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Abstract. In this work, we consider a reaction-diffusion system, modeling the

interaction between nutrients, phytoplanktons and zooplanktons. Using a semigroup

approach in L2, we prove global existence, uniqueness and positivity of the solutions.

The Holling type 2 nonlinearities, i.e of rational type with singularity, are handled

by providing estimates in L∞. The article finally exhibits some time asymptotics

properties of the solutions.
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1. Introduction

Red, or brown, tides are outbreaks of algae in the oceans, quite often harmful, that

threaten aquatic life and constitute a serious problem for the fishing industry and

tourism. Models for plankton dynamics have been devised since more than two decades,

because the phytoplankton-zooplankton trophic interactions are at the base of the
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food chain on our planet, [16] and disturbances to this basic ecosystem such as those

mentioned above may have serious consequences that are far beyond the nutrition chain

and may involve the worldwide oxygen production, see [35] and the references quoted

there. This is mainly the consequence of the unregulated human activities, [2], e.g.

utilization of chemical pesticides in agriculture and the release of untreated wastewaters,

[14], that ultimately flow into the shallow waters near the coastlines and thus contribute

to the raise in the organic nutrients concentration in the ocean, [20]. The harmful

algal blooms deplete the water from its oxygen content and thereby threaten the life

of aquatic creatures. For these reasons it is important to be able to predict them

and a fundamental tool is represented by mathematical models, e.g. [19, 48, 49]. In

particular, one of the first models explicitly taking into account the pathogenic agents is

[7]. The phytoplankton is split among susceptible and infected, and zooplankton grazes

on both, population oscillations are discussed and compared with data on Noctiluca

scintillans and diatoms. A similar, more complicated disease transmission, usually

known as standard incidence, is introduced in [43] and further investigated to show

chaotic behavior in [50]. However, the type of disease transmission used is discovered to

affect the system’s steady states, [42, 26], but coexistence is also possible if the incidence

is predator-dependent, [31], as well as the emergence of a disease-induced strong Allee

effect for the predators. In addition, predators survival improves, if zooplankton does

not feed on alternative resources, but the spreading of the epidemics is enhanced, that

in the opposite case would be eradicated. When the phytoplankton carrying capacity

is large, i.e. under eutrophic conditions, it may further destabilize the system. Broader

models involving alternative food supply for predators, infected phytoplankton being

unable to feed, selective predation, harvesting and explicitly taking into account the

nutrients are present in the literature, [12, 11]. In some cases, criteria for the extinction

of the plankton populations can be derived and the associated risks are discussed.

Most of these dynamical models have been formulated by explicitly avoiding space,

assuming that the ocean environment properties are independent of time or position

in space, [27]. But this is unrealistic as hydrodynamics plays an important role in the

shaping of an aquatic community, as well as factors as temperature, salinity, turbulent

mixing intensity. A consequence is the fact that spatial structures become possible in

this context, both induced by the heterogeneities in the aquatic medium and by the

trophic interactions, [46, 47]. Thus multi-habitat and multi-patch formation is possible,

[28].

To investigate the role of toxic algae in the occurrence of red, or brown, blooms and

their termination several two-population toxic producing phytoplankton-zooplankton

models have been introduced in [10]. The toxic producing phytoplankton is found to

possess also a self regulation property. Also, two toxic phytoplankton populations reduce

the coexistence population values, thereby reducing the planktonic blooms, [41] and a

similar outcome occurs if one phytoplankton is harmless, as the interspecific competition

and the growth rate of the zooplankters is reduced, [39]. This is in line with other

researches indicating that this bottom-up interpretation of the control of harmful algal
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blooms, [44, 40, 24].

Another mechanism proposed for the control of phytoplankton dynamics is via

efficient grazing by zooplankton, [8, 22, 16, 30, 6], in agreement also with empirical

data, [17, 45, 23].

In the literature, also the mixing of these two regulatory mechanisms has been

proposed, [6]. Large amplitude oscillations of plankton populations are predicted by

theoretical analyses, when nutrients abound in the ocean, [38, 21, 16], but are not

confirmed by empirical data, [45, 23, 8], originating thus the paradox of enrichment,

[38, 21]. The original Rosenzweig model has been modified to improve it, in particular

accounting for the zooplankton vertical movement, following phytoplankton for feeding,

[18]. The latter indeed distributes inhomogenously in view of the diminishing light in

the water with depth, due to absorption in the upper layers, [37]. The properties of

the combined above mechanisms leading oscillations to settle to a stable coexistence

equilibrium have been elucidated in [29, 18].

