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A B S T R A C T

The present work focuses on the modelling of the fatigue behaviour of a 316L produced by
laser powder bed fusion containing various defect populations : Lacks of fusion, corrosion pits
and one electric discharge machined hemispherical defect. As shown in previous experimental
studies, the crack leading up to failure systematically initiated on a single surface defect. The
nature and morphology of the critical defect did not show any influence on the fatigue strength,
and only its size seemed to matter. To take into account the critical defect size, models based on
linear elastic fracture mechanics were implemented and identified. A modified Paris propagation
law was used to model the short crack regime. This approach was used to predict S–N curve
domains based on critical defects size range.

1. Introduction

In spite of the numerous academic papers tackling the fatigue behaviour of Additively Manufactured (AM) materials [1–3],
progress on the understanding on the role played by defects related either to the fabrication process or the in-service environment
remains necessary [4–6].

Regarding the Laser Powder Bed Fusion (L-PBF) austenitic stainless steel 316L, several experimental studies have shown a
microstructure specific to the AM process recognizable by three characteristic markers : (i) the presence of heterogeneous grains, both
in terms of size and morphology [7–9], (ii) the epitaxy phenomena, caused by powder layer superposition and the microstructure
below the melt pool, which explains the presence of grains crossing several powder layers and the texture of the material [10–12],
and (iii) the presence of solidification cells inside the grains, with a size near 500 nm [8,13,14]. This last feature is linked to the very
high cooling rate (105 - 107 K/s) [2,15] creating a large number of dislocations on the cell walls. The presence of these dislocations
has been pointed out in the literature as a potential origin of the as-built material high yield stress [1,16,17].

The complexity of the resulting microstructure coupled with the localized nature of the fatigue damage phenomenon is often
proposed as an explanation to its stochastic nature. In case of AM materials, the fatigue data scatter is explained in some studies from
the point of view of the spatial and defect size distributions present in the samples [18–20]. For the 316L L-PBF, fatigue behaviour
seems to be affected by the presence of process related defects such as gas pores and Lack of Fusion pores (LoF) [21–23].

As pointed out by several authors [21,24,25], alloys manufactured by AM are characterized by S–N data showing a large scatter
in fatigue lives and fatigue strength. This dispersion is shown in Fig. 1 and can be attributed to different sized defects at the origin
of fatigue fracture and to the variation of the local microstructure at the initiation site [25–27].
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Nomenclature

𝑎, 𝑎𝑓 Crack length and critical crack size (failure) (m)
𝑎𝑡𝑟𝑎𝑛𝑠 Crack transition length between short and long crack regime (m)
𝑎0 El-Haddad’s fictitious length scale (m)
𝐶∗, 𝑚 Adapted Paris materials parameters (–)
𝑑 Chapetti’s fictitious microstructural barrier characteristic length (m)
𝛿𝜎𝑚𝑎𝑥 Increment of the maximal nominal stress between steps (MPa)
𝛥𝐾, 𝛥𝐾𝑡ℎ Stress Intensity Factor (SIF) and its threshold (MPa

√

m)
𝛥𝐾𝑡ℎ,𝑖𝑛𝑡, 𝛥𝐾𝑡ℎ,𝑒𝑥𝑡 SIF intrinsic and extrinsic Chapetti’s thresholds (MPa

√

m)
𝛥𝐾𝑡ℎ,𝑒𝑥𝑡,𝑡𝑜𝑡 Total extrinsic Chapetti’s SIF thresholds (MPa

√

m)
𝛥𝜎, 𝛥𝜎𝑡ℎ Stress range and its threshold (MPa)
𝛥𝜎𝑡ℎ,0 Stress range threshold of the material matrix (MPa)
𝜎𝑎, 𝜎𝑎,𝑡ℎ Stress amplitude and its threshold (MPa)
𝜎𝑚𝑎𝑥, 𝜎𝑚𝑎𝑥,𝑡ℎ Maximal stress and its threshold (MPa)
𝑓 Crack geometric correction factor (–)
𝑔, 𝛽 Murakami location factor and stress ratio exponent (–)
𝐻𝑉 Vickers Hardness (kgf/mm2)
𝑘 Extrinsic Chapetti’s SIF thresholds exponent (–)
𝑁 , 𝑁𝑟𝑒𝑓 Number of cycles and its reference (to define fatigue strength) (–)
𝑅 Stress ratio (𝑅 = 𝜎𝑚𝑖𝑛∕𝜎𝑚𝑎𝑥) (–)
√

𝑎𝑟𝑒𝑎 Square root of projected area of the defect (m)
𝜙 Fatigue specimen diameter (m)

Acronyms

BD Building Direction
EBSD Electron BackScattered Diffraction
EDM Electric Discharge Machining
LEFM Linear Elastic Fracture Mechanics
LoF Lack of Fusion
SEM Scanning Electron Microscope
SIF Stress Intensity Factor

In general, the largest defect contained in the loaded sample and close to the free surface is likely to be the critical
defect responsible for the final failure in High Cycle Fatigue (HCF) [28,29]. Hence, assuming the defect content caused by the
manufacturing process is accurately known, the fatigue response at the macroscopic scale should, in principle, be predicted from
the defect population features (size, shape, position, . . . ) for a given microstructure.

