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Blind Deconvolution

Yunshi Huang, Emilie Chouzenoux, Senior Member, IEEE and Jean-Christophe Pesquet, Fellow, IEEE

Abstract—In this paper, we introduce a variational Bayesian al-
gorithm (VBA) for image blind deconvolution. Our VBA generic
framework incorporates smoothness priors on the unknown
blur/image and possible affine constraints (e.g., sum to one) on
the blur kernel, integrating the VBA within a neural network
paradigm following an unrolling methodology. The proposed
architecture is trained in a supervised fashion, which allows us
to optimally set two key hyperparameters of the VBA model and
leads to further improvements in terms of resulting visual quality.
Various experiments involving grayscale/color images and diverse
kernel shapes, are performed. The numerical examples illustrate
the high performance of our approach when compared to state-
of-the-art techniques based on optimization, Bayesian estimation,
or deep learning.

Index Terms—Variational Bayesian approach, Kullback-
Leibler divergence, Majorization-Minimization, blind deconvolu-
tion, image restoration, neural network, unrolling, deep learning.

I. INTRODUCTION

Problem statement: The image blind deconvolution prob-
lem appears in many fields of image processing, such as
astronomy [1], biology [2] and medical imaging [3]. Given
a degraded, blurred, and noisy image, the aim is to restore a
clean image along with an estimate of the blur kernel. Blind
deconvolution is a very difficult problem to engage with, as
there exists an infinite number of pairs (image/blur) that lead
to the same observed image.

State-of-the-art review: Blind deconvolution methods
available in literature adopt either a sequential identification
process [4] or a joint estimation approach [5]. In the former,
the blur kernel is identified first, possibly through a calibration
step [6], [7], [8]. Then the unknown image is then inferred
using a non-blind image restoration method. In the latter, the
blur kernel and unknown image are simultaneously estimated.
Since the problem is highly ill-posed, it is mandatory to
incorporate prior knowledge on the sought unknowns. The
retained prior strongly influences the choice for the solver.

Three main categories of joint blind deconvolution ap-
proaches can be distinguished. A first category consists of
formulating the problem as the minimization of a cost function
that gathers both a data fidelity term (e.g., least-squares
discrepancy) and penalties/constraints acting on the image
and kernel variables. Imposing normalization and sparsity
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enhancing constraints on the kernel coefficients is a standard
method for avoiding scale ambiguity inherent to the blind
deconvolution model [9], [10], [11]. The smoothness of the
image can be easily imposed, by adopting total-variation
based regularization [12]. Several other efficient choices have
been proposed in the literature, along with suitable iterative
optimization methods to solve the resulting problems [13],
[14], [15], [16], [17], [18]. The methods’ flexibility is among
its main advantages, although this advantage comes at the price
of heavy parameter tuning.

The second category involves resorting to a Bayesian for-
mulation to express the model and a priori knowledge on the
variables. The estimates are then defined from the estimation
of the moments (typically the mean) of a posterior distribution
given the observed data and prior. This action of defining the
estimates uses either sampling [19], [20] or approximation [21]
strategies that typically involve the evaluation of intractable
integrals. Markov chain Monte Carlo (MCMC) methods have
been widely used for blind deconvolution involving 1D sparse
signals [22], [23], [24], but it is rarely employed in large-
scale problems [25], due to computational reasons. Another
family of methods consists in adopting the so-called varia-
tional Bayesian approximation paradigm [26], [27]. A simpler
(usually separable) approximation to the posterior is then
built through the minimization of a suitable divergence. This
approach leads to fast Bayesian-based algorithms, whose great
performance has been assessed in the context of non-blind
[28], [29] and blind [30] image restoration. Bayesian-based
techniques usually require less parameters than optimization-
based ones. Moreover, they can also provide higher-order
moments estimates, such as covariance matrices, which are of
high interest for assessing probabilistically the uncertainty of
the results. However, dealing with complex noise models and
priors in such methods may be tricky, and the algorithms may
be quite computationally heavy as they possess hyperparame-
ters to be tuned. A recent study is to insert optimization-based
steps in Bayesian sampling/approximation methods for more
versatile modalities and faster computations, particularly in the
context of large-scale image processing [28], [31], [32].

The third category of methods relies on deep learning
methodologies that have been cultivated during the last
decade [33], [34], [35]. More precisely, such methodologies
adopt a supervised learning strategy to learn (implicitly) some
prior information on the image/kernel from a so-called training
set. These methodologies then build a highly non-linear and
multi-layers architecture. The parameters of the architecture
(i.e., neuron weights) are estimated by back-propagation to
minimize a given loss function associated with the task at
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hand (e.g., image visual quality). Several recent works propose
neural network architectures dedicated to the problem of
image blind deconvolution. For example, DeblurGAN [33]
is based on conditional generative adversarial networks and
a multi-component loss function. SRCNN [34] and its ex-
tended version, DBSRCNN [35] rely on a CNN architecture.
SelfDeblur [36] combines an optimization-based method with
two generative networks for modeling deep priors on the
image and the blur kernel, respectively. Other image deblurring
problems have been studied using neural network techniques.
For example, [37] presents an unsupervised method based on
multi-adversarial CycleGAN [38] for high-resolution image
generation and [39] proposes a dynamic scene deblurring
method for unconstrained dual-lens (DL) cameras. Most of
the methods proposed in the above works are supervised.
They can perform quite well, as long as the training set
is large and representative enough. Moreover, they are well
suited to GPU-based implementation. However, such methods
have traditionally suffered from lack of interpretability and
robustness [40].

(Hyper)parameter tuning in particular presents a significant
challenge found in most traditional image restoration methods.
The parameters that require tuning can arise from the model
itself (e.g., prior weight, noise level) or from the resolution
method (e.g., algorithm stepsize). Several strategies based on
empirical search as well as more advanced statistical tools
can be used for the tuning, but these strategies are often
time-consuming with not guaranteed success. However, an
ambitious emerging set of methods in the field of inverse
problems in signal/image processing resolves these issues by
performing algorithm unrolling [41]. An iterative method (e.g.,
an optimization algorithm) is unrolled as layers of a neural
network. The reduced set of parameters of this network are
learnt by supervised training. Such unrolling algorithms have
been developed in [42], [43], [44], [45] in the context of image
deconvolution, as well as in [46] in other image restoration
applications, with promising results. One key advantage of
unrolling the algorithm is that cumbersome parameter tuning
can be avoided by simply embedding the sought parameters
into the network and learning them at training phase. The-
oretical results demonstrating the stability and robustness of
unrolling techniques can be found in [44], [47], [48]. These
methods are also closely related to plug-and-play techniques
where a trained neural network is employed as the denoiser
[44], [49], [50]. Deep unrolling can also be combined with a
bilevel optimization framework while maintaining the aim of
efficient hyperparameter learning (see [51] for a recent survey).

Contributions: In this paper, we propose a novel ap-
proach for blind image deconvolution that aims at gather-
ing the best of the aforementioned methods. We first intro-
duce a variational Bayesian algorithm (VBA) enhanced by
optimization-based ideas from [28]. The advantages of VBA is
to cope with a large set of priors on the kernel and the image,
as well as to present a reduced computational cost. Then, we
apply the unrolling paradigm to create a deep neural network
architecture, where VBA iterations are integrated as layers.
This allows us to (i) learn the hyperparameters (in particular,
the noise level) of VBA in an automatic supervised fashion,

(ii) improve further the quality of the results by choosing
a dedicated loss in the training phase, (iii) implement the
method by taking full advantage of possible GPU resources,
thus considerably reducing the processing time during the
test phase. In contrast to standard deep learning methods for
blind deconvolution, all these benefits come along with a
preservation of the interpretability of the method, thanks to the
unrolling technique. It should be emphasized that variational
Bayesian methods often appear in deep learning context.
Indeed, they are backbones of variational autoencoders [52]
and also constitute methods of choice for training Bayesian
neural networks [53]. However, up to our knowledge, our work
is the first to investigate the unrolling of a variational Bayesian
technique.

Organization of the paper: The rest of our paper is orga-
nized as follows. Section II introduces the image degradation
model as well as our Bayesian modeling; this section also
provides the background for deriving our algorithm. Section
III explicitly describes the iterative updates of the proposed
VBA. The unrolling of VBA is presented in Section IV. Nu-
merical results, including comparisons with various methods,
are presented in Section V. Finally, Section VI concludes this
paper by addressing the advantages brought by our proposed
algorithm.

