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This work provides a general spectral analysis of size-structured two-phase population models. Systematic functional analytic results are given. We deal first with the case of finite maximal size. We characterize the irreducibility of the corresponding L 1 semigroup in terms of properties of the different parameters of the system. We characterize also the spectral gap property of the semigroup. It turns out that the irreducibility of the semigroup implies the existence of the spectral gap. In particular, we provide a general criterion for asynchronous exponential growth. We show also how to deal with time asymptotics in case of lack of irreducibility. Finally, we extend the theory to the case of infinite maximal size.

1. Introduction. Time asymptotics of structured biological populations are widely discussed in the literature on population dynamics (see e.g. [START_REF] Cushing | An Introduction to Structured Population Dynamics[END_REF][START_REF] Inaba | Age-Structured Population Dynamics in Demography and Epidemiology[END_REF][START_REF] Magal | Structured Population Models in Biology and Epidemiology[END_REF]). When describing the evolution of cell populations, one can consider that individuals may be proliferating or quiescent, i.e. in two different stages in their life called 'active' and 'resting'. Taking into account maturity as a structure variable, M. Rotenberg [START_REF] Rotenberg | Transport theory for growing cell populations[END_REF] introduced in this context the first structured population model (see also the paper of J. Dyson, R. Villella-Bressan and G.F. Webb [START_REF] Dyson | A maturity structured model of a population of proliferating and quiescent cells[END_REF]). Since the size plays an important role in the dynamics of cells, M. Gyllenberg and G.F. Webb introduced [START_REF] Gyllenberg | Age-size structure in populations with quiescence[END_REF] the first size and age-structured population model with a quiescence state. They prove under general hypotheses the asychronous exponential growth behavior of the population. We note that size-structured population model appeared in a work by J.W. Sinko and W. Streifer [START_REF] Sinko | A new model for age-size structure of a population[END_REF] (see e.g. [START_REF] Webb | Population models structured by age, size, and spatial position[END_REF] for more size-structured models). Among the age-structured models in this context, we can look at the works of O. Arino, E. Sánchez and G.F. Webb [START_REF] Arino | Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence[END_REF] as well as J. Dyson, R. Villella-Bressan and G.F. Webb [START_REF] Dyson | Asynchronous exponential growth in an age structured population of proliferating and quiescent cells[END_REF]. The same asymptotic behavior is proved for these models under general assumptions. Thereafter, J.Z. Farkas and P. Hinow [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF] introduced a sizestructured model. In specific cases of size-structure, we can mention the works of M. Gyllenberg and G.F. Webb [START_REF] Gyllenberg | A nonlinear structured population model of tumor growth with quiescence[END_REF][START_REF] Gyllenberg | Quiescence in structured population dynamics: applications to tumor growth[END_REF], B. Rossa [START_REF] Rossa | Quiescence as an explanation for asynchronous exponential growth in a size structured cell population of exponentially growing cells. I[END_REF] as well as M. Bai and S. Cui [START_REF] Bai | Well-posedness and asynchronous exponential growth of solutions of a two-phase cell division model[END_REF].

The goal of the present work is to provide a systematic spectral analysis of the coupled linear structured population model considered by J.Z. Farkas and P. Hinow [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF]    ∂ t u 1 (t, s) + ∂ s (γ 1 (s)u 1 (t, s)) = -µ(s)u 1 (t, s) + m 0 β(s, y)u 1 (t, y)dy -c 1 (s)u 1 (t, s) + c 2 (s)u 2 (t, s), ∂ t u 2 (t, s) + ∂ s (γ 2 (s)u 2 (t, s)) = c 1 (s)u 1 (t, s) -c 2 (s)u 2 (t, s), [START_REF] Apostol | Mathematical analysis[END_REF] with Dirichlet boundary conditions u 1 (t, 0) = 0, u 2 (t, 0) = 0, ∀t ≥ 0.
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The density of individuals in the active (resp. resting) stage of size s ∈ [0, m] at time t is denoted by u 1 (s, t) (resp. u 2 (s, t)) and m < ∞ is the maximal size that can be reached. For each stage, the individuals will grow respectively with the rate γ 1 and γ 2 . Furthermore, only proliferating individuals have a mortality rate denoted by µ and also can reproduce via the non-local integral recruitment term in [START_REF] Apostol | Mathematical analysis[END_REF]. More precisely, β(s, y) gives the rate at which an individual of size y produces offspring of size s. Finally, the transition between the two lifestages is described by the size-dependent functions c 1 and c 2 .

In this paper, we deal also with the case of infinite maximal sizes m = ∞.

The natural functional space for such a system is X := L 1 (0, m) × L 1 (0, m).

Our approach of asynchronous exponential growth (see the definition below) of such a system is in the spirit of our previous work [START_REF] Mokhtar-Kharroubi | Time asymptotics of structured populations with diffusion and dynamic boundary conditions[END_REF]. The analysis relies on two mathematical ingredients: (i) Check that the positive C 0 -semigroup {T (t)} t≥0 which governs this system has a spectral gap, i.e.

ω ess < ω where ω and ω ess are respectively the type and the essential type of {T (t)} t≥0 . (Note that ω coincides with s(A), the spectral bound of its generator A).

(ii) Check that the C 0 -semigroup {T (t)} t≥0 is irreducible (see the different characterizations below).

Our assumptions are weaker than those given by J.Z Farkas and P. Hinow [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF] and our construction is more systematic. We provide several new contributions. The most important ones are the following:

1. We show that the three conditions ∀ε ∈ (0, m),

ε 0 m ε β(s, y)dyds > 0, (3) 
inf supp c 1 = 0,

sup supp c 2 = m (5) characterize the irreducibility of {T (t)} t≥0 , (see Theorem 2.6) where inf supp c 1 is the infimum of the support of c 1 and sup supp c 2 is the supremum of the support of c 2 .

2. We show that the spectrum σ(A) of the generator A of {T (t)} t≥0 is not empty, or equivalently s(A) > -∞ (s(A) is the spectral bound of A), if and only if

∃ ε ∈ (0, m), ε 0 m ε β(s, y)dyds > 0 (6) 
and moreover, this characterizes the property that {T (t)} t≥0 has a spectral gap, (see Theorem 2.9 and Theorem 2.10). Note that here the irreducibility of {T (t)} t≥0 implies the presence of a spectral gap. It follows that under the conditions ( 3)-( 4)-( 5)) {T (t)} t≥0 has an asynchronous exponential growth, (see Theorem 2.14).

3. We show that once {T (t)} t≥0 has a spectral gap (i.e. once ( 6) is satisfied) the peripheral spectrum of A reduces to s(A), i.e.

σ(A) ∩ {λ ∈ C : (λ) = s(A)} = {s(A)},
and there exists a nonzero finite rank projection P 0 on X such that lim t→∞ e -s(A)t T A (t) -e tD P 0 L(X ) = 0 where D := (s(A) -A)P 0 , (see Theorem 2.15). A priori, if {T (t)} t≥0 is not irreducible then P 0 need not be one-dimensional and the nilpotent operator D need not be zero.

4. When {T (t)} t≥0 is not irreducible but has a spectral gap, it may happen that there exists a subspace of X which is invariant under {T (t)} t≥0 and on which {T (t)} t≥0 exhibits an asynchronous exponential growth, (see Theorem 2.16).

We deal also with the case m = ∞ which has never been dealt with before. Its analysis is quite different from the previous one:

5. The criterion of irreducibility is similar to the case m < +∞, (see Theorem 3.3).

6. However the criterion for the existence of a spectral gap is more involved. Indeed, {T (t)} t≥0 has a spectral gap provided that lim λ→s(B)

r σ B 3 (λ -B) -1 > 1 (7) 
(r σ refers to a spectral radius) where

B = A -B 3 and B 3 u 1 u 2 = ∞ 0 β(•, y)u 1 (y)dy 0 ,
(see Theorem 3.4). Condition ( 7) is probably also necessary, see Remark 12. A priori, this condition is quite theoretical and not easy to check. But we also consider several situations of practical interest where the existence or the absence of the spectral gap property can be checked in an indirect way. Indeed: 7. We show first that the real spectrum of B is connected 10. Finally, we show that if c 1 , c 2 and µ are positive constants and if β 1 (s) := inf y≥0 β(s, y) is not trivial then s(A) > s(B), (see Theorem 3.11); we can even provide an explicit lower bound of the spectral gap s(A) -s(B), (see Remark 14).

σ(B) ∩ R = (-∞, s(B)]
Some useful conjectures are also given, see Remark 11 and Remark 12.

2. Models with bounded sizes.

2.1.