Based in part on these results, further explorations have been carried out in [5],

including a depth-dependent vertical turbulent diffusion, providing a more realistic

scenario. These results are related to the following model equations, where t > 0,

h ∈ [0, H], D,H, r, γ, χ, α, β, p,mp, k,m are positive and where p, n and z represent,

respectively, the phytoplankton and nutrients densities and the average density of

zooplankton: 
∂n
∂t

= D ∂2n
∂h2
− Lh(p)

(
n

1+χn

)
,

∂p
∂t

= D ∂2p
∂h2

+ Lh(p)
(

n
1+χn

)
− αz(t)p2

p(1+βp)
−mpp,

dz
dt

= kz(t)
Hp

∫ H

0

αp(t, h)2

1 + βp(t, h)
dh−mz(t),

(1)

with Lh the operator given either by

Lh(p) = r exp(−γh)p (2)

or by

Lh(p) = r exp

(
−ν
∫ h

0

p(t, x) dx

)
p (3)

assuming, as the case may be, an exponential decay of light with increasing depth or a

light attenuation due to phytoplankton self-shading. Moreover, system (1) is equipped

with the following boundary conditions:

∂n

∂h
(t, 0) = 0, n(t,H) = nH ,

∂p

∂h
(t, 0) = 0,

∂p

∂h
(t,H) = 0,

for every t > 0, where nH ≥ 0 is constant. We also add some initial conditions:

n(0, h) = n0(h), p(0, h) = p0(h), z(0) = z0.

In this paper we reconsider the models introduced in [5] and prove their well-

posedness. To this end, tools from functional analysis are employed.
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In this paper, we want to prove existence and uniqueness of a nonnegative solution

for Problem (1) for both cases of operator Lh given in (2)-(3), in a L2 framework. To

achieve that goal, we follow a standard line of proof, sketched next with an outline of

the changes and difficulties encountered. We rewrite the model as a Cauchy problem, we

prove that the linear part generates a positive C0-semigroup, we check that the nonlinear

part verifies a Lipschitz property and is positive up to a translation (i.e. (f + λI) is

positive for some λ). These latter points then allow us to use a fixed point theorem

to get the desired result. Such kind of mathematical developments have already been

published for PDE structured models ([25], [33], [34]), reaction diffusion systems ([1],

[3], [4], [15]) and a case mixing diffusion and age-structure [51].

In the present model, some new technical difficulties appear, due to the shape of

the system. First, there is a nonhomogeneous Dirichlet boundary condition for n, so we

need to make the change of variables:

ñ = n− nH ,

in order to get a Cauchy problem. Consequently, in addition to the proof that the linear

part generates a positive C0-semigroup, we also need to prove a lower bound property,

implying that {f ∈ L2(0, H) : f(x) ≥ −nH a.e. x ∈ [0, H]} is invariant under the

semigroup. Moreover, another critical point in the mathematical analysis stands in a

singularity of the nonlinear part at:

n = −1/χ

so we need to restrict the space to a subset where the denominator is nonzero. A final

difficulty is that the nonlinear part does not satisfy the required Lipschitz property in

L2, but does in L∞. Consequently, we need some L∞ estimates, that are proved by

using the truncation method of Stampacchia (see e.g. [9]).

The paper is structured as follows: in the next section, we make explicit the

framework used in the sequel, taking into account the model specificities as previously

described. Section 3, dealing with well-posedness, is dedicated to the main results of

the article; we first prove that the linear part generates a C0-semigroup that satisfies

some lower and upper bounds; we then handle the nonlinear part showing it satisfies

a Lipschitz property and checking that it is positive up to a translation, implying the

existence and uniqueness of a nonnegative solution; we then show that the solution is

global since it cannot explode in finite time, prove that n is bounded and give a sufficient

condition to get extinction for p and z. All these results are obtained for the two cases

of operator Lh as defined in (2)-(3).

2. Framework

Since the Dirichlet condition at h = H, for n, is nonhomogenous, we introduce the

following change of variable:

ñ = n− nH . (4)
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Thus 
∂ñ
∂t

= D ∂2ñ
∂h2
− Lh(p)

(
ñ+nH

1+χ(ñ+nH)

)
,

∂p
∂t

= D ∂2p
∂h2

+ Lh(p)
(

ñ+nH

1+χ(ñ+nH)

)
− αz(t)p2

p(1+βp)
−mpp,

dz
dt

= kz(t)
Hp

∫ H

0

αp(t, h)2

1 + βp(t, h)
dh−mz(t),

(5)

for every t ≥ 0, h ∈ [0, H], with the boundary conditions:

∂p

∂h
(t, 0) = 0,

∂p

∂h
(t,H) = 0,

∂ñ

∂h
(t, 0) = 0, ñ(t,H) = 0.

Since n = ñ + nH , it suffices to prove that the problem (5) is well-posed in a suitable

Banach space, in the semigroups setting. We will then drop the tilde in the following

and write n instead of ñ, for a better reading. We work in the Hilbert space

X = (L2(0, H)× L2(0, H)× R, ‖ · ‖X ),

endowed with the norm

‖(n, p, z)‖X = ‖n‖L2(0,H) + ‖p‖L2(0,H) + |z|

and the scalar product

〈(n1, p1, z1), (n2, p2, z2)〉X = 〈n1, n2〉L2(0,H) + 〈p1, p2〉L2(0,H) + z1z2.

We define the linear operator A : D(A) ⊂ X → X by:

A (n ) pz = (D )n′′Dp′′ −mpp−mz,

with domain D(A) given by

{(n, p, z) ∈ H2(0, H)×H2(0, H)× R : n′(0) = n(H) = p′(0) = p′(H) = 0}.

