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ABSTRACT

Learning in a continual manner is one of the main challenges that the machine learning community
is currently facing. The importance of the problem can be readily understood as soon as we consider
settings where an agent is supposed to learn through an online interaction with a data stream, rather
than operating offline on previously prepared data collections. In the last few years many efforts have
been spent in proposing both models and algorithms to let machines learn in a continual manner, and
the problem still remains extremely challenging. Many of the existing works rely on re-adapting
the usual learning framework inherited from classic statistical approaches, that are typical of non-
continual-learning oriented problems. In this paper we consider a fully new perspective, rethinking
the methodologies to be used to tackle continual learning, instead of re-adapting offline-oriented
optimization. In particular, we propose a novel method to frame continual and online learning
within the framework of optimal control. The proposed formulation leads to a novel interpretation
of learning dynamics in terms of Hamilton equations. As a case study for the theory, we consider
the problem of unsupervised optical flow estimation from a video stream. An experimental proof
of concept for this learning task is discussed with the purpose of illustrating the soundness of the
proposed approach, and opening to further research in this direction.

1 INTRODUCTION

In this paper we focus on the problem of letting an artificial agent learn from a continuous stream of information. In
this specific learning setting, data is not regarded as a collection (a set) of points which are then used to approximate
statistical quantities such as functional risks, as happens in the vast majority of Statistical Machine Learning problems
(Vapnick, 1998). Processing a data stream implicitly requires to take into consideration its temporal structure. This
is radically different from SGD-like algorithms (Robbins & Monro, 1951; Bottou, 2010), where samples of shuffled
information are leveraged to enforce stochastic approximations of optimality conditions. SGD-like methods aim to
give a convenient approximation of problems in which a batch of data is available for large-scale optimization and, as
such, they are generally not suitable for handling continual learning problems.

Due to the relevance of the continuous/lifelong scenario for a broad class of learning problems, a large number of
scientific papers on continual learning has been written in the past few years. Many of the recently proposed methods
(see the surveys of Parisi et al. (2019); Delange et al. (2021); Mai et al. (2022)) exploit classical statistic-based tools.
Notably, task incremental learning formalizes the general idea of lifelong learning by assuming that there is a sequence
of problems, where the goal is to control a statistical risk at each step of the sequence without having access to the
data available at previous steps (Delange et al., 2021). In this way, each of the tasks of the sequence can be basically
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regarded as a standard machine learning problem with the big caveat that the sequence itself plays a fundamental role in
the overall learning process. While “time” in task-incremental literature has usually been regarded as a discrete index
that labels the sequence of tasks (i.e., rather than a variable that is synchronized with the time of the environment), other
approaches have been proposed to interpret the learning process as a set of evolution laws, referred to as Cognitive
Action Laws (CALs), for the learning agent (Betti et al. (2019), Tiezzi et al. (2020)). In such approach, the temporal
variables couple the updates of the model with the changes in the environment, like it happens in physics. From
a global perspective the problem can be described in terms of a functional index, similar to the action of Classical
Mechanics, where the learning quality is evaluated by an integral performed in the temporal direction.

In this paper, we aim at establishing a new connection between learning and optimal control problems (Evans, 1983).
We show how this link naturally emerges as soon as we start to use neural recurrent-like architectures to model the
learning agent. More precisely, we argue that the weights of a neural networks can be regarded as control parameters
for the temporal dynamics of the neuron outputs which, in turn, can be considered to be the state of a control problem.
With these identifications, summarized in Table 1, the learning problem is interpreted as the mechanism that steers
the weights of the networks based on an index that takes into account the environmental information. Exactly as it
happens for CALs, the objective that guides the learning process is expressed by means of a scalar functional that
matches the cost functional in optimal control theory (Bardi et al., 1997). We remark that our proposal is general, even
if we will focus on models based on neural networks. Finally, let us note that, despite few formal similarities, what we
are proposing here has very few intersections with Neural ODEs (Chen et al., 2018). Similar considerations hold for
works that further extended the Neural ODE model, such as Hamiltonian Neural Networks (Greydanus et al., 2019).
Gnecco et al. (2015) also tackled a class of online learning problems using an optimal control inspired approach.
However their method does not consider the incremental aspects of learning, since consecutive samples are assumed
to be mutually independent and they enter the cost functional through random matrices whose statistical properties
are assumed to be known. The (linear) relationship between inputs and the corresponding labels is also assumed to
be known and time independent. In our work, samples originating from the input stream are non-i.i.d., and non-
stationarities in the generating distribution may be also considered. Kim & Yang (2020) developed a Q-learning
method for continuous-time dynamical systems exploiting an analogue of the Hamilton-Jacobi-Bellman equation.
As in classical Q-learning-based Reinforcement Learning, the state-action value function is learnt through several
interactions with the environment. In contrast, in the method we propose here, Hamilton equations are solved in an
online fashion.