Framework and hypotheses. In order to analyse the problem described by (1)-( 2), we define the Banach space

X = (L 1 (0, m) × L 1 (0, m), . X ) endowed with the norm (u 1 , u 2 ) X = u 1 L 1 (0,m) + u 2 L 1 (0,m) .
We denote by X + the nonnegative cone of X and we introduce some hypotheses on the different parameters: Using (1), we define the operator

1. µ, c 1 , c 2 ∈ L ∞ (0, m) and γ 1 , γ 2 ∈ W 1,∞ (0, m), 2. β, µ, c 1 , c 2 ≥ 0 and there exists γ 0 > 0 such that for every s ∈ [0, m], γ 1 (s) ≥ γ 0 , γ 2 (s) ≥ γ 0 , 3. the operator K : L 1 (0, m) u → m 0 β(•, y)u(y)dy ∈ L 1 (0, m) is weakly compact.
A u 1 u 2 = A u 1 u 2 + B u 1 u 2 = -(γ 1 u 1 ) -(γ 2 u 2 ) + -(µ + c 1 )u 1 + c 2 u 2 + m 0 β(•, y)u 1 (y)dy) -c 2 u 2 + c 1 u 1 ,
with domain

D(A) = {(u 1 , u 2 ) ∈ W 1,1 (0, m) × W 1,1 (0, m) : u 1 (0) = 0, u 2 (0) = 0},
where W 1,1 (0, m) is the Sobolev space

W 1,1 (0, m) = {u ∈ L 1 (0, m), u ∈ L 1 (0, m)}.
We decompose B into three bounded operators:

B u 1 u 2 = B 1 u 1 u 2 + B 2 u 1 u 2 + B 3 u 1 u 2 = -(µ + c 1 )u 1 -c 2 u 2 + c 2 u 2 c 1 u 1 + m 0 β(•, y)u 1 (y)dy 0 .
We are then concerned with the following Cauchy problem

U (t) = AU (t), U (0) = (u 0 1 , u 0 2 ) ∈ X , where U (t) = (u 1 (t), u 2 (t)) T .

Semigroup generation.

It is easy to prove:

Lemma 2.1. Let H = (h 1 , h 2 ) ∈ X , λ ∈ R and U = (λI -A) -1 H := (u 1 , u 2 ) ∈ D(A). We have        u 1 (s) = 1 γ 1 (s) s 0 h 1 (y) exp - s y λ γ 1 (z) dz dy, u 2 (s) = 1 γ 2 (s) s 0 h 2 (y) exp - s y λ γ 2 (z) dz dy, (8) 
for every s ∈ [0, m]. In particular, s(A) = -∞ and for every (h 1 , h 2 ) ∈ X + ,

supp u 1 = [inf supp h 1 , m], supp u 2 = [inf supp h 2 , m],
where supp (f ) refers to the support of a function f and inf supp (f ) is its lower bound.

Remark 2. Note that if h i ≥ 0, then u i (x) > 0 if and only if x > inf supp h i .

Theorem 2.2. The operator A generates a C 0 -semigroup {T A (t)} t≥0 of bounded linear operators on X .

Proof. Since B is bounded, it suffices to prove that A generates a contraction semigroup. We easily see that D(A) is densely defined in X . Moreover, for λ ∈ R, the range condition (λI -A)U = H, with U = (u 1 , u 2 ) and H = (h 1 , h 2 ) ∈ X , is straightforward since (u 1 , u 2 ) is given by [START_REF] Dyson | Asynchronous exponential growth in an age structured population of proliferating and quiescent cells[END_REF], so 

u i L 1 (0,m) ≤ m h i L 1 γ 0 exp |λ|m γ 0 < ∞ 8 
u i L 1 (0,m) ≤ (|λ| + γ i L ∞ ) u i L 1 + h i L 1 γ 0 < ∞ for every i ∈ {1, 2}, hence U ∈ D(A). It remains to prove that A is a dissipative operator. Let λ > 0, U = (u 1 , u 2 ) ∈ D(A), H = (λI -A)U and H = (h 1 , h 2 ). We prove that H X ≥ λ U X i.e. h i L 1 (0,m) ≥ λ u i L 1 (0,m) , ∀i ∈ {1, 2}
. By definition, we have u i (0) = 0 and

λu i (s) + (γ i u i ) (s) = h i (s), ∀s ∈ (0, m].
We multiply the latter equation by sign(u i (s)) then integrate between 0 and m. We get

λ u i L 1 (0,m) + m 0 (γ i u i ) (s)sign(u i (s))ds = m 0 h i (s)sign(u i (s))ds.
Any nonempty open set of the real line is a finite or countable union of disjoints open intervals (see [START_REF] Apostol | Mathematical analysis[END_REF] Theorem 3.11, p. 51) so

{u i > 0} = {s ∈ (0, m) : u i (s) > 0} = ∪ i∈N (a i,1 , a i,2 ), {u i < 0} = {s ∈ (0, m) : u i (s) < 0} = ∪ i∈N (b i,1 , b i,2 ). Since u i ∈ W 1,1 (0, m) → C([0, m]) then ∀i, j ∈ N : u i (a i,1 ) = 0, u i (a i,2 ) = 0, u i (b j,1 ) = 0 and u i (b j,2 ) = 0 (except possibly at m). Thus m 0 (γ i u i ) sign(u i ) = {ui>0} (γ i u i ) - {ui<0} (γ i u i ) = j∈N [γ i (a j,2 )u i (a j,2 ) -γ i (a j,1 )u i (a j,1 )] - j∈N [γ i (b j,2 )u i (b j,2 ) -γ i (b j,1 )u i (b j,1 )] = γ i (m) |u i (m)| ≥ 0. Hence λ u i L 1 ≤ λ u i L 1 + γ i (m)|u i (m)| = m 0 h i (s)sign(u i (s))ds ≤ h i L 1
and we get the dissipativity of A. Thus A generates a contraction C 0 -semigroup {T A (t)} t≥0 by Lumer-Phillips Theorem (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] Theorem 4.3, p. 14). Finally, as bounded perturbations of A, the operators A + B 1 , A + B 1 + B 2 and A generate quasi-contraction C 0 -semigroups {T A+B1 (t)} t≥0 , {T A+B1+B2 (t)} t≥0 and {T A (t)} t≥0 respectively. 2.3. On positivity. The time asymptotics of {T A (t)} t≥0 is related to irreducibility arguments. We remind first some definitions and results about positive and irreducible operators. We denote by •, • the duality pairing between X and X . Definition 2.3.

1. For f ∈ X , the notation f > 0 means f ∈ X + and f = 0.

2. An operator O ∈ L(X ) is said to be positive if it leaves the positive cone X + invariant. We note this by O ≥ 0. 3. A C 0 -semigroup {T (t)} t≥0 on X is said to be positive if each operator T (t) is positive.
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4. A positive operator O ∈ L(X ) is said to be positivity improving if for every f ∈ X , f > 0 and every f ∈ X , f > 0, we have Of, f > 0. 5. A positive operator O ∈ L(X ) is said to be irreducible if for every f ∈ X , f > 0 and every f ∈ X , f > 0 there exists an integer n such that O n f, f > 0. 6. A C 0 -semigroup {T (t)} t≥0 on X is said to be irreducible if for every f ∈ X , f > 0 and every f ∈ X , f > 0 there exists t > 0 such that

T (t)f, f > 0. 7. A subspace Y of X is said to be an ideal if |f | ≤ |g| and g ∈ Y imply f ∈ X
where | • | denotes the absolute value.

We recall that a C 0 -semigroup {T (t)} t≥0 on X with generator A is positive if and only if, for λ large enough, the resolvent operator (λI -A) -1 is positive (see e.g. [START_REF] Clément | One-Parameter semigroups[END_REF], p. 165). We recall also that a positive C 0 -semigroup {T (t)} t≥0 on X with generator A is irreducible if and only if, for λ large enough, the resolvent operator (λI -A) -1 is positivity improving, if and only if, for λ large enough, there is no closed ideal of X (except X and {0}) which is invariant under (λ -A) -1 (see [START_REF] Nagel | One-parameter semigroups of positive operators[END_REF] C-III, Definition 3.1, p. 306).

Definition 2.4. For a closed operator A : D(A) ⊂ X → X , we denote by σ(A) its spectrum, ρ(A) its resolvent set and s(A) its spectral bound defined by

s(A) := sup { (λ); λ ∈ σ(A)} if σ(A) = ∅, -∞ if σ(A) = ∅.
We recall the following result which is a particular version of [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF], Theorem 1.1.

Lemma 2.5. Let A be a resolvent positive operator in X and B ∈ L(X ) a positive operator. We have

(λ -A -B) -1 = (λ -A) -1 ∞ n=0 (B(λ -A) -1 ) n (9) 
for every λ > s(A + B) and

s(A + B) = inf{λ > s(A) : r σ (B(λ -A) -1 ) < 1}. ( 10 
)
Here r σ (•) refers to the spectral radius. We introduce the following assumptions

∀ε ∈ (0, m), ε 0 m ε β(s, y)dyds > 0, ( 11 
) inf supp c 1 = 0, ( 12 
)
sup supp c 2 = m. ( 13 
)
Theorem 2.6. The C 0 -semigroup {T A (t)} t≥0 is irreducible if and only if the assumptions (11)-( 12)-( 13) are satisfied.

Proof.

