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This work revisits and extends in various directions a work by J.Z. Farkas and P. Hinow (Math. Biosc and Eng, 8 (2011) 503-513) on structured populations models (with bounded sizes) with diffusion and generalized Wentzell boundary conditions. In particular, we provide first a self-contained L 1 generation theory making explicit the domain of the generator. By using Hopf maximum principle, we show that the semigroup is always irreducible regardless of the reproduction function. By using weak compactness arguments, we show first a stability result of the essential type and then deduce that the semigroup has a spectral gap and consequently the asynchronous exponential growth property. Finally, we show how to extend this theory to models with arbitrary sizes and point out an open problem pertaining to this extension.

1. Introduction. Structured population models are widely discussed in the literature on population dynamics (see e.g. [START_REF] Magal | Structured Population Models in Biology and Epidemiology[END_REF][START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF]). A model with size-structure appeared in a work by J.W. Sinko and W. Streifer [START_REF] Sinko | A new model for age-size structure of a population[END_REF] (see also [START_REF] Webb | Population models structured by age, size, and spatial position[END_REF] and the references therein). The introduction of spatial diffusion in population biology goes back to A. Kolmogorov I. Petrovskii and N. Piscunov [START_REF] Kolmogorov | A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem[END_REF] and J.G. Skellam [START_REF] Skellam | The formulation and interpretation of mathematical models of diffusionary processes in population biology, in The mathematical theory of the dynamics of biological populations[END_REF]. We refer to the book by J.D. Murray [START_REF] Murray | Mathematical Biology, Biomathematics[END_REF] for a survey of reaction-diffusion equations in biology. Later, R. Waldstätter, K.P. Hadeler and G. Greiner [START_REF] Waldstätter | A Lotka-McKendrick model for a population structured by the level of parasitic infection[END_REF] introduced diffusion in structure variable other than space. In [START_REF] Hadeler | Structured populations with diffusion in state space[END_REF], K.P. Hadeler introduced diffusion in a size-structured model where the main concern is the understanding of relevant boundary conditions for realistic models. In this context, some special cases of general Robin boundary condition were considered. Other developments for more general boundary conditions are due to J.Z. Farkas and P. Hinow [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], J.Z.

Farkas and A. Calsina [START_REF] Calsina | Steady states in a structured epidemic model with Wentzell boundary condition[END_REF][START_REF] Calsina | On a strain-structured epidemic model[END_REF] and A. Bart lomiejczyk and H. Leszczyński [START_REF] Bart | Method of lines for physiologically structured models with diffusion[END_REF][START_REF] Bart | Structured populations with diffusion and Feller conditions[END_REF].

The goal of the present work is to provide a systematic spectral analysis of the diffusive and linear structured population model considered by J.Z. Farkas and P.
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Hinow [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] u t (s, t) + (γ(s)u(s, t)) s = (d(s)u s (s, t)) s -µ(s)u(s, t) + m 0 β(s, y)u(y, t)dy, [START_REF] Abramovich | Problems in Operator Theory[END_REF] with generalized Wentzell-Robin (or dynamic) boundary conditions [(d(s)u s (s, t)) s ] s=0 -b 0 u s (0, t) + c 0 u(0, t) = 0, [START_REF] Apostol | Mathematical Analysis[END_REF] [(d(s)u s (s, t)

) s ] s=m + b m u s (m, t) + c m u(m, t) = 0, (3) 
and

b 0 -γ(0) > 0, b m + γ(m) > 0, (4) 
The different parameters will be defined thereafter. We note that there exists an important literature on second order equations with Wentzell boundary conditions which goes back to W. Feller [START_REF] Feller | Diffusion processes in one dimension[END_REF] and A.D. Wentzell [START_REF] Wentzell | On boundary conditions for multi-dimensional diffusion processes[END_REF] (see e.g. A. Favini G.R.

Goldstein J.A. Goldstein and S. Romanelli [START_REF] Favini | C 0 -semigroups generated by second order differential operators with general Wentzell boundary conditions[END_REF] and the references therein). We refer to [START_REF] Bart | Structured populations with diffusion and Feller conditions[END_REF] and to the book by A. Bobrowski [START_REF] Bobrowski | Convergence of One-Parameter Operator Semigroups[END_REF] Chapter 3 for a biological interpretation of such boundary conditions.

Here u(s, t) denotes the density of individuals of size s ∈ [0, m] at time t ≥ 0.

The function d stands for the size-specific diffusion coefficient while µ, γ denote respectively the mortality and growth rate of the individuals. Furthermore the non-local integral term in [START_REF] Abramovich | Problems in Operator Theory[END_REF] represents the recruitment of individuals into the population. More precisely, β(s, y) is the rate at which individuals of size y produce individuals of size s.

The object of this work is to improve and extend [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] in various directions.

In [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] the authors write (1)-( 2)-(3) in the matrix form

U (t) = AU (t), U (0) = (u 0 , u 0 0 , u 0 m ) ∈ X , (5) 
where can be ignored since it can be treated by elementary (bounded) perturbation arguments. In [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], the authors define first A on smooth functions

A   u u 0 u m   = A   u u 0 u m   + K   u u 0 u m   =   ( 
A s : D(A s ) → X (6) 
where

D(A s ) = {(u, u 0 , u m ) ∈ C 2 [0, m] × R 2 : u(0) = u 0 , u(m) = u m }
and show the dissipativity of A s . Then they refer to C α -theory of elliptic equations ([14] Theorem 6.31) for the proof that the closure of A s denoted by A, is a generator. A priori such an argument gives no information on the domain of A apart from the fact that

D(A) ⊃ D(A s ).
The authors claim that the generator A is resolvent compact because the embedding

of W 1,1 [0, m] into L 1 (0, m) is compact but they do not prove that the domain of A is embedded in W 1,1 [0, m] .
Thus, there is a priori a gap in their proof that A is resolvent compact.

Here we define A on an explicit domain

D(A) = {(u, u 0 , u m ) ∈ W 2,1 (0, m) × R 2 : u(0) = u 0 , u(m) = u m }
where W 2,1 (0, m) is the usual Sobolev space of functions in L 1 (0, m) having the first two distributional derivatives in L 1 (0, m). Indeed, besides dissipativity arguments following [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], we show here directly that the operator is closed, densely defined and satisfies the rank condition. Thus, a self-contained generation theory with an explicit generator is given. (In particular, the knowledge of D(A) allows to assert that A is resolvent compact.) This is the first contribution of this work.

In [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], the authors show that e tA t≥0 is irreducible under the assumption that β is continuous on [0, m] 2 and β(., .) > 0.

We show here that this strict positivity assumption is unnecessary. Indeed, e tA ≥ e tA and we show that e tA t≥0 is irreducible by using Hopf's maximum principle. In particular, e tA t≥0 is irreducible even if β = 0. This is our second contribution.

We show the existence of an algebraically simple leading real eigenvalue of A. This is our third contribution.

We deal also with a much more important issue. Indeed, in [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] the authors "deduce" from the fact that A is resolvent compact and e tA t≥0 is irreducible that e tA t≥0 converges (in operator norm) exponentially to the spectral projection P associated to the leading eigenvalue λ of A e -t λ e tA → P (t → ∞).

A priori, such a proof is not complete. Indeed, such a conclusion can be reached only if we know that the semigroup e tA t≥0 has a spectral gap (i.e. its essential type is strictly less than its type) which is not at all a consequence of the resolvent compactness of A and the irreducibility of e tA . In fact, we need to study the spectrum of the semigroup e tA t≥0 itself. We can show this property by using tools developped in the context of Transport theory [20,[START_REF] Mokhtar-Kharroubi | Spectral theory for neutron transport[END_REF]. Indeed, by using weak compactness arguments (we assume that K is weakly compact), we show first that the semigroups e tA t≥0 and e tA t≥0 have the same essential type ω ess ( e tA t≥0 ) = ω ess ( e tA t≥0 ); (the weak compactness of K is insured e.g. if there exists β ∈ L 1 (0, m) such that

β(s, y) ≤ β(s); in particular, it is trivially satisfied if β is continuous on [0, m]
2 ). It follows that the essential type of e tA t≥0 is less than or equal to the spectral bound of A ω ess ( e tA t≥0 ) ≤ s(A) := sup { (λ); λ ∈ σ(A)} . Secondly, by exploiting the fact that A is resolvent compact and Marek's results [START_REF] Marek | Frobenius theory of positive operators: Comparison theorems and applications[END_REF], we show that the spectral bound of A is strictly less than that of A s(A) < s(A) := sup { (λ); λ ∈ σ(A)} once K = 0 i.e. once β(., .) is not equal to zero almost everywhere. This implies that e tA t≥0 exhibits a spectral gap ω ess ( e tA t≥0 ) < ω( e tA t≥0 ) where ω( e tA t≥0 ) is the type of e tA t≥0 or equivalently the spectral bound of its generator A, i.e.

