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Deep Unfolding of the DBFB Algorithm with
Application to ROI CT Imaging with Limited

Angular Density
Marion Savanier, Emilie Chouzenoux, Jean-Christophe Pesquet, and Cyril Riddell

Abstract—his paper presents a new method for reconstructing
regions of interest (ROI) from a limited number of computed
tomography (CT) measurements.his paper presents a new method
for reconstructing regions of interest (ROI) from a limited
number of computed tomography (CT) measurements.T Classical
model-based iterative reconstruction methods lead to images
with predictable features. Still, they often suffer from tedious
parameterization and slow convergence. On the contrary, deep
learning methods are fast, and they can reach high reconstruction
quality by leveraging information from large datasets, but they
lack interpretability. At the crossroads of both methods, deep
unfolding networks have been recently proposed. Their design
includes the physics of the imaging system and the steps of
an iterative optimization algorithm. Motivated by the success
of these networks for various applications, we introduce an
unfolding neural network called U-RDBFB designed for ROI CT
reconstruction from limited data. Few-view truncated data are
effectively handled thanks to a robust non-convex data fidelity
term combined with a sparsity-inducing regularization function.
We unfold the Dual Block coordinate Forward-Backward (DBFB)
algorithm, embedded in an iterative reweighted scheme, allowing
the learning of key parameters in a supervised manner. Our
experiments show an improvement over several state-of-the-art
methods, including a model-based iterative scheme, a multi-scale
deep learning architecture, and deep unfolding methods.

Index Terms—region-of-interest, computed tomography, angu-
lar sub-sampling, deep unfolding, forward-backward, iterative
reweighted scheme

I. INTRODUCTION

CT imaging is commonly used for diagnostic purposes
and image guidance in interventional radiology and surgery.
In interventions such as follow-up examinations of deployed
stents and needle biopsies, only a small region of the patient
is of interest. Irradiating only the ROI by X-rays involves
focusing the X-ray beam with collimation techniques using
radio-opaque blades before passing through the patient [1].
A focused irradiation results in a substantial reduction in
patient dose [2] and truncated measurements (or projections).
The inverse problem of reconstructing an ROI from a set
of truncated projections is ill-posed. In practice, it is often
combined with angular sub-sampling for fast or dose-saving
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acquisitions.
Previous research demonstrated the ability of model-based
iterative reconstruction (MBIR) for CT reconstruction from
few-view measurements [3], [4]. MBIR implements nonlinear
iterative algorithms aiming at minimizing a penalized cost
function. In CT, most works rely on total variation (TV) reg-
ularization [5]. Although they achieve a reduction in angular
sub-sampling artifacts compared to analytical reconstruction
methods, truncated projections still challenge MBIR [6], es-
pecially in terms of computation time.
To implement MBIR, one must choose the reconstruction grid,
i.e., the support of the reconstructed area. When the grid
matches the support of the ROI, the data will not agree with
the reprojection of the ROI. When the reconstruction grid
includes the support of the entire object [7], the reconstruction
becomes computationally expensive and less stable due to
the increase of unknowns for the same amount of data.
Truncated data only allows a rough estimation of the exterior
anatomical background, which holds no clinical value. Thus,
one more practical solution is to consider an intermediate
smaller grid size with a ”margin” outside of the ROI [8].
This achieves a faster and more stable ROI reconstruction in
general. Yet, when dense objects such as metallic cables or
needles are outside the reconstruction grid, the reprojection of
the extended ROI contains high-frequency errors. Moreover,
when too few projections are used for reconstruction, such
objects suffer from aliasing, and additional streak artifacts
can degrade the reconstructed ROI [6]. Another approach is
to reconstruct the entire object with large voxels and then
subtract the reprojection of the exterior from the data before
reconstructing only the ROI from the subtracted data [9], [10].
This approach produces a low-frequency approximation of the
exterior of the ROI. However, such an approximation is poor
in the presence of dense objects in the exterior of the ROI,
and unwanted high-frequency content remains after subtraction
that must again be dealt with.
Apart from the choice for the reconstruction grid, a way of
reducing reconstruction time in MBIR is through precondi-
tioning techniques. However, these techniques are often too
restrictive for CT reconstruction when proximal algorithms are
used [11]; hence the emergence of heuristics to accelerate TV-
based methods. In [6], for example, substantial acceleration
of the forward-backward algorithm is reached thanks to two
modifications. The first modification involves weighing a least-
squares data fidelity term by the ramp filter. Each gradient
step then performs an approximate inversion of the forward
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projection, and each proximity step acts as a post-processing
filter. The use of an approximate inverse of the measurement
operator in the data fidelity term is also advocated in [12]–
[14]. The second modification is the linear decrease of the
regularization parameter strength along with the iterations.
Despite these modifications, the proximity operator of TV
regularization does not have a closed form, so the method still
requires many sub-iterations. Thus, designing MBIR methods
with a low computational cost for CT imaging is still chal-
lenging.
An increasingly popular alternative to MBIR is convolutional
neural networks (CNN) due to their increased expressivity
and fast inference. CNNs, and in particular U-net [15], have
already been used for removing sub-sampling streaks in CT
reconstructions obtained using analytical methods [16], [17].
However, there are concerns about the lack of guarantees and
capacity for generalization of post-processing CNNs, because
these networks do not ensure data consistency [18]. The
deep unfolding paradigm [19], [20] circumvents this issue by
offering a way to include a priori information in a neural net-
work. Unfolding networks have been applied to many inverse
problems, such as denoising [21], [22], deblurring [23], MRI
reconstruction [24], and CT reconstruction from few-view
data [25]. Unfolding consists of untying each iteration of an
optimization algorithm for MBIR, defining a set of learnable
parameters, and training each iteration (or layer) in an end-
to-end manner. Some authors allow the unfolding network to
learn the optimization algorithm hyperparameters [23] as well
as linear operators in the regularization, such as convolution
kernels in ISTA-net [26] and in [27]. Others use CNNs to
replace proximity operators, as in PD-net [25] and ADMM-
net [24]. Deep unfolding networks automatically inherit from
the feedback mechanism of MBIR for data consistency.
In this paper, we design a deep unfolding network for address-
ing the problem of ROI image reconstruction from few-view
truncated measurements. Specifically:

• We first introduce an original cost function involving
a Cauchy fidelity term and a semi-local total-variation
regularization to limit sub-sampling streaks from objects
inside and outside the reconstruction grid.

• We then advocate for an iterative optimization algorithm
combining for the first time an instance of the dual
block forward-backward algorithm (DBFB) [28] with an
iterative reweighted scheme.

• We propose a neural network architecture inspired by this
algorithm, allowing supervised parameter learning and
fast reconstruction on the GPU.

• We evaluate the performance and generalization of our
network on three datasets against state-of-the-art meth-
ods such as MBIR, other deep unfolded networks, and
classical deep learning post-processing.

This paper is organized as follows: Section II introduces our
notation, and Section III presents a mathematical formulation
of our reconstruction problem. Section IV presents our cost
function and introduces a convergent iterative algorithm to
minimize it. We then explain how this algorithm is unfolded
into a deep learning architecture and discuss our training

strategy in Section V. This is followed by experiments (Sec-
tion VI), results (Section VII), and discussions (Section VIII).

II. NOTATION

Throughout the paper, we consider the Euclidean space RL

equipped with the standard scalar product ⟨·, ·⟩, and the norm
∥ · ∥. Moreover, |||L||| denotes the spectral norm of squared
matrix L ∈ RL×L. Let S+

L be the set of symmetric positive
definite matrices in RL×L. For Q ∈ S+

L , ∥·∥Q denotes the Q-
weighted norm, i.e., for every x ∈ RL, ∥x∥Q =

√
⟨x | Qx⟩.