II. PROBLEM STATEMENT

A. Observation model

We focus on the restoration of an original image x̃ ∈ R
N ,

from a degraded version of it y ∈ R
N , related to x̃ according

to the following model:

y = H̃x̃+n. (1)

Hereabove, n∈R
N models some additive random perturbation

on the observation. Moreover, H̃ ∈ R
N×N is a linear operator

modeling the effect of a blur kernel h̃ ∈R
M . In this work, we

focus on the generalized blind deconvolution problem where
the matrix associated with a given kernel h = [h1, . . . ,hM]⊤

reads

H =
M

∑
m=1

hmSm, (2)

with {S1, . . . ,SM} is a set of M known sparse N ×N real-
valued matrices. This model allows to retrieve the standard
image deblurring model, as a special case when H identifies
with a 2D discrete convolution matrix with suitable padding.
The considered problem amounts to retrieving an estimate
(x̂, ĥ) of the pair of variables (x̃, h̃) given y. Due to the ill-
posedness of this inverse problem, assumptions are required
on the sought image / kernel and on the noise statistics to
reach satisfying results. In the sequel, we will assume that n

is a realization of an additive Gaussian noise with zero mean
and standard deviation σ . In the remainder of the paper, it
will be convenient to set β = σ−2. Furthermore, we introduce
a linear equality constraint on the blur kernel estimate h. A
general expression of such a constraint is as follows:

h = Tz+ t, (3)
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where T = (Tm,p)1≤m≤M,1≤p≤P ∈ R
M×P is a matrix of rank

P ∈ {1, . . . ,M} and t = [t1, . . . , tM]⊤ ∈ R
M is some vector of

predefined constants. Vector z = [z1, . . . ,zP]
⊤ ∈ R

P becomes
the new unknown of the problem, along with the image x. A
typical linear equality constraint in such context is the sum-
to-one constraint, i.e. ∑M

m=1 hm = 1. Other examples will be
provided in the experimental section. We can thus rewrite (2)
as

H =
P

∑
p=1

zpKp +K0 =H(z), (4)

with

(∀p ∈ {1, . . . ,P}) Kp =
M

∑
m=1

Tm,pSm ∈ R
N×N , (5)

and

K0 =
M

∑
m=1

tmSm ∈ R
N×N . (6)

B. Hierarchical Bayesian Modeling

Let us now introduce the hierarchical Bayesian model on
which our VBA method will be grounded.

1) Likelihood: First, we express the likelihood p(y|x,z) of
the observed data, given the unknowns (x,z). Since the noise
is assumed to be Gaussian distributed, the likelihood can be
expressed as follows:

p(y|x,z) = β
N
2 exp

(
−β

2
||y−H(z)x||2

)
, (7)

where we recall that β denotes the inverse of the noise
variance.

2) Prior: As already mentioned, it is necessary to incor-
porate suitable prior knowledge on the sought quantities to
limit the problem ill-posedness. We here consider a wide range
of sparsity enhancing prior for the image x, by adopting the
generic model,

p(x|γ) ∝ γ
N
2κ exp

(
− γ

J

∑
j=1

||D jx||2κ
)
, (8)

with κ ∈ (0,1] a scale parameter and (D j)1≤ j≤J ∈ (RS×N)J

both assumed to be known. For instance, an isotropic total
variation prior is obtained by setting κ = 1/2, S = 2, J =
N and for every j ∈ {1, . . . ,N}, D jx = [[∇hx] j, [∇vx] j] ∈ R

2

gathers the horizontal and vertical gradients of x at pixel j.
Other relevant choices are discussed in [28]. Hereabove, γ > 0
is a regularization hyperparameter that we incorporate in our
hierarchical model. We assume a Gamma distribution on γ ,

p(γ) ∝ γα−1 exp(−ηγ), (9)

where α ≥ 0 and η ≥ 0 are the (known) shape and inverse scale
parameters of the Gamma distribution. Such choice for the
hyperparameter is rather standard in the context of Bayesian
image restoration.
Regarding the blur h, we adopt the so-called SAR model,
successfully used for Bayesian-based blind deconvolution in
[30]. The model relies on the following Gaussian model,

p(h|ξ ) ∝ ξ
M
2 exp

(
− ξ

2
||A(h−m)||2

)
, (10)

where A∈R
Q×M with Q∈N\{0} denotes a matrix of rank M.

m ∈ R
M is the mean of the underlying Gaussian distribution,

and ξ > 0 is such that ξA⊤A is its inverse covariance matrix.
If h follows this distribution, the projection of h onto the
affine space defined by (3) is also Gaussian as well as the
vector z associated with each projected vector. More precisely,
z follows a Gaussian distibution with mean µ = T−1(m− t)
and covariance matrix ξ−1T−1(A⊤A)−1(T−1)⊤ where T−1 is
the left inverse of T, i.e. T−1 = (T⊤T)−1T⊤. This yields the
following prior for the variable of interest z:

p(z|ξ ) ∝ ξ
P
2 exp

(
− ξ

2
(z−µ)⊤L(z−µ)

)
, (11)

where L = T⊤T(T⊤(A⊤A)−1T
)−1

T⊤T. We will consider
(L,µ) to be predefined by the user, so as to be adapted
to the sought properties of the blur kernel to estimate. The
hyperparameter ξ will be learned during a training phase, as
we will explain in Section IV.

3) Hierarchical model: Let us assume that (x,γ) and z

are mutually independent. According to Bayes formula, the
posterior distribution of the unknowns Θ = (x,z,γ) given the
observed data y is defined as

p(Θ|y) ∝ p(y|x,z)p(x|γ)p(z|ξ )p(γ), (12)

where the four factors on the right side have been defined
above.

C. Variational Bayesian Inference

The Bayesian inference paradigm seeks for solving the blind
restoration problem through the exploration of the posterior
p(Θ|y). Typically, one would be interested in the posterior
mean, its covariance, or its modes (i.e., maxima). Let us make
(12) explicit:

p(Θ|y) ∝ exp

(
−γ

J

∑
j=1

||D jx||2κ − β
2
||y−H(z)x||2

)

× γ
N
2κ +α−1 exp(−ηγ)ξ

P
2 exp

(
− ξ

2
(z−µ)⊤L(z−µ)

)
. (13)

Unfortunately, neither p(Θ|y), nor its moments (e.g., mean,
covariance), nor its mode positions have a closed form. In
particular p(y), which acts as a normalization constant, cannot
be calculated analytically. We thus resort to the variational
Bayesian framework to approximate this distribution by a
more tractable one, denoted by q(Θ), for which the estimators
are easier to compute. The approximation is computed with
the aim to minimize the Kullback-Leibler (KL) divergence
between the target posterior and its approximation, which
amounts to determining

qopt(Θ) = argminq KL(q(Θ)||p(Θ|y)),

= argminq

∫
q(Θ)ln

(
q(Θ)

p(Θ|y)

)
dΘ, (14)

where the equality holds only when q(Θ) = p(Θ|y). In order
to make the solution of the above minimization problem
tractable, a typical strategy is to make use of a variational
Bayesian algorithm (VBA) based on a so-called mean field
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approximation of the posterior, combined with an alternating
minimization procedure.

The mean field approximation reads as a factorized structure
q(Θ) = ∏R

r=1 qr(Θr), which is assumed for the distribution q.
Each of the R factors are then obtained by minimizing the
KL divergence by iterative update of a given factor qr while
holding the others unchanged. This procedure takes advantage
of the property that the minimizer of the KL divergence with
respect to each factor can be expressed as

(∀r ∈ {1, ...,R}) qopt
r (Θr) ∝ exp

(
< lnp(y,Θ)>∏i 6=r q

opt
i (Θi)

)

(15)

where < · >∏i 6=r qi(Θi)=
∫

∏i 6=r qi(Θi)dΘi. Here, we will con-
sider the following factorization:

q(Θ) = qX(x)qZ(z)qΓ(γ). (16)

In Section III, we describe the steps of VBA for this
particular choice. Due to the intricate form of the chosen
prior on the image, we introduce an extra approximation
step, relying on a majoration-minimization (MM) strategy,
reminescent from [28]. In addition, we propose a strategy to
reduce the time complexity of VBA, so as to deal with medium
to large size images. As we will emphasize, the method
requires the setting of two cumbersome hyperparameters,
namely the regularization weight ξ and the noise level β .
Then, in Section IV, we show how to unroll the VBA method
as a neural network structure, so as to learn the parameters
(ξ ,β ) in a supervised fashion.

III. VBA FOR BLIND IMAGE DECONVOLUTION

We now describe our proposed implementation of the VBA
when applied to the approximation to the posterior in (13). We
first present an MM-based procedure to handle the complicated
form of the prior term on variable x. Then, we give the
explicit expressions of the updates performed in the alternating
minimization method.

