the cross-derivatives by the operators δyx and δxy respec-

tively defined from HMpΩq in sH0,0
M pΩq by:

δyxv “ δxyv “ pδy ˝ δxqv “ pδx ˝ δyqv, (5)

and the discrete Hessian matrix ∇2
h is defined for any v P HMpΩq by:

∇2
hv “

ˆ

δxxv δyxv
δxyv δyyv

˙

.

2.2.3 Discrete interpolation operators

Some discrete interpolation operators are needed in order to pass from a given grid to
another one, similarly to the ones given in subsection 2.1 for d “ 1. The interpolation
operator πx is defined from HMpΩq in pHMpΩq for j P v1,Mw (respectively from
rHMpΩq in sHMpΩq for j P v0,Mw ` 1

2 ) by:

pπxvqC
i` 1

2
,j
“

$

’

&

’

%

vi,j ` vi`1,j

2
for i P v1, N ´ 1w,

v1,j for i “ 0,
vN,j for i “ N.

Similarly, the interpolation operator πy is defined from HMpΩq in rHMpΩq for i P

v1, Nw (respectively from pHMpΩq in sHMpΩq for i P v0, Nw ` 1
2 ) by:

pπyvqC
i,j` 1

2

“

$

’

&

’

%

vi,j ` vi,j`1

2
for j P v1,M ´ 1w,

vi,1 for j “ 0,
vi,M for j “M.

The interpolation operator π˚x is defined from pHMpΩq in HMpΩq for j P v1,Mw

(respectively from sHMpΩq in rHMpΩq for j P v0,Mw ` 1
2 ) by:

pπ˚xvqCi,j “
vi´ 1

2 ,j
` vi` 1

2 ,j

2
for i P v1, Nw.
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Similarly, the interpolation operator π˚y is defined from rHMpΩq in HMpΩq for i P

v1, Nw (respectively from sHMpΩq in pHMpΩq for i P v0, Nw ` 1
2 ) by:

pπ˚y vqCi,j “
vi,j´ 1

2
` vi,j` 1

2

2
for j P v1,Mw.

In the following of the paper, the discrete differential and interpolation operators
fulfill some discrete properties, which are collected in Appendix A.

2.2.4 Norm definitions

Let p P R, p ě 1. For any v P LppΩq, the Lp norm is denoted:

}v}LppΩq “

ˆ
ż

Ω

|v|p dx

˙1{p

. (6)

The norm in the case p “ 8 means the essential supremum over Ω.
For any v “ pviq1ďiďd P pL

ppΩqqd, we define:

}v}LppΩq “

˜

d
ÿ

i“1

}vi}
p
LppΩq

¸1{p

,

and for any v “ pvi,jq1ďi,jďd P pL
ppΩqqdˆd, the Lp norm of v is defined by:

}v}pLppΩq “
d
ÿ

i,j“1

}vi,j}
p
LppΩq. (7)

3 The discrete Gagliardo-Nirenberg inequality

3.1 The 1D case

The goal of this subsection is to establish the discrete Gagliardo-Nirenberg inequality
corresponding to the discrete 1D counterpart of (3):

Theorem 3.1. Let v P HMpIq, 1 ď p, r ă 8 and 1 ď q ď 8 such that

2

p
“

1

r
`

1

q
.

Then there exists CGN independent of v such that:

}δxv}LppIq ď CGN }δxxv}
1{2
LrpIq }v}

1{2
LqpIq. (8)

We start to prove Theorem 3.1, following from the discrete point of view the work of
[14] corresponding to the continuous case. We first establish some Lemma.
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Lemma 3.2. For any v P HMpIq, any J Ă I and for any 1 ď p ď 8 we have:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
v ´

1

|J |

ż

J

vpxqdx
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

LppJq
ď 2 inf

cPR
}v ´ c}LppJq.

Proof. The proof is exactly the same as the one of Lemma 3.1 of [14] since HMpIq Ă
LppJq, 1 ď p ď 8.

Lemma 3.3. Let r P R, r ě 1, v P HMpIq and J Ă I such that:
ż

J

δxvpxqdx “ 0. (9)

Then for any x P J we have:

|δxvpxq| ď 2 }δxxv}LrpJq |J |
r´1
r . (10)

Proof. We note J “sα, βr, where α P Ciα` 1
2

and β P Ciβ` 1
2

with piα, iβq P v0, Nw
2, iα ď

iβ (see Figure 3). Without loss of generality, we suppose iα ă iβ .

‚
x1

‚
x2 xiα

‚
xiα`1

x
iα`

1
2

‚

α β

xiβ
‚

xiβ`1

‚
x
iβ`

1
2

‚
xN

Figure 3: Configuration J “sα, βrĂ I with α ą xiα` 1
2

and β ă xiβ` 1
2
.

We define h̃iα` 1
2
“ xiα`1´α, h̃iβ` 1

2
“ β´xiβ and h̃k` 1

2
“ hk` 1

2
, k P viα` 1, iβ ´ 1w.

The property (9) can consequently be written as:

iβ
ÿ

k“iα

h̃k` 1
2
pδxvqk` 1

2
“ 0. (11)

Let x P J and j P viα, iβw such that |pδxvqj` 1
2
| “ }δxv}L8pJq. We have:

|δxvpxq| ď |pδxvqj` 1
2
|. (12)

Considering now i P viα, iβw such that:

|pδxvqj` 1
2
´ pδxvqi` 1

2
| “ max

kPviα,iβw
|pδxvqj` 1

2
´ pδxvqk` 1

2
|,

we have from (11):

|pδxvqj` 1
2
| ď |pδxvqj` 1

2
´ pδxvqi` 1

2
|

ď

j
ÿ

k“i`1

|pδxvqk` 1
2
´ pδxvqk´ 1

2
|

ď

iβ
ÿ

k“iα`1

|pδxvqk` 1
2
´ pδxvqk´ 1

2
|. (13)
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We suppose first that α ą xiα` 1
2

and β ă xiβ` 1
2
, like in Figure 3. We introduce:

h̃iα`1 “ h̃iα` 1
2
`
hiα`1

2
,

h̃iβ “ h̃iβ` 1
2
`
hiβ
2
,

h̃k “ hk for k P viα ` 2, iβ ´ 1w.

We know that hiα`1 ď 2 h̃iα`1 and hiβ ď 2 h̃iβ , and consequently:

iβ
ÿ

k“iα`1

ˇ

ˇ

ˇ
pδxvqk` 1

2
´ pδxvqk´ 1

2

ˇ

ˇ

ˇ
ď 2

iβ
ÿ

k“iα`1

|ppδ˚x ˝ δxqvqk| h̃k.

By the Hölder inequality we get:

iβ
ÿ

k“iα`1

ˇ

ˇ

ˇ
pδxvqk` 1

2
´ pδxvqk´ 1

2

ˇ

ˇ

ˇ

ď 2

˜

iβ
ÿ

k“iα`1

|ppδ˚x ˝ δxqvqk|
r
h̃k

¸1{r ˜ iβ
ÿ

k“iα`1

h̃k

¸

r´1
r

“ 2 }δxxv}LrpJq |J |
r´1
r . (14)

From (12), (13) and (14) we get (10) in the case α ą xiα` 1
2

and β ă xiβ` 1
2
.

Then, in the case α ă xiα` 1
2

and β ą xiβ` 1
2
, we introduce:

h̃iα “ xiα` 1
2
´ α,

h̃iβ`1 “ β ´ xiβ` 1
2
,

h̃k “ hk for k P viα ` 1, iβw.

This time, introducing J “ rxiα` 1
2
, xiβ` 1

2
s, we obtain by the Hölder inequality:

iβ
ÿ

k“iα`1

|pδxvqk` 1
2
´ pδxvqk´ 1

2
|

ď

˜

iβ
ÿ

k“iα`1

|ppδ˚x ˝ δxqvqk|
r
hk

¸1{r ˜ iβ
ÿ

k“iα`1

hk

¸

r´1
r

“ }δxxv}LrpJq |J |
r´1
r

ď }δxxv}LrpJq |J |
r´1
r . (15)

From (12), (13) and (15) we get (10) in the case α ă xiα` 1
2

and β ą xiβ` 1
2
. Finally,

in the two last cases (respectively α ă xiα` 1
2
, β ă xiβ` 1

2
and α ą xiα` 1

2
, β ą xiβ` 1

2
),

we proceed similarly and we obtain (10). The proof is complete.
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Lemma 3.4. Let r P R, r ě 1, v P HMpIq and J Ă I such that
ż

J

vpxqdx “ 0. (16)

Then for any x P J we have:

|vpxq| ď 2 }δxv}LrpJq |J |
r´1
r . (17)

Proof. The proof is very similar to the one of Lemma 3.3 and based on the same
arguments. We note J “sα, βr, where α P Ciα and β P Ciβ with piα, iβq P v1, Nw

2, iα ď
iβ . Without loss of generality, we suppose iα ă iβ .

We define h̃iα “ xiα` 1
2
´ α, h̃iβ “ β ´ xiβ´ 1

2
and h̃k “ hk, k P viα ` 1, iβ ´ 1w. The

property (16) can be written as:

iβ
ÿ

k“iα

h̃k vk “ 0. (18)

Now, let x P J and j P viα, iβw such that |vj | “ }v}L8pJq. We have:

|vpxq| ď |vj |. (19)

Considering now i P viα, iβw such that |vj ´ vi| “ max
kPviα,iβw

|vj ´ vk|, we have from (18):

|vj | ď |vj ´ vi| ď
j
ÿ

k“i`1

|vk ´ vk´1| ď

iβ
ÿ

k“iα`1

|vk ´ vk´1|. (20)

We suppose first that α ą xiα and β ă xiβ . We introduce:

h̃iα` 1
2
“ h̃iα `

hiα` 1
2

2
,

h̃iβ´ 1
2
“ h̃iβ `

hiβ´ 1
2

2
,

h̃k` 1
2
“ hk` 1

2
for k P viα ` 1, iβ ´ 2w.