1. Note first that the semigroup {T A (t)} t≥0 is positive. Indeed, using Lemma 2.1, we readily see that the semigroup {T A (t)} t≥0 is positive since (λI -A) -1 is positive for every λ > -∞. Since B 1 is a bounded operator and 2. Now we suppose that the assumptions ( 11)-( 12)-( 13) are satisfied and we prove that (λI -A) -1 is positivity improving for λ large enough. Actually, since

B 1 + B 1 I ≥ 0,
B 1 + B 1 I ≥ 0, we have (λI -A) -1 = ((λ + B 1 )I -A -(B 1 + B 1 I) -B 2 -B 3 ) -1 ≥ ((λ + B 1 )I -A -B 2 -B 3 ) -1
so it suffices to show that (λI -A -B 2 -B 3 ) -1 is positivity improving for λ large enough. Using ( 9), we first see that

(λI -A -B 2 -B 3 ) -1 = (λI -A -B 2 ) -1 ∞ n=0 B 3 (λI -A -B 2 ) -1 n = (λI -A) -1 ∞ l=0 B 2 (λI -A) -1 l ∞ n=0 B 3 (λI -A -B 2 ) -1 n . ( 14 
)
Since we have

∞ l=0 B 2 (λI -A) -1 l ≥ I + B 2 (λI -A) -1
then we get

∞ n=0 B 3 (λI -A -B 2 ) -1 n ≥ ∞ n=1 B 3 (λI -A -B 2 ) -1 n-1 B 3 (λI -A -B 2 ) -1 ≥ ∞ n=1 B 3 (λI -A) -1 n-1 B 3 (λI -A) -1 ∞ l=0 B 2 (λI -A) -1 l ≥ ∞ n=1 B 3 (λI -A) -1 n (I + B 2 (λI -A) -1
).

Consequently we have

(λI -A -B 2 -B 3 ) -1 ≥ (λI -A) -1 (I + B 2 (λI -A) -1 ) ∞ n=1 (B 3 (λI -A) -1 ) n (I + B 2 (λI -A) -1 ). Let U := (u 1 , u 2 ) = (λI -A -B 2 -B 3 ) -1 H with H ∈ X + . Let us show that u 1 (s) > 0, u 2 (s) > 0 a.e. once H = (h 1 , h 2 ) ∈ X + -{0} .
Step 1: we start by proving that

∀H ∈ X + -{0} , ∃ h ∈ L 1 + (0, m) -{0} : (I + B 2 (λI -A) -1 )H ≥ (h, 0). ( 15 
)
If H := (h 1 , 0), then it is clear that ( 15) is satisfied, by taking h = h 1 . If H := (0, h 1 ), then, using Lemma 2.1, we get 

(λI -A) -1 H =: (0, h 2 ) ∈ D(A)
|supp c 2 ∩ supp h 2 | = 0
where |I| denotes the Lebesgue measure of an interval I. Thus

B 2 (λI -A) -1 H = (c 2 h 2 , 0)
and ( 15) is satisfied with h = c 2 h 2 . In any case it suffices to show that

(λI -A) -1 (I + B 2 (λI -A) -1 ) ∞ n=1 (B 3 (λI -A) -1 ) n H > 0 a.e.
for every H = (h, 0) ∈ X + -{0}. We have (λI

-A) -1 H = (h 1 , 0) ∈ D(A), with supp h 1 = [inf supp h, m].
Step 2: now we prove that for every

H := (h, 0) ∈ X + -{0}, then ∞ n=1 (B 3 (λI -A) -1 ) n H =: ( h, 0) where inf supp ( h) = 0. ( 16 
)
Let

H := (h 1 , 0) ∈ X + -{0}, then ∞ n=1 (B 3 (λI -A) -1 ) n H =: (h 2 , 0).
Suppose by contradiction that

k := inf supp h 2 > 0.
Using Lemma 2.1, we get

(λI -A) -1 (h 2 , 0) =: (h 3 , 0),
with supp h 3 = [k, m] and we have

B 3 (λI -A) -1 (h 2 , 0) =: (h 4 , 0). If k := inf supp h 4 < k (17) 
holds, then we get a contradiction by definition of k and ( 16) is satisfied. So it remains to prove (17). Suppose by contradiction that k ≥ k, then we get

h 4 ≡ 0 on [0, k] and m k β(s, y)h 3 (y)dy ≤ m 0 β(s, y)h 3 (y)dy = h 4 (s) = 0 a.e. s ∈ [0, k].
Moreover, since h 3 (y) > 0 a.e. y ∈ (k, m], we would get m k β(s, y)dy = 0, a.e. s ∈ [0, k] which contradicts Assumption [START_REF] Gyllenberg | Age-size structure in populations with quiescence[END_REF].

Step 3: we finally prove that

(λI -A) -1 I + B 2 (λI -A) -1 H > 0 a.e (18) 
for every H = (h, 0) ∈ X -{0} such that inf supp h = 0. 

(λI -A) -1 H = (h 1 , 0),
where h 1 (s) > 0 for every s ∈ (0, m]. Using Assumption [START_REF] Gyllenberg | Age-size structure in populations with quiescence[END_REF] we get

B 2 (λI -A) -1 H = B 2 (h 1 , 0) =: (0, h 2 ),
where

h 2 := c 1 h 1 satisfies inf supp h 2 = 0.
Once again with Lemma 2.1, we get

(λI -A) -1 (0, h 2 ) =: (0, h 3 ),
where

h 3 (s) > 0 for every s ∈ (0, m]. Finally (u 1 , u 2 ) := U = (λI -A) -1 (I + B 2 (λI -A) -1 )H ≥ (h 1 , h 3 ) so u 1 (s) > 0, u 2 (s) > 0 a.e.
and {T A (t)} t≥0 is irreducible. 3. Now, to prove the converse, we use the contraposition. We suppose that either [START_REF] Gyllenberg | Age-size structure in populations with quiescence[END_REF], [START_REF] Gyllenberg | A nonlinear structured population model of tumor growth with quiescence[END_REF] or ( 13) is not satisfied. In each case, we exhibit a nontrivial closed ideal of X that is invariant under (λI -A) -1 , which implies that the C 0 -semigroup {T A (t)} t≥0 is not irreducible. (a) Suppose that [START_REF] Gyllenberg | Age-size structure in populations with quiescence[END_REF] does not hold, then

∃ ε ∈ (0, m) : ε 0 m ε β(s, y)dyds = 0 (19) 
i.e. β(s, y) = 0 a.e. s < ε < y.

We identify L 1 (ε, m) to the closed subspace of L 1 (0, m) of functions vanishing a.e. on (0, ε). Let λ > s(A), we want to prove that

Y := L 1 (ε, m) × L 1 (ε, m) is a closed ideal of X that is invariant under (λI -A) -1 . Since B 1 ≤ 0, we have (λI -A) -1 ≤ (λI -(A + B 2 + B 3 )) -1 (20) 
where the latter resolvent is given by [START_REF] Inaba | Age-Structured Population Dynamics in Demography and Epidemiology[END_REF]. Using Lemma 2.1 we see that Y is invariant under (λI -A) -1 . It is also clear that Y is invariant under B 2 and consequently also under (λI -(A+B 2 )) -1 by using [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF]. It remains to prove that Y is invariant under B 3 . Let

H := (h 1 , h 2 ) ∈ Y, B 3 H =: (u, 0), where u(s) = m 0 β(s, y)h 1 (y)dy = m ε β(s, y)h 1 (y)dy = 0 a.e. s ∈ [0, ε]
by Assumption [START_REF] Mokhtar-Kharroubi | Time asymptotics of structured populations with diffusion and dynamic boundary conditions[END_REF]. Thus Y is invariant under B 3 and consequently under (λI -(A + B 2 + B 3 )) -1 by using [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF]. Finally, Y is invariant under (λI -A) -1 by using [START_REF] Nagel | One-parameter semigroups of positive operators[END_REF]. 

k := inf supp c 1 > 0.
We want to prove that

Y := L 1 (0, m) × L 1 (k, m) is a closed ideal of X that is invariant under (λI -A) -1 . Let H := (h 1 , h 2 ) ∈ Y. Using (20), we have (λI -A) -1 H ≤ (λI -(A + B 2 + B 3 )) -1 H =: (u 1 , u 2 )
where (u 1 , u 2 ) ∈ D(A) satisfy

λu 2 (s) + (γ 2 u 2 ) (s) -c 1 (s)u 1 (s) = h 2 (s) a.e. s ∈ [0, m], u 2 (0) = 0.
We then get

λu 2 (s) + (γ 2 u 2 ) (s) = 0 a.e. s ∈ [0, k] which lead to u 2 ≡ 0 on [0, k]. Consequently Y is invariant under (λI -(A + B 2 + B 3 )) -1
and under (λI -A) -1 using ( 20). (c) Suppose that (13) does not hold. Let λ > s(A) and

k := sup supp c 2 < m.
We want to prove that

Y := {0} × L 1 (k, m)
is a closed ideal of X that is invariant under (λI -A) -1 . Using Lemma 2.1, we see that Y is invariant under (λI -A) -1 . Moreover, let H := (0, h 1 ) ∈ Y, then we have

B 2 H = (c 2 h 1 , 0) = (0, 0) since supp (c 2 ) ∩ supp (h 1 ) = ∅. Consequently, Y is invariant under B 2 .
It remains to prove that it is also invariant under B 3 . But this is obvious since

B 3 H = (0, 0).
Consequently, Y is invariant under (λI -(A+B 2 +B 3 )) -1 and (λI -A) -1 by using [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF]. Remark 3. We note that in [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF], the irreducibility is obtained under the assumptions ( 12)-( 13) and the following one:

∃ ε 0 > 0 : ∀ε ∈ (0, ε 0 ], ε 0 m m-ε β(s, y)dyds > 0.
In the continuous case, this latter assumption implies β(0, m) > 0, so active cells of maximal size can produce offspring of minimal size. This is not necessary in our statement. The biological meaning of ( 12)-( 13) is the following: active cells of minimal size can become quiescent, and quiescent cells of maximal size can become active.
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V : L 1 (0, m) → L 1 (0, m) by V h(s) = k s 0 h(y)dy.
Then r σ (V ) = 0 and σ(V ) = {0}.