In the High Cycle Fatigue regime for metallic materials, the major part of the total lifetime is considered to be crack initiation [31–
33]. This includes all the events taking place before a crack can be considered observable (at around 1 mm) and comprises cyclic
micro-plasticity, micro-crack nucleation and short crack growth [32,34]. For metallic alloys, the term ‘‘short crack’’ refers in general
to a crack with a length in the order of magnitude of a few grains [35]. In this cracking regime, local plasticity within grains
is the main phenomenon governing crack growth [22,36]. When the crack becomes larger than a given critical size (related to
the microstructure), a transition between crack initiation and crack propagation occurs. The microstructure features become small
compared to the crack size and the crack propagation is dominated by the general microstructure state instead of the local one.
This is referred to as long crack behaviour [37–39].

In order to predict long crack behaviour, Linear Elastic Fracture Mechanics (LEFM) can be applied [40,41]. However, short
fatigue cracks growth cannot be modelled using this theory alone, since LEFM leads to non-conservative predictions [42–44]. Indeed,
examples in the literature showed crack propagation at stresses below the long crack propagation threshold [40,45,46]. A lot of
different LEFM based models were proposed to consider the particular short crack problem [36,47,48]. Among these approaches,
several authors suggested to make the crack propagation threshold depends on the crack size [35,49,50]. Experimental evidences
support this dependency, which was explained by some researchers by the progressive activation of crack closure mechanisms as
the crack propagates [42,51]. This approach was adopted in this paper through the implementation of size dependent threshold’s
models from the literature.

The aim of this study is to make use of LEFM to model defects in an AM material (316L L-PBF) in the hopes of gaining some
insight on the HCF performance of this type of alloys. The purpose is twofold. First, to bring complements to the experimental
study described in a previous paper [30]. In particular, a comparison with a wrought 316L steel is carried out to distinguish the



Fig. 1. SN curves in air for 𝑅 = −1 of different batches with crack initiation on various defect types. The batch is represented by the colour of the point, the
killer defect type by its marker shape. A part of the data was published in a previous paper [30].

respective roles of the microstructure and the defects. Three types of defects are studied : LoF, Corrosion Pits and EDM hemispherical
defects. Second, to test several short crack growth models and compare their predictions to the experimental data collected from the
comprehensive fatigue campaign on this AM 316L austenitic stainless steel. For the smallest defects, the dependency of the threshold
stress intensity factor to the defect size is investigated by means of three classic models from the literature. The consideration of
such size dependency leads to more conservative predictions, particularly in the short-crack regime. The issue of fatigue lives scatter
is also emphasized from the point of view of defects.

2. Material and experiments

2.1. Preparation of fatigue tested samples

In this study, the material used is a 316L grade stainless steel manufactured by L-PBF. The alloy was received as a powder and
provided by TLS Technik. Fatigue specimens were vertically built under a Nitrogen (N) atmosphere by a Farsoon FS271M L-PBF
machine. A laser power of 225 W, with a laser scan speed of 1000 mm∕s and a layer thickness of 30 μm were used. A rotation of
67◦ of the scan pattern was performed between each layer. A detailed description of the powder and the L-PBF process parameters
can be found in a previous paper [30].

Once the L-PBF process finished, samples were detached from the plate and machined. Thus, solely the inner volume of the
material was characterized. Each specimen was manually polished to avoid machining artefacts. Fig. 2 shows the two specimen
geometries used in the experimental campaign.

To understand the reasoning behind the use of these two geometries, the notion of Highly Stressed Volume (HSV) needs to be
introduced. In the context of our study, the HSV was defined, by means of a finite element approach, as the volume of the specimen
where the von Mises stress was greater than 90% of the von Mises maximal stress calculated for the entire specimen. The geometry
shown in Fig. 2(a) has an HSV of 1005 mm3, the geometry in Fig. 2(b) has an HSV of 8 mm3. As the HSV decreases, the chances of
the failure inducing being on the larger side of the defect size distribution will also diminish. This HSV modification strategy has
been used successfully to observe the impact of small defects on the fatigue behaviour of other AM specimens [25,52], but also for
casted [18] and machined [53] aluminium alloys.

To observe the sensitivity of the material to different types of defects, four batches were prepared from the original machined
then polished specimens: (i) without any supplementary operation ‘‘polished’’ (17/65), (ii) pre-corroded by anodic polarization
‘‘pre-corroded’’ (32/65), (iii) with an EDM hemispherical defect ‘‘EDM defect’’ (6/65) and (iv) machined and polished as to reach
the small volume geometry ‘‘small volume’’ (10/65). Fig. 3 represents the different steps of the fabrication of the different tested
batches.

2.2. Material microstructure

In order to observe the microstructure of the bulk material, a planar sample was polished and chemically etched using a colloidal
silica suspension (SiO2). Electron BackScattered Diffraction (EBSD) analyses were then conducted. The grain detection criterion was
set to 5◦ in terms of misorientation from a pixel to another. Data was taken from Guerchais’ works [54] for a wrought 316L for
comparison purposes. Fig. 4 presents the qualitative EBSD grain cartography. In this representation, different colours were used to
clearly separate grains and do not correspond to any texture information.



Fig. 2. Fatigue samples geometries (dimensions in mm), with (a) the reference geometry (55 specimens) and (b) the small volume geometry (10 specimens).

Fig. 3. Different steps of the fabrication of the different tested batches. The SEM fractographies show a LoF, a corrosion pit, a hemispherical EDM defect and
a metallic matrix initiation.