A. MM-based approximation

Let us focus on the prior term in (8). This distribution is
difficult to deal with as soon as κ is different from 1 (in which
case a Gaussian distribution is retrieved). We thus propose to
construct a surrogate for the prior on x. We use the tangent
inequality for concave functions, which yields the following
majorant function for the ℓκ -function with κ ∈ (0,1]:

(∀u > 0)(∀v ≥ 0) vκ ≤ (1−κ)uκ +κuκ−1v. (17)

Let us introduce the vector of auxiliary positive variables λ=
(λ j)1≤ j≤J . From the previous inequality, we then deduce the
following majorant function for the negative logarithm of the
prior distribution:

(∀x ∈ R
N) γ

J

∑
j=1

||D jx||2κ ≤
J

∑
j=1

Fj(D jx,λ j;γ), (18)

where, for every j ∈ {1, . . . ,J},

Fj(D jx,λ j;γ) = γ
κ ||D jx||2 +(1−κ)λ j

λ 1−κ
j

. (19)

This majorant function can be understood as a Gaussian lower
bound on the prior distribution on x, which will appear more
tractable in the VBA implementation. We will also show that
the update of the auxiliary variables remains rather simple,
thus not impacting the complexity of the whole procedure.

In a nutshell, using (13), and (18), we obtain the following
inequality:

p(Θ|y)≥F(Θ|y;λ) (20)

where the lower bound on the posterior distribution is

F(Θ|y;λ) =

Cγ
N
2κ exp

(
−β

2
||y−H(z)x||2 −F(x,λ;γ)

)
p(γ)p(z|ξ ). (21)

Hereabove we have introduced the shorter notation

F(x,λ;γ) =
J

∑
j=1

Fj(D jx,λ j;γ) (22)

and C is a multiplicative constant independent from Θ. In-
equality (20) leads to the following majorization of the KL
divergence involved in (14):

KL(q(Θ)||p(Θ|y))≤KL(q(Θ)||F(Θ|y;λ)). (23)

By minimizing the upper bound in (23) with respect to λ, we
can keep it as tight as possible, so as to guarantee the good
performance of the VBA. To summarize, we propose to solve
Problem (14) through the following four iterative steps:

1) Minimizing KL(q(Θ)||F(Θ|y;λ)) w.r.t. qX(x).
2) Minimizing the upper bound KL(q(Θ)||F(Θ|y;λ)) in

(23) w.r.t. qZ(z).
3) Update the auxiliary variables (λ j)1≤ j≤J to minimize

KL(q(Θ)||F(Θ|y;λ)).
4) Minimizing KL(q(Θ)||F(Θ|y;λ)) w.r.t. qΓ(γ).

Subsequently, at a given iteration k of the proposed algorithm,
the corresponding estimated variables will be indexed by k.

B. VBA updates

Let us now describe the four steps of the proposed VBA,
starting from a given iteration k associated with the current
approximated distributions qk

X(x),q
k
Z(z), and qk

Γ(γ), and the
auxiliary parameter estimate λk. We also denote by (xk,zk,γk)
the estimates of the means of qk

X, qk
Z, and qk

Γ, and (Ck
x,C

k
z)

the covariance estimates for qk
X and qk

Z.
1) Update of qX(x): By definition,

qk+1
X (x) = argminqX

KL(qX(x)q
k
Γ(γ)q

k
Z(z)||F(Θ|y;λk)). (24)

The standard solution provided by (15) remains valid, by
replacing the joint distribution by a lower bound chosen
proportional to F(Θ|y;λk):

qk+1
x (x) ∝ exp

(
< lnF(x,z,γ | y;λk)>qk

Γ(γ),q
k
Z
(z)

)

∝ exp

(∫ ∫
lnF(x,z,γ | y;λk)qk

Γ(γ)q
k
Z(z)dγdz

)
.

(25)
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By decomposing the different terms and using (4),

qk+1
x (x) ∝exp

{
−1

2
x⊤
(

β
(
E

qk
Z
(z)(H)⊤E

qk
Z
(z)(H)

+
P

∑
p=1

P

∑
q=1

e⊤p cov
qk

Z
(z)(z)eqK⊤

p Kq

)

+2E
qk

Γ(γ)
(γ)D⊤ΛkD

)
x+βx⊤E

qk
Z
(z)(H)⊤y

}
(26)

where

Eqk
Z
(z)(H) =

P

∑
p=1

e⊤p Eqk
Z
(z)(z)Kp +K0, (27)

D = [D⊤
1 , . . . ,D

⊤
J ]

⊤, (28)

Λk is the block diagonal matrix whose diagonal elements are
(κ(λ k

j )
κ−1IS)1≤ j≤J , and (e1, . . . ,eP) is the canonical basis of

R
P. We thus obtain a Gaussian distribution:

qk+1
X (x) =N (x; x̌k+1, Čx

k+1
), (29)

parametrized by

(Čx
k+1

)−1 = β

(
(Hk)⊤Hk +

P

∑
p=1

P

∑
q=1

e⊤p Ck
zeqK⊤

p Kq

)

+2γkDT
Λ

kD, (30)

x̌k+1 = β Čx
k+1

(Hk)⊤y, (31)

with Hk =H(zk).
In image restoration applications, dimension N can be rather

large (typically greater than 106 variables), so that the storage
of the full covariance matrix Čx

k+1
is neither desirable nor

usually possible. We thus propose to resort to a diagonal
approximation to this matrix when required, so that the update
finally reads:

qk+1
X (x) =N (x;xk+1,Ck+1

x ), (32)

with

Ck+1
x = Diag

(
δ k+1

x

)
(33)

xk+1 = CG
(
(Čx

k+1
)−1,β (Hk)⊤y

)
, (34)

where δ k+1
x ∈R

N is the vector of the inverses of the diagonal
elements of (Čx

k+1
)−1, and CG(A,b) denotes the application

of a linear conjugate gradient solver to the linear system Ax=b.
2) Update of qZ(z): According to the VBA principle,

qk+1
Z (z) = argminqZ

KL(qk+1
X (x)qk

Γ(γ)qZ(z)||F(Θ|y;λk)).
(35)

Using (15) and the previously introduced bound F(Θ | y;λk),
we have

qk+1
Z (z) ∝ exp

(∫ ∫
lnF(x,z,γ | y;λk)qk

Γ(γ)q
k+1
X (x)dγdx

)
.

(36)

Replacing the involved quantities by their expression yields

qk+1
Z (z) ∝ exp

{
−1

2
z⊤
(

βBk+1 +ξL
)

z

+ z⊤
(

βak+1 +ξLµ
)}

, (37)

where ak+1 = (ak+1
p )1≤p≤P ∈ R

P and Bk+1 = (Bk+1
p,q )1≤p,q≤P ∈

R
P×P are such that, for every (p,q) ∈ {1, . . . ,P}2,

ak+1
p =E

qk+1
X

(x)
(x)⊤K⊤

p y−E
qk+1

X
(x⊤K⊤

p K0x)

= (xk+1)⊤K⊤
p y−Bk+1

p,0 , (38)

Bk+1
p,q = E

qk+1
X

(x⊤K⊤
p Kqx)

= trace
(

KpCk+1
x K⊤

q

)
+(xk+1)⊤K⊤

p Kqxk+1 (39)

with

Bk+1
p,0 = E

qk+1
X

(x⊤K⊤
p K0x)

= trace
(

KpCk+1
x K⊤

0

)
+(xk+1)⊤K⊤

p K0xk+1. (40)

Thus, the update for the distribution qZ reads

qk+1
Z (z) =N (z;zk+1,Ck+1

z ), (41)

with

(Ck+1
z )−1 = βBk+1 +ξL, (42)

zk+1 = Ck+1
z

(
βak+1 +ξLµ

)
. (43)

3) Update of λ: Let us now express the update of the
auxiliary variable. We aim at finding

λk+1 = argmin
λ
KL(qk+1

X (x)qk
Γ(γ)q

k+1
Z (z)||F(Θ|y;λ)). (44)

This amounts to finding, for every j ∈ {1, . . . ,J},

λ k+1
j = argminλ j∈[0,+∞)

∫
qk+1

X (x)qk
Γ(γ)q

k+1
Z (z)

× log
qk+1

X (x)qk
Γ(γ)q

k+1
Z (z)

F(Θ|y,λ) dΘ,

= argminλ j∈[0,+∞)

J

∑
i=1

∫ ∫
qk+1

X (x)qk
Γ(γ)

×Fi(Dix,λi;γ)dxdγ ,

= argminλ j∈[0,+∞)

κE
qk+1

x (x)

[
||D jx||2

]
+(1−κ)λ j

λ 1−κ
j

.