We know that hiα` 1
2
ď 2 h̃iα` 1

2
and hiβ´ 1

2
ď 2 h̃iβ´ 1

2
. Consequently:

iβ
ÿ

k“iα`1

|vk ´ vk´1| ď 2

iβ
ÿ

k“iα`1

ˇ

ˇ

ˇ
pδxvqk´ 1

2

ˇ

ˇ

ˇ
h̃k´ 1

2
.

By the Hölder inequality we get:

iβ
ÿ

k“iα`1

|vk ´ vk´1| ď 2

˜

iβ
ÿ

k“iα`1

ˇ

ˇ

ˇ
pδxvqk´ 1

2

ˇ

ˇ

ˇ

r

h̃k´ 1
2

¸1{r ˜ iβ
ÿ

k“iα`1

h̃k´ 1
2

¸

r´1
r

“ 2 }δxv}LrpJq |J |
r´1
r . (21)

From (19), (20) and (21) we get (17) in the case α ą xiα and β ă xiβ .

For the three other cases (α ă xiα and β ă xiβ ; α ą xiα and β ą xiβ ; α ă xiα and
β ą xiβ ), we proceed in the same way, similarly to Lemma 3.3.
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Lemma 3.5. Let p, q, r P R, p ě 1, q ě 1, r ě 1, J Ă I. For any v P HMpIq, there
exists C independent of v such that

}δxv}LppJq ď C
´

|J |1`
1
p´

1
r }δxxv}LrpJq ` |J |

´1` 1
p´

1
q }v}LqpJq

¯

.

Proof. The proof is similar to the one of Lemma 3.2 in [14], and we give it here for
completeness. First we introduce

v “
1

|J |

ż

J

vpxqdx.

From Lemma 3.2, we have:

}v ´ v}LqpJq « inf
cPR
}v ´ c}LqpJq,

so that we may assume v “ 0. We denote d “
1

|J |

ż

J

δxvpxqdx and X0 the center of

J , and we define
rvpxq “ vpxq ´ dpx´X0q, (22)

so that
ż

J

rvpxqdx “ 0, (23)

and
ż

J

δxrvpxqdx “ 0. (24)

From (24) and Lemma 3.3, we get:

}δxrv}LppJq ď 2 |J |
r´1
r ` 1

p }δxxv}LrpJq. (25)

From (23), Lemma 3.4 and (25), we get:

}rv}LqpJq ď 4 |J |1`
1
q`

r´1
r }δxxv}LrpJq. (26)

Finally we have:

}δxv}LppJq
(22)
ď }δxrv}LppJq ` }d}LppJq

“ }δxrv}LppJq `
}1}LppJq ¨ }dpx´X0q}LqpJq

}x´X0}LqpJq

(25)

À |J |1`
1
p´

1
r }δxxv}LrpJq ` |J |

´1` 1
p´

1
q }dpx´X0q}LqpJq

(22)
ď |J |1`

1
p´

1
r }δxxv}LrpJq ` |J |

´1` 1
p´

1
q p}v}LqpJq ` }rv}LqpJqq

(26)

À |J |1`
1
p´

1
r }δxxv}LrpJq ` |J |

´1` 1
p´

1
q }v}LqpJq.

The proof is complete.
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Lemma 3.6. Let v P HMpIq and 1 ď p, r ă 8, 1 ď q ď 8 such that

2

p
“

1

r
`

1

q
.

Then, there exists a sequence of open intervals pIkq, which covers I, such that:

|Ik|
1` 1

p´
1
r }δxxv}LrpIkq “ |Ik|

´1` 1
p´

1
q }v}LqpIkq,

ÿ

k

χIk ď 4.

Proof. The proof is exactly the same as the one of Lemma 3.3 in [14]. We only mention
that we need the values of r and q not to be equal to `8, so that the functions ωx and
αx remain continuous, since in the proof we have to replace C8c pRq by HMpIq.

Proof. (of Theorem 3.1)

First, we consider 1 ď pn, qn, rn ă 8 such that
2

pn
“

1

rn
`

1

qn
. Following the

proof of Lemma 3.4 in [14] and using previous Lemma 3.5 and 3.6 (which respectively
correspond to the discrete versions of Lemma 3.2 and 3.3 in [14]), we obtain:

}δxv}
pn
Lpn pIq À }δxxv}

pn
2

Lrn pIq }v}
pn
2

Lqn pIq, (27)

so that (8) holds. Then, we can write:

}v}Lqn pIq ď }v}
qn´1
qn

L8pIq }v}
1
qn

L1pIq,

and thanks to (27) we get:

}δxv}
pn
Lpn pIq À }δxxv}

pn
2

Lrn pIq }v}
pn
2 p

qn´1
qn
q

L8pIq }v}
pn
2 qn

L1pIq.

Now it remains to make qn tend towards `8 to obtain (8) in the case q “ 8.

3.2 The 2D case

The goal of this subsection is now to establish the discrete Gagliardo-Nirenberg in-
equality corresponding to the discrete 2D counterpart of (3):

Theorem 3.7. Let Ω “sx, xrˆsy, yr be an open set of R2, v P HMpΩq, 1 ď p, r ă 8
and 1 ď q ď 8 such that

2

p
“

1

r
`

1

q
.

Then, we have:

}∇hv}LppΩq ď 2´
1
2q CGN }∇2

h v}
1{2
LrpΩq }v}

1{2
LqpΩq, (28)

where CGN is the constant arising in Theorem 3.1.
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Proof. First of all, from v P HMpΩq we define some discrete one-variable functions:
For j P v1,Mw, vpjq P HMpIxq with Ix “sx, xr and

}δxv
pjq}

p
LppIxq “

ż

Ix
|δxv

pjq|p dx.

For i P v1, Nw, vpiq P HMpIyq with Iy “sy, yr and

}δyv
piq}

p
LppIyq “

ż

Iy
|δyv

piq|p dy.

We have:

}∇hv}
p
LppΩq “

ż

Ω

|δxv|
p dx`

ż

Ω

|δyv|
p dx

“

M
ÿ

j“1

kj }δxv
pjq}

p
LppIxq `

N
ÿ

i“1

hi }δyv
piq}

p
LppIyq.

From Theorem 3.1 and Hölder inequality, we get:

}∇hv}
p
LppΩq ď CpGN

˜

M
ÿ

j“1

kj }δxxv
pjq}

p
2

LrpIxq }v
pjq}

p
2

LqpIxq `

N
ÿ

i“1

hi }δyyv
piq}

p
2

LrpIyq}v
piq}

p
2

LqpIyq

¸

ď CpGN

´

}δxxv}
p
2

LrpΩq ` }δyyv}
p
2

LrpΩq

¯

}v}
p
2

LqpΩq

ď 2
p
2r´1 CpGN }∇

2
hv}

p
2

LrpΩq }v}
p
2

LqpΩq,

so that (28) holds.

Remark 3.8. In the following section, we will focus on the case p “ 4, r “ 2, q “ 8:

}∇hv}L4pΩq ď CGN }∇2
h v}

1{2
L2pΩq }vh}

1{2
L8pΩq. (29)

Remark 3.9. Up to a slight modification of the prefactor 2´
1
2q in 2´

1
q , the discrete

Gagliardo-Nirenberg inequality (28) also holds when the domain Ω is a subset of R3.
Moreover, the equality (86) also holds true in the three-dimensional context. Indeed,
the definitions of the discrete operators, scalar product and norms can be done in a
similar way to the two-dimensional case. An induction argument is used to conclude
the proof of Theorem 3.7, and a term-by-term identification can be done to obtain
(86).

4 Finite Volume scheme and a priori estimates

4.1 Model and continuous results

In this section, we are interested in a convection-diffusion equation involving a Joule
effect term, given by:

Btu`∇ ¨ pu vq ` λ |∇u|2 ´ λu∆u “ 0, @x P Ω, @ t Ps0, T s, (30a)

∇upx, tq ¨ n “ 0, @x P BΩ, @ t Ps0, T s, (30b)

upx, 0q “ u0pxq, in Ω, (30c)
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where Ω “sx, xrˆsy, yrĂ R2, n is the outward unit normal vector to BΩ, T ą 0
is an arbitrary finite time horizon, λ ą 0 is a fixed parameter, and the vector field
v : QT “ Ωˆr0, T s Ñ R2 is divergence free and satisfies a no-slip boundary condition,
i.e. vpx, tq “ 0 for all x P BΩ and t P r0, T s. The system (30) can be seen as a
particular case of a global low-Mach model with temperature dependent viscosity, in
the case where v is a given datum of the problem (see e.g. [19, 8]). A local well-
posedness result for strong solutions to (30) has been established in [8, Theorem 1].
More precisely, assuming that

u0 P H
2
N pΩq “ tw P H

2pΩq s.t. ∇wpxq ¨ npxq “ 0 for a.e. x P BΩu,

that the convective velocity satisfies

v P L2p0, T ;V0pΩq X pH
2pΩqq2q with V0pΩq “ tw P pH1

0 pΩqq
2; ∇ ¨w “ 0, in Ωu,

(31)
and if there exist two real numbers u5 and u7 such that

0 ă u5 ď u0pxq ď u7, @x P Ω, (32)

then there exists T ą 0 such that the system (30) admits a unique solution with the
following regularity:

u P L2p0, T ;H3pΩqq X L8p0, T ;H2
N pΩqq, Btu P L

2p0, T ;H1pΩqq (33)

with
0 ă u5 ď u ď u7 a.e. QT . (34)

In this paper, we rather work with a weaker notion of solutions demanding for less
regularity than (33).