Fig. 4. Qualitative EBSD grains identification on 316L (a) L-PBF and (b) wrought [54].

Depending on the manufacture process, the materials present different microstructures. The mean grain size values, for grain
maps shown in Fig. 4, were found equal to 49 μm and 11 μm for the L-PBF and wrought material respectively. The mean value
was more than four times smaller for the wrought 316L than for the L-PBF one. The standard deviation was equal to 30 μm for the
L-PBF and 7 μm for the wrought one. Then, its value was also around four times bigger for the L-PBF material than for the wrought.
Altogether, observations showed a more homogeneous grain population in terms of size for the wrought 316L when compared with
the L-PBF one.

This higher homogeneity is also observable in terms of grain morphology, the wrought material showed principally equiaxed
grains. In contrast, the L-PBF material was composed of a mix of equiaxed, elongated and ‘‘U’’ shaped grains. Equiaxed grains were



Fig. 5. Solidification cells in 316L L-PBF.

Fig. 6. EBSD pole figures on 316L (a) L-PBF and (b) wrought [54].

smaller than the other two populations. As described by Andreau et al. [10], this heterogeneity is due to different solidification
mechanisms, and more specifically, to the competition between the thermal gradient direction and the epitaxy phenomena [55,56].

Furthermore, solidification cells were noticed in the grains of the L-PBF material (see Fig. 5). This feature appears as a
consequence of high cooling rates (5 × 105 - 4 × 107 K/s) observed in L-PBF processes [15,57] for this type of alloy. The size of
these features was found close to 500 nm, which is in good agreement with the literature [4,58,59]. It worth noting that a large
number of dislocations were observed on the cells walls by several authors [60–62]. These dislocations could affect the mechanical
behaviour of the material [63].

The texture of both materials (L-PBF and wrought) was also characterized. Fig. 6 represents pole figures for both materials. We
notice a texture three times more pronounced for the L-PBF. <110> parallelly to the BD was the main texture of the additively
manufactured material, which is consistent with observations found in the literature [64,65]. Again, the epitaxy of the grains is the
principal factor driving the texture of the 316L L-PBF.

2.3. Quasi-static tests

The static behaviour was investigated by carrying tensile tests and Vickers hardness (HV) measurements on our L-PBF specimens.
For comparison purposes, heat-treated specimens (1050 ◦C for 30 min under vacuum, N2–H2 quenching under 3–4 bar) were also
tested. Four tensile tests were carried out on as-built specimens and three on heat-treated ones. Tensile specimens were vertically
built (i.e. load axis parallel to BD). The Vickers hardness was measured under a 20 kg load. At least ten indentations were performed
per type of specimen. The mean values of the obtained static behaviour were then computed. The results of these characterizations
are summarized in the Table 1.

For the as-built material, our results are in good agreement with Andreau’s observations [64]. It seems that the heat treated
316L L-PBF static behaviour is similar to the wrought one [54]. The heat-treatment seems to decrease the yield stress (YS) of the



Table 1
Tensile tests and hardness results for as-built and heat-treated L-PBF 316L compared to wrought 316L [54] and
Andreau’s data [64].
Batch UTS (MPa) YS (MPa) El.% (%) HV (–)

As-built 642 484 67 225
As-built [64] 583 448 54 236
Heat-treated 626 377 71 194
Wrought [54] 644 346 60 189

Fig. 7. SEM observations of cracks initiations from (a) a LoF defect, (b) a corrosion pit, (c) an EDM hemispherical defect and (d) the metallic matrix.

316L L-PBF by more than 100 MPa. The Vickers hardness was also negatively altered by the heat treatment, decreasing its value of
15%.

In the literature, Hlinka et al. [66] observed that with a similar heat-treatment, a total recrystallization of the microstructure
occurred. The lower HV and YS after heat-treatment could probably be explained by the coarsening of the material grains and the
disappearance of the solidification cells saturated in dislocations [2,15,26].

2.4. Fatigue test methodology

Uniaxial fatigue tests were carried out on a MTS Landmark 100 kN servohydraulic fatigue test machine, in air and at room
temperature (≈ 20 ◦C). Tests were conducted using load control mode. 62 specimens vertically built were tested under fully
alternative loads (𝑅 = −1), at a frequency of 15 Hz. Only 3 fatigue tests were carried out under 𝑅 = 0.1 at 25 Hz. A step by
step method was used, with 𝛥𝑁 = 106 cycles per step as described by Maxwell and Nicholas [67]. Fatigue tests were carried out
till fracture (50% displacement drift) of the specimen. All our experimental data were published and are available online [68]. This
study focuses on only a part of these data.

2.5. Fracture surface analysis

After the fatigue tests, each fracture surface was observed using a Phenom XL Scanning Electron Microscope (SEM). Cracks were
observed to initiate on different types of defects: (i) LoF (33/65), (ii) corrosion pits (25/65) or (iii) EDM defect (6/65). Examples of
these three types of defect at the origin of the crack initiation are shown in Fig. 7(a)(b)(c). For the ‘‘pre-corroded’’ batch, 25 cracks
initiated on corrosion pits and 7 on LoF defects. A competition between these defects of different natures was observed. For one
specimen from the ‘‘small volume’’ batch, no defect was observed at the crack initiation site (see Fig. 7(d)). The crack initiation
origin was attributed in this case to the metallic matrix of the material.