Proof. By induction, we can show that

V n h(s) = k n s 0 h(y) (s -y) n-1 (n -1)! dy,
for every s ∈ [0, m], n ≥ 0 and h ∈ L 1 (0, m). We then get

V n ≤ k n m n n! .
Consequently,

r σ (V ) := lim n→∞ V n 1/n ≤ lim n→∞ km (n!) 1/n = 0, since (n!) 1/n ≈ n e ( √ 2πn) 1/n
by Sterling's formula.

We need also

Lemma 2.8. Let V 1 , V 2 : L 1 (0, m) → L 1 (0, m) two bounded operators. If V 1 V 2 = V 2 V 1 , then r σ (V 1 V 2 ) ≤ r σ (V 1 )r σ (V 2 ).
Proof. It is clear that

r σ (V 1 V 2 ) = lim n→∞ (V 1 V 2 ) n 1/n = lim n→∞ V n 1 V n 2 1/n ≤ lim n→∞ V n 1 1/n V n 2 1/n = r σ (V 1 )r σ (V 2 ),
by using Gelfand's formula.

Remark 4. Note that A has a compact resolvent (and consequently the spectrum of A is composed (at most) of isolated eigenvalues with finite algebraic multiplicity). This follows from the fact that the canonical injection i : (D(A), . We are ready to show Theorem 2.9. The spectrum of A + B 1 + B 2 is empty and consequently s(A

D(A) ) → (X , . X ) is compact ([4
+ B 1 + B 2 ) = -∞.
Proof. Let λ > -∞ and define the operators

A i 0 u = -(γ i u) , ∀i ∈ {1, 2} (21) 
for every u ∈ D(A 1 0 ) = D(A 2 0 ) := {u ∈ W 1,1 (0, m) : u(0) = 0}. Thus, using Lemma 2.1, we get where k 1 and k 2 are some positive constants and V 1 , V 2 are Volterra operators. We see that

(λI -A i 0 ) -1 h(s) ≤ k i s 0 h(y)dy =: V i h(s), ∀s ∈ [0, m], ∀i ∈ {1, 2}, ∀h ∈ L 1 + (0, m) (22 
B 2 (λI -A) -1 h ≤ B2 V 1 0 0 V 2 h, ∀h ∈ X + , since A is resolvent positive, where B2 h 1 h 2 = c 2 L ∞ h 2 c 1 L ∞ h 1 , ∀(h 1 , h 2 ) T ∈ X + (23) 
is a positive operator. The fact that B2 and

(V 1 , V 2 ) T commute implies that r σ ( B2 (λI -A) -1 ) ≤ r σ ( B2 )r σ V 1 0 0 V 2 using Lemma 2.8. Since V 1 and V 2 are Volterra operators, then r σ V 1 0 0 V 2 = max{r σ (V 1 ), r σ (V 2 )} = 0.
Consequently, we have

r σ (B 2 (λI -A) -1 ) ≤ r σ ( B2 (λI -A) -1 ) = 0 for every λ > -∞ and s(A + B 2 ) = s(A) = -∞
by using (10) and Lemma 2.1. Finally, since B 1 ≤ 0, then we get

s(A + B 1 + B 2 ) ≤ s(A + B 2 ) = -∞,
which ends the proof.

On the other hand, σ(A) need not be empty. Indeed:

Theorem 2.10. The spectrum of A is not empty, or equivalently, s(A) > -∞ if and only if

∃ δ ∈ (0, m) : δ 0 m δ β(s, y)dyds > 0. (24) 
Proof.

1. Suppose that (24) is satisfied. By continuity argument, we can find

δ 2 ∈ (δ, m) such that δ 0 m δ2 β(s, y)dyds > 0. ( 25 
) Let λ > s(A) then (λ -A) -1 ≥ (λ -(A + B 1 + B 3 )) -1 = (λ -(A 1 µ+c1 + K)) -1 (λ -A 2 c2 ) -1 since B 2 ≥ 0, where A 1 µ+c1 and A 2 c2 are defined by A 1 µ+c1 u = -(γ 1 u) -(µ + c 1 )u, A 2 c2 u = -(γ 2 u) -c 2 u, (26) 
and

D(A 1 µ+c1 ) = D(A 2 c2 ) = D(A 1 0 ). Thus, we have r σ (λ -A) -1 ≥ max r σ (λ -(A 1 µ+c1 + K)) -1 , r σ (λ -A 2 c2 ) -1 . It then suffices to show that r σ (λ -(A 1 µ+c1 + K)) -1 > 0.
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First, we see that

(λ -(A 1 µ+c1 + K)) -1 ≥ (λ + µ L ∞ + c 1 L ∞ )I -(A 1 0 + K) -1 ,
so we just need to prove that for λ large enough we have

r σ (λ -(A 1 0 + K)) -1 > 0. By (9), we know that (λ -(A 1 0 + K)) -1 ≥ (λ -A 1 0 ) -1 K(λ -A 1 0 ) -1 . Let v ∈ L 1 (δ, δ 2 ), then using Lemma 2.1, we get (λ -A 1 0 ) -1 v =: v 1 , where v 1 (s) > 0 for every s ∈ (inf supp (v), m].
In particular, we have

v 1 (s) > 0, ∀s ∈ [δ 2 , m] since inf supp (v) ≤ δ 2 . Therefore we have K(λ -A 1 0 ) -1 v = Kv 1 =: v 2 , where inf supp (v 2 ) ≤ δ. Indeed, suppose by contradiction that inf supp (v 2 ) > δ, then v 2 ≡ 0 on [0, δ]. We would have m δ2 β(s, y)v 1 (y)dy ≤ m 0 β(s, y)v 1 (y)dy = v 2 (s) = 0, a.e. s ∈ [0, δ],
and β(s, y) = 0, a.e. s ∈ [δ 2 , m], y ≥ δ 2 since v 1 (s) > 0 for every s ∈ [δ 2 , m], which contradicts [START_REF] Schlüchtermann | On weakly compact operators[END_REF]. Define the function

v 3 := (λ -A 1 0 ) -1 K(λ -A 1 0 ) -1 v = (λ -A 1 0 ) -1 v 2 , that satisfies v 3 (s) > 0, ∀s ∈ [inf supp (v 2 ), m] by Lemma 2.1. In particular we have v 3 (s) > 0 for every s ∈ [δ, δ 2 ]. It implies that (λ -(A 1 0 + K)) -1 v(s) > 0, ∀s ∈ [δ, δ 2 ], ∀v ∈ L 1 (δ, δ 2 ), (27) 
for λ large enough. We also know that

(λ -(A 1 0 + K)) -1 ≥ (λ -(A 1 0 + K)) -1 |L 1 (δ,δ2) ≥ χ [δ,δ2] (λ -(A 1 0 + K)) -1 |L 1 (δ,δ2) , where χ [δ,δ2] is the indicator function of [δ, δ 2 ], so r σ (λ -(A 1 0 + K)) -1 ≥ r σ χ [δ,δ2] (λ -(A 1 0 + K)) -1 |L 1 (δ,δ2
) . Using [START_REF] Voigt | On resolvent positive operators and positive C 0 -semigroups on AL-spaces[END_REF] and the fact that A is resolvent compact, then the operator

χ [δ,δ2] (λ -(A 1 0 + K)) -1 |L 1 (δ,δ2) : L 1 (δ, δ 2 ) → L 1 (δ, δ 2
) is compact and positivity improving. Consequently [START_REF] De Pagter | Irreducible compact operators[END_REF] Theorem 3) and

r σ χ [δ,δ2] (λ -(A 1 0 + K)) -1 |L 1 (δ,δ2) > 0 (see
r σ (λ -A) -1 > 0.
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K(λ -A 1 0 ) -1 v(s) ≤ k 1 m 0 β(s, y) y 0 v(z)dzdy = k 1 s 0 v(z) s z β(s, y)dydz, ∀s ∈ [0, m],
using [START_REF] Webb | An operator-theoretic formulation of asynchronous exponential growth[END_REF], where k 1 is defined in [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]. We then get

(λ -A 1 0 ) -1 K(λ -A 1 0 ) -1 v(s) ≤ k 2 1 s 0 y 0 v(z) y z β(y, ξ)dξdzdy ≤ k 2 1 k β s 0 v(z)(s -z)dz, ∀s ∈ [0, m],
where

k β = sup y∈[0,m] m 0 β(z, y)dz (30) 
and

(K(λ -A 1 0 ) -1 ) 2 v(s) ≤ k 2 1 k β s 0 β(s, y) y 0 v(z)(y -z)dzdy.
We then show by induction that

(K(λ -A 1 0 ) -1 ) n v(s) ≤ k n 1 k n-1 β s 0 β(s, y) y 0 v(z) (y -z) n-1 (n -1)! dzdy, ≤ k 1 (k 1 k β m) n-1 (n -1)! s 0 β(s, y) y 0 v(z)dzdy
for every s ∈ [0, m] and every n ≥ 0. Consequently, we get

n≥1 (K(λ -A 1 0 ) -1 ) n v(s) ≤ k 1 e k1k β m s 0 β(s, y) y 0 v(z)dzdy,
and then

(λ -(A 1 0 + K)) -1 v(s) ≤ k 1 (1 + mk 1 k β e k1k β m ) s 0 v(y)dy ≤ C s 0 v(y)dy =: V v(s), ∀s ∈ [0, m],
where C > 0, for every v ∈ L 1 + (0, m), which proves (29).