The paper is organized as follows. In Section 2 we lay down some notation and we define useful quantities for the
remainder of the paper. In Section 3 we describe the general setting of optimal control theory that we want to take into
account and we subsequently show how it can be used to model learning problems. In Section 4 a case study based on
the problem of online prediction of the optical flow is presented, including an experimental proof of concept. Finally,
in Section 5 we briefly discuss the advantages of the approach and we point out the main difficulties and problems that
still need to be faced.

2 BACKGROUND AND NOTATION

Let us consider a space of data Ω and a given trajectory z : [0, T ] → Ω that maps a temporal instant that belongs to
the temporal horizon [0, T ] (with T potentially infinite) onto the space of data. We want to tackle the general problem
of learning a model1 µ : (RN )[0,T ] × [0, T ] → Rn, where N is the number of the parameters of the model and n the
size of its output.2 Given a trajectory of parameters t 7→ α(t) and a temporal instant t ∈ [0, T ], the considered model
returns a prediction µ(α, t) ∈ Rn. For example, a feedforward neural network could be seen as particular case of the
model µ when α(t) are the weights of the network at time t and z(t) is the input data at the same instant. In general, µ
can make predictions of a sample that are based on the whole trajectory of parameters. As we have already anticipated
in Section 1, here we consider what we refer to as “recurrent” models, that means that t 7→ µ(α, t) is a solution of a
differential equation with unknown y(·),

ẏ(t) = f(y(t), α(t), z(t)), t ∈ [0, T ], (1)

where f : Rn × RN × Ω → Rn is a Lipschitz function. We call this a recurrent model, or recurrent architecture,
because equation 1, in discrete time, is exactly the usual update equation for the state of a recurrent neural network.

The other ingredient that we need to properly define in order to have a well-posed learning problem is a loss function.
In what follows we denote with ℓ : Rn × RN × Ω → R+ the function that given a prediction y ∈ Rn, a set of
parameters w ∈ RN and an input z returns the loss value ℓ(y, w, z) which is a local-in-time measure of the quality of

1Here with the symbol BA, where A and B are sets, we indicate the space of all maps f : A → B
2In this general setting the expression “learn a model” means finding the appropriate trajectory of parameters t 7→ α(t) ∈ RN
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the predictions of the model, given the current value of the parameters. A traditional way to measure the performance
of the learner is by means of the sequential risk

1

T

∫ T

0

ℓ(y(t, α), α(t), z(t)) dt (2)

where t 7→ α(t) is the trajectory of model parameters that defines the learning process, and where y(t, α) is a solution
of equation 1. Notice that the dependence of the quantity in equation 2 on α comes both from the explicit dependence
of the loss (that may require some explicit regularization on the parameters) but also, and in a crucial way, through the
model, hence the notation y(t, α). In the next section we will discuss how it is possible to control the sequential risk
in equation 2 by means of optimal control techniques. We refer the reader to Table 1 for a list of some common terms
used in optimal control and their equivalent in the context of learning.

Table 1: Relations between some common terms
in the context of optimal control and in the one of
machine learning.

Optimal Control Continual Learning

State Model outputs
Control variable Model parameters/weights
Lagrangian Loss function
Cost functional Sequential risk

More precisely, we develop an approach that uses optimal control
to tackle the described learning problem in the context of Online
Continual Learning. Even if our work is mostly related to a do-
main incremental setting (Mai et al., 2022), an extension to more
specific task/class incremental settings can be readily achieved by
considering an additional explicit temporal dependence on index
ℓ. It is also worth noting that the classical notion of online learn-
ing refers to all those cases in which samples are processed one
after the other, i.e., in a sequential manner. On the other hand, On-
line Continual Learning specifically focuses on non-i.i.d. streams
of data and aims to overcome catastrophic forgetting that charac-
terizes neural networks in continual scenarios. The model is also
required to learn seeing each sample only once. In the domain
incremental setting, non-stationary generating data distributions are also considered (Mai et al., 2022).

3 HAMILTONIAN LEARNING

An optimization problem involving the index of equation 2 can be solved, in the optimal control setting, embedding
it into a family of problems that differs only in the time and value of the initialization. To this end we consider the
following state equation {

ẏ(s) = f(y(s), α(s), z(s)); for s ∈ (t, T )

y(s) = x, for s = t
(3)

and we will assume that f is such that for any choice of the parameter α, of the initial state x and time t and for any
signal t 7→ z(t), equation 3 has a unique solution that we denote by yx,t(s, α). Here y is the state vector, ẏ its time
derivative and α ∈ A ⊂ (RN )[0,T ] a control trajectory;3 T is the terminal time. The objective of classical fixed-time,
free-endpoint optimal control theory is to find the control α∗ that drives the system along the optimal state trajectory
y∗ minimizing a given cost functional

α 7→ Cx,t(α) :=

∫ T

t

ℓ(yx,t(s, α), α(s), z(s)) ds+ g(yx,t(T, α)), (4)

where g(·) is the terminal cost function (Bardi et al., 1997).