Fig. 8. Kitagawa–Takahashi diagram of the corrected data (using Eq. (1)) at 𝑁𝑟𝑒𝑓 = 106 cycles. The marker colour refers to the batch belonging of the specimen,
its shape to the critical defect type (e.g. a green triangle refers to a pre-corroded specimen with a crack initiation on a LoF defect). Marker was set in transparency
if the specimen broke at the first step and below 105 cycles. If no critical defect was observed, the metallic matrix was considered as the origin of the crack
initiation. As no defect size could be measured, the

√

𝑎𝑟𝑒𝑎 is arbitrary defined and a black arrow meaning that the true defect size is smaller was plotted.

2.6. Effect of the defect size

Following the convention of size description of defects by the square root of their projected area on a plane perpendicular to
the loading direction [69], defect size on our specimens was calculated as the mean value of the defect size measured on the two
fracture surfaces. In order to estimate the fatigue strength at 𝑁𝑟𝑒𝑓 = 106 cycles (corresponding to the HCF domain), Maxwell and
Nicholas correction was used [67]. Eq. (1) defines the fatigue maximal stress threshold (or fatigue strength) 𝜎𝑚𝑎𝑥,𝑡ℎ, the maximal
stress at the step ‘‘𝑘’’ is 𝜎𝑚𝑎𝑥,𝑘, 𝛿𝜎𝑚𝑎𝑥 is the increment of the maximal nominal stress between steps and 𝑁𝑘 is the number of cycles
at step ‘‘𝑘’’.

𝜎𝑚𝑎𝑥,𝑡ℎ = (𝜎𝑚𝑎𝑥,𝑘 − 𝛿𝜎𝑚𝑎𝑥) + 𝛿𝜎𝑚𝑎𝑥

(

𝑁𝑘
𝑁𝑟𝑒𝑓

)

(1)

‘‘𝑘’’ is the step when the fracture occurs, meaning that 𝑁𝑘 < 𝑁𝑟𝑒𝑓 .
Fig. 8 represents the data in a Kitagawa–Takahashi diagram in terms of stress amplitude at 𝑁𝑟𝑒𝑓 = 106 cycles and square root of

the area of the defect at 𝑅 = −1. Wrought 316L data were taken from Guerchais’ work [54] for comparison. The stress amplitude
used was corrected using Eq. (1) for both data series. For our data, only one specimen showed a crack initiation on the material
matrix (‘‘small volume’’ batch). This data point is worth of mention since it gave an information about the fatigue strength of a
defect-free L-PBF 316L. The observed defect-free fatigue strength (488 MPa) was found close to the yield stress of the material (484
MPa). For the wrought material (Guerchais [54]), the fatigue limit (220 MPa) was near 64% of the yield strength (346 MPa). This
suggests that the metallic matrix fatigue strength might be correlated to the static behaviour – particularly the yield strength – of the
316L. The ultimate tensile stress was almost identical for L-PBF and wrought 316L (642 and 644 MPa respectively). The difference
in terms of yield stress may be attributed to the high density of dislocations on the solidification cell walls [4,15,57].

Globally, a correlation between the critical defect size and the fatigue strength of the specimen could be observed. This correlation
seems independent of the critical defect’s nature. Its 2D projected shape did not show any influence on the fatigue strength
either [30]. Since the critical defect’s size appeared to be the highest relevance parameter to infer the fatigue strength, LEFM
approaches which are based on the crack size could be efficient to model the effect of defects in this material. No distinction
between the different defect types are made in the rest of this article.

We can notice that for small defects (below 100 μm) – or without any defect – the fatigue strength of the L-PBF alloy is higher
than for the wrought material. The difference between the two materials seems to decrease when the defect size increases. Fatigue
resistances are equivalent when the

√

𝑎𝑟𝑒𝑎 is higher than 100 μm. We can suggest that the effect of the microstructure becomes
insignificant when the defect is much bigger than microstructural features (such as grains and solidification cells in L-PBF materials).
As discussed by Nadot et al. [39], the defect physical size is not as important as the relative size of the defect compared to the
microstructure in which it is embedded.

In LEFM, the main driving force can be estimated by the Stress Intensity Factor (SIF) 𝛥𝐾. The SIF can be calculated from Eq. (2),
with 𝑓 as a crack geometric correction factor equal to 0.65 for semi-circular cracks (for a surface intersecting crack) or 0.5 for
internal circular cracks as suggested by Murakami [43]. 𝛥𝜎 is the applied stress range and 𝑎 is the crack length. In this paper, the
crack length 𝑎 is considered as the square root of the area of the crack

√

𝑎𝑟𝑒𝑎.

𝛥𝐾 = 𝑓𝛥𝜎
√

𝜋𝑎 (2)



Fig. 9. 𝛥𝐾𝑡ℎ as a function of the defect size 𝑎 =
√

𝑎𝑟𝑒𝑎. Data at 𝑅 = −1 and 𝑅 = 0.1 in air are compared with data of Guerchais [54] for a wrought 316L at
𝑅 = −1 and Andreau [64] for a L-PBF 316L at 𝑅 = 0.1.