ω ess ( e tA t≥0 ) < s(A) (the type of a positive semigroup in L p spaces coincides with the spectral bound of its generator [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] and is an element of the spectrum [20]). The fact that e -ts(A) e tA → P (t → ∞) exponentially is then just a consequence of standard functional analytic results (see 1 e.g. [START_REF] Webb | An operator-theoretic formulation of asynchronous exponential growth[END_REF] Proposition 2.3). This is our fourth (key) contribution.
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A fifth contribution is the generalization of this theory to the case m = ∞ allowing arbitrary sizes, i.e. we study also the model

u t (s, t) + (γ(s)u(s, t)) s = (d(s)u s (s, t)) s -µ(s)u(s, t) + ∞ 0 β(s, y)u(y, t)dy, (7) [(d(s)u s (s, t)) s ] s=0 -b 0 u s (0, t) + c 0 u(0, t) = 0. ( 8 
)
To our knowledge, the spectral analysis of this model appears here for the first time.

The generation theory in

X = (L 1 (0, +∞) × R, . X )
turns out to be much more involved. Indeed, the domain of the generator turns out to be much more tricky since its consists of those (u,

u 0 ) ∈ L 1 (R + ) × R such that u ∈ W 2,1 (0, c) ∀c > 0, u(0) = u 0 (du ) -(γu) ∈ L 1 (R + ) and lim s→+∞ d(s)u (s) -γ(s)u(s) = 0.
A priori the domain of the generator is larger than the space

(u, u 0 ) ∈ W 2,1 (R + ) × R; u(0) = u 0
but we show that this space is a core of the domain generator.

As previously, the irreducibility of the semigroup is shown by using Hopf's maximum principle. Similarly, if

L 1 (R + ) u → ∞ 0 β(., y)u(y)dy ∈ L 1 (R + )
is weakly compact, (e.g. if there exists β ∈ L 1 (0, ∞) such that β(s, y) ≤ β(s) ), then the semigroups e tA t≥0 and e tA t≥0 have the same essential type. On the other hand, we cannot appeal to Marek's arguments [START_REF] Marek | Frobenius theory of positive operators: Comparison theorems and applications[END_REF] to infer the existence of a spectral gap because A is not a priori resolvent compact. In this case, we show that the spectral gap property ω ess ( e tA t≥0 ) < s(A) holds if β 0 (.) = 0, if there exists a measurable set I ⊂ R + with positive measure such that u ∈ L 1 (R + ), u(y) > 0 a.e. =⇒ ∞ 0 β(s, y)u(y)dy > 0 a.e s ∈ I.

and if lim λ→s(A) r σ (K(λ -A) -1 ) > 1 (9) 
where r σ refers to a spectral radius. We do not know whether ( 9) is always satisfied.

In particular, we do not know whether lim λ→s(A) r σ (K(λ -A) -1 ) = +∞ [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] always holds. Note that if

η := lim λ→s(A)
r σ (K(λ -A) -1 ) < +∞ then the semigroup generated by A + cK has a spectral gap once c > η -1 . If β is bounded below by a separable kernel

β(x, y) ≥ β 1 (x)β 2 (y) (11) 
then we show that

r σ (K(λ -A) -1 ) ≥ β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R+)
where (U ) 1 refers to the first component of U ∈ X . In particular [START_REF] Dunford | Linear Operators. I. General Theory[END_REF] 

is satisfied if lim λ→s(A) β 2 (λ -A) -1 β 1 β 1 (0) 1 L 1 (R+) > 1.
Note that (11) holds e.g. if β is continuous at some point (x, y) with β(x, y) > 0.

Whether [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] is a general property of such biological models is an open problem.

The authors are indebted to the referees for their constructive remarks and suggestions.

2. Models with bounded sizes.

Framework and hypotheses.

In order to analyze the problem described by ( 1)-( 2)-(3), following [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] we rewrite the boundary conditions ( 2)-( 3). We substitute the diffusion term in (2)-(3), by the remainder of (1) evaluated in 0 and m respectively. We thus get the following dynamic equations

u t (0, t) = -u(0, t)ρ 0 + u s (0, t)(b 0 -γ(0)) + m 0 β 0 (y)u(y, t)dy, (12) 
u t (m, t) = -u(m, t)ρ m -u s (m, t)(b m + γ(m)) + m 0 β m (y)u(y, t)dy, (13) 
where

ρ 0 = γ (0) + µ(0) + c 0 , ρ m = γ (m) + µ(m) + c m and β 0 = β(0, .), β m = β(m, .).
Following [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF], the Banach space

X = (L 1 (0, m) × R 2 , . X )
is endowed with the norm

(x, x 0 , x m ) X = x L 1 (0,m) + c 1 |x 0 | + c 2 |x m |,
where

c 1 = d(0) b 0 -γ(0) , c 2 = d(m) b m + γ(m)
.

We denote by X + the nonnegative cone of X . We introduce some hypotheses on the different parameters:

1. γ, d ∈ W 1,∞ (0, m) and µ, β 0 , β m ∈ L ∞ (0, m),
2. the functions µ, γ and s → β(s, y) are continuous at s = 0 and s = m for every y ∈ [0, m],

3. the operator and is satisfied as soon as there exists β ∈ L 1 (0, m) such that β(s, y) ≤ β(s) a.e.

L 1 (0, m) u → m 0 β(., y)u(y)dy ∈ L 1 (0, m) is weakly compact, 4. b 0 , b m > 0, c 0 , c m ≥ 0, β, µ ≥ 0 and d(s) ≥ d 0 > 0 for all s ∈ [0, m] .
(s, y) ∈ [0, m] 2 . This is the case for example if β is continuous on [0, m] 2 .

Using (1)-( 12)-( 13), we define the operator A by:

A   u u 0 u m   = A   u u 0 u m   + K   u u 0 u m   =   (du ) -(γu) -µu (b 0 -γ(0))u (0) -ρ 0 u 0 -(b m + γ(m))u (m) -ρ m u m   +   m 0 β(., y)u(y)dy m 0 β 0 (y)u(y)dy m 0 β m (y)u(y)dy   ,
where the domain of A is given by

D(A) = {(u, u 0 , u m ) ∈ W 2,1 (0, m) × R 2 : u(0) = u 0 , u(m) = u m }.
We are then concerned with the following Cauchy problem

U (t) = AU (t), U (0) = (u 0 , u 0 0 , u 0 m ) ∈ X where U (t) = (u(t), u 0 (t), u m (t)) T .

Semigroup generation.

We show here that A is the generator of a C 0 -semigroup. The dissipativity arguments are essentially those in [START_REF] Farkas | Physiologically structured populations with diffusion and dynamic boundary conditions[END_REF] but we prove directly that A is closed, densely defined and satisfies the rank condition.

Theorem 2.1. Let Assumption (4) be satisfied. Then A is the infinitesimal generator of a quasi-contractive C 0 -semigroup {U (t)} t≥0 on X .

Proof. We may restrict ourselves to the operator A; straightforward (bounded) perturbation arguments will end the proof.

1. Let us show that D(A) = X . Let u, u 0 , u m T ∈ X . Let u j j be C ∞ functions with compact supports such that u j → u in L 1 (0, m) and

support u j ⊂ j -1 , m -j -1
We look for a parabola

f j 0 (s) = as 2 + bs + c (s ∈ 0, j -1 )
such that

f j 0 (0) = u 0 , f j 0 (j -1 ) = 0, d f j 0 ds ( j -1 ) = 0.
This amounts to c = u 0 and

aj -2 + b j -1 + u 0 = 0 2aj -1 + b = 0.
We find

f j 0 (s) = j 2 u 0 s 2 -2ju 0 s + u 0 = u 0 (js -1) 2 .
Similarly, we look for a parabola

f j m (s) = as 2 + bs + c (s ∈ m -j -1 , m ) such that f j m (m) = u m , f j m (m -j -1 ) = 0, d f j m ds (m -j -1 ) = 0.
We find

f j m (s) = u m j 2 s 2 -2u m j 2 s(m -j -1 ) + u m j 2 (m -j -1 ) 2 = u m j 2 (s -m + j -1 ) 2 . Define v j (s) =    f j 0 (s) if s ∈ 0, j -1 u j (s) if s ∈ j -1 , m -j -1 f j m (s) if s ∈ m -j -1 , m . Then v j ∈ W 2,1 (0, m), v j (0) = u 0 and v j (m) = u m , i.e. v j , v j (0), v j (m) T ∈ D(A).
Let us show that v j → u in L 1 (0, m). It suffices to show that

j -1 0 f j 0 (s) ds + m m-j -1 f j m (s) ds → 0 (j → +∞).
We have

1 j -1 0 f j 0 (s) ds = |u 0 | j -1 0 (js -1) 2 ds = j 2 |u 0 | j -1 0 (s -j -1 ) 2 ds = |u 0 | 3j → 0 (j → +∞). Similarly m m-j -1 f j m (s) ds = |u m | 3j → 0 (j → +∞). Finally v j , v j (0), v j (m) T → u, u 0 , u m T in X and D(A) = X .