The diagonal matrix with diagonal entries equal to vector z =
(zl)

L
ℓ=1 ∈ RL is denoted diag((zℓ)

L
ℓ=1). The class of functions

which are proper, convex, lower-semicontinuous, defined on
RL and taking values in R ∪ {+∞} is denoted by Γ0(RL).
The proximity operator of g ∈ Γ0(RL) at x ∈ RL is uniquely
defined as [29] proxg(x) = argmin

z∈RL

(
g(z) + 1

2∥x− z∥2
)
.

The indicator function of a nonempty subset C of RL is the
function ιC equal to 0 on C and +∞ outside of C. If C is
closed and convex, the projection onto C is denoted by projC .

III. PROBLEM FORMULATION

We consider a 1D detector array of B ∈ N bins rotating
around an object. The detector is too short to measure the
projections of the entire object; its size defines a circular ROI
we aim to reconstruct. Let S ∈ N be the number of projection
angles. The vector of truncated sub-sampled tomographic data
is y ∈ RT with T = B S.
A reconstruction of the object attenuation map in the ROI can
be obtained by considering a model of the form:

HxG = y + n, (1)

where n ∈ RT accounts for some acquisition noise, xG ∈
RL is the scanned image restricted to a grid G with support
larger than the ROI but smaller than that of the entire object,
and H ∈ RT×L is the projector that models projection over
this intermediary grid G. Operator H contains a subset of the
columns of the projector on the entire space, or equivalently it
corresponds to setting a subset of the columns of the complete
projector, corresponding to the pixels outside of G, to zero.
When the grid G corresponds to the ROI, (1) assumes that
the image values are 0 outside of the ROI. This assumption is
not necessarily true for truncated data, so (1) does not hold.
Hereafter, we suppose that the grid is extended beyond the
ROI so that no assumption is made about the values outside
the ROI.
We find an estimate of xG by computing a minimizer of a
penalized cost function consisting of the sum of a data fidelity
term f involving H and y, and a regularization term r, as

argmin
x∈RL

f(x) + r(x). (2)

The next section presents our choices for f and r, as well as
a suitable algorithm to solve (2).
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IV. ITERATIVE RECONSTRUCTION

A. Cost function

1) Cauchy data fidelity: When objects with high gradients
(metallic wires or needles) do not belong to the reconstruction
grid G, the error between the data and the reprojection of the
estimate over G contains outliers at the projections of those
high gradients. Angular sub-sampling of these outliers leads
to streaks originating from these objects, i.e., from outside the
grid. This means that the data should not be trusted equally
but through a statistical analysis different from measurement
noise. To avoid the streaks, we propose to decrease the
influence of the largest errors between y and the reprojection
of HxG using an M-estimator.
Here, we focus on the Cauchy estimator ϕ, which is a
redescending M-estimator [32] i.e., its derivative decreases to
zero on ]−∞, κ] ∩ [κ,+∞[. It is defined as

(∀ζ ∈ R) ϕ(ζ) =
βκ2

2
ln

(
1 +

(
ζ

κ

)2
)
, (3)

where β > 0 is a weighting term and κ > 0 monitors the
sensitivity to outliers: the lower κ, the lower the influence of
the outliers.
A graphical comparison of the Cauchy function (3) and the
quadratic function ϕ(·) = β

2 (·)
2 is displayed in Figure 1 for

β = 1 and various values of κ.

Fig. 1: Comparison between the Cauchy and the quadratic functions.

Our data fidelity term f reads

(∀x ∈ RL) f(x) = g(Hx− y), (4)

with

(∀z = (zt)1⩽t⩽T ∈ RT ) g(z) =

T∑
t=1

ϕ(zt). (5)

2) Semi-local total variation: Sub-sampling streaks are
commonly handled by total variation (TV) regularization [3],

[5], [6]. Semi-local variants (STV) [34] extend TV in a
neighborhood of pixels indexed in ΛJ = {−J, . . . , J} \ {0}:

(∀x ∈ RL)

rSTV(x) =

J∑
j=1

L∑
ℓ=1

αj,ℓ

√
(x−Vjx)2ℓ + (x−V−jx)2ℓ

=

J∑
j=1

rj(∇jx). (6)