Remark 5. Note that Assumption (24) which characterizes that s(A) > -∞ is much weaker than the assumptions in Theorem 2.6 which characterize the irreducibility of the semigroup.

Remark 6. Theorem 2.10 provides us with the existence of a real leading eigenvalue since s(A) ∈ σ(A) (see e.g. [START_REF] Clément | One-Parameter semigroups[END_REF] Theorem 8.7, p. 202). In [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF], the spectral gap is obtained under the assumption

β ∈ C([0, m] 2 ), ∃ 0 ≤ s * < y * ≤ m : β(s * , y * ) > 0. ( 31 
)
It is clear that (31) implies that ( 24) is satisfied.

8 Feb 2019 01:06:36 PST Version 1 -Submitted to Discrete Contin. Dyn. Syst. Ser. B 2.5. On asynchronous exponential growth. Let us remind some definitions and results about asynchronous exponential growth (see [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF], [START_REF] Nagel | One-parameter semigroups of positive operators[END_REF] and [START_REF] Webb | An operator-theoretic formulation of asynchronous exponential growth[END_REF] for the details).

Definition 2.11. Let L(X ) be the space of bounded linear operators on X and let K(X ) be the subspace of compact operators on X . The essential norm L ess of L ∈ L(X ) is given by

L ess = inf K∈K(X ) L -K X .
Let {T (t)} t≥0 be a C 0 -semigroup on X with generator A : D(A) ⊂ X → X . The growth bound (or type) of {T (t)} t≥0 is given by

ω 0 (A) = lim t→∞ ln( T (t) X ) t ,
and the essential growth bound (or essential type) of {T (t)} t≥0 is given by

ω ess (A) = lim t→∞ ln( T (t) ess ) t .
Definition 2.12 (Asynchronous Exponential Growth). [28, Definition 2.2] Let {T (t)} t≥0 be a C 0 -semigroup with infinitesimal generator A in the Banach space X . We say that {T (t)} t≥0 has asynchronous exponential growth with intrinsic growth constant λ 0 ∈ R if there exists a nonzero finite rank projection P 0 in X such that lim t→∞ e -λ0t T (t) = P 0 .

We recall the following standard result (see e.g. [START_REF] Clément | One-Parameter semigroups[END_REF] Theorem 9.11, p. 224).

Theorem 2.13. Let X be a Banach lattice and let {T (t)} t≥0 be a positive C 0semigroup on X with infinitesimal generator A. If {T (t)} t≥0 is irreducible and if ω ess (A) < ω 0 (A)

then {T (t)} t≥0 has asynchronous exponential growth with intrinsic growth constant λ 0 = ω 0 (A) and spectral projection P 0 of rank one.

We are ready to give the main result of this subsection.

Theorem 2.14. Under the assumptions (11)-( 12)-( 13), the semigroup {T A (t)} t≥0 has asynchronous exponential growth.

Proof. The semigroups {T A (t)} t≥0 and {T A+B1+B2 (t)} t≥0 are related by the Duhamel equation

T A (t) = T A+B1+B2 (t) + t 0 T A+B1+B2 (t -s)B 3 T A (s)ds.
Since B 3 is a weakly compact operator then so is T A+B1+B2 (t -s)B 3 T A (s) for all s ≥ 0. It follows that the strong integral

t 0 T A+B1+B2 (t -s)B 3 T A (s)ds
is a weakly compact operator (see [START_REF] Mokhtar-Kharroubi | On the convex compactness property for the strong operator topology and related topics[END_REF] Theorem 1 or [START_REF] Schlüchtermann | On weakly compact operators[END_REF] Theorem 2.2). Hence T A (t) -T A+B1+B2 (t) is a weakly compact operator and consequently (see [17] Theorem 2.10, p. 24) {T A (t)} t≥0 and {T A+B1+B2 (t)} t≥0 have the same essential type 

ω ess (A) = ω ess (A + B 1 + B 2 ), 8 
(A) ≤ ω 0 (A + B 1 + B 2 ). Note that s(A + B 1 + B 2 ) = ω 0 (A + B 1 + B 2
) and s(A) = ω 0 (A) since {T A (t)} t≥0 and {T A+B1+B2 (t)} t≥0 are positive semigroups on L 1 spaces (see e.g. [START_REF] Engel | One-parameter semigroups for linear evolution equations[END_REF] Theorem VI.1.15, p. 358). Since ( 24) is ensured by [START_REF] Gyllenberg | Age-size structure in populations with quiescence[END_REF], then applying Theorem 2.9 and Theorem 2.10 we get respectively

ω 0 (A) > -∞ and ω 0 (A + B 1 + B 2 ) = -∞ so ω ess (A) < ω 0 (A)
. By combining this last result and the irreducibility of {T A (t)} t≥0 , Theorem 2.13 ends the proof.

2.6. Time asymptotics in absence of irreducibility. Two kinds of results are given. We start with: Theorem 2.15. Suppose that (24) is satisfied, i.e. that the C 0 -semigroup {T A (t)} t≥0 has a spectral gap. Then, the peripheral spectrum of A reduces to s(A), i.e. σ(A) ∩ {λ ∈ C : (λ) = s(A)} = {s(A)}; and there exists a nonzero finite rank projection P 0 in X such that lim t→∞ e -s(A)t T A (t) -e tD P 0 X = 0 (32)

where D := (s(A) -A)P 0 .

Proof. It follows from [START_REF] Clément | One-Parameter semigroups[END_REF], Theorem 9.10, p. 223 and Theorem 9.11, p. 224.

Remark 7. Note that, if {T A (t)} t≥0 is irreducible, then it has also a spectral gap, whence the asynchronous exponential growth of the semigroup. In this case, the spectral bound s(A) is algebraically simple (see e.g. [START_REF] Clément | One-Parameter semigroups[END_REF], Theorem 9.10, p.223) and the nilpotent operator D that appears in (32) is actually zero. Whether the spectral bound could be semi-simple (i.e. a simple pole of the resolvent) when {T A (t)} t≥0 is not irreducible, is an open problem.

It may happen that {T A (t)} t≥0 is not irreducible but leaves invariant a subspace on which it is irreducible. This is our second result. 

2 := inf{δ ∈ [b 1 , m] : |supp (c 1 ) ∩ [b 1 , δ)| = 0}. Let Y := L 1 (b 1 , m) × L 1 (b 2 , m).
e -s(A Y )t T A Y (t)u = P0 u
for every u ∈ Y, where

{T A Y (t)} t≥0 = {T A (t)} t≥0 |Y and A Y is the generator of {T A Y (t)} t≥0 .
Proof. Define the operator

A Y u 1 u 2 = -(γ 1 u 1 ) -(γ 2 u 2 ) + -(µ + c 1 )u 1 + c 2 u 2 + m b1 β(•, y)u 1 (y)dy) -c 2 u 2 + c 1 u 1 ,
with domain

D(A Y ) = {(u 1 , u 2 ) ∈ W 1,1 (b 1 , m) × W 1,1 (b 2 , m) : u 1 (b 1 ) = 0, u 2 (b 2 ) = 0},
where

γ 1 = γ 1|[b 1,m] , µ = µ |[b1,m] , c 1 = c 1|[b 1,m] , c 2 = c 2|[b 1 ,m] , β = β |[b1,m]×[b1,m] ,
and

γ 2 = γ 2|[b 2 ,m] , c 1 = c 1|[b 2,m] , c 2 = c 2|[b 2,m] . As in Theorem 2.2, A Y generates a C 0 -semigroup {T A Y (t)} t≥0 .
Using the point 3.(a) of the proof of Theorem 2.6, with ε = b 1 , we know that

L 1 (b 1 , m) × L 1 (b 1 , m)
is a closed ideal of X that is invariant under (λI -A) -1 for every λ > s(A). Then, using the point 3.(b) of the proof of Theorem 2.6, with k = b 2 , we can prove that Y is a closed ideal of X that is invariant under (λI -A) -1 for every λ > s(A).