Definition 4.1. A function u is said to be a global in time weak solution to Problem
(30) if u P L8pQT ; ru5, u

7sq X L8pp0, T q;H1pΩqq with Btu and ∇2u P L2pQT q, if
∇u ¨ n “ 0 on BΩˆ p0, T q, and if (30a) holds (with each term belonging to L2pQT q).

With such a lower regularity requirement, we are able to prove the existence of a
global-in-time weak solution.

Theorem 4.2. Suppose u0 P H
1pΩq and that the assumptions (31)-(32) are satisfied.

If
u7 ´ u5 ď δ, (35)

for some δ ą 0 small enough (with a condition similar to the one of Theorem 4.4
below), then there exists a weak solution u satisfying

}u´ u}L8pΩˆR`q ď δ,

with u “
u5 ` u

7

2
ą 0. Moreover there exists C ě 0 such that for all t ą 0:

}uptq ´ u}2H1pΩq `

ż t

0

´

}∇upsq}2L2pΩq ` }∆upsq}
2
L2pΩq

¯

ds

ď C

ˆ

}u0 ´ u}
2
H1pΩq `

ż t

0

}∇vpsq}2L2pΩqds

˙

. (36)

15



The existence of such a global in time weak solution is a by-product of the Theo-
rem 4.4 on the convergence of the finite volume scheme to be introduced in the next
section. Note also that the assumption (35) is necessary to prove that the system (30)
admits a unique global-in-time strong solution (33) with (34) (see [19]).

4.2 The Finite Volume scheme

We notice that ∇ ¨ pu∇uq “ |∇u|2 ` u∆u. Then, the way to discretize the Joule
effect term |∇u|2 arising in (30a) must be consistent with the non-linear diffusion
one. This is important in order to ensure some properties on the numerical solution,
such as some maximum principles which hold at the continuous level. Moreover, the
non-conservative way to write the diffusion term is consistent with the analysis that
we will do, which mimics the continuous one. A rather similar Finite Volume (FV)
scheme was initially introduced in [7].

In addition to the notations of subsection 2.2.1, we denote E “ EH Y EV the set
of the horizontal and vertical edges of the mesh, i.e.

EH “
!

σi,j` 1
2
“sxi´ 1

2
, xi` 1

2
rˆtyj` 1

2
u, i P v1, Nw, j P v0,Mw

)

,

EV “
!

σi` 1
2 ,j
“ txi` 1

2
uˆsyj´ 1

2
, yj` 1

2
r, i P v0, Nw, j P v1,Mw

)

.

Now we introduce the definition of a uniform mesh in each direction.

Definition 4.3. A mesh M is said uniform in each direction if hi ” hx for i P v1, Nw
and kj ” hy for j P v1,Mw.

From now on and for the sake of simplicity, we assume that the mesh M is uniform
in each direction. As usual in the finite volume context, the size of the mesh is then
defined as the diameter of the cells, i.e.

h “
b

h2
x ` h

2
y.

We also introduce the transmissibility coefficient, given by

aσ “
hy
hx

for σ P EV and aσ “
hx
hy

for σ P EH .

Let us introduce the space

VE,0pΩq “
 

vh “ pv1,h, v2,hq P H0
MpΩq | divhvh “ 0

(

, (37)

where the operator divh is defined from HMpΩq in HMpΩq by

divhvh “ δ˚xv1,h ` δ
˚
y v2,h.

Let Ei,j be the boundary of the control volume Ci,j (i P v1, Nw, j P v1,Mw). For
σ P Ei,j , we denote by ni,j,σ the exterior unit normal vector to σ. Given a fixed but
arbitrary finite time horizon T ą 0, we split the time interval r0, T s in a uniform
partition of time step τ “ T {NT for some NT P Ną0, we define tn “ nτ (0 ď n ď
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NT ) (so that r0, T s “
Ť

0ďnăNT
rtn, tn`1s). For any velocity field v “ pv1, v2q P

L2p0, T ;V0pΩq), we define vhτ “ pv1,hτ , v2,hτ q P L
2p0, T ;VE,0pΩqq by setting

v1,hτ px, tq “ vni`1{2,j if px, tq P Ci`1{2,j ˆ pt
n, tn`1q, (38a)

v2,hτ px, tq “ vni,j`1{2 if px, tq P Ci,j`1{2 ˆ pt
n, tn`1q, (38b)

with

vn
i` 1

2 ,j
“

1

τ

ż tn`1

tn

1

hy

ż

σ
i` 1

2
,j

v1px, sq dσpxq ds, i P v1, N ´ 1w, j P v1,Mw, (38c)

vn
i,j` 1

2

“
1

τ

ż tn`1

tn

1

hx

ż

σ
i,j` 1

2

v2px, sq dσpxq ds, i P v1, Nw, j P v1,M ´ 1w.(38d)

The integrands in the above formulas have to be understood as the traces of pv1, v2q P

L2p0, T ; pH2pΩqq2q on the edges. Moreover, since H2pΩq embeds in L8pΩq (this also
holds true in the three-dimensional setting), then

|vni,j` 1
2
| ď

1

τ

ż tn`1

tn
}vp¨, tq}8dt

We define moreover vnh P VE,0pΩq by:

vnhpxq “ pv
n
1,hpxq, v

n
2,hpxqq “

1

τ

ż tn`1

tn
vhτ px, sq ds @x P Ω.

We infer from Jensen’s inequality that

}vhτ }L2p0,T ;L8pΩqq ď }v}L2p0,T ;L8pΩqq ď CΩ}v}L2p0,T :H2pΩqq (39)

with CΩ being the continuity constant for the injection of H2pΩq into L8pΩq.

The initial data u0 is discretized into

u0
i,j “

1

hxhy

ż

Ci,j

u0pxqdx, i P v1, Nw, j P v1,Mw. (40)

Assuming that unh P HMpΩq is a known approximation of up¨, tnq, we are looking for
an approximation un`1

h P HMpΩq of up¨, tn`1q, with

unhpxq “ uni,j if x P Ci,j , n ě 0.

The space-time approximate solution uhτ P L
8p0, T ;HMpΩqq is then defined almost

everywhere by
uhτ px, tq “ un`1

h pxq if t P ptn, tn`1s.

The scheme is obtained by integrating (30a) on each Ci,j PM, leading to

hxhy
un`1
i,j ´ uni,j

τ
`

ÿ

σPEi,j

vni,j,σ u
n`1
i,j,σ,` ` λhxhy

`

Ji,jpun`1
h q ´ un`1

i,j p∆huhq
n`1
i,j

˘

“ 0.

(41)
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In the above equation (41), we defined vni,j,σ by

vni,j,σ “

$

&

%

˘hy v
n
i˘ 1

2 ,j
if σ “ σi˘ 1

2 ,j
P EV ,

˘hx v
n
i,j˘ 1

2

if σ “ σi,j˘ 1
2
P EH ,

and by un`1
i,j,σ,` the upstream choice for the convection term defined for σ P Ei,j :

un`1
i,j,σ,` “

#

un`1
i,j if vni,j,σ ě 0,

un`1
i,j,σ otherwise,

with un`1
i,j,σ “

$

’

’

&

’

’

%

un`1
i˘1,j if σ “ σi˘ 1

2 ,j
P EV ,

un`1
i,j˘1 if σ “ σi,j˘ 1

2
P EH ,

un`1
i,j if σ Ă BΩ.

The discretization of the Joule effect term is more original as we set

Ji,jpun`1
h q “

1

hxhy

ÿ

σPEi,j

aσ
`

pun`1
i,j ´ un`1

i,j,σq
`
˘2
, (42)

where a` “ maxp0, aq. We also denote by

Jhpun`1
h qpxq “ Ji,jpun`1

h q if x P Ci,j . (43)

This discretization of the Joule effect term |∇u|2 can be thought as some dual coun-
terpart of the upstream convection, see [9]. It enjoys the following key property for
the preservation of the maximum principle:

un`1
i,j ď un`1

i,j,σ for all σ P Ei,j ùñ Ji,jpun`1
h q “ 0,

transposing to the discrete setting the fact that |∇u|2 vanishes at the minima of u.

Besides the second order discrete Gagliardo-Nirenberg inequality stated in Sec-
tion 3, the main result of the paper can be gathered in the following statement.

Theorem 4.4. Let u0 P H
1pΩq be such that u5 ď u0 ď u7 for some (strictly) positive

constants u5, u
7, then the numerical scheme (40)–(41)–(42) admits a unique iterated

in time solution uhτ with u5 ď uhτ ď u7 a.e. in QT . Moreover, if u7 ´ u5 ă δ with
0 ă δ ă 2

pCGN q2
p
a

1` u5
2 ´ 1q, then, up to a subsequence,

uhτ ÝÑ
h,τ Ñ0

u a.e. in QT

where u is a weak solution to the continuous problem in the sense of Definition 4.1.

Remark 4.5. The constraint on δ might look restrictive but it is imposed by the
global well-posedness of the continuous problem. We emphasize that the proposed
convergence result applies to (30), but it is also motivated by a practical application
on a ghost effect system (see [22, 19]). Ghost effect systems are formally derived
to describe regimes in which the compressible Navier-Stokes system is incomplete, in
particular when the classical heat-conduction equation fails to correctly describe the
temperature field of the gas. In such a physical context, the parameter δ is expected
to be small. The analysis done in this work can be considered as part of the analysis
of a numerical scheme for a ghost effect system or a low Mach model expressed in
velocity, pressure and temperature variables, as proposed in [7] where some numerical
tests are also presented.
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The two next sections are devoted to the proof of Theorem 4.4. Moreover, finer
convergence properties will be derived along the proof, especially in Section 6.1.