In order to determine if the crack will propagate, the SIF have to be compared to the SIF threshold 𝛥𝐾𝑡ℎ. The SIF threshold 𝛥𝐾𝑡ℎ
can be deduced from Eq. (2), with 𝛥𝜎𝑡ℎ as the stress range threshold:

𝛥𝐾𝑡ℎ = 𝑓𝛥𝜎𝑡ℎ
√

𝜋𝑎 (3)

Because we deal with HCF, we considered 𝛥𝜎𝑡ℎ as equal to the experimental fatigue limit in terms of stress range.
The SIF threshold 𝛥𝐾𝑡ℎ was then calculated using Eq. (3). The Fig. 9 shows 𝛥𝐾𝑡ℎ as a function of the defect size

√

𝑎𝑟𝑒𝑎. Data taken
from Andreau’s study [64] on a L-PBF 316L (𝑅 = 0.1) and Guerchais’ work [54] on a wrought 316L (𝑅 = −1) are also plotted. At
𝑅 = 0.1, only three specimens were tested. Although higher values of the SIF threshold were found for our specimens in comparison
to those of Andreau (𝑅 = 0.1), both datasets remain in good agreement.

Fig. 9 also shows that the threshold 𝛥𝐾𝑡ℎ does not remain constant for the defect size range investigated here. It drops as the
defect size decreases. This tendency is well known and has been observed in many studies [69–71]. The next section aims at testing
several approaches to model this behaviour.

3. Crack propagation threshold models

A large number of models of crack propagation thresholds can be found in the literature. Fig. 10 gives a schematic view
of a Kitagawa–Takahashi diagram using Kitagawa–Takahashi [72], Murakami [69], El-Haddad [49] and Chapetti [35] models.
Differences between these models are emphasized and discussed in the following subsections.

3.1. Murakami’s model

One of the well-known models in the literature to estimate the SIF threshold was proposed by Murakami and Endo [69] in 1994.
This model can be described through Eq. (4):

𝛥𝐾𝑡ℎ = 𝑔(𝐻𝑉 + 120)𝑎2∕𝑛
( 1 − 𝑅

2

)𝛼
(4)

with 𝑔 = 3.3×10−3 for an external crack and 𝑔 = 2.77×10−3 for an internal one. HV is the material Vickers hardness (225), 𝑎 =
√

𝑎𝑟𝑒𝑎
is the crack length (equal to the square root of the projected defect area) (in μm), 𝑅 is the stress ratio and 𝛼 = 0.226+𝐻𝑉 ×10−4. In
the original model, 𝑛 = 6. We can notice that 𝛼 was initially proposed for hard steels and may be re-estimated for the 316L L-PBF
[43,71]. According to Murakami [43], this model could be used from a few microns to a thousand of microns (depending on the
material).

The upper limitation of the original Murakami’s model was first introduced and explained by Chapetti [73]. He suggested that
when the crack size 𝑎 becomes higher than a transition size 𝑎𝑡𝑟𝑎𝑛𝑠, 𝛥𝐾𝑡ℎ remains constant and is equal to 𝛥𝐾𝑡ℎ,𝐿𝐶 . Schönbauer and
Mayer [71] extended this limitation and considered the transition size 𝑎𝑡𝑟𝑎𝑛𝑠 as independent of the load ratio 𝑅.

Since no information could be found in the literature to estimate the value of 𝑎𝑡𝑟𝑎𝑛𝑠 for the L-PBF 316L, we chose a value of 300
μm which seems coherent with our data. Murakami’s model could be rewritten:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛥𝐾𝑡ℎ = min
{

𝑔(𝐻𝑉 + 120)𝑎2∕𝑛
(

1−𝑅
2

)𝛼
, 𝛥𝐾𝑡ℎ,𝐿𝐶

}

𝛥𝐾𝑡ℎ,𝐿𝐶 = 𝑔(𝐻𝑉 + 120)𝑎2∕𝑛𝑡𝑟𝑎𝑛𝑠

(

1−𝑅
2

)𝛼

𝛼 = 𝛽 +𝐻𝑉 × 10−4

(5)



Fig. 10. Schematic Kitagawa–Takahashi diagram (𝛥𝜎𝑡ℎ as a function of the crack size 𝑎) with Kitagawa–Takahashi [72], Murakami [69], El-Haddad [49] and
Chapetti [35] models.

In order to improve the model’s accuracy, 𝑔 and 𝛽 were identified using our dataset (i.e. fitted). It is worth noting that 𝑛 was kept
equal to 6 as suggested by Murakami [69]. 𝑔 was identified on the 𝑅 = −1 data and was found equal to 3.91 × 10−3. Then, the
effect of 𝑅 through 𝛽 was adjusted using the 𝑅 = 0.1 data. The optimum 𝛽 was found equal to 0.410 instead of the value of 0.226
proposed by Murakami and Endo [69]. The long crack threshold 𝛥𝐾𝑡ℎ,𝐿𝐶 obtained at 𝑅 = −1 and 𝑅 = 0.1 were found equal to 9.04
MPa

√

m and 6.40 MPa
√

m respectively. We can recall that Riemer and Richard [74] obtained a value of 𝛥𝐾𝑡ℎ,𝐿𝐶 ≃ 5 MPa
√

m for
a L-PBF 316L at 𝑅 = 0.1, which is coherent with our calculated value. The identified Murakami’s model is plotted in Fig. 11(a) in
terms of stress for 𝑅 = −1 and in Fig. 11(b) in terms of SIF threshold for both stress ratios. Data description through this upgraded
model (with 𝑔 and 𝛽 values fitted on our dataset) can be considered as satisfactory.