Let us show that for ω large enough

A-ω is a dissipative operator. Let λ > 0, U = u, u 0 , u m T ∈ D(A) and H = ((λ + ω)I -A)U . Let H = h, h 0 , h m T .
We have to prove that

H X ≥ λ U X .
By definition of H, we have

(λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, m), (14) 
(λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 , (15) 
(λ + ρ m )u m + (b m + γ(m))u (m) = h m (16) 
where µ(s) := ω + µ(s), ρ 0 := ω + ρ 0 , ρ m := ω + ρ m . We multiply [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] by sign(u(s)), integrate between 0 and m and then multiply [START_REF] Hadeler | Structured populations with diffusion in state space[END_REF] and ( 16) respectively by sign(u 0 ) and sign(u m ). We get

λ u L 1 + m 0 µ|u| - m 0 (du ) sign(u) + m 0 (γu) sign(u) = m 0 hsign(u), (λ + ρ 0 )|u 0 | -(b 0 -γ(0))u (0)sign(u(0)) = h 0 sign(u(0)), (λ + ρ m )|u m | + (b m + γ(m))u (m)sign(u(m)) = h m sign(u(m))
which is equivalent to 

λ u L 1 + m 0 µ|u| - m 0 (du ) sign(u) + m 0 (γu) sign(u) = m 0 hsign(u), (17) u (0)sign(u(0)) = (λ + ρ 0 )|u 0 | b 0 -γ(0) - h 0 sign(u(0)) b 0 -γ(0) , (18) 
u (m)sign(u(m)) = - (λ + ρ m )|u m | b m + γ(m) + h m sign(u(m)) b m + γ(m) . (19) 
{u > 0} = {s ∈ (0, m) : u(s) > 0} = ∪ i∈N (a i,1 , a i,2 ), {u < 0} = {s ∈ (0, m) : u(s) < 0} = ∪ i∈N (b i,1 , b i,2 ). Since u ∈ W 1,1 (0, m) → C([0, m]) then ∀i, j ∈ N : u(a i,1 ) = 0, u(a i,2 ) = 0, u(b j,1
) = 0 and u(b j,2 ) = 0 (except possibly at 0 and m).

Thus m 0 (γu) sign(u) = {u>0} (γu) - {u<0} (γu) = i∈N [γ(a i,2 )u(a i,2 ) -γ(a i,1 )u(a i,1 )] - j∈N [γ(b j,2 )u(b j,2 ) -γ(b j,1 )u(b j,1 )] = γ(m) |u(m)| -γ(0) |u(0)| . ( 20 
) (b) Consider m 0 (du ) (s)sign(u(s))ds. Since u ∈ W 1,1 (0, m) → C([0, m])
we have ∀i, j ∈ N : u (a i,2 ) ≤ 0, u (a i,1 ) ≥ 0, u (b j,2 ) ≥ 0 and u (b j,1 ) ≤ 0

(except possibly at 0 and m). We have

m 0 (du ) sign(u) = {u>0} (du ) - {u>0} (du ) = i∈N [d(a i,2 )u (a i,2 ) -d(a i,1 )u (a i,1 )] - j∈N [d(b j,2 )u (b j,2 ) -d(b j,1 )u (b j,1 )] ≤ d(m)u (m)sign(u(m)) -d(0)u (0)sign(u(0)).
Hence

λ u L 1 + µ|u| + γ(m)|u(m)| -γ(0)|u(0)| ≤ d(m)u (m)sign(u(m)) -d(0)u (0)sign(u(0)) + hsign(u). Since d(0)u (0)sign(u(0)) = d(0)(λ + ρ 0 )|u 0 | b 0 -γ(0) - d(0)h 0 sign(u(0)) b 0 -γ(0)
and

d(m)u (m)sign(u(m)) = - d(m)(λ + ρ m )|u m | b m + γ(m) + d(m)h m sign(u(m)) b m + γ(m) then λ u L 1 + γ(m) + d(m)(λ + ρ m ) b m + γ(m) |u(m)| + -γ(0) + d(0)(λ + ρ 0 ) b 0 -γ(0) |u(0)| + µ|u| ≤ d(m)h m sign(u(m)) b m + γ(m) + d(0)h 0 sign(u(0)) b 0 -γ(0) + hsign(u) ≤ d(m) |h m | b m + γ(m) + d(0) |h 0 | b 0 -γ(0) + h L 1 or λ u L 1 + µ|u| + γ(m) c 2 + (λ + ρ m ) c 2 |u(m)| + - γ(0) c 1 + (λ + ρ 0 ) c 1 |u(0)| ≤ c 2 |h m | + c 1 |h 0 | + h L 1 . Note that if γ(m) c 2 + ρ m ≥ 0 and - γ(0) c 1 + ρ 0 ≥ 0 then λ u L 1 + µ|u| + λc 2 |u(m)| + λc 1 |u(0)| ≤ c 2 |h m | + c 1 |h 0 | + h L 1 . But γ(m) c 2 + ρ m = γ(m)(b m + γ(m)) d(m) + γ (m) + µ(m) + c m + ω and - γ(0) c 1 + ρ 0 = - γ(0)(b 0 -γ(0)) d(0) + γ (0) + µ(0) + c 0 + ω
are nonnegative for ω large enough. Hence

λ u L 1 + (µ + ω)|u| + λc 2 |u(m)| + λc 1 |u(0)| ≤ c 2 |h m | + c 1 |h 0 | + h L 1
and λ U X ≤ H X for ω large enough..This ends the proof of the dissipativity of A -ω. 4. Let us prove that (λI -A) : D(A) → X is a surjective operator for λ > 0 large enough. We consider first a particular case

1 3. Let us prove that (A, D(A)) is a closed operator. Let (U n ) n∈N := (u n , u n 0 , u n m ) n∈N ⊂ D(A) and let U := (u, u 0 , u m ) ∈ X and G := (g, g 0 , g m ) ∈ X such that lim n→∞ U n -U X = 0 and lim n→∞ AU n - G X = 0. Note that u n (0) = u n 0 → u 0 and u n (m) = u n m → u m . Since (b 0 -γ(0))(u n ) (0) -ρ 0 u n (0) → g 0 then (u n ) (0) → h 0 := g 0 + ρ 0 u 0 b 0 -γ(0) . Similarly -(b m + γ(m))(u n ) (m) -ρ m u n (m) → g m and (u n ) (m) → h m := - g m + ρ m u m b m + γ(m) . Let f n := d(u n ) -γu n . Since (d(u n ) ) -(γu n ) -µu n → g then f n → g + µu (L 1 convergence) while f n (0) = d(0)(u n ) (0) -γ(0)u n (0) → d(0)h 0 -γ(0)u 0 so f n (x) = f n (0) + x 0 f n (s)ds → z(x) := d(0)h 0 -γ(0)u 0 + x 0 (g + µu)(s)ds (L 1 convergence). It follows that (u n ) → z + γu d (L 1 convergence) so u ∈ W 1,1 (0, m) and u n → u in W 1,1 (0, m). In particular u(0) = lim n→∞ u n (0) = lim n→∞ u n 0 = u 0 and u(m) = lim n→∞ u n (m) = lim n→∞ u n m = u m . Knowing that u n → u in W 1,1 (0, m), the fact that (d(u n ) ) -(γu n ) -µu n → g implies that (u n ) converges in L 1 (0, m) so that u ∈ W 2,1 (0, m) and u n → u in W 2,1 (0, m).
H = h, h 0 , h m T ∈ L 2 (0, m) × R 2 .
We look for

U := u, u 0 , u m T ∈ D(A) such that (λI -A)U = H, i.e. (λ + µ)u -(du ) + (γu) = h in [0, m], (21) 
(λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 , (22) 
(λ + ρ m )u m + (b m + γ(m))u (m) = h m . ( 23 
)
We multiply [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF] by v ∈ H 1 (0, m) and integrate between 0 and m to get

λ m 0 uv + m 0 µuv - m 0 (du ) v + m 0 (γu) v = m 0 hv.
An integration by parts, with ( 22)-( 23) leads to