Since we are interested in the positivity of the solutions, we denote by X+ the positive

cone of X . Actually, because of the change of variable (4), we have

n ≥ 0⇐⇒ ñ ≥ −nH ,

where n and ñ are respectively the solutions of (1) and (5). To this end we define, for

every ε ≥ 0, the space

Xε := {(n, p, z) ∈ X : (n+ ε1[0,H], p, z) ∈ X+}.

We see that X0 = X+ and the sequence of spaces {Xε}ε≥0 is increasing in the sense that

X+ ⊂ Xε1 ⊂ Xε2 , ∀ε2 ≥ ε1 ≥ 0.



A reaction-diffusion model of plankton communities 6

We will then obtain the positivity when considering ε = nH . Because of the singularity

of the nonlinear part in (5) at

−nH −
1

χ

we define, according to the two cases of operator Lh given in (2)-(3), the functions

f1 : XnH+(2χ)−1 → X , f2 : XnH+(2χ)−1 → X by:

f1(n, p, z) =


−r exp(−γ·)p

(
n+nH

1+χ(n+nH)

)
r exp(−γ·)p

(
n+nH

1+χ(n+nH)

)
− αzp2

p(1+βp)

kz
Hp

∫ H

0

αp(h)2

1 + βp(h)
dh

 ,

f2(n, p, z) =


−r exp(−ν

∫ h
0
p(x) dx)p

(
n+nH

1+χ(n+nH)

)
r exp(−ν

∫ h
0
p(x) dx)p

(
n+nH

1+χ(n+nH)

)
− αzp2

p(1+βp)

kz
Hp

∫ H

0

αp(h)2

1 + βp(h)
dh

 .

Lemma 1. The ranges of f1 and f2 are included in X .

Proof. Let (n, p, z) ∈ XnH+(2χ)−1 , then

‖f1(n, p, z)‖2X ≤ 2r2

χ2 ‖p‖2L2 + α2|z|2
β2p2
‖p‖2L2 + k|z|α

Hp
‖p‖2L2 <∞.

The same inequality holds for f2.

When focusing on (5), we will consequently study thereafter the following abstract

Cauchy problems:

U ′(t) = AU(t) + fi(U(t)), ∀t > 0, in XnH
,

U(0) = U0 ∈ XnH
⊂ XnH+(2χ)−1 ,

(6)

for every i ∈ {1, 2}, where U(t) = (n(t), p(t), z(t))T .

The approach used to prove existence and uniqueness of a solution of (6) is classical

(see e.g. [32]). The techniques used for both models being the same, we only prove the

result for the first model, then give the idea for the second model. We first show that A
generates a C0-semigroup in X , then we prove some Lipschitz property for fi. Because

of the nonlinearity taken in (5), fi is not locally Lipschitz in X . For that reason, we

define the Banach space

X∞ = (L∞(0, H)× L∞(0, H)× R, ‖ · ‖X∞) ⊂ X

endowed with the norm

‖(n, p, z)‖X∞ = ‖n‖L∞(0,H) + ‖p‖L∞(0,H) + |z|.
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We will then obtain existence and uniqueness of a solution of (5) in X∞. In order to

have some positivity, we define X∞+ the positive cone of X∞ and the spaces

X∞ε := {(n, p, z) ∈ X∞ : (n+ ε1[0,H], p, z) ∈ X∞+ } ⊂ X∞,

for every ε ≥ 0. Now that the framework is clear, we can deal with the well-posedness

of the Cauchy problem (6).

3. Well-posedness

3.1. Linear part

We start this section by handling the linear part.

Theorem 2. For every ν ≥ 0, the operator A − νI generates a C0-semigroup

{TA−νI(t)}t≥0 on X . Moreover it satisfies

∀u0 ∈ X , t 7−→ TA−νI(t)u0 ∈ C([0,∞),X ) ∩ C1((0,∞),X ), (7)

‖TA−νI(t)u0‖X∞ ≤ ‖u0‖X∞ , ∀t ≥ 0, ∀u0 ∈ X∞, (8)

and

TA−νI(t)u0 ∈ Xε, ∀t ≥ 0, ∀ε ≥ 0, ∀u0 ∈ Xε. (9)

Note that (9) implies the positivity of {TA−νI(t)}t≥0.

Proof. The sketch of the proof is the following: we first prove that A−νI generates a C0-

semigroup by verifying the surjectivity and the dissipativity properties. We deduce that

for every initial condition (n0, p0, z0) ∈ X , the solution of the linear problem verifies (7).

We then show that this solution (denoted by (n, p, z)) verifies the following inequalities:

min{0, inf
h∈[0,H]

n0(h)} ≤ n(t, h) ≤ max{0, sup
h∈[0,H]

n0(h)}, (10)

min{0, inf
h∈[0,H]

p0(h)} ≤ p(t, h) ≤ max{0, sup
h∈[0,H]

p0(h)}, (11)

−|z0| ≤ z(t) ≤ |z0|, (12)

for every t ≥ 0, a.e. h ∈ [0, H] and (8) follows. We then check that {TA−νI(t)}t≥0 is

positive. Finally we prove (9).