(45)

The explicit solution to the above minimization problem yields
the following update:

λ k+1
j = E

qk+1
x (x)

[
||D jx||2

]

= ||D jx
k+1||2 + trace

(
DT

j D jC
k+1
x

)
. (46)
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4) Update of qΓ(γ): Finally, the update related to the
hyperparameter γ is expressed as

qk+1
Γ (γ) = argminqΓ

KL(qk+1
X (x)qΓ(γ)qk+1

Z (z)||F(Θ|y;λk+1)).
(47)

Using (15), we have

qk+1
Γ (γ) ∝ exp

(∫ ∫
lnF(x,z,γ | y;λk+1)

×qk+1
X (x)qk+1

Z (z)dxdz

)
. (48)

The above integral has the following closed form expression:

qk+1
Γ (γ) ∝ γ

N
2κ +α−1 exp(−ηγ)

× exp

(
−γ

J

∑
j=1

κ E
qk+1

x (x)

[
||D jx||2

]
+(1−κ)λ k+1

j

(λ k+1
j )1−κ

)
.

(49)

It thus follows from (46) that the update of qΓ is

qk+1
Γ (γ) = Γ(d,bk+1), (50)

that is the Gamma distribution with parameters

d =
N

2κ
+α, bk+1 =

J

∑
j=1

(λ k+1
j )κ +η . (51)

The mean of qk+1
Γ is finally given by

γk+1 =
d

bk+1 . (52)

Note that parameter d is not iteration dependent and can thus
be precomputed from the beginning of the VBA.

C. Overview of VBA

Algorithm 1 provides a summary of the resulting VBA
for solving the blind deconvolution problem introduced in
Section II. We also specify our initialization strategy. More
practical details about the latter will be discussed in the
experimental section. As a result, the optimal posterior dis-
tributions for both variables x and z will be approximated
as Gaussian distributions, while the one for hyperparameter
γ is approximated by a Gamma distribution. In particular,
after K iterations, it is direct to extract from VBA outputs an
estimate for the posterior mean of the image and the kernel,
through variable xK and TzK + t. The associated covariance
matrices are given by CK

x and TCK
z T⊤. These matrices can be

useful to perform uncertainty quantification of the results. The
VBA also allows us to estimate easily the hyperparameter γ
involved in the image prior. Nonetheless, it appears difficult
to find an efficient manner to estimate the hyperparameter ξ
using a variational Bayesian approach, as this value highly
fluctuates from one image/kernel pair to the other so that a
simple prior modeling of does not appear obvious. Moreover,
the VBA requires the knowledge of the noise level, through
the parameter β . This is limitating, and one might prefer to
have this quantity estimated in an automatic manner. Thus, we
propose in the next section, to resort to a supervised learning

strategy to learn both ξ and β along the iterates of VBA, in
the spirit of recent works [43] on the unrolling (also called
unfolding) of iterative algorithms.

Algorithm 1 VBA approach for image blind deconvolution

Initialization. Set hyperparameters (ξ ,β ,α,η). Define initial
values for (x0,C0

x,z
0,C0

z). Compute λ0 and γ0 using (46)
and (52), respectively.

Iterative steps. For k = 0,1, . . . ,K:
1: Update the mean xk+1 and the covariance matrix Ck+1

x of
qk+1

X (x) using (33)-(34).
2: Update the mean zk+1 and the covariance matrix Ck+1

z of
qk+1

Z (z) using (42)-(43).
3: Update λ k+1

j using (46), for every j ∈ {1, . . . ,J}.
4: Update the mean γk+1 of qk+1

Γ (γ) using (51)-(52).

IV. SUPERVISED LEARNING OF VBA HYPERPARAMETERS

A. Overview

We introduce a supervised learning strategy to estimate the
hyperparameter ξ and the inverse of the noise variance β , that
are required to run VBA. We adopt the so-called unrolling

(or unfolding) methodology [41]. The idea is to view each
iteration of an iterative algorithm as one layer of a neural
network structure. Each layer can be parametrized by some
quantities that are learned from a training database so as to
minimize a task-oriented loss function. The advantage of the
unrolling approach is threefold: (i) each layer mimics one
iteration of the algorithm and thus it is highly interpretable,
(ii) the choice of the loss is directly related to the task at
the end, which is beneficial for the quality of the results, (iii)
once trained, the network can be applied easily and rapidly
on a large set of test data without any further tuning. In par-
ticular, its implementation can make use of GPU-accelerated
frameworks. Several recent examples in the field of image
processing have shown the benefits of unrolling [54], [55],
[56], [57] when compared to standard black-box deep learning
techniques or more classical restoration methods based on
Bayesian or optimization tools. Let us in particular mention
the works [42], [58] for the application of unrolling in the
context of blind image restoration.

Let us now specify the unrolling procedure in the context
of VBA. Let K > 0 be the number of iterations of the VBA
described in Algorithm III-C, thus corresponding to K layers
of a neural network architecture. Iteration k ∈ {0, . . . ,K − 1}
of our unrolled VBA can be conceptually expressed as

(xk+1,Ck+1
x ,zk+1,Ck+1

z ,λk+1,γk+1)

=A(xk,Ck
x,z

k,Ck
z,λ

k,γk,ξ k,β k). (53)

The initialization procedure for (x0,C0
x,z

0,C0
z ,λ

0,γ0) is de-
tailed in Algorithm III-C. For k ∈ {0, . . . ,K − 1}, the ex-
pressions of (xk+1,Ck+1

x ,zk+1,Ck+1
z ,γk+1,λk+1) as a func-

tion of the input arguments of A(·) are given respectively
by (33)-(34), (42)-(43), (46), and (51)-(52). Furthermore,
(ξ k,β k)0≤k≤K−1 are now learned, instead of being constant
and preset by the user. This leads to the unfoldedVBA archi-
tecture depicted in Fig. 1, which can be summarized into the
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composition of K layers LK−1 ◦ · · · ◦L0. Each layer Lk with
k ∈ {0, . . . ,K −1} is made of three main blocks, that are two
neural networks, namely NNk

σ and NNk
ξ , and the core VBA

block A(·). There remains to specify our strategy for building
the two inner networks, with the aim to learn (ξ k,β k)0≤k≤K−1.

ξk ξk+1

k

σ̂kn

A

σ̂k+1n

A

βk βk+1

y · · · · · ·

xK

zK

xV BA

zV BA

Layer k + 1Layer

NNk+1
σ

NNk+1
ξ

NNk
σ

NNk
ξ

Ck+1
xCk

x

xk xk+1

zk zk+1

Ck
z Ck+1

z

γk γk+1

λk λk+1

Fig. 1. Architecture of unfoldedVBA network.

B. Learning hyperparameter ξ
For every k ∈ {0, ...,K − 1}, neural network NNk

ξ takes as

input the current kernel estimate hk = Tzk + t and delivers ξ k

as an output. The architecture of the neural network is shown
in Fig. 2. Note that the Softplus function, defined as

(∀x ∈ R) Softplus(x) = ln(1+ exp(x)), (54)

is used as a last layer, in order to enforce the strict positivity
of the output hyperparameter ξ k.

Flatten

9

9

1

Softplus

Full connected layer

3

3

SoftPlusSoftPlus

8
8

2

2

8

8

64
64 16

zk

ξk

Fig. 2. Neural network architecture NNk
ξ for estimating ξ k , for k ∈ {0, ...,K−

1}.

C. Learning noise parameter β
When the noise parameter β is unknown, it might be useful

to include a procedure to learn it automatically, again in a su-
pervised fashion. In this case, we propose to introduce simple
nonlinear mappings such that, for every k ∈ {0, . . . ,K −1},

σ k = NNk
σ (y),

= Softplus(ρk)σ̂(y)+Softplus(τk), (55)

and β k = (σ k)−2. Hereabove, y is the observed degraded
image, from which we deduce the wavelet-based variance
estimator (also used in [43]),

σ̂(y) =
median(|WHy|)

0.6745
, (56)

where |WHy| gathers the absolute value of the diagonal
coefficients of the first level Haar wavelet decomposition of the
degraded image y. Moreover, (ρk,τk)0≤k≤K−1 are two scalar
parameters to be learned during the training phase.