In the standard dynamic programming approach the first step is to introduce the so-called value function u, that
quantifies the minimal cost needed to reach the terminal time T starting from an arbitrary initial state x at time t:

u(x, t) := inf
α∈A

Cx,t(α) (5)

From equation 4 and equation 5 it is immediate to see that the value function satisfies

u(x, T ) = g(x) ∀x ∈ Rn (6)

as a right boundary condition. Through a dynamic programming approach and under the assumption of a continuous
and differentiable value function, it can be shown that u is the solution of the following non-linear partial differential
equation (PDE), known as Hamilton-Jacobi-Bellman (HJB) equation:

ut(x, t) = − min
a∈RN

{ℓ(x, a, t) +Du(x, t)f(x, a, z(t))}, (7)

3A typically assumption for the space A is that it is the space of Lebesgue-measurable function on [0, T ]
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together with the boundary condition of equation 6. Here, ut (Du) stands for the partial derivative of u with respect
to its second (first) argument respectively. The HJB PDE is a necessary and sufficient condition for optimality in
the sense that, given the solution u of HJB with boundary condition of equation 6 and having defined α̂(x, s) ∈
argmina∈RN {ℓ(x, a, z(s)) +Du(x, s)f(x, a, z(s))}, the optimal state trajectory y∗(s) is given by the solution of the
initial value problem {

ẏ(s) = f(y(s), α̂(y(s), s), z(s)); for s ∈ (t, T )

y(s) = x, for s = t
(8)

and the associated optimal control is α∗(s) = α̂(y∗(s), s). It is worthwhile to introduce the Hamiltonian (Bardi et al.,
1997) of the system as the scalar function H : Rn × Rn × R → R

H(x, p, s) := min
a∈RN

H(x, p, a, s) (9)

where we have set H(x, p, a, s) := ℓ(x, a, z(s)) + p · f(x, a, z(s)) with · being the standard scalar product in Rn.
With this notation, the HJB equation in equation 7 can be written as ut(x, t) +H(x,Du(x, t), t) = 0.

Solving a PDE on the whole domain Rn × [0, T ] is not easy to handle. Fortunately, a very elegant idea from PDE
theory is particularly handy to evaluate the solution of equation 7 along a trajectory s 7→ y(s). The basic idea is to
look for curves along which the PDE reduces to a system of ODEs. We will argue that in our case these equations are
easier to handle and to interpret. This general method is known as the method of characteristics and can be applied
when the Hamiltonian H is smooth (for a comprehensive treatment of the modern theory of dynamic programming
we refer to the book of Bardi et al. (1997)). First of all, we define the costate p as the trajectory

p(s) = Du(y(s), s), (10)

then the method of characteristics assure us that if y(·) is optimal and H is differentiable then y(·) and p(·) satisfy a
set of differential equations known as Hamiltonian system:{

ẏ(s) = DpH(y(s), p(s), s) s ∈ (t, T );

ṗ(s) = −DxH(y(s), p(s), s) s ∈ (t, T ),
and

{
y(s) = x s = t;

p(s) = Dg(y(s)) s = T.
(11)

Here DpH and DxH are the partial derivatives of H with respect to its second and first argument respectively. The
boundary conditions on p follow directly from its definition in equation 10, from the definition of value function
in equation 5, and from the boundary condition on u in equation 6. Indeed, since u(x, T ) = g(x), then p(T ) =
Dg(y(T )). The converse also holds, i.e., given a solution of equation 11 it is possible to exhibit a solution of the
HJB equations. Notice that the first differential equation in y must be also consistent with equation 3. If we let for
every fixed y and p in Rn and for each s ∈ (t, T ), α(y, p, s) ∈ argmina∈RN H(y, p, a, s), then it is not difficult to
see that DpH(y(s), p(s), s) = f(y(s), α(y(s), p(s), s), s). Beside describing the characteristics of equation 7, the
Hamiltonian system in equation 11 has another useful interpretation that also gives us a better understanding of the
“geometric” meaning of the costate p. This other way of looking at the Hamiltonian equations comes from a direct
interpretation of the optimization problem for the cost Cx,t under the constraint in equation 3 and it is known in the
literature as Pontryagin’s Maximum Principle (PMP) (see Bardi et al. (1997)). The PMP suggests to look at the costate
p as a Lagrange multiplier associated to the dynamical constraint that defines the evolution of the state, and in this
sense can be seen as a sort of delta error that is propagated backward in time (a concise and clear explanation can be
found in Evans (1983)).