(i) Clearly, D(A) is dense into X . Moreover, for every (n, p, z) ∈ D(A), we have

〈A(n, p, z), (n, p, z)〉X
= 〈Dn′′, n〉L2 + 〈Dp′′ −mpp, p〉L2 −mz2

= D

∫ H

0

n(h)
∂2n

∂h2
dh+D

∫ H

0

p(h)
∂2p

∂h2
dh−mp

∫ H

0

p(h)2dh−mz2

= −D
∫ H

0

(
∂n

∂h

)2

dh−D
∫ H

0

(
∂p

∂h

)2

dh−mp

∫ H

0

p(h)2dh−mz2

≤ 0.
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Consequently, A is dissipative in X . Let us show now that λI − A : D(A) → X
is surjective for any λ > 0. Let H = (hn, hp, hz) ∈ X and λ > 0. We look for

U := (n, p, z)T ∈ D(A) such that (λI −A)U = H, i.e.

λn−Dn′′ = hn, (13)

λp−Dp′′ +mpp = hp, (14)

λz +mz = hz,

so

z =
hz

λ+m
.

We multiply (13) and (14) respectively by u ∈ H1(0, H) and v ∈ H1(0, H), then

integrate between 0 and H to get
λ

∫ H

0

nu−
∫ H

0

Dn′′u =

∫ H

0

hnu,

λ

∫ H

0

pv −
∫ H

0

Dp′′v +mp

∫ H

0

pv =

∫ H

0

hpv.

An integration by parts gives

λ

∫ H

0

nu+

∫ H

0

Dn′u′ =

∫ H

0

hnu, (15)

λ

∫ H

0

pv +

∫ H

0

Dp′v′ +mp

∫ H

0

pv =

∫ H

0

hpv, (16)

whence

a1(n, u) = L1(u), a2(p, v) = L2(v),

where the bilinear forms a1 : V × V → R, a2 : H1(0, H) ×H1(0, H) → R and the

linear forms L1 : V → R, L2 : H1(0, H)→ R are defined by:

a1(n, u) = λ

∫ H

0

nu+

∫ H

0

Dn′u′,

a2(p, v) = λ

∫ H

0

pv +

∫ H

0

Dp′v′ +mp

∫ H

0

pv,

L1(u) =

∫ H

0

hnu, L2(v) =

∫ H

0

hpv,

where

V := {u ∈ H1(0, H) : u(H) = 0}.

A simple application of Lax-Milgram theorem implies that for every (hn, hp) ∈
(L2(0, H))2, there exists a unique (n, p) ∈ V ×H1(0, H) such that:{

a1(n, u) = L1(u),

a2(p, v) = L2(v),

for every (u, v) ∈ V ×H1(0, H).
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Now, we verify that U belongs to D(A). For this, we use (15) and (16) with

u ∈ C∞c ([0, H]) and v ∈ C∞c ([0, H]) respectively, where C∞c (0, H) refers to C∞
functions with compact support. Then, we get

D

∣∣∣∣∫ H

0

n′u′
∣∣∣∣ ≤ [|λ|‖n‖L2(0,H) + ‖hn‖L2(0,H)]‖u‖L2(0,H) ≤ c1‖u‖L2 ,

D

∣∣∣∣∫ H

0

p′v′
∣∣∣∣ ≤ [(|λ|+ |mp|)‖p‖L2(0,H) + ‖hp‖L2(0,H)]‖v‖L2(0,H) ≤ c2‖v‖L2 ,

for some constant c1 and c2. Consequently Dn′ ∈ H1(0, H) and Dp′ ∈ H1(0, H), so

n ∈ H2(0, H) and p ∈ H2(0, H). Finally, to prove the surjectivity, an integration

by parts of (15)-(16) with u ∈ Cc(0, H) and v ∈ Cc(0, H) implies (13) and (14).

Moreover, an integration by parts of (15) with u ∈ C(0, H), u(0) = 1, u(H) = 1

implies that n′(0) = 0. Similarly, we get p′(0) = 0 and p′(H) = 0 after an

integration by parts of (16) with v ∈ C(0, H) and respectively v(0) = 1, v(H) = 0

and v(0) = 0, v(H) = 1. Thus A generates a C0-semigroup {TA(t)}t≥0 by Lumer-

Phillips theorem, and A−νI also generates a C0-semigroup {TA−νI(t)}t≥0 for every

ν ≥ 0 by bounded perturbation arguments.

(ii) Let ν ≥ 0. We readily see that A − νI is a symmetric operator. It is actually a

self-adjoint operator since it is m-dissipative (with [9], Proposition VII.6, p. 113).

Using [9], Theorem VII.7, p. 113, we obtain that the solution of{
U ′(t) = (A− νI)U(t)

U(0) = u0 ∈ X
(17)

verifies (7).