λ m 0 uv + m 0 µuv + m 0 du v - m 0 γuv + K 0 u(0)v(0) + K m u(m)v(m) = m 0 hv + c 1 h 0 v(0) + c 2 h m v(m), (24) 
where

K 0 = c 1 (λ + ρ 0 ) -γ(0) and K m = c 2 (λ + ρ m ) + γ(m).
We define the bilinear form

a : H 1 (0, m) × H 1 (0, m) → R
by the left hand side and a linear form L : H 1 (0, m) → R by the right hand side of [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF], to get a(u, v) = L(v). Let us check the conditions of Lax-Milgram Theorem. The continuity of a and L are easily obtained by using the trace theory. The inequality

2ab ≤ a 2 ε 2 + (εb) 2 (∀ε > 0) implies m 0 γuu ≤ γ L ∞ u L 2 u L 2 ≤ γ L ∞ u 2 L 2 2ε 2 + ε 2 u 2 L 2 2
and consequently

|a(u, u)| ≥ λ - γ L ∞ 2ε 2 u 2 L 2 + d 0 - γ L ∞ 2 2 u 2 L 2 +K 0 u(0) 2 + K m u(m) 2 .
Taking first ε > 0 small enough and then λ large enough, we finally get a coercivity estimate |a(u, u)| ≥ K u 2 H 1 where K > 0 is a constant. By Lax-Milgram Theorem, for every H ∈ L 2 (0, m) × R 2 , there exists a unique u ∈ H 1 (0, m) such that a(u, v) = L(v) for every v ∈ H 1 (0, m). Now, we need to verify that U belongs to D(A), where U is defined by U := (u, u(0), u(m)) = (u, u 0 , u m ). For this, we use [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF] 

with v ∈ C ∞ c ([0, m]). Then m 0 du v ≤ (|λ| + µ L ∞ ) u L 2 v L 2 + γ L ∞ m 0 uv + h L 2 v L 2 . Since u ∈ H 1 (0, m) then m 0 uv ≤ C v L 2 . Consequently m 0 du v ≤ [(|λ| + µ L ∞ ) u L 2 + C γ L ∞ + h L 2 ] . v L 2 ≤ K v L 2 .
Thus du ∈ H 1 (0, m) and u ∈ H 2 (0, m) ⊂ W 2,1 (0, m) so U ∈ D(A). 21)-( 22)-( 23) are satisfied. An integration by parts of ( 24) with v ∈ C ∞ c (0, m) implies [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF]. Moreover, an integration by parts of (24

Now we prove that (λI

-A)U = H i.e. (
) with v ∈ C ∞ (0, m) and v(0) = 1, v(m) = 0 (respectively v(0) = 0, v(m) = 1) gives us (22) (resp. ( 23 
)
).

We deal now with the surjectivity of (λI -A) . Let

H = (h, h 0 , h m ) ∈ L 1 (0, m) × R 2 .
There exists a sequence (

H n ) n≥0 = (h n , h 0 , h m ) ∈ L 2 (0, m) × R 2 such that lim n→∞ H n -H X = 0. We know that ∀n ≥ 0, ∃! U n ∈ D(A) : (λI -A)U n = H n . In particular ∀n, m ≥ 0, (λI -A)(U n -U m ) = H n -H m .
Using the dissipativity result shown before, we get

U n -U m X ≤ C H n -H m X .
It follows that (U n ) n≥0 is a Cauchy sequence in X . Let U be its limit. Since AU n = -H n + λU n then AU n converges to -H + λU. The closedness of A implies that U ∈ D(A) and (λI -A)U = H and this ends the proof of the surjectivity.

Thus A generates a C 0 -semigroup {T (t)} t≥0 by Lumer-Phillips Theorem (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] Theorem 4.3, p. 14). Finally, as a bounded perturbation of A, A generates also a quasi-contraction C 0 -semigroup {U (t)} t≥0 .

2.3. On irreducibility.

To understand time asymptotics of {U (t)} t≥0 , we need to prove a key result related to positivity. We remind first some definitions and results about positive and irreducible operators. We denote by ., . the duality pairing between X and X .

Definition 2.2.

1. For x ∈ X , the notation x > 0 means x ∈ X + and x = 0.

2. An operator O ∈ L(X ) is said to be positive if it leaves the positive cone X + invariant. We note this by O ≥ 0.

3. A C 0 -semigroup {Z(t), t ≥ 0} on X is said to be positive if each operator Z(t)
is positive.

4. A positive operator O ∈ L(X ) is said to be positivity improving if for any

x > 0 and x > 0, we have Ox, x > 0.

5. A positive operator O ∈ L(X ) is said to be irreducible if for any x > 0 and

x > 0 there exists an integer n such that O n x, x > 0.

6. A C 0 -semigroup {Z(t), t ≥ 0} on X is said to be irreducible if for any x > 0 and x > 0 there exists t > 0 such that Z(t)x, x > 0.

We recall that a C 0 -semigroup {Z(t), t ≥ 0} on X with generator B is positive if and only if, for λ large enough, the resolvent operator (λI -B) -1 is positive. We recall also that a C 0 -semigroup {Z(t), t ≥ 0} on X with generator B is irreducible if, for λ large enough, the resolvent operator (λI -B) -1 is positivity improving, (see e.g. [START_REF] Clément | One-Parameter Semigroups[END_REF] p. 165).

Definition 2.3. For a closed operator B : D(B) ⊂ X → X , we denote by σ(B) its spectrum and by s(B) its spectral bound defined by

s(B) := sup { (λ); λ ∈ σ(B)} if σ(B) = ∅, -∞ if σ(B) = ∅.
The main result of this subsection is:

Theorem 2.4. The C 0 -semigroup {U (t)} t≥0 is irreducible.
Proof. We have to show that the resolvent (λI -A) -1 is positivity improving for large λ. It is easy to see that for large λ

(λI -A) -1 = (λI -A -K) -1 = (λI -A) -1 ∞ n=0 (K(λI -A) -1 ) n = (λI -A) -1 + (λI -A) -1 ∞ n=1 (K(λI -A) -1 ) n . It follows that if (λI -A) -1 ≥ 0 then (λI -A) -1 ≥ (λI -A) -1
because K is a positive operator. Hence it suffices to prove that (λI -A) -1 is positivity improving.

Let us show first that (λI

-A) -1 ≥ 0. Let U = (λI -A) -1 H with H = (h, h 0 , h m ) ∈ X + . Since C + ([0, m]) is dense in L 1
+ (0, m), we may assume without loss of generality that h ∈ C + ([0, m]) .

Thus (λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, m), (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 (λ + ρ m )u m + (b m + γ(m))u (m) = h m .
The first equation is

-u + ρ 1 u + ρ 2 u = ρ 3 where ρ 1 = -(d -γ)/d, ρ 2 (s) = (λ + µ(s) + γ (s))/d(s) > 0 ∀s for λ large enough and ρ 3 = h/d ≥ 0. The absolute minimum of u is achieved at some s ∈ [0, m] . Let us show that u(s) ≥ 0. If not, i.e. if u(s) < 0 then s / ∈ (0, m) . Indeed, this would imply that 0 ≥ -u (s) = -ρ 2 (s)u(s) + ρ 3 (s) ≥ -ρ 2 (s)u(s) > 0 which is contradictory. Hence s = 0 or s = m. If s = 0 since (λ + ρ 0 )u(0) -(b 0 -γ(0))u (0) = h 0 then -(b 0 -γ(0))u (0) = -(λ + ρ 0 )u(0) + h 0 ≥ -(λ + ρ 0 )u(0) > 0.
It follows that u (0) < 0 and then u (s) < 0 in the neighborhood of s = 0 which contradicts the fact that the absolute minimum is achieved at 0. We argue similarly if s = m. Finally, u ≥ 0.

Let us show now that (λI -A) -1 is positivity improving. We note first that for any µ > λ, the resolvent identity

(λI -A) -1 = (µI -A) -1 + (µ -λ)(λI -A) -1 (µI -A) -1 shows that (λI -A) -1 ≥ (µ -λ)(λI -A) -1 (µI -A) -1 so (λI -A) -1 H ≥ (λI -A) -1 G where G := (µ -λ)(µI -A) -1 H ∈ X + has the peculiarity of belonging to D(A) ⊂ W 2,1 (0, m) × R 2 ⊂ C ([0, m]) × R 2 .
Hence, without loss of generality, we may assume that

H = (h, h 0 , h m ) ∈ X + is such that h ∈ C + ([0, m]) . Let us show that u(s) > 0 a.e., u(0) > 0, u(m) > 0 once H = (h, h 0 , h m ) ∈ X + -{0} .
Let us show by contradiction that min u > 0.