3.2. El-Haddad’s model

Another classic model in the literature [31,75] was proposed by El Haddad et al. [49]. The SIF threshold can be written by Eq. (6),
with 𝛥𝜎𝑡ℎ,0 the stress range threshold of the material without defects.

⎧

⎪

⎨

⎪

⎩

𝛥𝐾𝑡ℎ = 𝛥𝐾𝑡ℎ,𝐿𝐶

√

𝑎
𝑎+𝑎0

𝑎0 =
1
𝜋

[ 𝛥𝐾𝑡ℎ,𝐿𝐶
𝑓𝛥𝜎𝑡ℎ,0

]2 (6)

The SIF threshold value increases from 0 to 𝛥𝐾𝑡ℎ,𝐿𝐶 when the crack size increases from 0 to +∞. The value of 𝛥𝜎𝑡ℎ,0 was set to
900 MPa which is consistent with our observation when cracks initiate on the metallic matrix for 𝑅 = −1 and 511 MPa for 𝑅 = 0.1
in accordance with Andreau’s study [64]. Since 𝛥𝐾𝑡ℎ,𝐿𝐶 was identified previously with Murakami’s model, El-Haddad can be used
without any other identification. The El-Haddad’s model is plotted in Fig. 11 and seems as consistent as Murakami’s model.

3.3. Chapetti’s model

In El-Haddad and Murakami’s models, the SIF threshold is higher than 0 if the crack exists, even for small cracks. However, many
researchers reported that crack closing phenomena are negligible for microstructurally small cracks, leading to an over-estimation
of 𝛥𝐾𝑡ℎ and non-conservative models [35,40,42].

To address this issue, Chapetti [35] proposed a model where the SIF threshold is defined as a sum of intrinsic (𝛥𝐾𝑡ℎ,𝑖𝑛𝑡) and
extrinsic (𝛥𝐾𝑡ℎ,𝑒𝑥𝑡) thresholds:

𝛥𝐾𝑡ℎ = 𝛥𝐾𝑡ℎ,𝑖𝑛𝑡 + 𝛥𝐾𝑡ℎ,𝑒𝑥𝑡 ∀ 𝑎 ≥ 𝑑 (7)

𝛥𝐾𝑡ℎ,𝑖𝑛𝑡 represents the microstructural crack propagation resistance and is defined as:

𝛥𝐾𝑡ℎ,𝑖𝑛𝑡 = 𝑓𝛥𝜎𝑡ℎ,0
√

𝜋𝑑 (8)

with 𝑑 the microstructural barrier characteristic length. We can notice that this intrinsic SIF threshold is a constant for the material.
The extrinsic SIF threshold can be written as:

𝛥𝐾𝑡ℎ,𝑒𝑥𝑡 = 𝛥𝐾𝑡ℎ,𝑒𝑥𝑡,𝑡𝑜𝑡 {1 − exp [−𝑘(𝑎 − 𝑑)]} ∀ 𝑎 ≥ 𝑑 (9)



Fig. 11. (a) 𝛥𝜎𝑎 as a function of the crack size 𝑎 (𝑅 = −1) and (b) 𝛥𝐾𝑡ℎ as a function of the defect size 𝑎 =
√

𝑎𝑟𝑒𝑎 (𝑅 = −1 and 𝑅 = 0.1) in air. The fitted
models’ predictions (Murakami, El-Haddad and Chapetti) are also plotted.

with 𝛥𝐾𝑡ℎ,𝑒𝑥𝑡,𝑡𝑜𝑡, the total extrinsic SIF threshold:

𝛥𝐾𝑡ℎ,𝑒𝑥𝑡,𝑡𝑜𝑡 = 𝛥𝐾𝑡ℎ,𝐿𝐶 − 𝛥𝐾𝑡ℎ,𝑖𝑛𝑡 (10)

and 𝑘 the extrinsic Chapetti’s SIF thresholds exponent:

𝑘 = 1
4𝑑

𝛥𝐾𝑡ℎ,𝑖𝑛𝑡

𝛥𝐾𝑡ℎ,𝑒𝑥𝑡,𝑡𝑜𝑡
(11)

In order to fit Chapetti’s model to our dataset, the parameter 𝑑 was identified and found equal to 11.43 μm using a least square error
minimization on the 𝑅 = −1 data. We can notice that this value is between the mean grain size (around 45 μm) and the solidification
cells size (around 500 nm). It is then possible that this characteristic length represents the effect of two types of microstructural
barriers. The evolution of 𝛥𝐾𝑡ℎ as a function of the crack size is plotted in Fig. 11(b). Again, this model seems representative of our
experimental data.

3.4. Models comparison

The three presented fitted models are in good agreement with our dataset. Murakami’s model is purely empirical while El-
Haddad’s and Chapetti’s are based on LEFM. These latter two manage a smooth transition between short and long crack regimes.
Chapetti’s model can be seen as an evolution of El-Haddad’s model. The main difference being that Chapetti’s model also takes into
account a minimal size related to the material microstructure, below which, no crack closure phenomena can occur.

In the following section, a way to embed the crack propagation threshold as a driving force of the crack growth behaviour is
discussed.



Fig. 12. Schematic representation of the propagation model with the influence of different parameters for a given loading ratio 𝑅.