Hereinabove ℓ ∈ {1, . . . , L} is the spatial index
and Vj ,V−j ∈ RL×L are shift operators as shown
in Figure 2 for j ∈ {1, . . . , J} and J = 6.
Moreover, for every j ∈ {1, · · · , J}, we define
∇j =

[
V⊤

j V⊤
−j

]⊤ ∈ R2L×L and, for every
z = (z1, z2) ∈ R2L, rj(z) =

∑L
ℓ=1 αj,ℓ

√
(z1)2ℓ + (z2)2ℓ .

Parameters (αj,ℓ)1⩽j⩽J,1⩽ℓ⩽L are nonnegative weights that
can be chosen to vary spatially, so making STV adaptive
to the spatial contents [35]. We recover the standard TV
regularization for constant values of these parameters and
J = 1.

Fig. 2: Shift operators (Vj)j∈Λ6 applied to a given pixel position ℓ

We add a nonnegativity constraint on the pixel values and a
quadratic term 1

2∥x∥
2
M = x⊤Mx to the STV regularization.

Here, matrix M = diag((mℓ)
L
ℓ=1) ∈ S+

L is such that, for
every ℓ ∈ {1, . . . , L}, mℓ = 1 if the ℓ-th entry xℓ of vector
x belongs to the ROI, and mℓ = ξ > 1 otherwise. Thus
M ∈ S+

L and acts as a mask, limiting high values outside of
the ROI.

Altogether, our regularization function in (2) reads

(∀x ∈ RL) r(x) =

J∑
j=1

rj(∇jx) +
1

2
∥x∥2M + ι[0,+∞[L(x).

(7)
To our knowledge, STV regularization has not been used

in CT for handling sub-sampling streaks. In this work, STV
provides extra capacity compared to TV for learning. The
Cauchy fidelity term has been used in ultrasound imaging [30]
and in CT imaging [31] for mitigating the ring artifacts that
appear due to defective detector bins only.
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B. Minimization algorithm

1) Reweighting for non-convex data fidelity: Given our
choices for r and f , Problem (2) becomes

argmin
x∈RL

g(Hx− y) +

J∑
j=1

rj(∇jx) +
1

2
∥x∥2M + ι[0,+∞[L(x).

(8)
Because of the non-convexity of g, we adopt an iterative
reweighting strategy where Problem (8) is replaced by a
sequence of surrogate convex problems built following a
majoration principle. As shown in Appendix A, the associated
Majorization-Minimization strategy is given by Algorithm 1,

Algorithm 1 Iterative reweighting strategy for Problem (8)

Input: Number of iterations K ∈ N∗, x0 ∈ RL

for k = 0 to K − 1 do
Define majorant function Q(x;x) using (10)

xk+1 = argmin
x∈RL

Q(x,xk) (9)

end for
Output: xK approximating the solution to (8)

where, for every x ∈ RL, the surrogate function Q(·,x) takes
the form

Q(x,x) = ι[0,+∞[L(x) + h0(B0x;B0x) + h1(B1x) +
1

2
∥x∥2M,

(10)
where ∀(x,x) ∈ (RL)2, with

B0 = H ∈ RT×L, B1 =
[
∇⊤

1 · · · ∇⊤
j

]⊤ ∈ R2JL×L

(11)

and, for every x ∈ RL,

h0(·;B0x) = g̃(· − y;B0x− y)

h1(B1x) =

J∑
j=1

rj(∇jx). (12)

Let (xk)k∈N be generated by Algorithm 1. The cost se-
quence value (defined from (8)) monotonically converges.