Consequently {T A (t)} t≥0 |Y = {T A Y (t)} t≥0 .
By means of (34) and by definition of b 1 , we see that

∀ε ∈ (b 1 , m) : ε b1 m ε β(s, y)dyds > 0.
Using (33) and by definition of b 2 , we have

inf supp (c 1 ) = inf supp (c 1 ) = b 2 .
Consequently, as for Theorem 2.6, A Y is irreducible and

ω ess (A Y ) < ω 0 (A Y ).
Therefore, as in Theorem 2.14, the semigroup {T A Y (t)} t≥0 has the property of asynchronous exponential growth. Thus we get

lim t→∞ e -s(A Y )t T A Y (t) = P0 ,
where P0 is a projection of rank one in Y.

Remark 8. Note that s(A Y ) ≤ s(A). It is unclear whether the inequality is strict. 

       u 1 (s) = 1 γ 1 (s) s 0 h 1 (y) exp - s y λ γ 1 (z) dz dy, u 2 (s) = 1 γ 2 (s) s 0 h 2 (y) exp - s y λ γ 2 (z) dz dy, (37) 
for every s ≥ 0. In particular,

U := (u 1 , u 2 ) ∈ D(A) if and only if U ∈ X . Moreover, if H ∈ X + , then supp u 1 = [inf supp (h 1 ), ∞), supp u 2 = [inf supp (h 2 ), ∞).
Remark 9. In all the sequel, for the simplicity of notations, we write symbolically (λ -A)U = H instead of (36) even if U need not belong to the domain of A. We will also use similar symbolic abbreviations in similar contexts.

Theorem 3.2. The operator A generates a C 0 -semigroup {T A (t)} t≥0 of bounded linear operators on X .

Proof. As in the finite case, we only need to prove that A generates a contraction C 0 -semigroup. The fact that D(A) is densely defined in X is clear. As before, the range condition (λI

-A)U = H, where U = (u 1 , u 2 ) and H = (h 1 , h 2 ) ∈ X , is verified for every λ > s(A).
It remains to prove that A is a dissipative operator. Let λ > 0, U = (u 1 , u 2 ) ∈ D(A) and H := (h 1 , h 2 ) = (λI -A)U . We want to prove that

h i L 1 (0,∞) ≥ λ u i L 1 (0,∞) , ∀i ∈ {1, 2}.
Let i ∈ {1, 2}. We know that u i (0) = 0 and

λu i (s) + (γ i u i ) (s) = h i (s), ∀s ∈ (0, ∞).
An integration then leads to

λ u i L 1 (0,∞) + ∞ 0 (γ i u i ) (s)sign(u i (s))ds = ∞ 0 h i (s)sign(u i (s))ds. Since u i ∈ W 1,1 (0, ∞) → C([0, ∞)), we get m 0 (γ i u i ) sign(u i (s))ds = γ i (m) |u i (m)| , for every finite m > 0. Hence ∞ 0 (γ i u i ) sign(u i (s))ds = lim m→∞ m 0 (γ i u i ) sign(u i (s))ds = 0 and we have λ u i L 1 = ∞ 0 h i (s)sign(u i (s))ds ≤ h i L 1
so the dissipativity of A follows. Finally, A generates a contraction C 0 -semigroup {T A (t)} t≥0 by Lumer-Phillips Theorem and the operators Proof. The proof is similar to that of Theorem 2.6.

A + B 1 , A + B 1 + B 2 , A also generate a quasi-contraction C 0 -semigroup {T A+B1 (t)} t≥0 , {T A+B1+B2 (t)}
3.3. Asynchronous exponential growth. In contrast to the finite case, the asynchronous exponential growth needs an additional condition. 

r σ B 3 (λ -B) -1 > 1 (42)
then the semigroup {T A (t)} t≥0 has asynchronous exponential growth.

Proof. Since (42) holds, then [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF] implies that s(A) > s(B).

As for the finite case, the weak compactness of B 3 implies that {T A (t)} t≥0 and {T B (t)} t≥0 have the same essential spectrum, and consequently the same essential type:

ω ess (A) = ω ess (B) .
Since

ω ess (B) ≤ s (B)
then

ω ess (A) ≤ s (B) < s (A) .
Thus {T A (t)} t≥0 exhibits a spectral gap and has asynchronous exponential growth since it is irreducible.

3.4. Further spectral results. The object of this subsection is to show that the real spectrum of the differential operators appearing in B is connected and to estimate their spectral bounds. This is a useful step to check the existence or the absence of a spectral gap in some situations of practical interest without relying on the tricky condition (42), (see Subsection 3.5). Proof. Let λ ∈ R and h ∈ L 1 (0, ∞). The solution of λI -A 1 µ u = h, u(0) = 0 (see Remark 9 for the abbreviation) is given by

u(s) := 1 γ 1 (s) s 0 h(y) exp - s y λ + µ(z) γ 1 (z) dz dy (43) 
that is nonincreasing in λ, consequently

σ A 1 µ ∩ R = -∞, s A 1 µ .
Now, let ε > 0 (ε need not be small), h ∈ L 1 (0, ∞) and

λ := -lim inf x→∞ µ(x) + ε.
The solution of λI -A 1 µ u = h, u(0) = 0, is given by (43). Then

∞ 0 |u(s)|ds ≤ 1 γ 0 ∞ 0 |h(y)| ∞ y exp - s y -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz dsdy.
We know that there exists η > 0 such that for every y ≥ η we have µ(y) ≥ lim inf x→∞ µ(x) -ε/2. So we get first

∞ η |h(y)| γ 0 ∞ y exp - s y -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz dsdy ≤ ∞ η |h(y)| γ 0 ∞ y exp - s y ε/2 γ 1 L ∞ dsdy ≤ ∞ η |h(y)| γ 0 ∞ y exp - ε(s -y) 2 γ 1 L ∞ dsdy ≤ 2 γ 1 L ∞ εγ 0 ∞ η |h(y)|dy < ∞.
Moreover, for every y ∈ [0, η], we have

∞ y exp - s y -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz ds ≤ C 1 ∞ y exp - s 0 -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz ds ≤ C 2 ∞ y exp - s 0 -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz ds,
where 

C 1 := exp y 0 | -lim inf x→∞ µ(x) + ε + µ(z)| γ 1 (z) dz and 
C 2 := exp η(|ε -lim inf x→∞ µ(x)| + µ L ∞ ) γ 0 < ∞.
∞ y exp - s 0 -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz ds ≤ ∞ η exp - η 0 -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz exp - s η ε/2 γ 1 (z) dz ds + η 0 exp - s 0 -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz ds. Consequently η 0 |h(y)| γ 0 ∞ y exp - s y -lim inf x→∞ µ(x) + ε + µ(z) γ 1 (z) dz dsdy < ∞ and ∞ 0 |u(s)|ds < ∞ so u ∈ L 1 (0, ∞) and -lim inf x→∞ µ(x) + ε ∈ ρ(A 1 µ ) for every ε > 0 whence s(A 1 µ ) ≤ -lim inf x→∞ µ(x). Now let ε > 0, h ∈ L 1 + (0, ∞) and λ := -lim sup x→∞ µ(x) -ε.
Suppose that λ ∈ ρ(A 1 µ ), then u := (λ -A 1 µ ) -1 h is given by (43). We know that there exists y > 0 and s > y such that 

= ∞ 0 h(y) ∞ y 1 γ 1 (s) exp - s y µ(z) -(lim sup x→∞ µ(x) + ε) γ 1 (z) dz dsdy ≥ y 0 h(y) ∞ s 1 γ 1 (s) exp - s s µ(z) -(lim sup x→∞ µ(x) + ε) γ 1 (z) dz exp - s y µ(z) -(lim sup x→∞ µ(x) + ε) γ 1 (z) dz dsdy ≥ y 0 h(y) γ 1 L ∞ ∞ s exp (y -s) µ L ∞ + lim sup x→∞ µ(x) + ε γ 0 exp ε(s -s) 2 γ 1 L ∞ dsdy 8 
h(y) γ 1 L ∞ dy ∞ s exp -s µ L ∞ + lim sup x→∞ µ(x) + ε γ 0 exp ε(s -s) 2 γ 1 L ∞ ds = ∞ so u / ∈ L 1 (0, ∞) and -lim sup x→∞ µ(x) -ε ∈ σ(A 1 µ ) for every ε > 0 whence s(A 1 µ ) ≥ -lim sup x→∞ µ(x).
Remark 10. Note that similar estimates hold for A 2 c2 . 3.4.2. Spectral theory of coupled systems. Define the operator

A 1 µ+c1 u = -(γ 1 u) -(µ + c 1 )u, with D(A 1 µ+c1 ) = {u ∈ W 1,1 (0, ∞) : u(0) = 0}. Let H := (h 1 , h 2 ) ∈ X and λ ∈ R. The system    λu 1 + (γ 1 u 1 ) + (µ + c 1 )u 1 -c 2 u 2 = h 1 , λu 2 + (γ 2 u 2 ) + (c 2 )u 2 -c 1 u 1 = h 2 , u 1 (0) = u 2 (0) = 0, (44) 
can be globally solved by iterations, since it is linear, by writing