4. Crack growth behaviour

In LEFM, the SIF is often considered as the main driving force of the crack propagation. The crack is considered propagating
when 𝛥𝐾 > 𝛥𝐾𝑡ℎ. For long cracks, the crack expansion size could be directly related to the SIF using the Paris law [46,76]:

𝑑𝑎
𝑑𝑁

= 𝐴𝛥𝐾𝑏 (12)

with 𝐴 and 𝑏, two materials parameters. However, this expression is no more valid in the short crack propagating regime. In the
literature [31,77,78], an adapted form of the Paris law can be found in order to describe both short and long crack behaviour:

𝑑𝑎
𝑑𝑁

= 𝐶∗(𝛥𝐾 − 𝛥𝐾𝑡ℎ)𝑚 (13)

with 𝐶∗ and 𝑚, two materials parameters. In this equation, the SIF threshold is taken into account and the difference between
𝛥𝐾 and 𝛥𝐾𝑡ℎ becomes the crack propagating driving force. For short cracks, 𝛥𝐾 and 𝛥𝐾𝑡ℎ values are close which leads to a slow
propagation. Since 𝛥𝐾𝑡ℎ depends on 𝑅, taking the threshold into account is also a way to link the crack propagation behaviour with
the applied stress ratio [32]. We chose to use 𝐶∗ = 6.25 × 10−10 and 𝑚 = 3.94, as determined by Riemer et al. [79] on a L-PBF 316L
vertically build on CT specimens (at 𝑅 = 0.1). It could be pointed out that no values of these parameters were found in the literature
for 𝑅 = −1. Riemer’s data were then considered as an acceptable estimation for 𝐶∗ and 𝑚 parameters.

Fig. 12 represents schematically the crack propagation model with its different inputs. We can notice that crack parameters (𝑎
and 𝑓 ) are not only necessary for the computation of 𝛥𝐾, but also to determine 𝛥𝐾𝑡ℎ. The threshold is dependent on the crack
length, which is a major difference with classic LEFM propagation models for long crack [5,80,81]. In this figure, we can clearly
identify that the choice of the SIF threshold model impacts the crack propagation predictions. The schematically described iterative
process is used in the rest of this article to infer the crack size as a function of the number of cycles and the applied stress range.

Fig. 13 represents the crack propagation 𝑑𝑎∕𝑑𝑁 as a function 𝛥𝐾. Blue and red curves represent initial defect sizes of 20 μm and
100 μm respectively. As it can be observed on Fig. 9, the sizes of 20 and 100 μm were chosen to be representative of small and medium
scale defects of the critical defect population. The stress range threshold was determined by increasing its value incrementally (step
of 5 MPa) until the initial crack propagation rate reached 10−12 m/cycle or higher. Then, the loading imposed remained constant
to predict the 𝑑𝑎∕𝑑𝑁 curve in the propagation domain.

In Fig. 13, the influence of the initial crack size on the stress threshold for different models and stress ratios can be observed.
The smaller the initial crack, the higher the stress crack initiation threshold (𝛥𝜎𝑡ℎ) is. We can highlight that crack behaviour is
different depending on the chosen threshold model as it affects the stress threshold level. The crack SIF threshold (𝛥𝐾𝑡ℎ) is smaller
for smaller cracks. It means that each model is compatible with the idea that crack closing mechanisms increase when the crack



Fig. 13. Crack propagation rate 𝑑𝑎∕𝑑𝑁 as a function of the SIF 𝛥𝐾 for Chapetti, Murakami and El-Haddad identified models with (a) 𝑅 = −1 and (b) 𝑅 = 0.1.
The initial crack size was set to 20 μm for the blue curves and 100 μm for the red ones. The minimal stress range to initiate the crack is written in the legend
(in MPa).

Fig. 14. Crack size growth 𝑎 as a function of the number of cycles 𝑁 for Chapetti, Murakami and El-Haddad identified models with (a) 𝑅 = −1 and (b) 𝑅 = 0.1.
The initial crack size was set to 100 μm. The applied stress range was 650 MPa (blue) and 800 MPa (red) at 𝑅 = −1 and 405 MPa (blue) and 495 MPa (red)
at 𝑅 = 0.1.

size increases. When the crack propagation becomes faster (i.e. long crack), the propagation behaviours become similar for both
tested stress ratios. The stress range threshold is higher at 𝑅 = −1 than at 𝑅 = 0.1. It could be justified by the fact that for 𝑅 = −1,
a large part of the loading is compressive which is less harmful than tensile stresses that open cracks. The maximal stress is higher
at 𝑅 = 0.1 than at 𝑅 = −1.

The Fig. 14 represents a case where the initial crack size is set equal to 100 μm for two loading conditions (𝑅 = −1 and 𝑅 = 0.1).
The crack behaviour is highlighted in terms of crack growth as a function of the number of cycles. We can notice that even if the
crack propagation behaviours seem close in Fig. 13, the crack growth is highly affected by the choice of the SIF threshold model. This
choice seems even more relevant when the loading decreases since the short crack propagation part of the total lifetime increases.
A good description of the short crack behaviour is thus crucial in HCF regime.

5. Fatigue life estimation

To make a fatigue life estimation using LEFM, we should provide a failure criterion to state if the specimen is broken or not. As
our experiments were conducted on fatigue specimens, we defined a critical crack size 𝑎𝑓 by the following equation:

𝑎𝑓 =
√

𝑆∕2 with 𝑆 = 𝜋𝜙2∕4 (14)

with 𝜙 = 8 mm, the fatigue specimen diameter. The specimen is considered broken when the crack surface reaches half of its initial
section. Then, we considered that the failure occurred if 𝑎 > 𝑎𝑓 . Since the crack growth increases drastically (see Fig. 14) at the end
of the sample life, the value of 𝑎𝑓 does not need to be finely set and only its order of magnitude is of relevance.