2) Dual block coordinate forward-backward algorithm:
The k-th iteration of Algorithm 1 requires to solve (9), which
amounts to minimizing the function Q(·,x), with x equals to
the current iterate xk. Since M ∈ S+

L , Q(·,x) is strongly
convex for every x ∈ RL. The minimization (9) is hence
well-defined, with a unique solution that can be conveniently
obtained using the dual forward-backward algorithm [22],
[36]. An accelerated and light version of this algorithm is
its block coordinate version (DBFB) [37], which allows for
accessing the proximity operators of h0 and h1 separately.
Algorithm 2 describes N ∈ N∗ iterations of DBFB. The output
xN generated by DBFB with input xk then defines xK+1

in Algorithm 1. For every n ∈ {1, . . . , N}, DBFB updates
the main primal variable xn as well as two dual variables
z0n ∈ RT and s1n ∈ R2JL, associated to the data fidelity (data
step (D)) or the regularization (regularization step (R)) terms,
respectively. Each dual variable is activated (or not) at iteration

Algorithm 2 DBFB algorithm to solve (9) with xk = x ∈ RL

Input: Number of iterations N ∈ N∗, tangent point x ∈ RL,
initial dual variables z00 ∈ RT , (∀j ∈ {1, . . . , J}) zj0 ∈ R2L

with constant J defined in (6), operators B0 and B1 defined
in (11), stepsizes (σ, τ1, . . . , τJ) ∈]0,+∞[J+1.

s10 = (z10, . . . , z
J
0 )

Σ = diag(τ1, . . . , τJ)

w0 = −M−1(B⊤
0 z

0
0 +B⊤

1 s
1
0)

For n = 0, 1 . . . , N

(z1n, . . . , z
J
n) ≡ s1n

xn = proj[0,+∞[L(wn)

Select εn ∈ {0, 1} and γn ∈]0,+∞[
If εn = 0 (D)

z̃0n = z0n + γnσ
−1B0xn

z0n+1 = z̃0n − γnσ
−1proxγ−1

n σh0(·;B0x)
(γ−1

n σz̃0n)

wn+1 = wn −M−1B⊤
0 (z

0
n+1 − z0n)

s1n+1 = s1n
If εn = 1 (R)

s̃1n = s1n + γnΣ
−1B1xn

s1n+1 = s̃1n − γnΣ
−1proxγ−1

n Σh1
(γ−1

n Σs̃1n)

wn+1 = wn −M−1B⊤
1 (s

1
n+1 − s1n)

z0n+1 = z0n

Output: xN approximating the minimizer of Q(·,x).

n according to a binary variable εn.
When N → ∞, the DBFB sequence (xn)n∈N converge to
the solution to (9) under the following assumptions on the
algorithm parameters [37]:

σ ⩾ |||B0M
−1B⊤

0 |||,
(∀j ∈ {1, . . . , J}) τj ⩾ |||∇jM

−1∇⊤
j |||,

γn ∈ [ϵ, 2− ϵ] with ϵ ∈]0, 1]
(∃M ∈ N \ {0, 1})(∀n ∈ N) 0 <

∑n+M−1
n′=n εn′ < M.

(13)
The first three assumptions are stepsize range conditions. The
last one means that each step (D) and (R) is performed at
least once, every M iterations. The practical implementation
of the proximal operators involved in DBFB for our choices
for h0 and h1 is discussed in Appendix B.

The overall iterative strategy for approximating the solution
to (8) consists of applying Algorithm 1, where, for every
k ∈ N∗, Nk ∈ N∗ iterations of Algorithm 2 are used as an
inner solver with x = xk to compute xk+1 in (9). We call the
resulting iterations reweighted DBFB (RDBFB) algorithm.
Such a combination of an iterative reweighted algorithm
with dual ascent steps is original to our knowledge. In the
context of CT, iterative reweighted algorithms usually involve
surrogates to the regularization term [57], [58] rather than to
the data fidelity, as done here.
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V. UNFOLDED RECONSTRUCTION

Hereafter, we present a deep neural network, designated as
U-RDBFB (Unfolded Reweighted DBFB), by unfolding all
the steps of RDBFB. Specifically, the network mimics the
application of K iterations of Algorithm 1, as K main layers,
each of them grouping Nk ∈ N iterations of Algorithm 2. This
yields an architecture with

∑K−1
k=0 Nk layers in total.