5 Numerical analysis at fixed grid

The goal of this section is to prove the well-posedness of the numerical scheme as well
as estimates which are uniform with respect to the grid. Those estimates will serve
as cornerstones for the convergence proof reported in Section 6.

5.1 Maximum principle and existence of a discrete solution

We first establish a uniform L8 a priori estimate on the discrete solution, on which
we will rely to show the existence of a discrete solution uh to the scheme (41).

Proposition 5.1. Assume that there exist two positive constants u5, u
7 such that

0 ă u5 ď u0 ď u7. (44)

Then for all n P v1, NT w the finite volume scheme (40)–(41) admits a unique solution
unh P HMpΩq which satisfies

0 ă u5 ď uni,j ď u7 @ i P v1, Nw, j P v1,Mw, n P v1, NT w. (45)

Proof. The proof is done by induction over n. The initialization for n “ 0 is straight-
forward in view of (44) and the definition (40) of the initial discrete solution. We
perform a harmless modification of the scheme, which now writes

hxhy
un`1
i,j ´ uni,j

τ
`

ÿ

σPEi,j

vni,j,σ u
n`1
i,j,σ,`

` λhxhy
`

Ji,jpun`1
h q ´ pun`1

i,j q
`p∆huhq

n`1
i,j

˘

“ 0, (46)

instead of (41). Of course, once (45) is established, we get that solutions to (46) are
also solutions to (41).

The modified scheme (46) can be rewritten in the compact form

Fi,jpun`1
h q “ uni,j , i P v1, Nw, j P v1,Mw,

where Fh “ pFi,jqi,j : HMpΩq Ñ HMpΩq is increasing w.r.t. un`1
i,j and non-increasing

w.r.t. un`1
k,` as soon as pk, `q ‰ pi, jq.Moreover, since vnh is discrete divergence free,

one has for all κ P R that

Fi,jpκhq “ κ, i P v1, Nw, j P v1,Mw, (47)

where κh is the element of HMpΩq which is constant equal to κ. The Jacobian matrix

Jpun`1
h q “

´

BFi,j
Buk,`

pun`1
h q

¯

pi,jq,pk,`q
is a M -matrix in the sense of [18, Definition 4.8].

19



Let ǔn`1
h be another solution to (46) corresponding to some previous step value ǔnh,

then
Fhpun`1

h q ´ Fhpǔn`1
h q “ Jpun`1

h , ǔn`1
h qpun`1

h ´ ǔn`1
h q “ unh ´ ǔ

n
h,

where

Jpun`1
h , ǔn`1

h q “

ż 1

0

Jpǔn`1
h ` tpun`1

h ´ ǔn`1
h qqdt

is also a M matrix. It is in particular invertible with Jpun`1
h , ǔn`1

h q´1 ě 0 component-
wise. Therefore,

unh ě ǔnh ùñ un`1
h ě ǔn`1

h .

This yields in particular the uniqueness of the solution to (46), as well as the maximum
principle (45) thanks to (47) if one chooses ǔnh “ ǔn`1

h constant equal to u5 or u7.
Finally, the existence of a solution to the modified scheme (46), and thus to the

original one (41) is obtained thanks to some classical topological degree argument.
We refer to [21, 10] for a general presentation of the topological gradient theory, and
to [11] for its first (up to our knowledge) use in the context of finite volumes.

5.2 Further estimates

The goal of this section is to establish the next estimates required to establish the
convergence of the scheme. The main and next one is a L8locpH

1qXL2
locpH

2
N q estimate

obtained under some smallness assumption on the data.

Proposition 5.2. Assume that (44) holds. Then, there exists δ ą 0 such that if

u7 ´ u5 ď δ, (48)

then there exists c ą 0 only depending on Ω, u0, v, λ, δ and T such that the solu-
tion unh P HMpΩq of the scheme (41) built at Proposition 5.1 satisfies the following
estimates:

}∇hu
n
h}L2pΩq ď c, @n P v1, NT w, (49)

NT´1
ÿ

n“0

τ
´

}∆h u
n`1
h }2L2pΩq ` }Jhpu

n`1
h q}2L2pΩq

¯

ď c. (50)

Proof. Before addressing the properties of unh, n ě 1, induced by the scheme, let us
first remark that

}∇hu
0
h}L2pΩq ď }∇u0}L2pΩq (51)

thanks to the definition (40) of u0
h and to successive uses of Jensen’s inequality and

Fubini’s theorem. We refer for instance to [12, Lemma 9.4] for an extension of (51)
to the more complex case of non-structured grids.

Given n P v0, NT ´ 1w, we multiply (41) by p´∆huhq
n`1
i,j and we sum for i “

1, . . . , N and j “ 1, . . . ,M :

´

ż

Ω

un`1
h ´ unh

τ
∆hu

n`1
h dx` λ

ż

Ω

un`1
h p∆hu

n`1
h q2 dx

“
ÿ

Ci,jPM

ÿ

σPEi,j

vni,j,σ u
n`1
i,j,σ,`p∆huhq

n`1
i,j ` λ

ż

Ω

J pun`1
h q∆hu

n`1
h dx. (52)
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Owing to (85) and to the convexity inequality pb ´ aqb ě
b2

2
´
a2

2
, the first term in

the left-hand side can be underestimated by

´

ż

Ω

un`1
h ´ unh

τ
∆hu

n`1
h ě

1

2τ
}∇hu

n`1
h }2L2pΩq ´

1

2τ
}∇hu

n
h}

2
L2pΩq. (53)

For the second term of the left-hand side, the maximum principle (see Proposition
5.1) implies that

λ

ż

Ω

un`1
h p∆hu

n`1
h q2dx ě λu5 }∆hu

n`1
h }2L2pΩq. (54)

For the convection term, we have two contributions corresponding respectively to
the centered approximation for the convection and to the numerical diffusion stem-
ming from the upwinding, see (98). We recall that the properties of the discrete
interpolation operators are collected in Appendix A. Concerning the centered part,
we deduce from (97), (99) and Lemma B.1 that

ÿ

Ci,jPM

ÿ

σPEi,j

vni,j,σ u
n`1
i,j,σ,cp∆huhq

n`1
i,j “ ´T

p1,2q
1 ´ T

p2,2q
1 ´ T

p1,2q
2 ´ T

p2,2q
2 , (55)

with:

T
p1,2q
1 “

ż

Ω

πxpδ
˚
xv

n
1,h ¨ π

˚
x pδxu

n`1
h qq ¨ δxu

n`1
h dx,

T
p2,2q
1 “

ż

Ω

π˚y pδxv
n
2,h ¨ πxpδyu

n`1
h qq ¨ δxu

n`1
h dx,

T
p1,2q
2 “

ż

Ω

π˚x pδyv
n
1,h ¨ πypδxu

n`1
h qq ¨ δyu

n`1
h dx,

and

T
p2,2q
2 “

ż

Ω

πypδ
˚
y v

n
2,h ¨ π

˚
y pδyu

n`1
h qq ¨ δyu

n`1
h dx.

The combination of Proposition A.5, standard Hölder inequalities together with Propo-
sition A.6 yields

|T
p1,2q
1 | ď }δ˚xv

n
1,h}L2pΩq }π

˚
x pδxu

n`1
h q}2L4pΩq

ď }δ˚xv
n
1,h}L2pΩq }δxu

n`1
h }2L4pΩq,

|T
p2,2q
1 | ď }δxv

n
2,h}L2pΩq }πxpδyu

n`1
h q}L4pΩq }πypδxu

n`1
h q}L4pΩq

ď }δxv
n
2,h}L2pΩq }δyu

n`1
h }L4pΩq }δxu

n`1
h }L4pΩq,

|T
p1,2q
2 | ď }δyv

n
1,h}L2pΩq }πypδxu

n`1
h q}L4pΩq }πxpδyu

n`1
h q}L4pΩq

ď }δyv
n
1,h}L2pΩq }δxu

n`1
h }L4pΩq }δyu

n`1
h }L4pΩq,

|T
p2,2q
2 | ď }δ˚y v

n
2,h}L2pΩq }π

˚
y pδyu

n`1
h q}2L4pΩq

ď }δ˚y v
n
2,h}L2pΩq }δyu

n`1
h }2L4pΩq,
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whence the estimate
ÿ

Ci,jPM

ÿ

σPEi,j

vni,j,σ u
n`1
i,j,σ,cp∆huhq

n`1
i,j

ď
1

2λ
}∇hv

n
h}

2
L2pΩq `

λ

2

´

}δxu
n`1
h }2L4pΩq ` }δyu

n`1
h }2L4pΩq

¯2

ď
1

2λ
}∇hv

n
h}

2
L2pΩq ` λ pCGN q

4 pu
7 ´ u5q

2

8
}∆h u

n`1
h }2L2pΩq. (56)

For the last inequality we used the Gagliardo-Nirenberg inequality (29) applied to

un`1
h ´

u5 ` u
7

2
P HMpΩq) combined with identity (86). Let us now focus on the

numerical diffusion part corresponding to the second term in (98). Since

ˇ

ˇun`1
i,j,σ,` ´ u

n`1
i,j,σ,c

ˇ

ˇ “
1

2
|un`1
i,j ´ un`1

i,j,σ|, @σ P Ei,j ,

one can rewrite

A :“
ˇ

ˇ

ˇ
hxhy

ÿ

Ci,jPM

ÿ

σPEi,j

vni,j,σ
`

un`1
i,j,σ,` ´ u

n`1
i,j,σ,c

˘

p∆huhq
n`1
i,j

ˇ

ˇ

ˇ

ď
hxhy

2

ÿ

Ci,jPM

ˇ

ˇp∆huhq
n`1
i,j

ˇ

ˇ

ÿ

σPEi,j

|vni,j,σ||u
n`1
i,j ´ un`1

i,j,σ|

which together with Young’s inequality leads to

A ď Bε `
ε

4
}∆hu

n`1
h }2L2pΩq,

with

Bε “
1

4ε
hxhy

ÿ

Ci,jPM

¨

˝

ÿ

σPEi,j

|vni,j,σ||u
n`1
i,j ´ un`1

i,j,σ|

˛

‚

2

,

and where ε ą 0 will be fixed later on. Using now the elementary pa` b` c` dq2 ď
4pa2 ` b2 ` c2 ` d2q and Young’s inequality, we get that