Hence it is clear that with the choices t = 0 and g = 0 equation 11 gives us a method, rooted in dynamic programming,
to tackle the learning problems discussed in Section 2. This gives us a direct way to interpret a large class of learning
problems defined over a continuous stream of data in the framework of optimal control. A particularly interesting case
arises, as we will better explore in Section 4 when we assume that the function f(y, a, ·) in equation 3, for all y ∈ Rn

and a ∈ RN , is a neural network. In this scenario the control parameters that “steer” the learning agent predictions
are the weights of a neural network. The gradient-based learning algorithms, commonly used for FNNs, are replaced
by equation 11 with t = 0 and p(T ) = 0. Once the argmin of H has been evaluated, the corresponding optimal
(y, p) trajectories are computed using equation 11 (again with the choices t = 0 and p(T = 0))—in Section 4 we will
propose a general method to achieve exactly this when a closed form of the Hamiltonian is not available.

3.1 ASSUMPTIONS AND LIMITATIONS

The right boundary condition on p(T ) = 0 triggers several important considerations. Since in most Machine Learning
applications it is not feasible to enforce the condition by direct numerical methods (because of the complexity of the
model and the length of the temporal interval), we must rely on other approaches that satisfy causality requirements.
The importance of this condition can hardly be overstated and every sound theory of learning should seriously take into
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account this issue. In this work, we propose to tackle such a problem by leveraging the possibility to actively modify
the data from the input stream without changing the essence of the learning problem, with the purpose of promoting
solutions with p → 0 as t → T . The main intuition behind this idea comes from the interpretation of the costate
given by the PMP: An appropriate filtering of the input could loosen the dynamical constraint in equation 3 so that the
reaction needed to enforce this constraint (which is proportional to p given its interpretation as a Lagrange multiplier)
could be made arbitrarily small. In Section 4 we will show a concrete example in the case of optical flow estimation.
Nevertheless, a general and complete analysis of this very crucial point is beyond the scope of this work and it should
be the subject of future explorations.

4 CASE STUDY: LEARNING TO ESTIMATE OPTICAL FLOW

In this section we show how the theory described in Section 3 can be used to formulate and solve an unsupervised
learning problem concerning the estimation of optical flow. Broadly speaking, optical flow is the apparent motion
that can be detected between a pair of consecutive frames in a two dimensional retina. However, despite the recent
major improvements in optical flow estimation (Fischer et al., 2015; Ilg et al., 2017; Zhai et al., 2021), a well posed
mathematical definition of this quantity is still missing (Verri, 1987; Verri & Poggio, 1989; Aubert & Kornprobst,
2006). For the purposes of this paper we will restrict ourselves to the classical notion of optical flow as it has been
introduced by Horn and Schunck in a seminal paper published at the beginning of the eighties (Horn & Schunck, 1981).
The basic idea behind their work is to use the local-in-time constancy of a brightness intensity function that encodes a
video stream b : Σ× [0, T ] → [0, 1] where Σ is a subset of R2, in order to find a constraint that characterizes (although
not in a complete fashion, as we will see) the so-called optical flow. The brightness constancy assumption basically
means that ∀t0 > 0 there exists a τ > 0 such that for every x0 ∈ Σ we can define the trajectory γx0

: [t0, t0 + τ ] → Σ
that maps t 7→ γx0

(t) ∈ Σ with γx0
(t0) = x0 for which

b(γx0
(t), t) = b(x0, t0), ∀t ∈ [t0, t0 + τ ]; (12)

Under the assumption of smoothness of b we can equivalently express the above constraint in an infinitesimal form,

bt(x0, t0) + v(x0, t0) ·Db(x0, t0) = 0, (13)

where v(x0, t0) := (dγx0
/dt)(t0) is the optical flow, · is the standard scalar product in R2 and bt and Db are the

partial derivatives of b with respect to its second (time) and first (space) arguments, respectively.

Of course, condition of equation 12 holds up to a certain degree when there are no occlusions and no dramatic changes
in the light conditions. More than that, as we mentioned earlier, equation 13 is not sufficient to identify the optical
flow since it only determines its projection along Db. Hence a selection method is needed and the one adopted by
Horn and Schunck, as many other approaches as well (Aubert & Kornprobst, 2006) relies on a regularization imposed
through a calculus of variation method. More precisely, they looked for a solution of the problem

inf
v∈V

(
Ab

t(v) + St(v)
)

(14)

where V is an appropriate functional space, Ab
t(v) :=

∫
Ω

(
bt(x, t) + v · Db(x, t)