(iii) Let ν ≥ 0. We want to prove that the solution U(t) := (n(t, ·), p(t, ·), z(t)) of{
U ′(t) = (A− νI)U(t)

U(0) = (n0, p0, z0) ∈ X
(18)

verifies (10)-(11)-(12), for every t ≥ 0. It is clear that

z(t) = z0e
−(ν+m)t

so that (12) ¡is satisfied for every t ≥ 0. To get the result on n and p, we use the

truncation method of Stampacchia (see e.g. [9], Theorem X.3, p. 211). In all the

following, we will use the notation

Kσ := max{0, sup
h∈[0,H]

σ(h)} ≥ 0, Kσ := −min{0, inf
h∈[0,H]

σ(h)} ≥ 0

for every function σ ∈ L∞(0, H). Define the function G ∈ C1(R) such that

(a) |G′(x)| ≤M, ∀x ∈ R,

(b) G is strictly increasing on (0,∞),

(c) G(x) = 0, ∀x ≤ 0.
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We introduce the functions

κ : x 7→
∫ x

0

G(σ)dσ, ∀x ∈ R, (19)

ϕ1 : t 7→
∫ H

0

κ(p(t, h)−Kp0)dh, ϕ2 : t 7→
∫ H

0

κ(p(t, h)−Kp0)dh, ∀t ≥ 0,

ϕ3 : t 7→
∫ H

0

κ(n(t, h)−Kn0)dh, ϕ4 : t 7→
∫ H

0

κ(n(t, h)−Kn0)dh, ∀t ≥ 0,

where

p := −p, n := −n.
Define the set

Y := {ϕ ∈ C([0,∞),R), ϕ(0) = 0, ϕ ≥ 0 on [0,∞), ϕ ∈ C1((0,∞),R)}.

We can show that ϕi ∈ Y for every i ∈ J1, 4K, using (7). Moreover, we have

ϕ′1(t) =

∫ H

0

G(p(t, h)−Kp0)
∂p

∂t
(t, h)dh

=

∫ H

0

G(p(t, h)−Kp0)

(
D
∂2p

∂h2
(t, h)− (ν +mp)p(t, h)

)
dh

= −D
∫ H

0

G′(p(t, h)−Kp0)

∣∣∣∣∂p∂h(t, h)

∣∣∣∣2 dh
−
∫ H

0

G(p(t, h)−Kp0)(ν +mp)p(t, h)dh ≤ 0, ∀t > 0,

since G′ ≥ 0. Finally ϕ′1 ≤ 0 on (0,∞) and consequently ϕ1 ≡ 0, so

p(t, h) ≤ Kp0 ≤ max{0, sup
h∈[0,H]

p0(h)}, ∀t ≥ 0, a.e. h ∈ [0, H].

The same computations lead to

ϕ′2(t) = −D
∫ H

0

G′(p(t, h)−Kp0)

∣∣∣∣∂p∂h(t, h)

∣∣∣∣2 dh
−
∫ H

0

G(p(t, h)−Kp0)(ν +mp)p(t, h)dh ≤ 0

for every t > 0 and ϕ2 ≡ 0 on (0,∞), so

p(t, h) ≥ −Kp0 ≥ min{0, inf
h∈[0,H]

p0(h)}, ∀t ≥ 0, a.e. h ∈ [0, H]

and (11) is satisfied. Similarly, we have

ϕ′3(t) =

∫ H

0

G(n(t, h)−Kn0)
∂n

∂t
(t, h)dh

=

∫ H

0

G(n(t, h)−Kn0)

(
D
∂2n

∂h2
(t, h)− νn(t, h)

)
dh

= −D
∫ H

0

G′(n(t, h)−Kn0)

∣∣∣∣∂n∂h(t, h)

∣∣∣∣2 dh
−
∫ H

0

G(n(t, h)−Kn0)νn(t, h)dh ≤ 0, ∀t > 0,
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since G(n(t,H)−Kn0) = G(−Kn0) = 0. We can also show that

ϕ′4(t) ≤ 0, ∀t > 0

whence (10) holds. Considering an initial condition (n0, p0, z0) ∈ X∞ leads easily

to (8).

(iv) Let us prove now that {TA−ν(t)}t≥0 is positive for every ν ≥ 0, that is, the resolvent

Rλ(A− νI) := ((λ+ ν)I −A)−1

is positive for λ large enough (see e.g. [13], p. 165). Let ν ≥ 0, λ ≥ 0,

H := (hn, hp, hz) ∈ X+. As point 1. above, one can consider

U := (n, p, z) = (Rλ(A− νI))H ∈ D(A).

We have to prove that U ∈ X+. Since C([0, H]) is dense in L2(0, H), we may assume

without loss of generality (using the dissipativity and the closedness of A) that

hn ∈ C([0, H]), hp ∈ C([0, H]).

Thus, we have

−Dp′′ + (λ+ ν +mp)p = hp,

with p ∈ H2(0, H) ⊂ C([0, H]). Since hp is continuous, then the latter equation

implies that p′′ is also continuous and then p ∈ C2([0, H]). The absolute minimum

of p is achieved at some h ∈ [0, H]. Suppose that p(h) < 0. The function

q := −p

verifies the equation

Dq′′ − (λ+ ν +mp)q = hp ≥ 0,

and its absolute maximum is reached at h. If h = 0, then by Hopf’s maximum

principle (see [36], Theorem 4, p. 7), we would have

−p′(0) = q′(0) > 0,

which contradicts the Neumann boundary condition. If h = H then by Hopf’s

maximum principle, we would have

−p′(H) = q′(H) < 0,

which is absurd. Finally, if h ∈ (0, H) then

0 ≥ −Dp′′(h) = hp(h)− (λ+ ν +mp)p(h) > 0

which is not possible. Consequently

p(h) ≥ p(h) ≥ 0, ∀h ∈ [0, H].
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Similarly, n ∈ C2([0, H]) verifies the equation

−Dn′′ + (λ+ ν)n = hn ≥ 0.