To gain some insight on the effect of the initial crack size (i.e. defect size) on the fatigue lifetime, the models were used with
different initial defect sizes. The Fig. 15 shows the models predictions for three defect sizes (50, 100, 200 μm) at (a) 𝑅 = −1 and (b)



Fig. 15. Influence of the defect at the origin of crack initiation 𝑎0 on the fatigue lifetime for Chapetti, Murakami and El-Haddad identified models with (a)
𝑅 = −1 and (b) 𝑅 = 0.1.

Fig. 16. Lifetime predictions for different defects sizes 𝑎0 for Chapetti, Murakami and El-Haddad identified models at 𝑅 = −1. Experimental data are plotted for
comparison purpose. The critical defect type (LoF, corrosion pit, EDM defect) is represented by the marker shape and its batch by the marker colour. Data are
separated in three graphs for each critical defect types (LoF, corrosion pit and artificial hemispherical defect respectively). The two values of 𝑎0 chose on each
subplot were fixed in order to represents lower and upper bounds in terms of size for each critical defect types.

𝑅 = 0.1. Predictions were obtained following the iterative process described in Fig. 12. We can observe that the fatigue resistance
decreases when the defect initial size increases. Globally, the whole S–N curve seems translated down when the initial crack size
increases. Differences between models increase when the stress range decreases due to a bigger fraction of the lifetime in the short
crack regime.

In our previous work [30], we observed that the critical defect size was the unique morphology parameter showing a correlation
with the fatigue limit of a specimen. To highlight this link between lifetime predictions and defect sizes, Fig. 16 shows lifetime
predictions for different defects sizes for the three discussed models at 𝑅 = −1. The values of the initial defect sizes were fixed in
order to be representative of each population of defects: 15 to 200 μm for LoF defects, 50 to 600 μm for corrosion pits and 200 to
500 μm for EDM hemispherical defects.

For both stress ratios (𝑅 = −1 and 𝑅 = 0.1), the fitted models’ predictions are in good agreement with our experimental data.
Indeed, LoF, corrosion pits and EDM defects lied between their respective upper and lower bounds. It is worth noting that the
propagation parameters (𝐶∗ and 𝑚) were not determined for the tested material and were taken from the literature [79]. It means that
predictions have a potential for improvement if material based parameters are precisely determined. Moreover, model’s predictions
remain satisfactory without the consideration of the nature of the critical defect (i.e. LoF, corrosion pit or EDM). This provides the
possibility of applying the same modelling strategy to other types of defects.

Murakami et al. [24] used a similar method by taking into account the effect of a size dependent threshold in the crack
propagation behaviour. Physically, the introduction of this quantity implies that the applied stress is not the absolute driving force
of the crack propagation. Murakami et al. underlined that the driving force should be considered as the value of the stress relative to



the fatigue limit. They also observed that the defects were the main reason of the scatter in the fatigue data of a material embedding
defects. These observations are in good agreement with the present study.

6. Conclusion

The present study is a contribution towards a better understanding of the 316L L-PBF fatigue behaviour. An experimental
campaign was carried out on four specimen batches containing different populations of defects : (i) polished, (ii) pre-corroded,
(iii) with an EDM hemispherical defect and (iv) small volume geometry (Fig. 3). The following mains conclusions can be drawn:

1. A large scale of defect size (from 15 μm to 600 μm) was covered using different specimen geometries and introducing corrosion
pits and artificial defects.

2. A correlation between the defect size and the fatigue strength of the material was observed. The critical defect’s morphology
(besides its size) and its nature did not seem to strongly influence the fatigue strength (for pits, LoF pores and EDM artificial
defects).

3. The effect of the microstructure was discussed based on a comparison between the L-PBF and wrought materials. Particularly,
thanks to small HSV fatigue specimens, the metallic matrix fatigue strength could be estimated. L-PBF material showed fatigue
limit two times as high as the wrought one. This may be linked to the higher yield stress of the L-PBF material due to large
amount of dislocations related to the material thermal history.

4. Since no effect of the defect’s shape was observed, LEFM based models were applied to predict the crack propagation
behaviour. Three SIF thresholds models were implemented and identified on the experimental dataset.

5. The use of the Paris law did not allow to obtain satisfactory estimations of the fatigue lives since the dependency of the
threshold to the defect size was not taken into account. Then, a modified Paris propagation law using the difference between
the SIF 𝛥𝐾 and the SIF crack propagating threshold 𝛥𝐾𝑡ℎ was used in order to model the crack propagation more accurately,
particularly, for the short crack regime.

6. The different models applied in this study enabled to globally predict the S–N curves for each defect population based on the
knowledge of their size range. The main origin of the scatter observed in the S–N curve (see Fig. 1) was found to be linked
to the presence of defects of different sizes. Nevertheless, the results dispersion is not fully understood as many factors may
impact the fatigue strength of the material (grain size and morphology, texture, residual stress, . . . ).

To model the stochastic behaviour linked to microstructural heterogeneities, future work could focus on the definition of a
probabilistic framework to increase the quality of the fatigue behaviour predictions.
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