   λu 1 + (γ 1 u 1 ) + (µ + c 1 )u 1 = c 2 u 2 + h 1 , λu 2 + (γ 2 u 2 ) + (c 2 )u 2 = c 1 u 1 + h 2 , u 1 (0) = u 2 (0) = 0.
Since B 2 is a positive operator then, once H ∈ X + , the iterative sequence

   λu n+1 1 + (γ 1 u n+1 1 ) + (µ + c 1 )u n+1 1 = c 2 u n 2 + h 1 , λu n+1 2 + (γ 2 u n+1 2 ) + (c 2 )u n+1 2 = c 1 u n 1 + h 2 , u n+1 1 (0) = u n+1 2 (0) = 0.
(with u 0 1 = u 0 2 = 0) is nonnegative and then so is its limit. In addition

u n+1 1 u n+1 2 (s) =     1 γ 1 (s) s 0 [h 1 (y) + c 2 (y)u n 2 (y)] e -s y λ+µ(z)+c 1 (z) γ 1 (z) dz dy 1 γ 2 (s) s 0 [h 2 (y) + c 1 (y)u n 1 (y)] e -s y λ+c 2 (z) γ 2 (z) dz dy     ∀s ≥ 0
shows by induction that the sequences u n 1 and u n 2 are nonincreasing in λ. In all the following, we will write symbolically (λ -B)U = H instead of (44), even if U ∈ D(B). Finally, the solution of (44) always satisfies the Duhamel equation 

u 1 u 2 (s) =     1 γ 1 (s) s 0 [h 1 (y) + c 2 (y)u 2 (y)] e -s y λ+µ(z)+c 1 (z) γ 1 (z) dz dy 1 γ 2 (s) s 0 [h 2 (y) + c 1 (y)u 1 (y)] e -s y λ+c 2 (z) γ 2 (z) dz dy     ∀s ≥ 0 (45) and is nonincreasing in λ. Thus, if α < λ then U λ ∈ X ⇒ U α ∈ X , so σ(B) ∩ R = (-∞, s(B)].
Moreover, if lim inf x→∞ µ(x) > 0 and lim inf x→∞ c 2 (x) > 0 then s(B) < 0. Proof. Let λ > 0, H := (h 1 , h 2 ) ∈ L 1 (0, ∞) × L 1 (0, ∞). The solution U := (u 1 , u 2 ) of (λI -B)U = H, U ( 
0) = (0, 0) is given by (45) and satisfies

(γ 1 u 1 ) + (λ + c 1 + µ)u 1 -c 2 u 2 = h 1 , (γ 2 u 2 ) + (λ + c 2 )u 2 -c 1 u 1 = h 2 . ( 46 
)
By adding, we get

(γ 1 u 1 ) + (γ 2 u 2 ) + λ(u 1 + u 2 ) + µu 1 = h 1 + h 2 =: h. (47) 
We know that the resolvent of B is a positive operator, so it suffices to take (h 1 , h 2 ) ∈ X + . Then u 1 and u 2 are nonnegative functions and an integration of the latter equation leads to (u 1 (s) + u 2 (s))ds ≤ h L 1 < ∞ by passing to the limit, whence

γ 1 (m)u 1 (m)+γ 2 (m)u 2 (m)+λ m 0 (u 1 (s)+u 2 (s))ds+ m 0 µ(s)u 1 (s)ds = m 0 h ( 
u 1 + u 2 ∈ L 1 (0, ∞) so u 1 ∈ L 1 (0, ∞) and u 2 ∈ L 1 (0, ∞). Thus λ ∈ ρ(B) for every λ > 0 and s(B) ≤ 0.
Now let H := (h 1 , h 2 ) ∈ X + and λ := -lim sup x→∞ µ(x) -ε, with ε > 0. We know that there exists η > 0 such that

µ(x) ≤ lim sup x→∞ µ(x) + ε/2, ∀x ≥ η, so λ + µ(x) ≤ -ε/2 < 0, ∀x ≥ η. Suppose that λ ∈ ρ(B)
, then an integration of (47) between η and ∞ implies that 0 ≥ -γ 1 (η)u 1 (η) -γ 2 (η)u 2 (η) + By Remark 10, we have s(A 2 c2 ) < 0, so 0 ∈ ρ(A 2 c2 ) and u 2 ∈ D(A 2 c2 ) ⊂ L 1 (0, ∞). Consequently U ∈ D(B) so 0 ∈ ρ(B) and s (B) < 0.

Remark 11. We suspect that the spectra of A 1 µ , A 2 c2 and B are invariant by translation along the imaginary axis (and therefore are half-spaces), in the spirit of [START_REF] Lods | Spectral properties of general advection operators and weighted translation semigroups[END_REF]. We conjecture also that their spectrum consist of essential spectrum only.

Remark 12. If σ(B) = σ ess (B) (see Remark 11), then the stability of the essential spectrum given in the proof of Theorem 3.4 implies that the essential type of {T A (t)} t≥0 is equal to s(B). In this case, the sufficient condition (42) for the existence of a spectral gap for {T A (t)} t≥0 is also necessary.

Under suitable assumptions, we can compute s(B). We see that C(0) = ε 2 > 0. Since C is a continuous function, then we can find η * > 0 small enough such that C(η * ) > 0. Thus there exists δ > 0 such that for every s ≥ δ, we have 

2

 2 (x) > 0 then s(A) ≥ 0 and s(B) < 0 (see Theorem 3.9). 9. We show also a "converse" statement: if ∞ 0 β(s, y)ds ≤ µ(y), ∀y ≥ 0 and lim x→∞ c 2 (x) = 0 or lim x→∞ µ(x) = 0 then s(B) = s(A) = 0 (see Theorem 3.10).

Remark 1 . 1 -

 11 According to the general criterion of weak compactness (see e.g. Section 4 in[START_REF] Weis | A generalization of the vidav-jorgens perturbation theorem for semigroups and its application to transport theory[END_REF]), the third hypothesis amounts tosup y∈[0,m] m 0 β(s, y)ds < ∞, lim |E|→0 sup y∈[0,m] E β(s, y)ds = 0and is satisfied as soon as there exists β ∈ L 1 (0, m) such that β(s, y) ≤ β(s) a.e. (s, y) ∈ [0, m] 2 . This is the case for example if β is continuous on [0, m] 2 . Submitted to Discrete Contin. Dyn. Syst. Ser. B

  then it follows (see e.g.[START_REF] Nagel | One-parameter semigroups of positive operators[END_REF] Theorem 1.11, C-II, p. 255) that {T A+B1 (t)} t≥0 is positive. Finally, since B 2 and B 3 are positive operators, then the C 0semigroups {T A+B1+B2 (t)} t≥0 and {T A (t)} t≥0 are also positive. 8 Feb 2019 01:06:36 PST Version 1 -Submitted to Discrete Contin. Dyn. Syst. Ser. B

  ] Theorem VIII.7, p. 129), and D(A) = D(A) since D ∈ L(X ) (see e.g. [9] Proposition II.4.25, p. 117).

1 -

 1 Submitted to Discrete Contin. Dyn. Syst. Ser. B

Theorem 2 . 16 .

 216 Suppose that (13) and (24) are verified. We thus defineb 1 := inf{δ ∈ [0, m] : , y)dyds > 0} < m.We suppose also that |supp (c 1 ) ∩ [b 1 , m]| = 0 (33) and ∀ε ∈ (b 1 , m) :

3 . 2 .Theorem 3 . 3 .

 3233 t≥0 and {T A (t)} t≥0 respectively, since B 1 , B 2 and B 3 are bounded operators. 8 Feb 2019 01:06:36 PST Version 1 -Submitted to Discrete Contin. Dyn. Syst. Ser. B On irreducibility. Define the following hypotheses: ∀ε ∈ (0, ∞) : The C 0 -semigroup {T A (t)} t≥0 is irreducible if and only if the assumptions (38)-(39)-(40) are satisfied.

Theorem 3 . 4 .

 34 Let the operatorB := A + B 1 + B 2(41) with domain D(B) = D(A). If (38)-(39)-(40) are satisfied and lim λ→s(B)

  ) ≤ lim sup x→∞ µ(x) + ε/2for every s ≥ s. Consequently we get

8

  Feb 2019 01:06:36 PST Version 1 -Submitted to Discrete Contin. Dyn. Syst. Ser. B Theorem 3.7. We have -lim sup x→∞ µ(x) ≤ s(B) ≤ 0 and in particular -∞, -lim sup x→∞ µ(x) ⊂ σ(B).

  µ(s))(u 1 (s) + u 2 (s))ds ≥ ∞ η h(s)ds. Taking h ∈ L 1 (0, ∞) such that∞ η h(s)ds > 0 would lead to a contradiction. Thus -lim sup x→∞ µ(x) -ε ∈ σ(B) 8 Feb 2019 01:06:36 PST Version 1 -Submitted to Discrete Contin. Dyn. Syst. Ser. B for every ε > 0 and s(B) ≥ -lim sup x→∞ µ(x).