The absolute minimum of u is achieved at some s ∈ [0, m] . Suppose u(s) = 0. Then

v := -u satisfies the equation v -ρ 1 v + ρ 2 v = h/d ≥ 0 where ρ 2 ≤ 0. Note that max v = -min u ≥ 0.
If u reaches its minimum in (0, m) then v reaches its maximum in (0, m) . By the maximum principle (see [START_REF] Protter | Maximum Principles in Differential Equations[END_REF] Theorem 3, p. 6), v must be constant and then u is equal to the constant u(s) = 0. It follows that 0 = h 0 , 0 = h m , 0 = h which is contradictory. Hence u(s) > 0 ∀s ∈ (0, m) and u(0) = 0 or u(m) = 0. Thus v reaches its maximum (equal to zero) at s = 0 or s = m. If s = 0 then v (0) < 0 by Hopf's maximum principle (see [START_REF] Protter | Maximum Principles in Differential Equations[END_REF] Let s(A) be the spectral bound of A. We have: Theorem 2.5. The spectral bound of A is finite, i.e. s(A) > -∞.

Proof. According to Theorem 2.4, for λ > s(A), (λ -A) -1 is positivity improving and therefore irreducible. Since (λ -A) -1 is also compact then r σ ((λ -A) -1 ) > 0, (see [START_REF] De Pagter | Irreducible compact operators[END_REF] Theorem 3), where

r σ (O) = sup{|λ| : λ ∈ σ(O)}
is the spectral radius of O a bounded operator. On the other hand

r σ ((λ -A) -1 ) = 1 λ -s(A)
(see [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF] Proposition 2.5, p. 67) whence s(A) > -∞. Remark 2. Theorem 2.5 provides us with the existence of a real leading eigenvalue since s(A) ∈ σ(A) (see e.g. [20] Theorem 5.2, p. 102).
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On asynchronous exponential growth.

Let us remind some definitions and results about asynchronous exponential growth (see [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF], [START_REF] Nagel | One-Parameter Semigroups of Positive Operators[END_REF] and [START_REF] Webb | An operator-theoretic formulation of asynchronous exponential growth[END_REF] for the details). Definition 2.6. Let L(X ) be the space of bounded linear operators on X and let K(X ) be the subspace of compact operators on X . The essential norm L ess of L ∈ L(X ) is given by

L ess = inf K∈K(X ) L -K X .
Let {Z(t); t ≥ 0} be a C 0 -semigroup on X with generator B : D(B) ⊂ X → X . The growth bound (or type) of {Z(t); t ≥ 0} is given by

ω 0 (B) = lim t→∞ ln( Z(t) X ) t ,
and the essential growth bound (or essential type) of {Z(t); t ≥ 0} is given by

ω ess (B) = lim t→∞ ln( Z(t) ess ) t .

Definition 2.7 (Asynchronous Exponential Growth). [35, Definition 2.2]

Let {Z(t)} t≥0 be a C 0 -semigroup with infinitesimal generator B in the Banach space X. We say that {Z(t)} t≥0 has asynchronous exponential growth with intrinsic growth constant λ 0 ∈ R if there exists a nonzero finite rank operator P 0 in X such that lim t→∞ e -λ0t Z(t) = P 0 .

We recall the following standard result (see e. We are ready to give the main result of this subsection.

Theorem 2.9. If K = 0 then the semigroup {U (t)} t≥0 generated by A has asynchronous exponential growth.

Proof. The semigroups {U (t)} t≥0 and {T (t)} t≥0 are related by the Duhamel equation

U (t) = T (t) + t 0 T (t -s)KU (s)ds.
Since K is a weakly compact operator then so is T (t -s)KU (s) for all s ≥ 0. It follows that the strong integral t 0 T (t -s)KU (s)ds is a weakly compact operator (see [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF] Theorem 1 or [START_REF] Schlüchtermann | On weakly compact operators[END_REF] Theorem 2.2). Hence U (t) -T (t) is a weakly compact operator and consequently (see [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF] Theorem 2.10) {U (t)} t≥0 and {T (t)} t≥0 have the same essential type

ω ess (A) = ω ess (A),
in particular ω ess (A) ≤ ω 0 (A).

Let λ > s(A) ≥ s(A). The positivity improving compact operators

O 1 := (λ -A) -1 and O 2 := (λ -A) -1 are such that O 2 ≥ O 1 ≥ 0 and O 2 = O 1 since K = 0. It follows from ([18] Theorem 4.3) that r σ (O 1 ) < r σ (O 2 ).
In addition, according to ([24] Proposition 2.5, p. 67),

r σ (λ -A) -1 = 1 λ -s(A) and r σ (λ -A) -1 = 1 λ -s(A) so s(A) < s(A).
Note that s(A) = ω 0 (A) and s(A) = ω 0 (A) since {U (t)} t≥0 and {T (t)} t≥0 are positive semigroups on L 1 spaces (see e.g. [START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] Theorem VI.1.15, p. 358) so ω 0 (A) < ω 0 (A) and ω ess (A) < ω 0 (A).

By combining this last result and the irreducibility of {U (t)} t≥0 , Theorem 2.8 ends the proof.

Remark 4. Note that in Theorem 2.9, the requirement K = 0 amounts to the fact that the function β is not identically zero.

Models with unbounded sizes.

From now on, we consider the general model, described by ( 7)-(8).

Framework and hypotheses.

The boundary condition ( 8) can be rewritten into the following dynamic form

u t (0, t) = -u(0, t)ρ 0 + u s (0, t)(b 0 -γ(0)) + ∞ 0 β 0 (y)u(y, t)dy. ( 25 
) Let X ∞ = (L 1 (0, ∞) × R, . X∞ ) with norm (x, x 0 ) X∞ = x L 1 (0,∞) + c 1 |x 0 |.
We assume that b 0 -γ(0) > 0 [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] and denote by X ∞,+ the nonnegative cone of X ∞ . We now introduce some hypotheses on the different parameters:

1. γ, d ∈ W 1,∞ (0, ∞) and µ, β 0 ∈ L ∞ (0, ∞),
2. the functions µ, γ and s → β(s, y) are continuous at s = 0, for every y ≥ 0, 3. the operator

L 1 (0, ∞) u → ∞ 0 β(., y)u(y)dy ∈ L 1 (0, ∞)
is weakly compact, 4. b 0 > 0, c 0 ≥ 0, β, µ ≥ 0 and d(s) ≥ d 0 > 0 a.e. s ≥ 0.

Remark 5. According to the general criterion of weak compactness, the third hypothesis amounts to

sup y∈[0,∞) ∞ 0 β(s, y)ds < ∞, lim c→+∞ sup y∈[0,∞) ∞ c β(s, y)ds = 0, lim |E|→0 sup y∈[0,∞) E β(s, y)ds = 0. Define W 2,1 loc (R + ) := u ∈ L 1 loc (R + ); u ∈ W 2,1 (0, c) ∀c > 0 .
By means of ( 7)-( 25), we define the operator A ∞ by

A ∞ u u 0 = A ∞ u u 0 + K ∞ u u 0 = (du ) -(γu) -µu (b 0 -γ(0))u (0) -ρ 0 u 0 + ∞ 0 β(., y)u(y)dy ∞ 0 β 0 (y)u(y)dy with domain D(A ∞ ) given by {(u, u 0 ) ∈ X ∞ ; u ∈ W 2,1 loc (R + ), u(0) = u 0 , (du ) -(γu) ∈ L 1 (R + ) and lim s→+∞ d(s)u (s) -γ(s)u(s) = 0}. Note that d(s)u (s) -γ(s)u(s) = d(0)u (0) -γ(0)u(0) + s 0 z(τ )dτ where z := (du ) -(γu) ∈ L 1 (R + )
shows that lim s→+∞ d(s)u (s) -γ(s)u(s) exists.

As previously, we are concerned with the Cauchy problem

U (t) = A ∞ U (t), U (0) = (u 0 , u 0 0 ) ∈ X ∞ where U (t) = (u(t), u 0 (t)) T .

Semigroup generation.

The main result of this subsection is:

Theorem 3.1. Let Assumption (26) be satisfied. Then A ∞ is the infinitesimal generator of a quasi-contractive C 0 -semigroup {U ∞ (t)} t≥0 on X ∞ .
Proof. As previously, we restrict ourselves to A ∞ since K ∞ is bounded.