Bε ď
1

ε
hxhy

ÿ

Ci,jPM

ÿ

σPEi,j

|vni,j,σ|
2|un`1

i,j ´ un`1
i,j,σ|

2

ď
1

4αε
hxhy

ÿ

Ci,jPM

ÿ

σPEi,j

|vni,j,σ|
4 `

α

ε
hxhy

ÿ

Ci,jPM

ÿ

σPEi,j

|un`1
i,j ´ un`1

i,j,σ|
4

ď
1

2αε
}vnh}

4
L4pΩq `

2α

ε
h4}∇hu

n`1
h }4L4pΩq

ď
pCSq

4

2αε
}∇hv

n
h}

4
L2pΩq `

α

2ε
pCGN q

4h4pu7 ´ u5q
2}∆hu

n`1
h }2L2pΩq,

where the last inequality is a consequence of the discrete Sobolev inequality (see for
instance [13])

}vnh}L4pΩq ď CS}∇hv
n
h}L2pΩq
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and of the discrete Gagliardo-Nirenberg inequality (29) combined with identity (86).
For the parameter α ą 0, we choose α “ λε{p4h4q, so that

Bε ď
2h4pCSq

4

λε2
}∇hv

n
h}

4
L2pΩq `

λ

8
pCGN q

4pu7 ´ u5q
2}∆hu

n`1
h }2L2pΩq.

Setting ε “ λpCGN q
4pu7 ´ u5q

2, one gets that

A ď λ

ˆ

hCS
λpCGN q2pu7 ´ u5q

˙4

}∇hv
n
h}

4
L2pΩq `

3λ

8
pCGN q

4pu7 ´ u5q
2}∆hu

n`1
h }2L2pΩq.

(57)
Finally, applying Cauchy-Schwartz inequality to the last term in (52) leads to

λ

ż

Ω

Jhpun`1
h q∆hu

n`1
h dx ď λ}∆hu

n`1
h }L2pΩq}Jhpun`1

h q}L2pΩq.

The definition (42) and (43) of Jh is so that

}Jhpun`1
h q}2L2pΩq “

1

hxhy

ÿ

Ci,jPM

¨

˝

ÿ

σPEi,j

aσ
`

pun`1
i,j ´ un`1

i,j,σq
`
˘2

˛

‚

2

ď
4

hxhy

ÿ

Ci,jPM

ÿ

σPEi,j

a2
σ

`

pun`1
i,j ´ un`1

i,j,σq
`
˘4

ď 4hxhy
ÿ

Ci,jPM

ÿ

σPEi,j

˜

pun`1
i,j ´ un`1

i,j,σq
`

hσ

¸4

,

with hσ “ hx if σ P EV and hσ “ hy if σ P EH is the distance between the cell centers
|xi,j ´ xi,j,σ|. Due to the positive part, each edge σ is counted once in the last sum,
and we deduce that

}Jhpun`1
h q}L2pΩq ď 2

¨

˝hxhy
ÿ

σPE

˜

un`1
i,j ´ un`1

i,j,σ

hσ

¸4
˛

‚

1{2

“ 2}∇hu
n`1
h }2L4pΩq.

Applying again (29) and (86), one gets that

}Jhpun`1
h q}L2pΩq ď 2pCGN q

2pu7 ´ u5q}∆hu
n`1
h }L2pΩq, (58)

and then that

λ

ż

Ω

Jhpun`1
h q∆hu

n`1
h dx ď 2λpCGN q

2pu7 ´ u5q}∆hu
n`1
h }2L2pΩq. (59)

Eventually, combining (53)–(59) in (52) leads to

1

2τ

´

}∇hu
n`1
h }2L2pΩq ´ }∇hu

n
h}

2
L2pΩq

¯

`λ}∆hu
n`1
h }2L2pΩq

ˆ

u5 ´
1

2
pCGN q

4δ2 ´ 2pCGN q
2δ

˙

ď

˜

1

2λ
` C1

ˆ

h

δ

˙4
¸

}∇hv
n
h}

4
L2pΩq
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with C1 depending only on Ω (via CGN and CS) and on λ. For δ ă 2
pCGN q2

p
a

1` u5
2 ´

1q, the term in front of }∆hu
n`1
h }2 is positive. Owing to Lemma B.2, the above right-

hand side is bounded by some quantity not depending on the mesh.

From the above estimate, we deduce a uniform L2pQT q estimate on δτuhτ P
L8p0, T ;HMq defined by

δτuhτ p¨, tq “
un`1
h ´ unh

τ
if t P rtn, tn`1q. (60)

Then the following estimate directly follows from the use of the estimates of Propo-
sition 5.2 in the scheme (41).

Corollary 5.3. Under the assumptions of Proposition 5.2, there exists C ě 0 de-
pending only on Ω, u0, v, λ, δ and T such that

ĳ

QT

|δτuhτ |
2

dxdt ď C.

6 Convergence of the finite volume scheme

The purpose of this section is to establish the convergence of the scheme thanks to
compactness arguments. Given pMmqmě0 a sequence of admissible meshes with size
hm tending to 0 as m tends to `8, and given pτmqmě0 be a sequence of positive
time steps tending to 0, then denoting by puhmτmqmě0 the corresponding sequence
of approximate solution provided by Proposition 5.1, then one aims to show that, up
to the extraction of a subsequence, uhmτm tends to a weak solution u to (30) in the
sense of Definition 4.1. Our proof is based on compactness arguments. We start in
Section 6.1 to establish some compactness properties on the approximate solutions
puhmτmqm, then the limit value will be identified as a weak solution to the problem
in Section 6.2.

6.1 Some compactness properties

First, it follows from Proposition 5.1 that there exists u P L8pQT q with u5 ď u ď u7

such that, up to a subsequence, there holds

uhmτm ÝÑ
mÑ`8

u in the L8pQT q-weak-‹ sense. (61)

Moreover, thanks to the (uniform w.r.t. m) L2pQT q bounds on ∇hmuhmτm and
δτmuhmτm respectively established in Proposition 5.2 and Corollary 5.3, we can mimic
the technics detailed in [12] to get estimates on the space-and-time translates

ż T´ζ

0

ż

Ωξ

|uhmτmpx`ξ, t`ζq´uhmτmpx, tq|
2dxdt ď C

`

ζ2 ` |ξ|2
˘

, ζ P p0, T q, ξ P R2,
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with C not depending on m, and with Ωξ “ tx P Ω | x ` ξ P Ωu. This in particular
yields the relative compactness of the sequence puhmτmqm in L2pQT q thanks to Kol-
mogorov’s compactness criterion. Therefore, up to the extraction of a subsequence,
we get that

uhmτm ÝÑ
mÑ`8

u a.e. in QT . (62)

Besides, we deduce from Estimate (50) that, still up to a subsequence, there holds

∆hmuhmτm ÝÑ
mÑ`8

∆u weakly in L2pQT q. (63)

Indeed, the (uniform w.r.t. m) L2pQT q bound on ∆hmuhmτm ensures the existence of
some weak limit d P L2pQT q. Then following the program of [12], the identification
of d “ ∆u is then obtained in the distributional sense. Similarly, we deduce from
Corollary 5.3 that

δτmuhmτm ÝÑ
mÑ`8

Btu weakly in L2pQT q. (64)

Concerning the sequence p∇hmuhmτmqm, we have the uniform L8p0, T ;L2pΩqq2 esti-
mate (49) as well as a L4pQT q

2 estimate stemming from the combination of (29), (45)
and (50). After identifying the weak limit in the distributional sense once again, one
gets that

∇hmuhmτm ÝÑ
mÑ`8

∇u in the L4pQT q-weak and L8p0, T ;L2pΩqq2-weak-‹ senses.

(65)
Further compactness is required to pass in the limit in the Joule effect term Jhmpuhmτmq,
whence next lemma.

Lemma 6.1. Up to extraction of a subsequence, the following convergence holds:

∇hmuhmτm ÝÑ
mÑ`8

∇u a.e. in QT .

Proof. The proof relies on some discrete Aubin-Lions-Simon lemma. In the proof, we
make use of the result presented in [1] but we stress that a proof building on [17, 16]
is also possible.

We proceed direction-wise, proving that δxuhmτm P
pH0
Mm

pΩq converges pointwise

towards Bxu. Of course, proving the convergence of δyuhmτm P
rH0
Mm

pΩq towards Byu
is similar.

The combination of Estimate (50) with identity (86) provides that

}∇hmδxuhmτm}L2pQT q2
ď C

for some C not depending on m, providing some compactness with respect to the
space variable on pδxuhmτmqm. On the other hand, given ϕ P C8c pQT q, and denoting
by rϕhmτm the piecewise constant in time and space function defined by

rϕhmτmpx, tq “
1

τmhx,mhy,m

ż pn`1qτm

nτm

ż

Ci`1{2,j

ϕdxdt,
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then
ĳ

QT

δxδτmuhmτmϕdxdt “

ĳ

QT

δxδτmuhmτm rϕhmτm dxdt “ ´

ĳ

QT

δτmuhmτmδ
˚
x rϕhmτm dxdt.