Finally, suppose thatη u 1

 1 lim inf x→∞ µ(x) > 0 and lim inf x→∞ c 2 (x) > 0. Let ε > 0, then there exists η > 0 such thatµ(x) ≥ ε/2, ∀x ≥ η. Let λ = 0 and H := (h 1 , h 2 ) ∈ X + . The solution of (λI -B)U = H, U (0) = (0, 0) satisfies (47) and an integration lead toγ 1 (m)u 1 (m) + γ 2 (m)u 2 (m) + m 0 µ(s)u 1 (s)ds = )u 1 (s)ds ≤ h L 1 < ∞. Consequently ∞ (s)ds < ∞ and u 1 ∈ L 1 (0, ∞). The second equation of (46) implies that (λ -A 2 c2 )u 2 = h 2 + c 1 u 1 ∈ L 1 (0, ∞).

Theorem 3 . 8 . 1 - 2 ≥ ε 2

 38122 Suppose that the limits l µ := lim x→∞ µ(x), l 1 := lim x→∞ c 1 (x)exist and that c 2 ∈ R + . Thens(B) = -(l 1 + c 2 + l µ ) + (l 1 + c 2 + l µ ) 2 -4l µ c 2 2. Submitted to Discrete Contin. Dyn. Syst. Ser. BProof. If l µ = 0, then it is clear, with Theorem 3.7, that s(B) = 0. If c 2 = 0, then s(A 2 c2 ) = 0 by Remark 10. Since B 2 is a positive operator, we readily see thats(B) ≥ s(A + B 1 ) = max{s(A 1 µ+c1 ), s(A 2 c2 )}. (48)Consequently s(B) ≥ 0 and the equality holds by Theorem 3.7. Suppose now thatc 2 > 0, l µ > 0.Define the second order polynomial functionP : λ → λ 2 + λ(l 1 + c 2 + l µ ) + l µ c 2 whose discriminant is ∆ = l 2 1 + 2l 1 c 2 + 2l µ l 1 + (c 2 -l µ ) 2 ≥ 0 and let λ * := -(l 1 + c 2 + l µ ) + (l 1 + c 2 + l µ ) 2 -4l µ c 2 2 < 0.We know by Theorem 3.7 thats(B) < 0 since c 2 > 0 and l µ > 0. Let ε ∈ (0, -λ * ), λ := λ * + ε < 0 and (h 1 , h 2 ) ∈ X + . The solution U := (u 1 , u 2 ) of (λI -B)U = H, U(0)= (0, 0) satisfies (46). We multiply the first equation by (λ + c 2 ) and the second one by c 2 , then we do the sum of both equations. We obtain:(λ+c 2 )(γ 1 u 1 ) +c 2 (γ 2 u 2 ) +[λ 2 +λ(c 1 +c 2 +µ)+µc 2 ]u 1 = (λ+c 2 )h 1 +c 2 h 2 =: h (49)where h ∈ L 1 (0, ∞). By assumptions made on c 1 and µ, we know that for every η > 0, there exists δ > 0 such that|µ(s) -l µ | ≤ η, |c 1 (s) -l 1 | ≤ η, ∀s ≥ δ.Moreover, we haveλ 2 + λ(c 1 (s) + c 2 (s) + µ(s)) + µ(s)c 2 (s) ≥ (λ * + ε) 2 + (λ * + ε)(l 1 + c 2 + l µ + 2η) + c 2 (l µ -η) = ε 2 + 2ελ * + 2ηλ * + ε(l 1 + c 2 + l µ + 2η) -ηc 2 = ε[2λ * + (l 1 + c 2 + l µ )] + ε 2 + 2λ * η + 2εη -ηc + 2λ * η + 2εη -ηc 2 =: C(η)for every s ≥ δ, since P (λ * ) = 0 and 2λ * ≥ -(l 1 + c 2 + l µ ).

λ 2 + 1 -

 21 λ(c 1 (s) + c 2 (s) + µ(s)) + µ(s)c 2 (s) ≥ C(η * ) > 0.An integration of (49) and some lower bounds lead to(λ + c 2 ) m δ (γ 1 u 1 ) (s)ds + c 2 m δ (γ 2 u 2 ) (s)ds + C(η * ) Submitted to Discrete Contin. Dyn. Syst. Ser. B
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  Then Y is invariant under {T A (t)} t≥0 , and there exists a projection P0 of rank one, in Y such that lim

	t→∞
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	if the latter exists.
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	Note that, for every y ∈ [0, η]

Moreover, we know that r σ (λ -A) -1 = 1 λ -s (A) (see [START_REF] Nagel | One-parameter semigroups of positive operators[END_REF] Proposition 2.5, p. 67), so we get s(A) > -∞. 2. Now to prove the converse, we use the contraposition. Suppose that the assumption [START_REF] Rotenberg | Transport theory for growing cell populations[END_REF] is not satisfied, that is

i.e. β(s, y) = 0, a.e. s < y. Suppose momentarily that there exists a Volterra operator V in L 1 (0, m) such that

for every λ > -∞, where A 1 0 is given by [START_REF] De Pagter | Irreducible compact operators[END_REF]. We would have r σ (λ -(A 1 0 + K)) -1 ≤ r σ (V ) = 0 and then

= 0 since r σ (λI -A 2 0 ) -1 ≤ r σ (λI -A) -1 = 0. Consequently we have s(A + B 3 ) = -∞. By assumption, we know that

where V 2 and B2 are respectively defined by [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF] and [START_REF] Rossa | Quiescence as an explanation for asynchronous exponential growth in a size structured cell population of exponentially growing cells. I[END_REF]. The fact that B2 and (V, V 2 ) T commute implies that

using Lemma 2.8 and since V and V 2 are Volterra operators. Consequently, we have

for every λ > -∞ and

by using [START_REF] Farkas | On a size-structured two-phase population model with infinite states-at-birth[END_REF]. Finally we have

Consequently it remains to prove [START_REF] Webb | Population models structured by age, size, and spatial position[END_REF]. First, we know that 

for s, t ≥ 0, with the Dirichlet boundary conditions [START_REF] Arino | Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence[END_REF]. Let the Banach space

We denote by X + the nonnegative cone of X . We now introduce some hypotheses on the different parameters:

β, µ, c 1 , c 2 ≥ 0 and there exists γ 0 > 0 such γ 1 (s) ≥ γ 0 , γ 2 (s) ≥ γ 0 a.e. s ≥ 0, 3. the operator

is weakly compact.

Using (35), we define

with domain

We decompose B into three operators:

We are then concerned with the following Cauchy problem Remark 9) given by ( 37) is nonincreasing in λ. Consequently

So we get

Now, define the operators

We give now more information on the spectrum of A 1 µ . Theorem 3.6. We have

In particular s A 

Finally u 1 ∈ L 1 (0, ∞) and, using the second equation of (46), we get u 2 ∈ L 1 (0, ∞).

Consequently we have λ * + ε ∈ ρ(B) for every ε > 0, so s(B) ≤ λ * . If l 1 = 0, then we have λ * = max{-l µ , -c 2 } and max{s(A 1 µ+c1 ), s(A 2 c2 )} = max{-l µ , -c 2 }, by using Theorem 3.6 and Remark 10. Consequently, using (48), we get s(B) ≥ λ * and the equality holds. Suppose in the following that l 1 > 0.

We see that

Let H ∈ X + , λ := λ * -ε < 0, with ε > 0 small enough such that λ > -c 2 (which is possible since λ * > -c 2 ). Suppose that λ ∈ ρ(B), then U := (λI -B) -1 H = (u 1 , u 2 ) satisfies (49). By assumptions on the parameters, we have

Taking ε small enough such that ε ≤ l 1 /2, lead to

By continuity of C, we can find η * small enough such that C(η * ) < 0. Thus there exists δ > 0 such that

An integration of (49) between δ and ∞ leads to

We choose (h 1 , h 2 ) ∈ X + such that and the equality follows.

3.5. On the existence of the spectral gap. This subsection deals with different cases where one can check directly the existence or not of a spectral gap. Then we have s(A) ≥ 0 and s(B) < 0.

Proof. The fact that s(B) < 0 is given by Theorem 3.7. To prove that s(A) ≥ 0, let the initial condition (u 0 1 , u 0 2 ) ∈ D(A) ∩ X + . An integration of (35) gives us d dt

for every t ≥ 0. The sum of the latter equations then lead to

by assumption. Consequently we get

By density of D(A) ∩ X + in X + , the latter inequality holds for every (u 0 1 , u 0 2 ) ∈ X + and T A (t) L(X ) ≥ 1 for every t ≥ 0. Consequently we have 

By density, we then get

for every (u 0 1 , u 0 2 ) ∈ X + . Consequently, we have

for every t ≥ 0 so ω 0 (A) ≤ 0 and

Since A is a positive and bounded perturbation of B, we have

whence the result.

Remark 13. We note that in contrast to the case m < ∞, the irreducibility of the semigroup does not imply the existence of spectral gap since (50) and (51) are compatible with the irreducibility of the semigroup.

3.5.2. A particular case. We show now that the spectral gap is always present when some parameters are constant. Proof. The computation of s(B) follows from Theorem 3.8: 

We multiply the first equation by λ + c 2 and the second one by c 2 , then the sum implies that

An integration of the latter equation leads to

and replacing λ by its expression, we obtain