Moreover, n reaches its absolute minimum at h ∈ [0, H]. If n(h) < 0, then the same

arguments than before lead to

h = H,

which contradicts the fact that n(H) = 0. Consequently

n(h) ≥ n(h) ≥ 0, ∀h ∈ [0, H].

Finally, it is clear that

z =
hz

λ+ ν +mp

≥ 0,

which proves that Rλ(A+ νI) is positive and consequently that the C0-semigroup

{TA−νI(t)}t≥0 is positive for every ν ≥ 0.

(v) Now we want to prove (9). Let ε ≥ 0, ν ≥ 0, (n0, p0, z0) ∈ Xε and (n, p, z) the

solution of (18). Because of the positivity of {TA−νI(t)}t≥0, it only remains to prove

that

n(t, h) ≥ −ε, ∀t ≥ 0, a.e. h ∈ [0, H]

which arises from (10).

3.2. Nonlinear part

In this section we handle the nonlinear part by showing a Lipschitz and a positivity

properties of fi. Let m > 0, then define the set

Bm := {(n, p, z) ∈ X∞ : ‖(n, p, z)‖X∞ ≤ m}.

Proposition 3. For every m > 0, there exists some constant km ≥ 0 such that for every

((n1, p1, z1), (n2, p2, z2)) ∈
(
X∞nH+(2χ)−1 ∩Bm

)2
, we have∥∥∥∥∥∥∥fi

 n2

p2
z2

− fi
 n1

p1
z1


∥∥∥∥∥∥∥
X∞

≤ km

∥∥∥∥∥∥∥
 n2

p2
z2

−
 n1

p1
z1


∥∥∥∥∥∥∥
X∞

.

Proof. We prove the result for f1, the case f2 being similar.
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Let ((n1, p1, z1), (n2, p2, z2)) ∈
(
X∞nH+(2χ)−1 ∩Bm

)2
. Some computations give∥∥∥∥f1 ( n2, p2, z2

)T
− f1

(
n1, p1, z1

)T∥∥∥∥
X∞

≤ 2r
∥∥∥ p2(n2+nH)
1+χ(n2+nH)

− p1(n1+nH)
1+χ(n1+nH)

∥∥∥
L∞

+ α
p

∥∥∥( p22z2
1+βp2

− p21z1
1+βp1

)∥∥∥
L∞

+ kα
Hp

∫ H

0

∣∣∣∣( p22(t, h)

1 + βp2(t, h)
− p21(t, h)

1 + βp1(t, h)

)∣∣∣∣ dh
≤ 4r (m‖n2 − n1‖L∞ + (m+ nH)‖p2 − p1‖L∞ + χm(m+ nH)

‖n2 − n1‖L∞) + αm2

p
(|z2 − z1|+ 2‖p2 − p1‖L∞ +mβ‖p2 − p1‖L∞)

+kαm2

p
(|z2 − z1|+ 2‖p2 − p1‖L∞ +mβ‖p2 − p1‖L∞),

which proves the result.

Proposition 4. For every m > 0, there exists λm ≥ 0 and ηm ≥ 0 such that for every

(n, p, z) ∈ X∞nH+(2χ)−1 ∩Bm, we have

fi(n, p, z) + λm(n, p, z) ∈ X∞ηm .

Proof. Let (n, p, z) ∈ X∞nH+(2χ)−1 ∩Bm, then

f1(n, p, z) + λm(n, p, z)

=


n
(
λm − r exp(−γ·) p

1+χ(n+nH)

)
− r exp(−γ·) pnH

1+χ(n+nH)

p
(
λm + r exp(−γ·) n+nH

1+χ(n+nH)
− αpz

p(1+βp)

)
z

(
λm + k

Hp

∫ H

0

αp(t, h)2

1 + βp(t, h)
dh

)
 .

It suffices to consider

λm =
αm2

p
+
r

χ
(20)

and

ηm = 2rmnH +mλm + 2rm2 (21)

which ends the proof.

3.3. Local existence and positivity

We are now able to show existence and uniqueness of a solution.

Theorem 5. Suppose that operator Lh has one of the shapes given in (2) or in (3).

Then For every initial condition (n0, p0, z0) ∈ X∞nH
, there exists a unique solution

(n, p, z) ∈ C
(
[0, tmax),X∞nH

)
for the system (5), where tmax ≤ ∞.

Proof. Let (n0, p0, z0) ∈ X∞nH
and

m = 2‖(n0, p0, z0)‖X∞ .
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Define the constants λm ≥ 0, ηm ≥ 0 respectively by (20) and (21), the linear operator

Am = A− λmI : D(A) ⊂ X → X ,

and for i = 1, 2 the nonlinear function

fm = fi + λmI : X∞nH+(2χ)−1 → X .

We readily see that Am is the infinitesimal generator of a C0-semigroup {TAm(t)}t≥0 on

X . Let

τ = min

{
1

2(km + λm)
,

1

2χηm

}
> 0.