Applying Cauchy-Schwarz inequality and using Corollary 5.3 and [12, Lemma 9.4]
yields

ĳ

QT

δxδτmuhmτmϕdxdt ď C}∇hm rϕhmτm}L2pQT q2 ď C}∇ϕ}L2pQT q2 .

We can thus apply Theorem 3.9 of [1] which ensures that δxuhmτm converges pointwise.
Because of (65), the limit is Bxu.

Notice that thanks to (65) and Lemma 6.1, we can apply Vitali’s convergence
theorem and claim that

∇hmuhmτm ÝÑ
mÑ`8

∇u in L2pQT q. (66)

With the above compactness properties, we have enough material to pass to the limit
in the scheme. This is the purpose of next section.

6.2 Limits are weak solutions

As a preliminary to the identification of any limit value u of uhmτm as in Section 6.1
as a weak solution, let us first show the consistency of the discretization (42) and (43)
of the Joule term.

Lemma 6.2. Up to a subsequence there holds

Jhmpuhmτmq ÝÑ
mÑ`8

|∇u|2 weakly in L2pQT q.

Proof. First, it follows from (66) that

|∇hmuhmτm |
2 ÝÑ
mÑ`8

|∇u|2 in L1pQT q. (67)

On the other hand, we deduce from (50) that there exists some J P L2pQT q such that

Jhmpuhmτmq ÝÑ
mÑ`8

J weakly in L2pQT q.

Let us now identify J as |∇u|2 in the distributional sense. Let ϕ P C8c pQT q, and
define ϕhmτm by setting ϕni,j “ ϕpxi,j , t

nq for all Ci,j P Mm and all n P v1, NT,mw,
then

ĳ

QT

`

Jhmpuhmτmq ´ |∇hmuhmτm |
2
˘

ϕdxdt ď Rmpϕq ` Smpϕq, (68)

with

Rmpϕq “

ĳ

QT

`

Jhmpuhmτmq ` |∇hmuhmτm |
2
˘

|ϕhmτm ´ ϕ|dxdt
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and

Smpϕq “
ĳ

QT

`

Jhmpuhmτmq ´ |∇hmuhmτm |
2
˘

ϕhmτm dxdt

Due to the regularity of ϕ and to the boundedness in L1pQT q of Jhmpuhmτmq and
|∇hmuhmτm |

2, we infer that

|Rmpϕq| ď Cphm ` τmq ÝÑ
mÑ`8

0. (69)

Since
ż

Ci,j

|∇hmu
n
hm |

2dx “
1

2

ÿ

σPEi,j

aσ
`

uni,j ´ u
n
i,j,σ

˘2
,

one deduces from the definition (43) of Jhmpuhmτmq that

|Smpϕq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

NT,m
ÿ

n“1

τm
ÿ

Ci,jPMm

ϕni,j
ÿ

σPEi,j

aσ

„

´

`

uni,j,σ ´ u
n
i,j

˘`
¯2

´
1

2

`

uni,j,σ ´ u
n
i,j

˘2


ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2

NT,m
ÿ

n“1

τm
ÿ

Ci,jPMm

ÿ

σPEm

aσ
`

uni,j,σ ´ u
n
i,j

˘2 ˇ
ˇϕni,j ´ ϕ

n
i,j,σ

ˇ

ˇ

ď Chm

NT,m
ÿ

n“1

τm
ÿ

Ci,jPMm

ÿ

σPEm

aσ
`

uni,j,σ ´ u
n
i,j

˘2
ď Chm ÝÑ

mÑ`8
0, (70)

the last inequality being a consequence of (49). Then we deduce from (67)–(70) that
J “ |∇u|2, concluding the proof of Lemma 6.2.

Our next lemma is about the boundary conditions for the limit u, which is shown
to belong to L2p0, T ;H2

N pΩqq.

Lemma 6.3. Let u be a limit of puhmτmqm as in Section 6.1, then ∇u ¨ n “ 0 on
BΩˆ p0, T q.

Proof. First note that since ∆u belongs to L2pQT q, cf. (63) and since Ω is convex,
then u belongs to L2p0, T ;H2pΩqq and ∇u P L2p0, T ;H1pΩqq2 admits strong traces
in L2p0, T ;H1{2pBΩqq2 Ă L2pBΩ ˆ p0, T qq2. Let us show that ´Bxu “ ∇u ¨ n “ 0 on
`

txu ˆ py, yq
˘

ˆp0, T q, the treatment of the other parts of the boundary being similar.
We proceed as in [4, Section 4.2]. Fix ε ą 0, then the triangle inequality gives

ż T

0

ż y

y

|Bxuppx, yq, tq|dydt “

ż T

0

1

ε

ż ε

0

ż y

y

|Bxuppx, yq, tq|dydsdt ď Aε`Bεm`C
ε
m, (71)

with

Aε “

ż T

0

1

ε

ż ε

0

ż y

y

|Bxuppx, yq, tq ´ Bxuppx` s, yq, tq|dydsdt,

Bεm “

ż T

0

1

ε

ż ε

0

ż y

y

|Bxuppx` s, yq, tq ´ δxuhmτmppx` s, yq, tq|dydsdt,

Cεm “

ż T

0

1

ε

ż ε

0

ż y

y

|δxuhmτmppx` s, yq, tq|dydsdt.
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Applying Cauchy-Schwarz inequality, one gets that

Aε ď

ż T

0

1

ε

ż ε

0

ż y

y

ż s

0

|Bxxuppx` r, yq, tq|drdydsdt

ď

˜

ż T

0

1

ε

ż ε

0

ż y

y

ż s

0

|Bxxuppx` r, yq, tq|
2

drdydsdt

¸1{2
d

T py ´ yqε

2
.

We then infer from the lower semi-continuity of the norm for the weak conver-
gence (63) that

Aε ď C
?
ε, @ ε ą 0. (72)

For the second term Bεm, the strong convergence of δxuhmτm towards Bxu in L2pQT q
(thus also in L1pQT q) stated in (66) implies that

lim
mÑ`8

Bεm “ 0, @ ε ą 0. (73)

For the third term Cεm, we use the fact that un1,j “ un0,j to write that

Cεm ď
1

ε

NT,m
ÿ

n“1

τm

Mm
ÿ

j“1

hy,m

r ε
hx,m

s
ÿ

i“0

|uni`1,j ´ u
n
i,j |

ď
1

ε

NT,m
ÿ

n“1

τm

Mm
ÿ

j“1

hy,m

r ε
hx,m

s
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ˇ

i
ÿ

`“1

pun``1,j ´ 2un`,j ` u
n
`´1,jq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

ε

NT,m
ÿ

n“1

τm

Mm
ÿ

j“1

hy,m

r ε
hx,m

s
ÿ

i“0

i
ÿ

`“1

ˇ

ˇun``1,j ´ 2un`,j ` u
n
`´1,j

ˇ

ˇ .

Then Cauchy-Schwarz inequality provides that

pCεmq
2
ď

¨

˝

1

ε

NT,m
ÿ

n“1

τm

Mm
ÿ

j“1

hy,mh
2
x,m

r ε
hx,m

s
ÿ

i“0

i
ÿ

`“1

ˆ

un``1,j ´ 2un`,j ` u
n
`´1,j

h2
x,m

˙2
˛

‚

ˆ

¨

˝

1

ε

NT,m
ÿ

n“1

τm

Mm
ÿ

j“1

hy,m

r ε
hx,m

s
ÿ

i“0

i
ÿ

`“1

h2
x,m

˛

‚“: Cε,p1qm ˆ Cε,p2qm . (74)

The first term in the above right-hand side can be overestimated by

Cε,p1qm ď
ε` hx,m

ε

ĳ

QT

|δ˚xδxuhmτm |
2

dxdt ď

ˆ

1`
hx,m
ε

˙

}∆huhmτm}
2
L2pQT q

.

Hence we infer from (50) that

lim sup
mÑ`8

Cε,p1qm ă `8. (75)
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Concerning C
ε,p2q
m , we first use the elementary inequality rab sb ď a` b to write

r ε
hx,m

s
ÿ

i“0

i
ÿ

`“1

h2
x,m ď

1

2
pε` hx,mqpε` 2hx,mq.

Therefore, we obtain that

Cε,p2qm ď εT py ´ yq

ˆ

1`
hx,m
ε

˙ˆ

1

2
`
hx,m
ε

˙

,

and thus that
lim sup
mÑ`8

Cε,p2qm ď Cε. (76)

Combining (72)–(76) in (71) yields

ż T

0

ż y

y

|Bxuppx, yq, tq|dydt ď C
?
ε

for any ε ą 0, whence the desired result.

It only remains to prove the following proposition to conclude the proof of Theo-
rem 4.4.

Proposition 6.4. Let u be a limit value of puhmτmqm as in Section 6.1, then u is a
weak solution to (30) in the sense of Definition 4.1.

Proof. With Lemma 6.3 in addition to the compactness result stated in Section 6.1,
we know that the limit u belongs to the right space to be a weak solution. We only
have to check that (30a) is fulfilled by the limit u. To this end, denote by

Wn`1
i,j “

1

hx,mhy,m

ÿ

σPEi,j

vni,j,σ u
n`1
i,j,σ,`

for i P v1, Nmw, j P v1,Mmw, and n P v1, NT,mw, then define Whmτm by

Whmτmpx, tq “Wn
i,j if px, tq P Ci,j ˆ pt

n´1, tns.

The scheme (41) then rewrites under the compact form

δτmuhmτm `Whmτm ` λ pJhmpuhmτmq ´ uhmτm∆hmuhmτmq “ 0. (77)

Due to (61), (62) and (63), we can easily check that

uhmτm∆hmuhmτm ÝÑ
mÑ`8

u∆u weakly in L2pQT q.