D. Complete architecture

We now present our complete blind deconvolution architec-
ture for grayscale images and color images in Fig. 3. First,
let us notice that VBA and its unrolled variant is designed
for grayscale images. We thus generalized the architecture
from Fig. 3(top), to process color images. To this end, we
first transform the input RGB image to its YUV representa-
tion, which takes human perception into consideration. The
network NNk

σ is first applied to the luminance part yY of
the image. After applying the unfoldedVBA network (see
Fig. 1), we obtain zVBA and xVBA as outputs. The latter is
a restored version of the luminance channel. The remaining
(U,V) color channels are simply obtained by median filtering
of (yU ,yV ). Both architectures in Fig. 3 additionally involve
post-processing layers. More precisely, we first include a linear
layer so as to encode the linear transformation (3), and then
deduce the estimated blur kernel ĥ. Second, we also allow
a post-processing layer Lpp acting on the image, so as to
reduce possible residual artifacts, finally yielding x̂. In the
case of color images, the post-processing is applied on the
RGB representation to avoid chromatic artifacts.

E. Training procedure

The training of both proposed architectures from Fig. 3
requires to define a loss function, measuring the discrepancy
between the output (x̂, ĥ) and the ground truth (x,h), that we
denote hereafter by ℓ(x̂, ĥ,x,h). In the blind deconvolution
application, one can for instance consider a loss function
related to the error reconstruction on the kernel, or to the image
quality, or a combination of both. Two training procedures will
be distinguished and discussed in our experimental section,
namely:
Greedy training The parameters of the unfolded VBA are
learned in a greedy fashion so as to minimize the kernel
reconstruction error at each layer. Then, the post-processing
network is learned in a second step, so as to maximize an
image quality metric such as the SSIM [59].
End-to-end training The parameters of the complete archi-
tecture are learned end-to-end so as to maximize the image
quality metric.

Whatever the chosen training procedure, it is necessary to
make use of a back-propagation step, that is to differentiate
the loss function with respect to all the parameters of the
network. Most operations involved in Fig. 3 can be differ-
entiated efficiently using standard auto-differentiation tools.
However, we observed in our experiments that it is beneficial
(and sometimes even necessary) for a stable training phase to
avoid using such tools for differentiating the VBA layer A(·)
involved in Fig. 1. In practice, we used the explicit expressions
for the partial derivatives of it. Note that we followed the
approach from [60] to obtain the expression of the derivatives
for the CG solver.
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Input

y Output

restored grayscale image

xV BA
̂h

x̂

Output

estimated blur kernel

zV BA

blurry noisy grayscale image

Lpp

T +

t

unfoldedVBA

Input

blurry noisy RGB image

y

Output

restored RGB image

YUV

transformation

yY

yU

yV

xV BA
̂h

x̂

Output

estimated blur kernel

zV BA

Lpp

T +

t

unfoldedVBA

3× 3
median filter

3× 3
median filter RGB

conversion

Fig. 3. Proposed blind image restoration pipeline for grayscale (top) and
color (bottom) images.

V. NUMERICAL EXPERIMENTS

A. Problem formulation and settings

1) Problem overview: We focus on the resolution of the
blind image deconvolution problem, where x̃ ∈ R

N is an
original image, either grayscale or colored one. We come
back to the model presented in Section II-A, where the linear
operator H̃ ∈ R

N×N models the application of a blur kernel
h̃ ∈R

M to the image. The noise n is assumed to be an additive
white Gaussian noise with zero mean and standard deviation
σ . In the case of color images, we assume that the same kernel,
and the same noise level, is applied to each of the three RGB
channels.

2) Datasets: Let us introduce the three datasets used to
train and test our network, and compare our approach with
state-of-the-art techniques. In all the cases, the training set
is made of 100 images from the COCO training set. The
validation set contains 40 images from the BSD500 validation
set. For Dataset 1 and Dataset 2, the test set consists of 30
images from the Flickr30 test set. For Dataset 3, we adopted
the same testing strategy as in [36], using the 4 images from
[5]. Each image is center-cropped using a window of size
N = 256 × 256. Each original image x̃ is associated to a
degraded version of it, y, built from Model (1). Various blur
kernels and noise levels are used, as detailed hereafter.
Dataset 1: All involved images are converted in grayscale.
Each image of the database is blurred with 10 randomly
generated Gaussian blurs, and then corrupted by additive
noise. Thus in total, we have 1000 (= 100 × 10) training
images, 400 (= 40 × 10) validation images, and 300
(= 30 × 10) test images for Dataset 1. The Gaussian blurs
are of size 9× 9. Two of them are isotropic with standard
deviation randomly generated following a uniform law within
[0.2,0.4]. Eight of them are anisotropic with orientation either
π/4 or 3π/4 (with equal probability) and vertical/horizontal
widths (i.e., standard deviations of the 2D Gaussian shape)
uniformly drawn within [0.15,0.4]. On this dataset, the noise
standard deviation is set to σ = 0.01, and assumed to be
known (so that blocks (NNk

σ )1≤k≤K of our architecture are
overlooked).
Dataset 2: All the images are then colored ones. We degraded

each of them with 15 different blurs, namely 10 Gaussian blurs
(simulated using the same procedure as above), two uniform
blurs with width 5× 5 and 7× 7 pixels, and 3 out-of-focus
blurs. For the latter, the vertical and horizontal widths are set
randomly within [0.2,0.5], and the orientation is either π/4 or
3π/4 (with equal probability). Furthermore, for each blurred
image, zero-mean Gaussian noise is added, with standard
deviation σ randomly chosen, with uniform distribution over
[0.005,0.05]. The noise level is not assumed to be known and
is estimated using the proposed NNσ architecture. In total,
we have 1500 (= 100×15) training images, 600 (= 40×15)
validation images, and 450 (= 30× 15) test images, on this
dataset. Examples of blurs involved in Dataset 2 are depicted
in Fig. 4.
Dataset 3: All the images are converted in grayscale. We
degraded each of them with 8 different real-world motion
blurs from1 [5]. As the kernels have different sizes ranging
from 13× 13 to 27× 27, we pad them with 0 values, so to
reach a common large size of 27×27. For each blurred image,
zero-mean Gaussian noise is added, with standard deviation
σ randomly chosen, following a uniform distribution within
[5 × 10−6,5 × 10−5]. The noise level is not assumed to be
known and is estimated using the proposed NNσ architecture.
In total, we have 800 (= 100 × 8) training images, 320
(= 40× 8) validation images, and 32 (= 4× 8) test images,
on this dataset. The motion blurs involved in Dataset 3 are
illustrated in Fig. 5.

Fig. 4. Examples of blur kernels used to construct Dataset 2.

Fig. 5. Motion blur kernels from Dataset 3.

3) VBA settings: Different settings are adopted for the
implementation of the VBA step on each dataset, that we
specified hereafter. For all considered datasets, we seek for
kernels whose entries satisfy a sum-to-one constraint. For
the datasets involving synthetic blurs (namely, Dataset 1 and
Dataset 2), we impose additionally an axial symmetry along

1https://webee.technion.ac.il/people/anat.levin/
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the main diagonal axis. In all cases, the constraints can be
easily translated into the affine constraint (3). For Dataset 1

and Dataset 2, the degree of freedom of the kernel model is
equal to P = (

√
M+1)

√
M

2 − 1, while we have P = M − 1 for
Dataset 3. Regarding the choice of the blur prior, hereagain,
a distinction is made between the first two scenarios and the
last one. The synthetic blurs from Dataset 1 and Dataset 2

are either very smooth (e.g., Gaussian blurs) or present large
constant areas (e.g., defocus blurs). In order to incorporate
such prior knowledge, for both these datasets, A ∈R

(2M+1)×M

is set to the matrix that computes the horizontal and vertical
differences between pixels, augmented with an additional first
row corresponding to an averaging operation, i.e. [1, . . . ,1]/M.
This choice allows us to promote smooth variations in the
kernels, while satisfying the required full column rank as-
sumption on A. A constant vector with entries equal to 1

M

is set for the prior mean m. In contrast, the motion blurs of
Dataset 3 depicted in Fig. 5 present complex shapes, with no
specific property on their gradient. We thus simply set A to
the identity matrix in the prior, while a rough estimation of the
blur obtained from 2 [10] is used for m. Matrices (D j)1≤ j≤J

and parameter κ , involved in (8), are set in such a way that the
chosen prior on the image yields an isotropic total-variation
regularization (see our comment in Sec. II-B2). We must now
specify the initialization for VBA iterates/layers. Our initial
guess x0 for the image is the degraded one. The associated
covariance matrix C0

x is initialized using the identity matrix.
For Dataset 1 and Dataset 2, the blur is initialized with a 5×5
uniform kernel, from which we deduce the corresponding z0,
while we use the prior mean for initializing the method for
Dataset 3. In all VBA experiments, the covariance matrix C0

z

is set to a multiple of identity matrix. As the blurs involved in
the Dataset 3 are of large size, a diagonal approximation of Ck

z

is used in (30) so as to cope with memory saturation issues. A
similar strategy was adopted for instance in [28] and was not
observed to yield any degradation of the resulting quality. The
hyperparameters (α,η) involved in the prior law on parameter
γ are set to zero in practice which is equivalent to impose a
non-informative Jeffrey improper prior. Finally, the conjugate
gradient solver used for the update of the image is run over 10
iterations which appears sufficient to reach practical stability.
The solver is initialized with the degraded image.