A consequence of Theorem 2 and Proposition 3 is that the linear operator

G : C
(

[0, τ ],X∞nH+(2χ)−1

)
→ C([0, τ ],X )

defined by

G

 n(t, ·)
p(t, ·)
z(t)

 = TAm(t)

 n0

p0
z0

+

∫ t

0

TAm(t− s)fm

 n(s, ·)
p(s, ·)
z(s)

 ds (22)

is a 1/2-shrinking operator on

Z := C
(

[0, τ ],X∞nH+(2χ)−1 ∩Bm

)
with G(Z) ⊂ Bm, since

t ≤ τ ≤ 1

2(km + λm)
.

Moreover, using Theorem 2, the fact that

τ ≤ 1

2χηm
,

and Proposition 4, then

G

 n(t, ·)
p(t, ·)
z(t)

 ∈ XnH+(2χ)−1 ∀t ∈ [0, τ ].

Consequently G preserves the space Z. The Banach-Picard theorem then implies the

existence and uniqueness of a local solution

(n, p, z) ∈ C
(

[0, τ ],X∞nH+(2χ)−1 ∩Bm

)
.

It remains to prove that

n(t, h) ≥ −nH , ∀t ∈ [0, τ ], ∀h ∈ [0, H]. (23)
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First, suppose that

(n0, p0, z0) ∈ D(A) ∩ X∞nH
. (24)

Using [32, Theorem 6.1.7, p. 190], the solution (n, p, z) of (5) is classical. Consequently,

the function

n := −n

satisfies the equation

∂n

∂t
(t, h) = D

∂2n

∂h2
(t, h) + Lh(p)(t, h)

(
nH − n(t, h)

1 + χ(n+ nH)

)
,

for every t ∈ (0, τ ] and a.e. h ∈ [0, H]. Define the function

ϕn(t) =

∫ H

0

κ(n(t, h)− nH)dh,

where κ is given by (19), for every t ∈ (0, τ ]. We can check that

ϕn ∈ C([0, τ ],R), ϕn(0) = 0, ϕn ≥ 0 on [0, τ ], ϕn ∈ C1((0, τ ],R),

then some computations lead to

ϕ′n(t)

=

∫ H

0

G(n(t, h)− nH)
∂n

∂t
(t, h)dh

=

∫ H

0

G(n(t, h)− nH)

(
∂2n

∂h2
(t, h) + Lh(p)(t, h)

(
nH − n(t, h)

1 + χ(n(t, h) + nH)

))
dh

= −
∫ H

0

G′(n(t, h)− nH)

∣∣∣∣∂n∂h(t, h)

∣∣∣∣2 dh
+

∫ H

0

G(n(t, h)− nH)Lh(p)(t, h)

(
nH − n(t, h)

1 + χ(n(t, h) + nH)

)
dh

≤ 0

since

G(n(t,H)− nH) = 0, 1 + χ(n(t, h) + nH) ≥ 1/2, p(t, h) ≥ 0,

for every t ∈ (0, τ ] and a.e. h ∈ [0, H]. Thus we have

n(t, h) ≤ nH , ∀t ∈ [0, τ ], a.e. h ∈ [0, H].

Consequently (23) holds. Now suppose that

(n0, p0, z0) ∈ X∞nH
.

Since D(A)∩X∞nH
is dense into X∞nH

, there exists a sequence (nk0, p
k
0, z

k
0 )k≥0 ∈ D(A)∩X∞nH

such that

lim
k→∞
‖(n0, p0, z0)− (nk0, p

k
0, z

k
0 )‖X∞ = 0.
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For every k ≥ 0, there exists a unique solution (nk, pk, zk) ∈ C([0, τ ],X∞nH
) for the system

(5) with initial condition (nk0, p
k
0, z

k
0 ). Using (22), for every k ≥ 0, we get n(t, ·)

p(t, ·)
z(t)

−
 nk(t, ·)

pk(t, ·)
zk(t)


= TAm(t)

 n0 − nk0
p0 − pk0
z0 − zk0

+

∫ t

0

TAm(t− s)

fm
 n(s, ·)

p(s, ·)
z(s)

− fm
 nk(s, ·)

pk(s, ·)
zk(s)


 ds

for every t ∈ [0, τ ], so∥∥∥∥∥∥∥
 n(t, ·)

p(t, ·)
z(t)

−
 nk(t, ·)

pk(t, ·)
zk(t)


∥∥∥∥∥∥∥
X∞

≤

∥∥∥∥∥∥∥
 n0 − nk0

p0 − pk0
z0 − zk0


∥∥∥∥∥∥∥
X∞

+

∫ t

0

(km + λm)

∥∥∥∥∥∥∥
 n(s, ·)

p(s, ·)
z(s)

−
 nk(s, ·)

pk(s, ·)
zk(s)


∥∥∥∥∥∥∥
X∞

ds

≤

∥∥∥∥∥∥∥
 n0 − nk0

p0 − pk0
z0 − zk0


∥∥∥∥∥∥∥
X∞

+ τ(km + λm) maxs∈[0,τ ]

∥∥∥∥∥∥∥
 n(s, ·)

p(s, ·)
z(s)

−
 nk(s, ·)

pk(s, ·)
zk(s)


∥∥∥∥∥∥∥
X∞

for every t ∈ [0, τ ], since ((n, p, z), (nk, pk, zk)) ∈
(
X∞nH+(2χ)−1 ∩Bm

)2
and using (8).