1. Let us show that D(A ∞ ) = X ∞ . Let (u, u 0 ) T ∈ X ∞ . Let (u j ) j be C ∞ functions with compact supports such that u j → u in L 1 (0, ∞) and support (u j ) ⊂ j -1 , +∞ .
As in the finite case, we introduce the functions

v j (s) = f j 0 (s) if s ∈ 0, j -1 u j (s) if s ≥ j -1 ,
where f j 0 (s) = j 2 u 0 s 2 -2ju 0 s + u 0 = u 0 (js -1) 2 and we verify that

D(A ∞ ) (v j , v j (0)) T → (u, u 0 ) T ∈ X ∞ so D(A ∞ ) = X ∞ . 2. Let us prove that (A ∞ , D(A ∞ )
) is a closed operator. We argue as previously.

Let

(U n ) n∈N := (u n , u n 0 ) n∈N ⊂ D(A ∞ ) then let U := (u, u 0 ) ∈ X ∞ and G := (g, g 0 ) ∈ X ∞ such that lim n→∞ U n -U X∞ = 0 and lim n→∞ A ∞ U n - G X∞ = 0. Let f n := d(u n ) -γu n .
Note that by assumption

lim s→+∞ f n (s) = 0. (27) Since (d(u 
n ) ) -(γu n ) -µu n → g (L 1 (0, ∞) convergence) and (b 0 -γ(0)) (u n ) (0) -ρ 0 u n (0) → g 0 then f n → g + µu (L 1 (0, ∞) convergence) while f n (0) = d(0)(u n ) (0) -γ(0)u n (0) → d(0)h 0 -γ(0)u 0 where h 0 := g 0 + ρ 0 u 0 b 0 -γ(0) . Hence f n (s) = f n (0) + s 0 f n (τ )dτ → z(s) := d(0)h 0 -γ(0)u 0 + s 0 (g + µu)(τ )dτ (28)
in L 1 (0, c) for any finite c. It follows that

(u n ) → z + γu d in L 1 (0, c) for any finite c so u ∈ L 1 (0, c) and u n → u in W 1,1 (0, c) for any finite c. In particular u(0) = lim n→∞ u n (0) = lim n→∞ u n 0 = u 0 . Finally f n -µu n = (d(u n ) ) -(γu n ) -µu n → g (L 1 (0, ∞) convergence) implies that (u n ) converges in L 1 (0, c
) for any finite c so that u ∈ W 2,1 (0, c) for any finite c and

(d(u) ) -(γu) -µu = g.
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Note that [START_REF] Richard | Work in progress[END_REF] shows that

|f n (s) -z(s)| ≤ |f n (0) -(d(0)h 0 -γ(0)u 0 )| + +∞ 0 |f n (τ ) -(g(τ ) + µ(τ )u(τ ))| dτ → 0 so f n (s) → z(s) = d(s)u (s) -γ(s)u(s) uniformly on R + and (27) implies lim s→+∞ d(s)u (s) -γ(s)u(s) = 0. Thus U ∈ D(A ∞ ) and G = A ∞ U . 1 3. We consider now the dissipativity of (A ∞ -ωI) for ω large enough. Let λ > 0, U = u, u 0 T ∈ D(A ∞ ) and H = ((λ + ω)I -A ∞ )U .
Let H = h, h 0 T . We have to prove that

H X∞ ≥ λ U X∞ .
By definition of H, we have

(λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, ∞), (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 , where µ(s) 
:= ω + µ(s), ρ 0 := ω + ρ 0 . By integration λ u L 1 + ∞ 0 µ|u| - ∞ 0 (du ) sign(u) + ∞ 0 (γu) sign(u) = ∞ 0 hsign(u), u (0)sign(u(0)) = (λ + ρ 0 )|u 0 | b 0 -γ(0) - h 0 sign(u(0)) b 0 -γ(0) . Since u ∈ W 2,1 loc (R + ) ⊂ C 1 (0, ∞), we get, for every finite m > 0 m 0 (du ) sign(u) ≤ d(m)u (m)sign(u(m)) -d(0)u (0)sign(u(0)) and m 0 (γu) sign(u) = γ(m)|u(m)| -γ(0)|u(0)|. Consequently m 0 (du ) sign(u) - m 0 (γu) sign(u) ≤ (d(m)u (m) -γ(m)u(m)) sign(u(m)) + l 0 where l 0 = -d(0)u (0)sign(u(0)) + γ(0)|u(0)|. Since lim m→+∞ d(m)u (m) -γ(m)u(m) = 0 then ∞ 0 (du ) sign(u) - ∞ 0 (γu) sign(u) = lim m→+∞ m 0 (du ) sign(u) - m 0 (γu) sign(u) ≤ l 0 .
Hence

λ u L 1 + ∞ 0 µ|u| ≤ l 0 + ∞ 0 hsign(u) so λ u L 1 + ∞ 0 µ|u| -γ(0)|u(0)| ≤ -d(0)u (0)sign(u(0)) + ∞ 0 hsign(u).
Since

d(0)u (0)sign(u(0)) = d(0)(λ + ρ 0 )|u 0 | b 0 -γ(0) - d(0)h 0 sign(u(0)) b 0 -γ(0) then λ u L 1 + ∞ 0 µ|u|ds + -γ(0) + d(0)(λ + ρ 0 ) b 0 -γ 0 |u(0)| ≤ d(0)|h 0 | b 0 -γ(0) + h L 1 or λ u L 1 + ∞ 0 µ|u|ds + - γ(0) c 1 + (λ + ρ 0 ) c 1 |u(0)| ≤ h L 1 + c 1 |h 0 |. Note that if - γ(0) c 1 + ρ 0 ≥ 0 then λ u L 1 + ∞ 0 µ|u|ds + λc 1 |u(0)| ≤ h L 1 + c 1 |h 0 |. Since - γ(0) c 1 + ρ 0 = - γ(0)(b 0 -γ(0)) d(0) + γ (0) + µ(0) + c 0 + ω is nonnegative for ω large enough then λ u L 1 + ∞ 0 (µ + ω)|u|ds + λc 1 |u(0)| ≤ c 1 |h 0 | + h L 1 and λ U X∞ ≤ H X∞
for ω large enough. Finally A ∞ -ωI is dissipative. 4. Let us prove that (λI -A ∞ ) : D(A ∞ ) → X ∞ is a surjective operator for λ > 0 large enough. We consider first a particular case

H = (h, h 0 ) T ∈ L 1 (0, ∞) ∩ L 2 (0, ∞) × R We look for U = (u, u 0 ) T ∈ D(A ∞ ) such that (λI -A ∞ )U = H, i.e. (λ + µ)u -(du ) + (γu) = h in R + , (29) 
(λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 . (30) 
Multiply ( 29) by v ∈ H 1 (0, ∞) and integrate to get

λ ∞ 0 uv + ∞ 0 µuv - ∞ 0 (du ) v + ∞ 0 (γu) v = ∞ 0
hv.

An integration by parts and (30) lead to

2 λ ∞ 0 uv+ ∞ 0 µuv+ ∞ 0 du v - ∞ 0 γuv +K 0 u(0)v(0) = ∞ 0 hv+c 1 h 0 v(0). ( 31 
)
One can show that the bilinear form defined by the left hand of ( 31) is coercive. By Lax-Milgram's Theorem, there exists a unique u ∈ H 1 (R + ) satisfying [START_REF] Skellam | The formulation and interpretation of mathematical models of diffusionary processes in population biology, in The mathematical theory of the dynamics of biological populations[END_REF] for all v ∈ H 1 (R + ). It follows easily that u ∈ H 2 (R + ). One sees that U = (u, u(0)) satisfies ( 29)- [START_REF] Sinko | A new model for age-size structure of a population[END_REF]. Since u ∈ H 2 (R + ) then u ∈ W 2,1 (0, c) for every c > 0 and and u ∈ L 1 (R + ). Equation [START_REF] Schlüchtermann | On weakly compact operators[END_REF] shows that (du ) -(γu) ∈ L 1 (0, ∞). As for the previous finite case, by exploiting the closedness of A ∞ , we get the surjectivity of (λI

-A ∞ ) : D(A ∞ ) → X ∞ .
Finally A ∞ generates a C 0 -semigroup {T ∞ (t)} t≥0 by Lumer-Phillips' Theorem.