)2
dx, enforces the constraint of

equation 13, while S imposes smoothness. Additional terms can be added to condition the extraction of the flow
where the brightness is constant. The form of S may vary depending on the kind of regularity that we want to require
in the solution, however here as stated we take into account the regularization term used in the original work of Horn &
Schunck (1981): St(v) =

∫
Σ
∥Dv1∥2+∥Dv2∥2 dx, where ∥·∥ is a norm and Dv1 and Dv2 are the spatial gradients of

the components of the optical flow. The solution of problem in equation 14, as the subscripts in the notation suggest,
gives the optical flow at time t. Hence, the quantity Ab

t(v) + St(v), when appropriately written on a discretized
retina, will serve (with an appropriate modification) as a loss function of the form that we considered in Section 2 and
Section 3, where the input signal is the video stream t 7→ b(·, t) together with its temporal variation t 7→ bt(·, t).
To this end. let us discretize the spatial coordinates by considering a two dimensional grid of P = d h pixels indexed
by 1 ≤ i ≤ d and 1 ≤ j ≤ h. Then, the brightness field on this discrete grid can be represented by the map s 7→ bij(s)
where i and j refers to the coordinates of the pixel. In the same way we represent with s 7→ vij(s) ∈ R2 the optical
flow field. We furthermore assume that the optical flow is computed by the following model{

v̇ij(s) = fij(v(s), w(s), z(s)) s ∈ [0, T ]

vij(0) = 0 ,
(15)

where z(s) = (b(s), ḃ(s)), with ḃij(s) being the discretized version of the temporal variation of the brightness bt.
As we can clearly see, the computational model for v is exacly of the form of equation 3, where v replaces y, and w
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are used in place of α. Here we make the additional assumptions, as we anticipated in Section 3, that w(s) are the
weights of the neural network and they represent the control variables of the dynamical system under consideration.
Moreover, in what follows we assume that f(v, w, s) = c(−v + F (z(s), w)), where, F (·, w) is a feedforward neural
newtwork for all w ∈ RN with F : Ω×RN → Rn, while c is a positive constant. Notice that, for c → ∞ one recovers
a feed-forward computation for the optical flow, that is v(s) = F (z(s), w(s)). With this definitions the Horn and
Schunck functional in equation 14 can be translated into the loss function

d∑
i=1

h∑
j=1

∣∣ ḃij(s) + vij(s) · (D b)ij(s)
∣∣+ d∑

i=1

h∑
j=1

|D v1ij |+ |D v2ij |,

with the choice of L1 norm for both the regularization term and the term in Ab
t , and where D is the discrete gradient

operator. However, as it is immediate to realize, this loss function has the peculiarity that it does not explicitly depends
on the control parameters w (but it will depend on w through the state v). In order to avoid any eventual ill-posedness
of the problem due to this aspect, we decided to add an additional regularization by including a term that imposes a
second-order version of the equation 12. More precisely, we add the constraint d2b(γx(s), s)/ds2 = 0, for all x ∈ Σ
and t ∈ [0, T ]. Notice that this constraint is trivially fulfilled when the brightness constancy assumption is exactly
satisfied, but at the same time it may serve as regularization when the constrains are softly imposed through a loss
function. A direct calculation shows that this constraint can be rewritten in terms of v as

btt(x, t) + v(x, t) · bxx(x, t)v(x, t) + 2btx(x, t) · v(x, t) + bx(x, t) · (vt(x, t) + v(x, t) ·Dv(x, t)) = 0,

where btt, bxx and btx are the second-order partial derivatives of b and vt is the partial derivative of v with respect to
its second argument (time). Finally we end up with the following loss

ℓ(v, w, (b, ḃ)) =
1

P

d∑
i=1

h∑
j=1

(∣∣ ḃij + vij · (D b)ij
∣∣+ |D v1ij |+ |D v2ij |+ λder

∣∣ b̈ij + vij · (D2 b)ijvij

+ 2(D ḃ)ij · vij + (D b)ij · (fij(v, w, (b, ḃ)) + vij · (Dv)ij)
∣∣), (16)

where D2 is the discrete Hessian, v · Dv = (v · D v1, v · D v2)′ and λder is an hyperparameter of the model. The
Hamiltonian of the system is then consistently defined as

H(v, p, s) = min
w∈RN

H(v, p, w, s) := min
w∈RN

{
ℓ(v, w, (b(s), ḃ(s))) +

d∑
i=1

h∑
j=1

pijfij(v, w, (b(s), ḃ(s))
}
. (17)

Determining the minimum of H in a closed form is infeasible, so we suggest to approximate this condition
through a gradient descent approach on H performing M update steps of the form wm+1(s) = wm(s) −
ηwHω(v(s), p(s), wm(s), s), where Hω is the gradient of H with respect to its third argument (the parameters of
the network), before switching to the next frame and updating state and costate variables through the approximated
Hamiltonian dynamic in equation 11 which in our current notation reads:{

v̇ij(s) = fij (v(s), wM (s), s) ; (18a)
ṗij(s) = −DxHij(v(s), p(s), wM (s), s) . (18b)

Assuming temporal smoothness, we could expect the minimum of H to remain almost constant between consecutive
frames so that, instead of performing a fixed amount M of steps, we may introduce a threshold on the average of∑

i H2
ωi

to save computational resources when not needed.