Thus, we have∥∥∥∥∥∥∥
 n(t, ·)

p(t, ·)
z(t)

−
 nk(t, ·)

pk(t, ·)
zk(t)


∥∥∥∥∥∥∥
X∞

≤ maxt∈[0,τ ]

∥∥∥∥∥∥∥
 n(t, ·)

p(t, ·)
z(t)

−
 nk(t, ·)

pk(t, ·)
zk(t)


∥∥∥∥∥∥∥
X∞

≤ 2

∥∥∥∥∥∥∥
 n0 − nk0

p0 − pk0
z0 − zk0


∥∥∥∥∥∥∥
X∞

→ 0

as k goes to infinity, for every t ∈ [0, τ ]. Consequently (23) holds and we have

(n, p, z) ∈ C
(
[0, τ ],X∞nH

∩Bm

)
.

Some standard time extending properties of the solution allow to extend the solution

(n, p, z) over a maximal interval [0, tmax).

3.4. Global existence and boundedness

We now prove that the solution of (5) is global in time and that n is bounded. We also

give an example where p and z are bounded and go to extinction. We then deduce the

result for (1).
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Theorem 6. Suppose that operator Lh has one of the shapes given in (2) or in (3).

Then for every initial condition (n0, p0, z0) ∈ X∞nH
, there exists a unique solution

(n, p, z) ∈ C
(
[0,∞),X∞nH

)
for the system (5), that satisfies

n(t, h) ≤ max{0, sup
h∈[0,H]

n0(h)}

for every t ≥ 0 and h ∈ [0, H]. Moreover, if

mp >
r

χ
(25)

holds, then

lim
t→∞
‖p(t, ·)‖L∞(0,H) = 0, lim

t→∞
z(t) = 0.

Proof. Let (n0, p0, z0) ∈ X∞nH
and (n, p, z) ∈ C

(
[0, tmax),X∞nH

)
be the solution of (5).

Using the same argument of density as in the proof of Theorem 5, we only need to

consider the case where the initial condition satisfies (24). Because of the positivity of

the solution, we have
∂n

∂t
(t, h) ≤ D

∂2n

∂h2
(t, h).

We define the function

ϕn(t) =

∫ H

0

κ(n(t, h)−Kn0)dh.

We can show that

ϕn ∈ C([0, tmax),R), ϕn(0) = 0, ϕn ≥ 0 on [0, tmax), ϕn ∈ C1((0, tmax),R),

and

ϕ′n(t) =

∫ H

0

G(n(t, h)−Kn0)
∂n

∂t
(t, h)dh

≤ −D
∫ H

0

G′(n(t, h)−Kn0)

∣∣∣∣∂n∂h(t, h)

∣∣∣∣2 dh ≤ 0, ∀t > 0

so

n(t, h) ≤ Kn0 , ∀t ≥ 0, a.e. h ∈ [0, H].

To prove that the solution is global, suppose by contradiction that tmax < ∞. Since n

is bounded, classical results (see e.g. [32], Theorem 6.1.4, p. 185) imply that, either

lim
t→tmax

‖p(t, ·)‖L∞(0,H) =∞

or

lim
t→tmax

z(t) =∞.

However, the former cannot hold since

∂p

∂t
(t, h) ≤ D

∂2p

∂h2
(t, h) +

(
r

χ
−mp

)
p(t, h), ∀t > 0, a.e. h ∈ [0, H] (26)
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and the latter contradicts that fact that

z′(t) ≤ z(t)

(
kα

Hpβ

∫ H

0

p(t, h)dh−m
)
, ∀t > 0. (27)

Consequently tmax =∞ and the solution is global in time. Suppose now that (25) holds

and consider an initial consider that satisfies (24). Since the solution is classical, we get

the inequality (26). An integration leads to

d

dt

∫ H

0

p(t, h)dh ≤
(
r

χ
−mp

)∫ H

0

p(t, h)dh,

whence

lim
t→∞

∫ H

0

p(t, h)dh = 0

by assumption (25) and

lim
t→∞

z(t) = 0

using (27). Since p(t, ·) ∈ H2(0, H) ⊂ C1([0, H]) for every t > 0, then

lim
t→∞
‖p(t, ·)‖L∞(0,H) = 0,

which concludes the proof.

Using the change of variable (4), we deduce the same result for the initial problem.

Corollary 7. Suppose that operator Lh has one of the shapes given in (2) or in

(3). Then for every initial condition (n0, p0, z0) ∈ X∞+ , there exists a unique solution

(n, p, z) ∈ C
(
[0,∞),X∞+

)
for the system (1), that satisfies

n(t, h) ≤ max{nH , ‖n0‖L∞}

for every t ≥ 0 and a.e. h ∈ [0, H]. Moreover, if (25) holds, then

lim
t→∞
‖p(t, ·)‖L∞(0,H) = 0, lim

t→∞
z(t) = 0.
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