4) Training specifications: We present results obtained by
adopting the two training strategies described in Section IV-E.
For the greedy training, we make use of the mean squared error
on the estimated kernel, as a loss function for the unfoldedVBA

layers, defined as ℓ(x̂, ĥ, x̃, h̃) = ‖h̃ − ĥ‖2. The SSIM loss
([59]), between the output image x̂ and the ground truth x̃

is used to train the post-processing layer Lpp. For the end-

to-end training, we use again SSIM between x̂ and x̃. We
use warm initialization for end-to-end training, that is we
initialize with the weights learnt during the greedy training

phase, associated with a weight decay procedure. ADAM
optimizer, with mini-batch size equal to 10, is used for all
the training procedures. Its parameters such as learning rate
(lr), weight decay (wd) and epochs number are finetuned,

2http://zoi.utia.cas.cz/deconv_sparsegrad

Dataset 1 Dataset 2 Dataset 3
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UnfoldedVBA

K = 6, epoch = 10 K = 21, epoch = 10 K = 10, epoch = 10
lr = 5×10−3 lr = 5×10−3 (for L0) lr = 10−4 (for L0)

lr = 10−3 (for other
layers)

lr = 10−3 (for other
layers)

Post-processing Lpp

U-net [61]
Residual network [43,
Fig.4]

U-net [61]

epoch = 30, lr = 10−3 epoch = 200, lr = 10−3 epoch = 200, lr = 10−3

E
nd

-t
o-
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d
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ai
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ng

K = 6 K = 21 K = 10
epoch = 6 epoch = 6 epoch = 6
lr = 5×10−5 lr = 5×10−5 lr = 5×10−5

wd = 10−4 wd = 10−4 wd = 10−4

TABLE I
SETTINGS FOR THE TRAINING PHASES IN OUR EXPERIMENTS

so as to obtain stable performance on each validation set.
The number of layers K (i.e., number of VBA iterations)
is set during the greedy training, and kept the same for the
end-to-end training. In practice, we increase K as long as a
significant decrease in the averaged MSE over the training
set was observed. We specify in Table I all the retained
settings. The train/validation/test phase are conducted with a
code implemented in Pytorch (version 1.7.0) under Python
(version 3.6.10) environment, and run on an Nvidia DGX
wokstation using one Tesla V100 SXM2 GPU (1290 MHz
frequency, 32GB of RAM). Our code is made available at
https://github.com/yunshihuang/unfoldedVBA.

5) Comparison to other methods: The proposed method is
compared to several blind deconvolution approaches available
in the literature:
Optimization-based methods: We first evaluate the VBA de-
scribed in Section III, in the favorable situation where the noise
level σ is assumed to be known, and parameter ξ is finetuned
empirically (see more details hereafter). VBA is run until
reaching practical convergence, i.e. when the relative squared
distance between two consecutive image iterates gets lower
than 10−5. We also test two optimization-based approaches
for blind deconvolution. The first one is called deconv2D. It
makes use of the proximal alternating algorithm from [17],
to minimize a least-squares data fidelity term combined with
various priors, namely total variation and positivity constraint
on the image, sum-to-one and quadratic constraint on the
kernel. This method is implemented in Matlab, and inherits
some of the software accelerations discussed in [16] for blind
video deconvolution. The second competitor in this category
is the blinddeconv approach 3 from [11]. For the sake of fair
comparisons, for both datasets, we finetune the hyperparam-
eters of these three methods on 40% of the training set and
apply an average of the found values on the test set. Moreover,
following the use of these three methods, we perform a non-
blind deconvolution step BM3D-DEB 4 [62], which uses their
respective estimated blur kernel to restore the image.
Deep learning methods: We perform comparisons with three
recent deep learning architectures for blind deconvolution.

3Matlab code: https://dilipkay.wordpress.com/blind-deconvolution/
4Matlab code: https://webpages.tuni.fi/foi/GCF-BM3D/index.html#ref_

software
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SelfDeblur 5 [36] is an unsupervised approach able to jointly
perform the image restoration and kernel estimation tasks.
DBSRCNN 6 [35] and DeblurGAN 7 [33] are two supervised
deep learning techniques. In contrast with SelfDeblur, they
both only provide the estimated image, but do not estimate
the kernel. Both these methods have been retrained on each
of our datasets, using the same settings as in their initial
implementation. Moreover, we adapted DBSRCNN to color
images using the same pipeline as for our method, that is
applying DBSRCNN on the luminance channel while simply
nonlinearly filtering the chrominance ones. Finally, the kernels
provided as outputs of the SelfDeblur method are normalized
as a post-processing step to satisfy the sum-to-one constraint,
to make the comparisons more faithful.

6) Evaluation metrics: All the methods are evaluated in
terms of their performance on the blur kernel estimation (when
available) and on the image restoration. Different metrics are
used. For the blur kernels, we evaluate (i) the MSE, (ii) the
so-called H∞ error defined as the ℓ∞ norm of the difference
between the 2D discrete Fourier coefficients (with suitable
padding) of the estimated and of the true kernel, and (iii) the
mean absolute error (MAE) defined as the ℓ1 norm of the
difference between h̃ and ĥ. For evaluating the image quality,
we compute (i) the SSIM, (ii) the PSNR (Peak-Signal-to-Noise
Ratio), and (iii) the PieAPP value [63], between the estimated
image x̂ and the ground truth x̃.

B. Experimental results

1) Dataset 1: In Tables II and III, we report the results of
kernel estimation and image restoration, computed on the test
set, using the different methods. As could be expected, the
greedy approach tends to give more weight to the kernel qual-
ity than the end-to-end training. Our two training approaches
yield great performance, when compared to all the other tested
approaches. One can notice that the VBA with finetuned value
for ξ performs quite well, showing the validity of our Bayesian
formulation. The proposed unrolled VBA technique allows
us to avoid a manual tuning of this parameter, and further
increases the resulting quality. This is a direct outcome of the
supervised training procedure aiming at maximizing quality
scores, and also to the introduction of a post-processing step
on the images. DBSRCNN shows fair performance in terms
of image quality in this dataset, especially in terms of PSNR.
Here, we must emphasize that this method uses MSE as a
loss function during training, which tends to favor high PSNR
scores. However, DBSRCNN is not capable of estimating the
blur kernel, which might be useful for various applications.
We display two examples of results in Fig 7, extracted from
our test set. One can notice, by visual inspection of these
results, the high quality of the restored images. No artifacts
can be observed, which is confirmed by a low average value
of the PieAPP index on the test set. Moreover, the kernels
are generally estimated quite accurately, as shown by the low

5Python/Pytorch code: https://github.com/csdwren/SelfDeblur
6Python/Pytorch code: https://github.com/Fatma-ALbluwi/DBSRCNN
7Python/Pytorch (training) and Matlab C-mex (testing) codes: https://github.

com/KupynOrest/DeblurGAN

Method MSE H∞ error MAE

VBA 0.0017 (0.0022) 0.1674 (0.1003) 0.0472 (0.0317)

deconv2D 0.0025 (0.0035) 0.1483 (0.1037) 0.0489 (0.0395)

blinddeconv 0.0013 (0.0011) 0.1553 (0.0660) 0.0417 (0.0203)

SelfDeblur 0.0143 (0.0181) 0.3253 (0.1105) 0.1350 (0.0663)

Proposed (greedy) 0.0008 (0.0012) 0.1165 (0.0677) 0.0281 (0.0168)

Proposed (end-to-end) 0.0009 (0.0013) 0.1188 (0.0672) 0.0289 (0.0170)

TABLE II
QUANTITATIVE ASSESSMENT OF THE RESTORED KERNELS. MEAN

(STANDARD DEVIATION) VALUES COMPUTED OVER THE TEST SETS OF

Dataset 1.