As anticipated in the previous section, a serious issue arises when considering the boundary conditions vij(0) = 0,
pij(T ) = 0 that should come with the approximated Hamiltonian equations 18a, 18b. Our aim is to proceed forward
in time, in conjunction with the temporal dynamic dictated by the external video stream, and nothing guarantees
the fulfilment of the right boundary condition on the costate variables when initializing them with an arbitrary value
at the beginning of the time horizon. To tackle this problem, we thus propose to actively modify the input data to
enforce the fulfillment of the proper costate boundary condition, inspired by works in the direction of facilitating
the learning process in neural networks via input modification (Marullo et al. (2021), Marullo et al. (2022)). Input
modification should be enough relevant to be able to influence costate dynamic and, at the same time, enough delicate
to not completely disrupt the original signal since optimality of the solution would be referred to the modified input.
Moreover, it is worth nothing that we have to keep the dynamic of the modified input well separated from the one of
the original dynamical system (15): we can not introduce any additional control variables steering the modified input
in an optimal way since, otherwise, we should face supplementary boundary conditions for the costates associated
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with these new state variables. Then, to implement input modification in the specific case under analysis, we settled
for a classical online scheme as explained below.

First and foremost, let initialize the costate variables to be null at the beginning of the stream: pij(0) = 0. Input
modification can then be realized through a second neural network G that takes as input the original frame b(s)
and whose weights at time s are collectively indicated with θ(s). The modified input β thus can be expressed as
βij(s) = Gij(θ(s), b(s)). Having initialized the costate variables to be null, on way to automatically satisfy the
boundary condition pij(T ) = 0 would be to keep them constant along the entire horizon. We thus propose to determine
the weights θ of neural network G by minimizing the following index:

Υ(θ) =
1

P

d∑
i=1

h∑
j=1

(
1

2
(bij(s)−Gij(θ, b(s)))

2
+

λṗ

2
DxH2

ij

)
. (19)

The fist term encourages modified frames to be close to the original ones according to the Euclidean distance, while
the second term fosters the temporal derivative of the costate variables to be null. In essence, the scalar factor λṗ

regulates the trade-off between input reconstruction and the approximate optimality of the solution. Let us note that
DxH2

ij , being function of the frames as expressed by equation 17, hides an implicit dependence on the weights θ.
From now on we will assume that the inputs b and ḃ used to predict the optical flow are replaced with their modified
versions β and β̇.

4.1 EXPERIMENTAL PROOF OF CONCEPT

We are now going to analyze, through a practical example, the predictions of the proposed Hamiltonian learning
paradigm of this paper. To this end, we consider a very simple input video bij(s) depicting a squared gray-scale tile
of size 150 × 150 pixels that is moving along four different directions with constant velocity and forming a closed
squared-shaped loop. Each frame has a spatial resolution of 256×256 pixels and the background is uniform/black. The
temporal resolution of the video is 20 frame per second (fps) for a total of 400 frames, 100 for each direction in which
the square is moving. In all our experiments, we have considered 3 complete loops of the tile obtained by repeating
the video, for a total of 1200 frames. The tile moves 1 pixel each frame and its motion is represented associating to
the direction of the flow a certain hue, while its magnitude corresponds to pixels’ value (Baker et al., 2007). For better
visualization, we normalized the flow magnitude with its maximum value at each frame. In the previous sections we
have considered the time variable as a continuous one and now we have to discretize the equations of interest 18a and
18b that describe the dynamic of state and costate variables. To this end, time is discretized according to the temporal
quantization of the input stream, that is s = k∆t where k ∈ N and ∆t = 1/fps = 1/20. The discrete counterparts
of vij(s) and pij(s), as well as all the other quantities of interest, will be represented through the use of an additional
upper index k, that is vij(s = k∆t) → vkij and pij(s = k∆t) → pkij .
To end up with numerically stable algorithms, the temporal derivative in the state equation 18a has been approximated
with a single-step backward finite difference (backward Euler method), that is v̇k+1

ij = (vk+1
ij − vkij)/∆t. This usually

results in an implicit numerical scheme that guarantees stability at the price of an higher computational cost. Nev-
ertheless, in our specific case in which f(v, w, s) = c(−v(s) + F ((β(s), β̇(s)), w(s))), we can invert by hand the
resulting scheme obtaining a closed form update equation for vk+1

ij

vk+1
ij −vkij = c∆t

(
−vk+1

ij + Fij((β
k+1, β̇k+1), wk+1)

)
→ vk+1

ij =
1

1 + c∆t

(
vkij + c∆tFij((β

k+1, β̇k+1), wk+1)
)
.