Note that a priori the domain of the generator is not

{(u, u 0 ) ∈ W 2,1 (0, ∞) × R : u(0) = u 0 }
but this subspace turns out to be a core of D(A ∞ ). Indeed, we have: The main result of this subsection is:

Proposition 1. Let B : D(B) ⊂ X ∞ → X ∞ , be the restriction of A ∞ to {(u, u 0 ) ∈ W 2,1 (0, ∞) × R : u(0) = u 0 }. Then B is closable with closure A ∞ .
Proposition 2. The C 0 -semigroup {U ∞ (t)} t≥0 is irreducible.
Proof. As for the previous finite case, it suffices to prove that (λI

-A ∞ ) -1 is positivity improving. Let us show first that (λI -A ∞ ) -1 ≥ 0. Let U := (u, u 0 ) = (λI -A ∞ ) -1 H with H = (h, h 0 ) ∈ X ∞,+ and denote by C + c ([0, ∞[) the set of nonnegative continuous functions with compact support in [0, ∞[. Since C + c ([0, ∞[) is dense in L 1 + (0, ∞) we may assume without loss of gen- erality that h ∈ C + c ([0, ∞[). Since h ∈ (L 2 ∩ L 1 ) × R then u ∈ H 2 (0, ∞). Now (λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, ∞), (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0
shows that u ∈ C(0, ∞). We write

-u + ρ 1 u + ρ 2 u = ρ 3 where ρ 1 = -(d -γ)/d, ρ 2 (s) = (λ + µ(s) + γ (s))/d(s) > 0 ∀s for λ large enough and ρ 3 = h/d ≥ 0.
We want to show that inf u ≥ 0. If inf u < 0 then the absolute minimum of u is achieved at some s ∈ [0, +∞) since lim s→+∞ u(s) = 0. This implies that s = 0 otherwise 0 ≥ -u (s) = -ρ 2 (s)u(s) + ρ 3 (s) ≥ -ρ 2 (s)u(s) > 0 would lead to a contradiction. But if s = 0 then u(0) < 0 and the boundary condition

(λ + ρ 0 )u(0) -(b 0 -γ(0))u (0) = h 0 gives -(b 0 -γ(0))u (0) = -(λ + ρ 0 )u(0) + h 0 ≥ -(λ + ρ 0 )u(0) > 0 so u ( 
0) < 0 and then u (s) < 0 in the neighborhood of s = 0 which contradicts the fact that the absolute minimum is achieved at 0. Hence inf u ≥ 0.

Let us show now that (λI -A ∞ ) -1 is positivity improving. As for the previous finite case, by using the resolvent identity, we may assume, without loss of generality, that

H ∈ D(A ∞ ) ∩ X + .
In particular u ∈ C(0, ∞). Let us show that u(s) > 0 a.e. and u(0

) > 0 once H = (h, h 0 ) ∈ X ∞,+ -{0} .
Let us show by contradiction that u > 0 everywhere. If the absolute minimum of u is not achieved, then u > 0 since u ≥ 0. Consequently we only need to deal with the case where it is achieved at some s ∈ [0, ∞).

Suppose u(s) = 0. Since H = {0} then either h 0 > 0 or ∞ 0 h(s)ds > 0. In any case, let c > s such that (h 0 > 0 or

c 0 h(s)ds > 0). Note that the C 2 function v := -u satisfies the equation v -ρ 1 v + ρ 2 v = h/d ≥ 0 on [0, c], where ρ 2 ≤ 0. Note also that max [0,c] v = -min [0,c] u ≥ 0.
If u reaches its minimum in (0, c) then v reaches its maximum in (0, c). By the maximum principle (see [START_REF] Protter | Maximum Principles in Differential Equations[END_REF] Theorem 3, p. 6), v must be constant and then u is equal to the constant u(s) = 0. It follows that

h 0 = 0, h = 0 on [0, c]
which is contradictory. If v reaches its maximum (equal to zero) at s = 0 then v (0) < 0 by Hopf's maximum principle (see [START_REF] Protter | Maximum Principles in Differential Equations[END_REF] Theorem 4, p. 7) which is contradictory since

(b 0 -γ(0))v (0) = h 0 ≥ 0.
Finally u > 0 everywhere.

Asynchronous exponential growth.

The main result of this subsection is:

Theorem 3.2. We assume that β 0 (.) = 0. Let there exist a measurable subset

I ⊂ R + with positive measure such that u ∈ L 1 (R + ), u(y) > 0 a.e. =⇒ ∞ 0 β(s, y)u(y)dy > 0 a.e. s ∈ I. ( 33 
) If lim λ→s(A∞) r σ (K ∞ (λ -A ∞ ) -1 ) > 1 (34) 
then the semigroup {U ∞ (t)} t≥0 generated by A ∞ has asynchronous exponential growth.

Proof. Since A ∞ is resolvent positive and K ∞ ≥ 0 then

K ∞ (λ -A ∞ ) -1 ≤ K ∞ (µ -A ∞ ) -1 (λ > µ) and (s(A ∞ ), +∞) λ → r σ (K ∞ (λ -A ∞ ) -1 ) (35) is nonincreasing. Since K ∞ (λ -A ∞ ) -1 is weakly compact then K ∞ (λ -A ∞ ) -1 2
is compact (see e.g. [START_REF] Dunford | Linear Operators. I. General Theory[END_REF] Corollary VI.13, p. 510). Note that

(s(A ∞ ), +∞) λ → r σ (K ∞ (λ -A ∞ ) -1 )
is convex and therefore continuous (see [20] p. 107). Assume momentarily that

r σ (K ∞ (λ -A ∞ ) -1 ) > 0 (λ > s(A ∞ )). ( 36 
) Then (s(A ∞ ), +∞) λ → r σ (K ∞ (λ -A ∞ ) -1 )
is strictly decreasing (see [20] p. 106). If

lim λ→s(A∞) r σ (K ∞ (λ -A ∞ ) -1 ) > 1 then there exists a unique λ > s(A ∞ ) such that r σ (K ∞ (λ -A ∞ ) -1 ) = 1.
Since K ∞ (λ -A ∞ ) -1 is positive and power compact then

1 = r σ (K ∞ (λ -A ∞ ) -1 )
is an isolated eigenvalue of K ∞ (λ-A ∞ ) -1 associated to a nonnegative eigenfunction U so K ∞ (λ -A ∞ ) -1 U = U. Let V := (λ -A ∞ ) -1 U. Then V = 0 and

K ∞ V = K ∞ (λ -A ∞ ) -1 U = U = (λ -A ∞ )V so
A ∞ V = λV. As for the previous finite case, the weak compactness of K ∞ implies that {U ∞ (t)} t≥0 and {T ∞ (t)} t≥0 have the same essential type

ω ess (A ∞ ) = ω ess (A ∞ ). Since ω ess (A ∞ ) ≤ s(A ∞ ) then ω ess (A ∞ ) ≤ s(A ∞ ) < λ = s(A ∞ ).
Thus {U ∞ (t)} t≥0 exhibits a spectral gap and consequently {U ∞ (t)} t≥0 has asynchronous exponential growth since it is irreducible. Finally, we have just to check [START_REF] Webb | Population models structured by age, size, and spatial position[END_REF]. To this end, let K ∈ L(X ∞ ) be defined by We identify L 1 (I) to the closed subspace of L 1 (R + ) of functions vanishing a.e. outside I. Let

X I ∞ := L 1 (I) × R ⊂X ∞ . Since K(λ -A ∞ ) -1 : X ∞ → X I ∞ then K(λ -A ∞ ) -1 |X I ∞ : X I ∞ → X I ∞ and K(λ -A ∞ ) -1 ≥ K(λ -A ∞ ) -1 |X I ∞ so r σ (K ∞ (λ -A ∞ ) -1 ) ≥ r σ (K(λ -A ∞ ) -1 |X I ∞ ).
Since (λ -A ∞ ) -1 : X ∞ → X ∞ is positivity improving then our assumptions on β 0 and β imply that

K(λ -A ∞ ) -1 |X I ∞ : X I ∞ → X I ∞ is positivity improving too. Since K(λ -A ∞ ) -1 |X I ∞ is weakly compact then K(λ -A ∞ ) -1 |X I ∞ 2
is compact (see e.g. [START_REF] Dunford | Linear Operators. I. General Theory[END_REF] Corollary VI.13, p. 510) and irreducible so

r σ K(λ -A ∞ ) -1 |X I ∞ 2 > 0
(see e.g. [START_REF] De Pagter | Irreducible compact operators[END_REF] Theorem 3) and finally

r σ K(λ -A ∞ ) -1 |X I ∞ > 0.
This shows [START_REF] Webb | Population models structured by age, size, and spatial position[END_REF] and ends the proof. Remark 6. Note that if lim λ→s(A∞)

r σ (K ∞ (λ -A ∞ ) -1 ) ≤ 1 then r σ (K ∞ (λ -A ∞ ) -1 ) < 1 (λ > s(A ∞ )) and (λI -A ∞ ) -1 = (λI -A ∞ -K ∞ ) -1 = (λI -A ∞ ) -1 ∞ n=0 (K ∞ (λI -A ∞ ) -1 ) n (∀λ > s(A ∞ )) shows that s(A ∞ ) ≤ s(A ∞ ). In fact s(A ∞ ) = s(A ∞ ) since s(A ∞ ) ≥ s(A ∞ ) due to K ∞ ≥ 0.
Remark 7. Roughly speaking Theorem 3.2 expresses that {U ∞ (t)} t≥0 has asynchronous exponential growth once s(A ∞ ) > s(A ∞ ). We mention that the spectral bound of generators of perturbed positive semigroups is characterized in [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF] (see also [START_REF] Thieme | Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[END_REF]). Note that s(A ∞ ) is not known explicitly. In case s(A ∞ ) = 0, then [START_REF] Waldstätter | A Lotka-McKendrick model for a population structured by the level of parasitic infection[END_REF] could be interpreted in terms of the basic reproduction number R 0 (see [START_REF] Thieme | Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[END_REF]), we thank one of the referees for drawing our attention to this fact. Remark 8. Note that K ∞ (λ -A ∞ ) -1 and (λ -A ∞ ) -1 K ∞ have the same non-zero spectrum (see e.g. [START_REF] Abramovich | Problems in Operator Theory[END_REF] p. 196) and consequently r σ (K ∞ (λ -A ∞ ) -1 ) = r σ ((λ -A ∞ ) -1 K ∞ ).