Bearing in mind (64) and Lemma 6.2, it only remains to prove the

Whmτm ÝÑ
mÑ`8

∇ ¨ puvq “ v ¨∇u weakly in L2pQT q, (78)

to pass to the limit in (77) to recover (30a).
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Since vnh is divergence free, one has
ř

σPEi,j v
n
i,j,σ “ 0, so that Wn`1

i,j rewrites

Wn`1
i,j “

1

hx,mhy,m

ÿ

σPEi,j

vni,j,σ pu
n`1
i,j,σ,` ´ u

n`1
i,j q.

Then it follows from the definition of un`1
i,j,σ,` that

vni,j,σ pu
n`1
i,j,σ,` ´ u

n`1
i,j q “ pv

n
i,j,σq

´pun`1
i,j ´ un`1

i,j,σq,

where pvni,j,σq
´ “ maxp0,´vni,j,σq denotes the negative part of vni,j,σ.

ĳ

QT

|Whmτm |
2dxdt “

NT,m
ÿ

n“1

τm
ÿ

Ci,jPMm

1

hx,mhy,m

¨

˝

ÿ

σPEi,j

pvn´1
i,j,σq

´ puni,j ´ u
n
i,j,σq

˛

‚

2

ď 4

NT,m
ÿ

n“1

τm
ÿ

Ci,jPMm

1

hx,mhy,m

ÿ

σPEi,j

`

pvn´1
i,j,σq

´
˘2 `

puni,j ´ u
n
i,j,σq

˘2
.

Bearing in mind the definition of vni,j,σ, we get that

ĳ

QT

|Whmτm |
2dxdt ď 2

NT,m
ÿ

n“1

τm}v
n
h}

2
8

ÿ

Ci,jPMm

ÿ

σPEi,j

aσpu
n
i,j ´ u

n
i,j,σq

2.

Making use of (49) and (39), one eventually gets that

ĳ

QT

|Whmτm |
2dxdt ď C.

In particular, there exists some W˚ P L2pQT q such that

Whmτm ÝÑ
mÑ`8

W˚ weakly in L2pQT q. (79)

Let us identify W˚ as v ¨∇u in the distributional sense. Let ϕ P C8c pQT q, then
defining ϕhmτm as the piecewise constant in time and space function built from the
cell values ϕni,j “ ϕpxi,j , t

nq, then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ

QT

Whmτmpϕ´ ϕhmτmqdxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ĳ

QT

|Whmτm | |ϕ´ ϕhmτm |dxdt. (80)

Due to the regularity of ϕ and the boundedness in L2pQT q of Whmτm , the above
right-hand side tends to 0 as m tends to `8. We write

ĳ

QT

Whmτmϕhmτmdxdt “ T p1qm pϕq ` T p2qm pϕq
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with

T p1qm pϕq “
1

2

NT,m
ÿ

n“1

τm
ÿ

Ci,jPMm

ϕni,j
ÿ

σPEi,j

vn´1
i,j,σ

`

uni,j,σ ´ u
n
i,j

˘

“

ĳ

QT

vhmτm ¨∇hmuhmτm ϕhmτmdxdt,

and

T p2qm pϕq “
1

2

NT,m
ÿ

n“1

τm
ÿ

σPEm

vn´1
i,j,σ

`

uni,j ´ u
n
i,j,σ

˘ `

ϕni,j ´ ϕ
n
i,j,σ

˘

.

In particular, by similar arguments to those which lead to (79) combined with the
regularity of ϕ, one gets that

ˇ

ˇ

ˇ
T p2qm pϕq

ˇ

ˇ

ˇ
ď Cphm ` τmq. (81)

Besides, mimicking the calculations in the proof of Lemma B.2, one readily shows
that vhmτm tends to v in L2pQT q as m goes to `8. Together with (65) and with the
uniform convergence of ϕhmτm towards ϕ stemming from its regularity, this allows to

pass to the limit in T p1qm pϕq:

T p1qm pϕq ÝÑ
mÑ`8

ĳ

QT

v ¨∇uϕdxdt,

concluding the proof of (78) and thus of Proposition 6.4.
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A Properties of discrete differential and interpola-
tion operators for the 2D case

We give some properties related to the differential and interpolation operators.

Proposition A.1. We have the following properties:

For any v P pHMpΩq, pδy ˝ δ
˚
x q v “ pδ

˚
x ˝ δyq v. (82)

For any v P rHMpΩq, pδx ˝ δ
˚
y q v “ pδ

˚
y ˝ δxq v.

Proof. The proof is direct from the above definitions of spaces and operators.
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Proposition A.2. The following discrete Stokes formula hold:

For any pv, wq P HMpΩq ˆ pH0
MpΩq,

ż

Ω

v δ˚xw “ ´

ż

Ω

δxv w.

For any pv, wq P HMpΩq ˆ rH0
MpΩq,

ż

Ω

v δ˚yw “ ´

ż

Ω

δyv w. (83)

For any pv, wq P sHx,0
M pΩq ˆ rHMpΩq,

ż

Ω

δ˚xv w “ ´

ż

Ω

v δxw. (84)

For any pv, wq P sHy,0
M pΩq ˆ pHMpΩq,

ż

Ω

δ˚y v w “ ´

ż

Ω

v δyw.

For any pv, wq P pHMpΩqq
2,

ż

Ω

v ∆hw “ ´

ż

Ω

∇hv ¨ ∇hw. (85)

Proof. The proof is direct from the above definitions of spaces and operators.

Consequently, we can also verify the following norms equality:

Proposition A.3. For any v P HMpΩq, we have:

}∇2
hv}L2pΩq “ }∆hv}L2pΩq. (86)

Proof. Let us consider v P HMpΩq. We write:

ż

Ω

δxxv δyyv dx “

ż

Ω

pδ˚x ˝ δxqv pδ
˚
y ˝ δyqv dx

(83)
“ ´

ż

Ω

pδy ˝ δ
˚
x ˝ δxqv δyv dx

(82)
“ ´

ż

Ω

pδ˚x ˝ δy ˝ δxqv δyv dx

(84)
“

ż

Ω

pδy ˝ δxqv pδx ˝ δyqv dx

(5)
“ }δxyv}

2
L2pΩq

(5)
“ }δyxv}

2
L2pΩq.

Consequently, from the definitions (6) and (7), (86) holds.

Proposition A.4. Let assume that the mesh M is uniform in each direction in the
sense of Definition 4.3. Then:

For any v P pHMpΩq, pδx ˝ π
˚
x qv “ pπx ˝ δ

˚
x qv, (87)

For any v P rHMpΩq, pδx ˝ π
˚
y qv “ pπ˚y ˝ δxqv, (88)

For any v P pHMpΩq, pδ˚x ˝ πyqv “ pπy ˝ δ
˚
x qv,

For any v P rHMpΩq, pδ˚y ˝ πxqv “ pπx ˝ δ
˚
y qv, (89)

For any pv, wq P p pHMpΩqq
2, δ˚x pvwq “ π˚xv δ

˚
xw ` δ˚xv π

˚
xw (90)

For any pv, wq P p rHMpΩqq
2, δxpvwq “ πxv δxw ` δxv πxw (91)
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Proof. The proof is direct from the above definitions of spaces and operators.

Proposition A.5. Let assume that the mesh M is uniform in each direction in the
sense of Definition 4.3. Then:

For any pv, wq P HMpΩq ˆ pHMpΩq,

ż

Ω

πxpvqw dx “

ż

Ω

v π˚x pwq dx (92)

For any pv, wq P HMpΩq ˆ rHMpΩq,

ż

Ω

πypvqw dx “

ż

Ω

v π˚y pwq dx (93)

For any pv, wq P H̄MpΩq ˆ pHMpΩq,

ż

Ω

π˚y pvqw dx “

ż

Ω

v πypwq dx (94)

For any pv, wq P H̄MpΩq ˆ rHMpΩq,

ż

Ω

π˚x pvqw dx “

ż

Ω

v πxpwq dx (95)

Proof. The proof is direct from the above definitions of spaces and operators.

Proposition A.6. Let assume that the mesh M is uniform in each direction in the
sense of Definition 4.3. Then:

For any v P pHMpΩq, }π˚x pvq}L4pΩq ď }v}L4pΩq,

For any v P rHMpΩq, }π˚y pvq}L4pΩq ď }v}L4pΩq,

For any v P rHMpΩq, }πxpvq}L4pΩq ď }v}L4pΩq,

For any v P pHMpΩq, }πypvq}L4pΩq ď }v}L4pΩq.

Proof. The proof is direct from the above definitions of spaces, operators and the
Young inequality.

B Some technical lemmas

Prior to the statement of Lemma B.1 to which this section is devoted, one needs to
define some quantities. For the convection term, we define vh ¨ ∇huh P HMpΩq by
setting

vh ¨∇huh “ π˚x pv1,h δxuhq ` π
˚
y pv2,h δyuhq. (96)

A simple calculation gives

pvh ¨∇huhq|Ci,j “
1

hxhy

ÿ

σPEi,j

vi,j,σ ui,j,σ,c, (97)

with the centered choice

ui,j,σ,c “

$

’

&

’

%

ui,j ` ui˘1,j

2
if σ “ σi˘1{2,j ,

ui,j ` ui,j˘1

2
if σ “ σi,j˘1{2.

Finally, for the upwind choice used in the scheme (41), we have:
ÿ

σPEi,j

vi,j,σ ui,j,σ,` “ hxhy pvh ¨∇huhq|Ci,j `
ÿ

σPEi,j

vi,j,σpui,j,σ,` ´ ui,j,σ,cq. (98)
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We then deduce from (85) that

ż

Ω

pvh ¨∇huhq ∆huh dx “ ´

ż

Ω

∇hpvh ¨∇huhq ¨∇huh dx. (99)

We are now in position to state the following technical lemma to be used for the
numerical analysis of the scheme (41).