MSE score and the good retrieval of their general structure. In
the few cases when the unfolded VBA algorithm fails to give
a perfect recovery of the blur kernel as in Fig. 7(bottom), the
estimation is still accurate enough to yield a good recovery of
the image whatever greedy training or end-to-end training is
used. One can also notice that our method tends to provide
better contrasted images, compared to its closest competitor
in the image restoration task that is DBSRCNN. We display
in Fig. 6(left) the evolution of the SSIM loss during the
end-to-end training of the proposed architecture, showing the
increase of the loss, then its stabilization, for both training
and validation set, thus confirming an appropriate setting of
ADAM optimizer parameters. Finally, Table IV(left) displays
the average test time for each methods, that is the computa-
tional time required to restore one example of the dataset, once
the method is finetuned/trained. We displayed CPU time for
a fair comparison between methods, for codes ran on a Dell
workstation equipped with an Xeon(R) W-2135 processor (3.7
GHz clock frequency and 12 GB of RAM). GPU time is also
indicated when available. The fastest method is DBSRCNN,
though we must emphasize that, in contrast with all the
other methods based on Matlab/Python softwares, DBSRCNN
makes use of an optimized C implementation, for its test
phase on CPU. DeblurGAN is also very fast, but the resulting
quality was quite poor in our experiments. Our method reaches
a reasonable computational time on CPU. It becomes quite
competitive when making use of GPU implementation, as
the unrolled architecture is well suited for that purpose. This
allows to drop the test time per image to few seconds, making
it advantageous, with the addition benefit of better quality
results in average, and of an available kernel estimate.
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Fig. 6. Evolution of SSIM loss along epochs of end-to-end training phase,
averaged either on training or on validation sets of Dataset 1 (left) and Dataset

2 (right).

2) Dataset 2: The results of kernel estimation and im-
age restoration on Dataset 2 using the various methods are
shown in Tables V and VI, respectively. This dataset is more
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Degraded Original VBA deconv2D blinddeconv

MSE = 0.0010 MSE = 0.0016 MSE = 5.3788×10−4

PieAPP = 4.7468 PieAPP = 1.6914 PieAPP = 2.7365 PieAPP = 1.7290

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)

MSE = 0.0165 MSE = 1.2555×10−4 MSE =1.1817×10−4

PieAPP = 4.1130 PieAPP = 1.8130 PieAPP = 1.9762 PieAPP = 1.2950 PieAPP = 1.2088

Degraded Original VBA deconv2D blinddeconv
MSE = 0.0054 MSE = 0.0058 MSE = 0.0040

PieAPP = 3.4024 PieAPP = 1.6356 PieAPP = 1.9079 PieAPP = 1.8397

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0063 MSE = 0.0035 MSE = 0.0034

PieAPP = 2.5108 PieAPP = 1.4002 PieAPP = 1.5206 PieAPP = 1.3922 PieAPP =1.2468

Fig. 7. Ground-truth image/blur, degraded image, restored images (with PieAPP index) and estimated blurs (with MSE score) when available, for various
methods, on two examples in the test set of Dataset 1.

Method SSIM PSNR PieAPP

Blurred 0.6542 (0.1072) 22.2254 (2.3779) 4.1794 (0.9005)

VBA 0.7603 (0.0814) 23.7332 (2.5672) 1.5109 (0.6184)

deconv2D 0.7668 (0.0912) 24.5970 (2.8656) 1.9289 (0.4959)

blinddeconv 0.7528 (0.0963) 23.9347 (2.4299) 1.9170 (0.6630)

SelfDeblur 0.6948 (0.1006) 22.2704 (2.1255) 3.3178 (0.7291)

DBSRCNN 0.7780 (0.0895) 24.9561 (2.9800) 1.5959 (0.6463)

DeblurGAN 0.6613 (0.0731) 22.4388 (2.4074) 1.8937 (0.7630)

Proposed (greedy) 0.7945 (0.0890) 24.7093 (2.9351) 1.4047 (0.6437)

Proposed (end-to-end) 0.7989 (0.0886) 24.6638 (3.0711) 1.1976 (0.5433)

TABLE III
QUANTITATIVE ASSESSMENT OF THE RESTORED IMAGES. MEAN

(STANDARD DEVIATION) VALUES COMPUTED OVER THE TEST SETS OF

Dataset 1.

Method Dataset 1 Dataset 2 Dataset 3

VBA 153s (15s) 156s (18s) 606s (62s)

deconv2D 16s 19s 333s

blinddeconv 19s 22s 188s

SelfDeblur 452s (51s) 455s (55s) 2232s (279s)

DBSRCNN 1s 2s 1s

DeblurGAN 2s (1s) 3s (2s) 2s (1s)

Proposed 36s (4s) 113s (12s) 286s (31s)

TABLE IV
AVERAGE TEST TIME PER IMAGE, USING CPU (RESP. GPU).

challenging than the former one, as it includes color images,
various blur shapes, and various noise levels. The latter are
not assumed to be known anymore. Hereagain, we can observe
that the greedy training yields the best performance in terms of
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Method MSE H∞ error MAE

VBA 0.0148 (0.0139) 0.4492 (0.1638) 0.1339 (0.0627)

deconv2D 0.0099 (0.0160) 0.2796 (0.1692) 0.0869 (0.0576)

blinddeconv 0.0245 (0.0264) 0.3113 (0.1409) 0.1596 (0.1106)

SelfDeblur 0.4336 (0.3188) 0.8720 (0.2274) 0.6975 (0.3047)

Proposed (greedy) 0.0037 (0.0079) 0.1888 (0.1061) 0.0570 (0.0414)

Proposed (end-to-end) 0.0039 (0.0079) 0.1960 (0.1056) 0.0588 (0.0411)

TABLE V
QUANTITATIVE ASSESSMENT OF THE RESTORED KERNELS. MEAN

(STANDARD DEVIATION) VALUES COMPUTED OVER THE TEST SETS OF

Dataset 2.

kernel estimation for the three considered metrics. In contrast,
end-to-end training tends to favor the restored image quality
while still providing a good kernel quality compared to other
methods. In this more complicated context, standard VBA does
not perform very well, as setting ξ becomes tedious for such
an heterogeneous dataset. Let us note that the noise level is
assumed to be known for this particular method, putting it in
a quite favorable situation, compared to the other competitors,
including our proposed approach. DBSRCNN provides again
a good image recovery in terms of PSNR, but our proposed
approach still outperforms it for both SSIM and PieAPP
metrics while maintaining fairly high PSNR scores. We display
two examples of restoration in Fig 8, when the sought blur
is uniform, and out-of-focus, respectively. Such blur shapes
are challenging and the MSE on the estimated blur might
appear not excellent. Nevertheless, our method remains the
best among the compared ones. The visual quality of the image
generated by the proposed method is also very satisfying. We
display in Fig. 6(right) the evolution of the SSIM loss during
the end-to-end training, witnessing the absence of any overfit-
ting issue. Moreover, we present in Fig 9 the evolution of the
MSE loss on the kernel estimate, along the K = 21 layers of the
architecture trained in an end-to-end manner. The MSE was
averaged on test set examples associated to either Gaussian or
out-of-focus blurs, respectively. These plots show that, for our
choice of K (finetuned on the validation set), the MSE values
are close to minimal. Larger K implied an increase of memory
and training time, while not necessarily improving the results
quality. One can also notice more fluctuations in the case of
out-of-focus blur, which turns out to be more challenging to
restore. A similar curve was obtained for uniform blurs, not
shown by lack of space. Finally, Table IV(right) presents the
average test time of the different methods. Again, our method
appears competitive in terms of running time.