(20)
The corresponding scheme is stable whatever the value of c is. Costates’ dynamic 18b has been instead quantized
through a forward finite difference, resulting in the following update equation4

pk+1
ij = pkij −∆tDxHk(vk, pk, wk

M ). (21)

In the proposed practical implementation, neural network F has six convolutional layers with LeakyReLU activation
functions and zero biases. The last layer has a linear activation, while convolutional filters have size 5 and the number
of the feature maps is (16, 32, 32, 32, 32, 2) over the 6 layers. Zero-padding is performed in order to keep the original
spatial resolution of the input. The network G for input modification is a shallow one made up by just a single
convolutional layer with filter size 3; we leave the analysis of more comple networks to future studies. Weights are
initialized to be zero and there is no bias so that the initial output β0

ij of the network is null. Additionally, all the
spatial derivatives in the Hamiltonian function have been approximated through central finite differences, while first

4The upper index k in Hk(vk, pk, wk
m) represents the explicit temporal dependence on time in its continuous counterpart

H(v(s), p(s), wm(s), s).
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and second-order temporal derivatives of the modified signal have been approximated through backward differences
(see equation 17 and the definition of ℓ(v(s), w(s), (β(s), β̇(s))) in equation 16). The workflow of the model is
summarized in Algorithm 1.

Algorithm 1 Workflow of our Model

Initialize: State and costate variables are initialized to be null: v0ij = 0, p0ij = 0 for 1 ≤ i ≤ d and 1 ≤ j ≤ h.
Weights w of the neural network F are randomly initialized near zero. Weights θ of the second shallow neural
network G are initialized to be zero. There are no biases for both the networks. With the chosen architecture for G,
this makes the initial modified input null as well: β0

ij = 0.
Repeat until 0 < k < ⌊T/fps⌋:

1. Considering the current frame bk, evaluate the modified frame βk
ij = Gij(θ

k, bk) and, through finite difference
approximations, all the required spatial and temporal derivatives to evaluate Hk (see equation 17 and the
definition of ℓ(v(s), w(s), (β(s), β̇(s))) in equation 16).

2. Evaluate the output of neural network Fij((β
k, β̇k), wk

m) and the current state variable vkij through the dis-
cretized Hamiltonian equation 20. Evaluate v̇kij as c(−vkij +Fij((β

k, β̇k), wk
m) and the required spatial deriva-

tives of vkij as well through finite difference approximations. We can now compute Hk(vk, pk, wk
m). Note that

m = 0 during this first iteration.
3. Perform a gradient descent step on Hk(vk, pk, wk

m) with respect the weights of F : wk
m → wk

m+1. In our
implementation, we have exploited an adaptive learning rate (Adam) and the corresponding optimizer is re-
initialized each frame switch.

4. Considering the new weights wk
m+1 of network F , repeat steps 2 and 3 for a fixed amount of M iterations or

until a threshold on the gradients Hk
ω(v

k, pk, wk
m) is reached. Considering step 2, note that vkij is evaluated

only once during the first iteration m = 0. The final weights of F at temporal step k are indicated as wk
M .

5. Update the costate variables according the discretized Hamiltonian equation 21. Update the weights θ of neural
network G through a single gradient step on Υ(θ) defined by equation 19.

The outcome of our experimental activity is reported in Figure 1 and Figure 2. We first investigate how the input
gets modified and how motion is predicted in the considered stream. The first and second rows of Figure 1 report
such information focusing on the second lap of the tile, thus when the input stream has been already processed for a
while.5 Input modification reduces mostly to an overall reduction of pixels intensities, and this is somewhat expected
considering the chosen simple architecture of network G (see also the third row of Figure 2). Focusing on the second
row of Figure 1, we can observe that the predicted flow direction is consistent with the one from the original video
stream originating from the classical offline and non-continual learning based Horn and Schunck approach (third
row). The ground-truth motion associated to the original video is also reported in the last row. This confirms that the
model is learning to predict motion in a meaningful way, even if the modulus of the predicted flow has been found
to be quite far from the ground-truth in the tested configurations (see also the first row of Figure 2). Comparing the
second and third rows of Figures 1 we can also notice that the proposed model needs some more time to adapt to new
directions with respect to the offline estimation. In Figure 2 we investigate the values of the quantities of interest in the
considered setting, in function of different choices of the main hyper-parameters (λṗ, c and λder in the first, second and
last column respectively). We reported the average modulus of the predicted flow (first row), the temporal evolution
of the cost function of equation 16 (second row), the largest pixel intensity of the modified frames (third row) and
the average costate norm (last row). In the first three rows we also included, as red dashed lines, the corresponding
reference values: the average ground-truth motion (first row) is around 0.34 in the considered stream; the largest pixel
intensity (second row) is of course equal to 1; in case of a flawless motion estimation consistent with the brightness
invariance condition of equation 13, the loss ℓ (third row) should be zero (neglecting the spatial regularization term);
the values of the costate variables (last row) has not a clear reference value, since they are required to vanish just at
the end of the considered time horizon. We can notice that, as expected, the more λṗ is higher, the more the effects of
input modifications are stronger and pixel intensity gets reduced (third row - first column), while the costate variables
increase in a slower manner (last row - first column). In this limit, modified frames are duller and, correspondingly,
the loss ℓ is also smaller (second row - first column), while a less evident trend can be found in terms of predicted flow