Lemma B.1. For any uh P HMpΩq and vh “ pv1,h, v2,hq P VE,0pΩq we have:

ż

Ω

∇hpvh ¨∇huhq ¨∇huh dx “ T
p1,2q
1 ` T

p2,2q
1 ` T

p1,2q
2 ` T

p2,2q
2 , (100)

with:

T
p1,2q
1 “

ż

Ω

πxpδ
˚
xv1,h ¨ π

˚
x pδxuhqq ¨ δxuh dx,

T
p2,2q
1 “

ż

Ω

π˚y pδxv2,h ¨ πxpδyuhqq ¨ δxuh dx,

T
p1,2q
2 “

ż

Ω

π˚x pδyv1,h ¨ πypδxuhqq ¨ δyuh dx,

and

T
p2,2q
2 “

ż

Ω

πypδ
˚
y v2,h ¨ π

˚
y pδyuhqq ¨ δyuh dx.

Proof. From the definition of the discrete gradient ∇h, we have

ż

Ω

∇hpvh ¨∇huhq ¨∇huh dx “ T1 ` T2

with

T1 “

ż

Ω

δxpvh ¨∇huhq ¨ δxuh dx and T2 “

ż

Ω

δypvh ¨∇huhq ¨ δyuh dx

Moreover from (96), (87) and (88), the term T1 “ T
p1q
1 ` T

p2q
1 splits into

T
p1q
1 “

ż

Ω

πxpδ
˚
x pv1,hδxuhqq ¨ δxuhdx and T

p2q
1 “

ż

Ω

π˚y pδxpv2,hδyuhqq ¨ δxuhdx.

Now from (90) and (91), these expressions further decompose as

T
p1q
1 “ T

p1,1q
1 ` T

p1,2q
1 and T

p2q
1 “ T

p2,1q
1 ` T

p2,2q
1

with T
p1,2q
1 and T

p2,2q
1 as in the statement of Lemma B.1 above, and

T
p1,1q
1 “

ż

Ω

πxpπ
˚
x pv1,hq δxxuhq ¨ δxuh dx,

T
p2,1q
1 “

ż

Ω

π˚y pπxpv2,hq pδx ˝ δyquhq ¨ δxuh dx.
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Since pδxuhq 1
2 ,j
“ pδxuhqN` 1

2 ,j
“ 0, we can write:

T
p1,1q
1 “

hxhy
2

N
ÿ

i“2

M
ÿ

j“1

rpπ˚x pv1,hqδxxuhqi,j ` pπ
˚
x pv1,hqδxxuhqi´1,js pδxuhqi´ 1

2 ,j

“
hy
2

N
ÿ

i“2

M
ÿ

j“1

pπ˚x pv1,hqqi,jppδxuhqi` 1
2 ,j
´ pδxuhqi´ 1

2 ,j
qpδxuhqi´ 1

2 ,j

`
hy
2

N
ÿ

i“2

M
ÿ

j“1

pπ˚x pv1,hqqi´1,jppδxuhqi´ 1
2 ,j
´ pδxuhqi´ 3

2 ,j
qpδxuhqi´ 1

2 ,j

“ ´
1

2

ż

Ω

δxpπ
˚
xv1,hqpδxuhq

2 dx. (101)

As highlighted in (5), δx and δy commute, so that

T
p2,1q
1 “

ż

Ω

π˚y pπxpv2,hq pδy ˝ δxquhq ¨ δxuh dx.

Since pδyuhqi, 12 “ pδyuhqi,M`
1
2
“ 0, one can proceed as for T

p1,1q
1 to get that

T
p2,1q
1 “ ´

1

2

ż

Ω

δ˚y pπxv2,hqpδxuhq
2 dx. (102)

Finally, summing up (101)–(102) and using (87) and (89) yields

T
p1,1q
1 ` T

p2,1q
1 “ ´

1

2

ż

Ω

rδxpπ
˚
xv1,hq ` δ

˚
y pπxv2,hqspδxuhq

2 dx

“ ´
1

2

ż

Ω

rπxpδ
˚
xv1,h ` δ

˚
y v2,hqspδxuhq

2 dx “ 0

since vh P VE,0pΩq. Therefore T1 “ T
p1,2q
1 ` T

p2,2q
1 , as well as T2 “ T

p1,2q
2 ` T

p2,2q
2

thanks to similar calculations. Consequently (100) holds.

Lemma B.2. Let v P V0pΩq XH
2pΩq2, and let vh P VE,0pΩq be defined by (38), then

}vh}L2pΩq2 ď }v}L2pΩq2 `
h2

2

´

}Bxxv1}
2
L2pΩq2 ` }Byyv2}

2
L2pΩq2

¯1{2

(103)

Moreover, we have the following estimate on ∇hvh defined by (4):

}∇hvh}L2pΩq2ˆ2 ď }∇v}L2pΩq2ˆ2 ` h}BxByv}L2pΩq2 . (104)

Proof. Let us start by establishing (103). Denote by

vi`1{2,j “
1

hxhy

ĳ

Ci`1{2,j

v1dx, vi,j`1{2 “
1

hxhy

ĳ

Ci,j`1{2

v2dx,

and by v1, v2 and vh the corresponding elements in pHMpΩq, rHMpΩq and HMpΩq.
Then Jensen’s inequality gives that

}vh}L2pΩq2 ď }v}L2pΩq2 .
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So (103) holds true provided that

}vh ´ vh}L2pΩq2 ď
h2

2

´

}Bxxv1}
2
L2pΩq2 ` }Byyv2}

2
L2pΩq2

¯1{2

. (105)

To establish (105), let us remark that

vi`1{2,j ´ vi`1{2,j “
1

hxhy

ĳ

Ci`1{2,j

pv1px, yq ´ v1pxi`1{2, yqqdxdy

“
1

hxhy

ĳ

Ci`1{2,j

ż hx{2

0

ż ξ

´ξ

Bxxv1pxi`1{2 ` s, yqdsdξdxdy.

As a consequence

|vi`1{2,j ´ vi`1{2,j | ď
hx
2hy

ĳ

Ci`1{2,j

|Bxxv1pxq| dx,

hence the Cauchy-Schwarz inequality provides

|vi`1{2,j ´ vi`1{2,j |
2 ď

h3
x

4hy

ĳ

Ci`1{2,j

|Bxxv1pxq|
2

dx.

Finally, summing up over Ci`1{2,j P
xM leads to

}v1,h ´ v1,h}
2
L2pΩq ď

h4
x

4
}Bxxv1}

2
L2pΩq,

whereas similar computations yield

}v2,h ´ v2,h}
2
L2pΩq ď

h4
y

4
}Byyv2}

2
L2pΩq.

Therefore, (105) holds true, and thus (103) too.
We now focus on inequality (104). Let us first show some control on the first

diagonal term of ∇hvh, the second being similar. Let Ci,j PM, then

δ˚xv1,h|Ci,j
“

1

hxhy

ż yj`1{2

yj´1{2

`

v1pxi`1{2, yq ´ v1pxi´1{2, yq
˘

dy “
1

hxhy

ĳ

Ci,j

Bxv1px, yqdx.

Then we deduce from Jensen’s inequality that

ˇ

ˇ

ˇ
δ˚xv1,h|Ci,j

ˇ

ˇ

ˇ

2

ď
1

hxhy

ĳ

Ci,j

|Bxv1px, yq|
2

dx,

and thus, after summing up over Ci,j PM, that

}δ˚xv1,h}L2pΩq ď }Bxv1}L2pΩq, }δ˚y v2,h}L2pΩq
ď }Byv2}L2pΩq. (106)
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Let us focus now on the extra-diagonal terms, and particularly on δyv1,h, the case
of δxv2,h being similar. We denote by δyv1,h the element of HMpΩq defined by

δyv1,h|Ci`1{2,j`1{2

“
1

hxhy

ĳ

Ci`1{2,j`1{2

Byv1pxqdx, @Ci`1{2,j`1{2 PM,

then owing to Jensen’s inequality, we get that

}δyv1,h}L2pΩq ď }Byv1}L2pΩq. (107)

On the other hand,

`

δyv1,h ´ δyv1,h

˘

|Ci`1{2,j`1{2

“
1

hxh2
y

ż hy{2

´hy{2

ż yj`1

yj

ż xi`1

xi

Bypv1pxi`1{2, y ` sq ´ v1px, y ` sqqdxdyds

“
1

hxh2
y

ż hy{2

´hy{2

ż yj`1

yj

ż xi`1

xi

ż x

xi`1{2

BxByv1pξ, y ` sqdξdxdyds,

whence
ˇ

ˇδyv1,h ´ δyv1,h

ˇ

ˇ

|Ci`1{2,j`1{2

ď
1

hy

ĳ

Ci`1{2,j`1{2

|BxByv1pxq| dx.

Applying Jensen’s inequality, we obtain that

ˇ

ˇδyv1,h ´ δyv1,h

ˇ

ˇ

2

|Ci`1{2,j`1{2

ď
hx
hy

ĳ

Ci`1{2,j`1{2

|BxByv1pxq|
2

dx,

leading to
}δyv1,h ´ δyv1,h}L2pΩq ď hx}BxByv1}L2pΩq (108)

after summation over i P v1, N ´ 1w and j P v1,M ´ 1w. Similarly, we get that

}δxv2,h}L2pΩq ď }Bxv2}L2pΩq and }δxv2,h ´ δxv2,h}L2pΩq ď hx}BxByv2}L2pΩq. (109)

The combination of (107), (108) and (109) gives (104).
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