On the other hand, (λ -A ∞ ) -1 K ∞ is never positivity improving since

K ∞ 0 u 0 = 0 ∀u 0 ∈ R.
We end this subsection by a useful criterion to estimate a spectral radius.

Lemma 3.3. Let β(x, y) = β 1 (x)β 2 (y) where β 1 ∈ L 1 (0, ∞) and β 2 ∈ L ∞ (0, ∞). We assume that β 1 is continuous at 0. Then for every λ > s(A ∞ )

r σ K ∞ (λ -A ∞ ) -1 = β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R+)
.

Proof. We know that

K ∞ (λ -A ∞ ) -1 f f 0 =     β 1 (.) β 2 (λ -A ∞ ) -1 f f 0 1 L 1 β 1 (0) β 2 (λ -A ∞ ) -1 f f 0 1 L 1     = β 2 (λ -A ∞ ) -1 f f 0 1 L 1 β 1 (.) β 1 (0) so K ∞ (λ -A ∞ )
-1 is a one-rank operator with a single non-zero eigenvalue β 2 (λ -A ∞ ) -1 β 1 (.) β 1 (0) 1 L 1 associated to eigenvector β 1 (.) β 1 (0) .

Hence

r σ K ∞ (λ -A ∞ ) -1 = β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R+)
.

Remark 9. Note that if the kernel β is not separable but is bounded below by a separable kernel, i.e. β(x, y) ≥ β 1 (x)β 2 (y), then a simple domination argument shows

r σ K ∞ (λ -A ∞ ) -1 ≥ β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R+)
.

Simplified models (with constant coefficients) are dealt with in [START_REF] Richard | Work in progress[END_REF] to check the property lim λ→s(A∞)

β 2 (λ -A ∞ ) -1 β 1 β 1 (0) 1 L 1 (R+) = +∞.
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  du ) -(γu) -µu (b 0 -γ(0))u (0) -ρ 0 u 0 -(b m + γ(m))u (m) -ρ m u m ., y)u(y)dy m 0 β 0 (y)u(y)dy m 0 β m (y)u(y)dy   ,and show their well-posedness in the sense of semigroup theory in the spaceX = (L 1 (0, m) × R 2 , . X ) endowed with the norm (x, x 0 , x m ) X = x L 1 (0,m) + c 1 |x 0 | + c 2 |x m | where c 1 = d(0) b 0 -γ(0) , c 2 = d(m) b m + γ(m).Actually, to deal with well-posedness of the Cauchy problem, the term K ., y)u(y)dy m 0 β 0 (y)u(y)dy m 0 β m (y)u(y)dy   TIME ASYMPTOTICS OF STRUCTURED POPULATIONS 3

Remark 1 .

 1 According to the general criterion of weak compactness (see e.g. Section 4 in [37]), the third hypothesis amounts to sup y∈[0,m] m 0 β(s, y)ds < ∞ and lim |E|→0 sup y∈[0,m] E β(s, y)ds = 0

( a )

 a Any nonempty open set of the real line is a finite or countable union of disjoints open intervals (see[START_REF] Apostol | Mathematical Analysis[END_REF] Theorem 3.11, p. 51) so

  Finally U ∈ D(A), G = AU. This ends the proof of the closedness of A.

  Theorem 4, p. 7); since (b 0 -γ(0))v (0) = h 0 ≥ 0 we get a contradiction. If s = m then v (m) > 0 by Hopf's maximum principle; since -(b m + γ(m))u (m) = h m we get also a contradiction. Finally min u > 0. 2.4. On the spectral bound of the generator.

g. [ 8 ]Theorem 2 . 8 .Remark 3 .

 8283 Theorem 9.11, p. 224). Let X be a Banach lattice and let {Z(t)} t≥0 be a positive C 0semigroup on X with infinitesimal generator B. If {Z(t)} t≥0 is irreducible and if ω ess (B) < ω 0 (B)then {Z(t)} t≥0 has asynchronous exponential growth with intrinsic growth constant λ 0 = ω 0 (B) and one-rank spectral projection P 0 . Note that A has a compact resolvent (and consequently the spectrum of A is composed (at most) of isolated eigenvalues with finite algebraic multiplicity). This follows from the fact that the canonical injection i : (D(A), . D(A) ) → (X , . X ) is compact (by Rellich Kondrachov's Theorem) and D(A) = D(A) since K ∈ L(X ) (see e.g.[START_REF] Engel | One-Parameter Semigroups for Linear Evolution Equations[END_REF] Proposition II.4.25, p. 117).

1

 1 

  γ, d ∈ L ∞ (R + ) then lim m→+∞ d(m)u (m) -γ(m)u(m) = 0. Let us prove that u ∈ L 1 (R + ). Consider λ := λ + ω, with λ, ω > 0. Since ( λ + µ(s))u(s) + (γu) (s) -(du ) (s) = h(s), s ∈ (0, ∞), (λ + ρ 0 )u 0 -(b 0 -γ(0))u (0) = h 0 ,then m 0 ( λ + µ(s)) |u(s)| ds = ) + (d(m)u (m) -γ(m)u(m)) sign(u(m)) -d(0)u (0)sign(u(0)) +γ(0)|u(0)|. The fact that lim m→+∞ d(m)u (m) -γ(m)u(m) ) -d(0)u (0)sign(u(0)) + γ(0)|u(0)| < +∞

in L 1 3 . 3 .

 133 (R + ) by the dominated convergence theorem. Note that sup s |σ n (s)| = sup s |σ (s)| < +∞ sup s |σ n (s)| = sup s |σ (s)| < +∞ and the supports of σ n and σ n are included in [n, n + 1] soσ n (du) + σ n (d u) -(γu) σ n → 0 in L 1 (R + ) in L 1 (R + )by the dominated convergence theorem because du, d u and γu belong to L 1 (R + ). The most tricky term is σ n (du ) . Since lim s→+∞ d(s)u (s) -γ(s)u(s) = 0, for any ε > 0 there exists s > 0 such that |d(s)u (s) -γ(s)u(s)| ≤ ε (s ≥ s). Then |d(s)u (s)| ≤ ε + |γ(s)u(s)| (s ≥ s) and R+ |σ n (s)d(s)u (s)| ds = n+1 n |σ n (s)d(s)u (s)| ds )u(s)| ds (for n large enough) so lim sup n→+∞ R+ |σ n (s)d(s)u (s)| ds ≤ ε sup s |σ (s)| since γu ∈ L 1 (R + ). Hence σ n (du ) → 0 in L 1 (R + ) since ε is arbitrary. This ends the proof. On irreducibility.

  s, y)u(y)dy ∞ 0 β 0 (y)u(y)dy . where χ I is the indicator function of I. ThenK(λ -A ∞ ) -1 ≥ K(λ -A ∞ ) -1 .

Proof. Note first that A ∞ is closed and

(in the sense of graphs) so B ⊂ A ∞ and B is a graph, i.e. B is closable.

To show that B = A ∞ , it suffices to show that for any U = (u, u(0)) ∈ D(A ∞ ) there exists a sequence

and

Note that u n ∈ W 2,1 (0, ∞) and u n = u on [0, n] . In particular u n (0) = u(0) and (u n ) (0) = u (0). Since σ n (s) ≤ 1 and lim n→+∞ σ n (s) = 1 ∀s ≥ 0 then u n → u in L 1 (R + ) by the dominated convergence theorem. It suffices to show [START_REF] Thieme | Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[END_REF]. Note that