3) Dataset 3: The results of kernel estimation and image
restoration on Dataset 3 using the various methods are shown
in Tables VII and VIII, respectively. The level of complexity
of the blind deconvolution task again increases compared to
the former experiments, as the blurs are of larger size and
have less smooth kernel. The noise level also has to be
estimated. Regarding the performance of kernel estimation,
we can observe that the best performance are reached by the
optimization-based method blinddeconv, followed closely by
our method. SelfDeblur and deconv2D are slightly behind, in
terms of quantitative metrics. Regarding the image restoration,
the results are more contrasted. Hereagain, the proposed

Method SSIM PSNR PieAPP

Blurred 0.5427 (0.1150) 21.7994 (2.1679) 4.2378 (0.8539)

VBA 0.4024 (0.1571) 16.0371 (4.1798) 2.4218 (0.5545)

deconv2D 0.6880 (0.1065) 23.1940 (2.8986) 2.2245 (0.6721)

blinddeconv 0.6961 (0.1034) 23.2663 (2.7229) 2.3259 (0.8080)

SelfDeblur 0.5107 (0.1305) 19.9943 (2.1467) 5.9269 (1.4066)

DBSRCNN 0.6948 (0.1688) 23.6041 (4.2073) 1.9474 (0.7171)

DeblurGAN 0.3370 (0.0740) 17.2781 (1.2909) 3.6581 (1.0040)

Proposed (greedy) 0.7454 (0.1015) 23.2169 (2.4442) 1.7250 (0.5324)

Proposed (end-to-end) 0.7518 (0.1025) 23.5631 (2.5959) 1.7681 (0.5502)

TABLE VI
QUANTITATIVE ASSESSMENT OF THE RESTORED IMAGES. MEAN

(STANDARD DEVIATION) VALUES COMPUTED OVER THE TEST SETS OF

Dataset 2.

method with end-to-end training gives the best performance
regarding the quality of the restored image, and at the same
time keeps the quality of blur kernel estimation compared to
greedy training. The standard VBA procedure reaches rather
fair quality on this dataset. We must however point out that,
as for Dataset 2, this method was run under the simplifying
assumption that the noise level is known. Both deep learning
methods DBSRCNN and DeblurGAN fail to recover a good
image quality. Let us emphasize that DBSRCNN has been
explicitely developed to tackle Gaussian blurs, following a
patch-based strategy, which might explain its poor perfor-
mance for deciphering complex non-localized blur shapes.
We display two examples of restoration in Fig. 10 where the
sought kernels correspond to two different motion blurs from
the dataset. We can notice that most of the methods struggle
in the estimation of the blur kernel. Although SelfDeblur
yields fairly good results according to a visual inspection, this
method seems to suffer from a shift ambiguity, typical in blind
deconvolution, which explains its rather limited quantitative
scores compared to the other methods. As for the image
quality, our proposed method is the most satisfying visually,
which is aligned with its best PieAPP score by far among all
the methods. We display in Fig. 11(left) the evolution of the
SSIM loss during the end-to-end training. The evolution of the
MSE loss on the kernel estimate is displayed in Fig. 11(right),
across the K = 10 layers of the architecture trained in an end-

to-end manner. Slight fluctuations can be observed compared
to the plots obtained for both synthetic blur datasets, which
shows the high challenge of estimating such complex motion
blur kernels. Table IV(right) displays the average test time
for each methods. With the exception of DBSRCNN and
DeblurGAN (but yielding rather low quality results), all the
methods see their computational time increasing, compared to
the other two datasets. This is directly related to the increase
of the blur kernel size. This being said, the computational time
for our proposed method remains competitive, especially when
making use of GPU.

VI. CONCLUSION

This paper proposes a novel method for blind image decon-
volution that combines a variational Bayesian algorithm with
a neural network architecture. Our experiments illustrate the
excellent performance of this new method on three datasets,
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Degraded Original VBA deconv2D blinddeconv
MSE = 0.0115 MSE = 0.0190 MSE = 0.0075

PieAPP = 3.8507 PieAPP = 0.8278 PieAPP = 1.6273 PieAPP = 1.0216

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0569 MSE = 0.0015 MSE = 0.0020

PieAPP = 8.1479 PieAPP = 1.2058 PieAPP = 2.6971 PieAPP = 1.2793 PieAPP = 1.1663

Degraded Original VBA deconv2D blinddeconv
MSE= 0.0293 MSE = 0.0184 MSE = 0.0388

PieAPP = 2.8997 PieAPP = 1.3625 PieAPP = 1.0608 PieAPP = 1.0318

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.8708 MSE = 0.0049 MSE = 0.0046

PieAPP = 2.0619 PieAPP = 0.8841 PieAPP = 2.7761 PieAPP = 0.7790 PieAPP = 0.6987

Fig. 8. Ground-truth image/blur, degraded image, restored images (with PieAPP index) and estimated blurs (with MSE score) when available, for various
methods, on two examples in the test set of Dataset 2.

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

1.5

2

2.5

3

3.5

4

M
S

E

10
-3

0 1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1

0.012

0.013

0.014

0.015

0.016

0.017

0.018

M
S

E

Fig. 9. MSE loss along the layers for proposed method using end-to-end

training. Average over Dataset 2 test examples involving either Gaussian
(left), or out-of-focus (right) blur shapes.

comprised of grayscale and color images, which are degraded
with various synthetic and real-world kernel types. Compared
to state-of-the-art variational and deep learning approaches,
our method delivers a more accurate estimation of both the

Method MSE H∞ error MAE

VBA 0.0376 (0.0206) 0.6817 (0.2969) 0.2518 (0.0898)

deconv2D 0.0592 (0.0162) 1.0446 (0.3027) 0.2753 (0.0457)

blinddeconv 0.0303 (0.0085) 0.6249 (0.2088) 0.2119 (0.0583)

SelfDeblur 0.0500 (0.0260) 0.7362 (0.3044) 0.2522 (0.0926)

Proposed (greedy) 0.0320 (0.0159) 0.6564 (0.2918) 0.2189 (0.0697)

Proposed (end-to-end) 0.0321 (0.0160) 0.6583 (0.2930) 0.2197 (0.0701)

TABLE VII
QUANTITATIVE ASSESSMENT OF THE RESTORED KERNELS. MEAN

(STANDARD DEVIATION) VALUES COMPUTED OVER THE TEST SETS OF

Dataset 3.

images and the blur kernels. It also includes an automatic
noise estimation step and it requires minimal hyperparameter
tuning. The proposed method is very competitive in terms
of computational time during the test phase while showing
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Degraded Original VBA deconv2D blinddeconv
MSE = 0.0159 MSE = 0.0395 MSE = 0.0180

PieAPP = 2.7830 PieAPP = 1.7104 PieAPP = 1.7413 PieAPP = 0.3684

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0347 MSE = 0.0136 MSE = 0.0136

PieAPP = 0.6488 PieAPP = 1.5126 PieAPP = 1.5677 PieAPP = 0.1076 PieAPP = 0.0783

Degraded Original VBA deconv2D blinddeconv
MSE = 0.0670 MSE = 0.0637 MSE = 0.0360

PieAPP = 3.6171 PieAPP = 2.0992 PieAPP = 2.2295 PieAPP = 0.1794

SelfDeblur DBSRCNN DeblurGAN proposed (greedy) proposed (end-to-end)
MSE = 0.0741 MSE = 0.0505 MSE = 0.0506

PieAPP = 0.2927 PieAPP = 2.9507 PieAPP = 2.9864 PieAPP = 0.0333 PieAPP = 0.0996

Fig. 10. Ground-truth image/blur, degraded image, restored images (with PieAPP index) and estimated blurs (with MSE score) when available, for various
methods, on two examples in the test set of Dataset 3.

Method SSIM PSNR PieAPP

Blurred 0.5830 (0.1500) 21.1404 (2.8626) 3.4647 (0.6608)

VBA 0.7344 (0.1242) 24.3958 (3.0088) 1.7028 (0.4914)

deconv2D 0.5440 (0.1422) 20.4229 (2.6241) 2.2811 (0.6407)

blinddeconv 0.4847 (0.1669) 16.0690 (2.7140) 0.6957 (0.5241)

SelfDeblur 0.7381 (0.1897) 24.3973 (4.6249) 0.6893 (0.3982)

DBSRCNN 0.5327 (0.1111) 19.7017 (2.2976) 2.3438 (0.5672)

DeblurGAN 0.5536 (0.1727) 21.0929 (3.2151) 2.3692 (0.7155)

Proposed (greedy) 0.9197 (0.0353) 29.5730 (1.9817) 0.1778 (0.2408)

Proposed (end-to-end) 0.9295 (0.0342) 31.0749 (2.0658) 0.2227 (0.2309)

TABLE VIII
QUANTITATIVE ASSESSMENT OF THE RESTORED IMAGES. MEAN

(STANDARD DEVIATION) VALUES COMPUTED OVER THE TEST SETS OF

Dataset 3.

similar train time to its deep learning competitors. The main
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Fig. 11. (left) Evolution of SSIM loss along epochs of end-to-end training

phase, averaged either on training or on validation sets of Dataset 3. (right)
MSE loss along the layers for proposed method using end-to-end training.
Average over Dataset 3 test examples involving motion blur shapes.

core of the proposed architecture is highly interpretable, as it
implements unrolled iterates of a well sounded Bayesian-based



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH YEAR 15

blind deconvolution method. As a byproduct, it also outputs
estimates for the covariance matrices of both sought quantities
(image/kernel). This information could be of interest for
uncertainty quantification and model selection tasks (see for
instance [7], [64]). More generally, our work demonstrates that
unrolling VBA algorithms constitutes a promising research
direction for solving challenging problems arising in Data
Science.
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