5In this case, the chosen hyper-parameters are c = 1e03. λder = 1e-02, λṗ = 1e09 and weights wk
m are updated initializing

(frame-by-frame) the optimizer with a base learning rate of 1e-05 until a threshold of 3e-05 on the average of
∑

i Hwi is reached
(usually with less than 10 iterations). In the worst cases, to facilitate convergence, the base learning rate is manually reduced by a
factor 10 after the first 30 iterations. A minimum of 5 iterations is always performed up to a maximum of 60. The input is modified
with a learning rate of 1e-02.
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Figure 1: Some modified frames βk along with the corresponding predicted optical flow vk during the second lap of
the tile (between frames 400 and 800). The last two rows show the Horn-and-Schunck and ground-truth motion from
the original video stream, respectively. Motion is represented through classic color space encoding (Baker et al., 2007)
(green: down; red: left; purple: up; light-blue: left)

(first row). A similar effect is also present considering the second column that is about c, when focusing on the second
and third rows. Conversely, a larger c implies larger costate variables (last row - second column) that is the opposite
trend with respect to the one observed for increasing λṗ. Other than a smaller loss function ℓ, duller modified frames
are also related to smaller predicted flows. This is particularly noticeable considering higher λder values as shown in
the third column (first and third rows).

5 CONCLUSIONS AND FUTURE WORK

In this paper we have approached the problem of continual online learning from a stream of data with the use of
optimal control theory. The dynamic of the learning agent is expressed in terms of Hamilton equations for state and
costate variables. From this standpoint, state variables correspond to the output of the model we aim to learn, while
control variables stand for model parameters. State and control trajectories found by solving the control problem are
optimal in terms of the overall considered time horizon. We argue that this might be clearly helpful in facing the issue
of catastrophic forgetting that plagues existing lifelong learning agents. On the other hand, finding the optimal control
solution requires the satisfaction of specific boundary conditions at the end of the time horizon, that can not be exactly
fulfilled when proceeding forward in time in conjunction with the external stream of data. We proposed to face this
issue actively modifying the external input to foster the constancy of costate variables for the proper fulfillment of the
right boundary conditions, establishing in turn a trade-off between optimality of the discovered solution and how far
the modified stream is from the original signal. Requiring the costates to have a trivial dynamic may be, in turn, too
restrictive and different approaches could be more effective, such as for example forcing the vanishing of the costates
only asymptotically through the help of additional degrees of freedom characterizing the dynamic of the network, the
cost functional or the modified input. Nevertheless, we leave an in-depth analysis of this problem for future work,
along with the study of other continual setting such as the task and class incremental scenarios. We applied the
proposed ideas to the problem of unsupervised optical flow estimation from a given video stream. Qualitative results
foster future investigations on the line of the presented approach. From this perspective, it could be interesting to
control the temporal variation of the weights (ω̇(s) = β(s)) along with the addition of a simple regularization term in
the cost functional 1

2mββ(s)
2 instead of controlling the weights themselves. As a result, at the cost of adding costate

variables pω , we avoid the numerical approximation of the minimum of the hamiltonian involved in Algorithm 1. We
leave the deepening of these aspects to further studies.
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Figure 2: Evolution of various quantities of interest as function of time, measured in term of # frames. Along the first
column, c and λder have been fixed to the constant value c = 1e03 and λder = 1e-02 while λṗ is varying. Along the
second column, λṗ = 1e09 and λder = 1e-02 with varying c, while in the last column c = 1e03, λṗ = 1e09 and
λder is changing. Red dashed lines in first three rows represent reference values in case of a flawless estimation of
the motion of the original video stream. Since costates are always almost null on the considered time horizon (fourth
row), the evolution of the hamiltonian is almost identical to the one of the cost function ℓ (second row) and, for this
reason, the hamiltonian has not been reported.
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