A. From RDBFB iterations to U-RDBFB layers

The deep unfolding paradigm recasts every step of Algo-
rithm 2 as one neural network layer: step (D) becomes LD

(εn = 0) and step (R) becomes LR (εn = 1). It requires
truncating the number of layers drastically. To optimize the
depth of our network, we propose two modifications of the
steps (D) and (R) to construct the corresponding layers. These
modifications stem from recent works [38]–[41] that have
shown the potential to replace adjoint operators with surrogates
to accelerate the convergence of MBIR methods [42]–[44]. In
CT, a frequently encountered operator is the ramp filter F,
which satisfies FHH⊤ ≈ Id . Thus, to improve conditioning
and allow larger values for the step sizes associated with layer
LD, hence a lower number of such a layer, we replace B0 in
Algorithm 2 with FH.
By setting νn,0 = γnσ

−1 and by using the relation

proxνn,0h0(·;FHx) = proxνn,0g̃(·;Hx−y)(· − Fy) + Fy,

we define layer LD as

Data layer (LD):
xn = proj[0,+∞[L(wn)

un = z0n + νn,0F(Hxn − y)
z0n+1 = un − ν−1

n,0 proxνn,0g̃(·;FHx−y)(νn,0un)

wn+1 = wn −M−1H⊤(z0n+1 − z0n)

zjn+1 = zjn (∀j ∈ {1, . . . , J}).

(14)

Similarly, for step (R), we unfold by replacing the adjoint of
the regularization operator B1 with B̃1 =

[
∇̃⊤

1 · · · ∇̃⊤
j

]⊤
.

Setting, for every j ∈ {1, . . . ,K}, νn,j = γnτ
−1
j yield the

following regularization layer LR:

Regularization layer (LR) :

xn = proj[0,+∞[L(wn)

For j ∈ {1, . . . , J} (∀ℓ ∈ {1, . . . , L})

(zjn+1)ℓ =

(
zjn + νn,j∇jxn

)
ℓ

max
{
1, ∥

(
zjn + νn,j∇jxn

)
ℓ
∥2/αj,ℓ

}
wn+1 = wn −M−1

∑J
j=1 ∇̃j(z

j
n+1 − zjn)

z0n+1 = z0n.
(15)

Note that LR does not involve x.

B. Total architecture

The total architecture of U-RDBFB, denoted A, can be
summarized as

A = LK−1 ◦ · · · ◦ L0. (16)

For 0 ⩽ k ⩽ K − 1, Lk corresponds to a sequence of Nk

layers LD or LR and implements the following update:

(z0,k+1,xk+1) = Lk(z0,k,xk; Θk), (17)

where
• xk is the current reweighted estimate x in LR-LD (x0 =

H⊤Fy).
• xk+1 is the next reweighted estimate; it is equal to xNk−1

given by the Nk-th layer LR-LD.
• z0,k ∈ RT × (R2L)J is the initial value of the variables

(zj0)0⩽j⩽J for layers LR-LD (for k = 0, (zj0)
J
j=1 are

initialized to zero while z00 is set to −Fy).
• z0,k+1 ∈ RT ×(R2L)J is is equal to (zjNk−1

)0⩽j⩽J given
by the Nk-th layer LR-LD

• Θk is the vector of trainable parameters. The parameters
are layer-dependent, so we index them by k and n.
For layer LD, the parameters are those of the
Cauchy function (βk,n, κk,n), the one of the quadratic
regularization ξk,n, and a single step size νk,n,0.
For layer LR, the regularization parameters
(αk,n,j,ℓ)1⩽j⩽J,1⩽ℓ⩽L, κk,n, ξk,n, and step sizes
(νk,n,j)

J
j=1 are learned as well as the surrogates

(∇̃k,n
j )Jj=1 to the adjoints of operators (∇⊤

j )
J
j=1.

To infer all these parameters, we introduce learning
modules (L(θ)

k,n)
Nk−1
n=0 for θ ∈ Θk and whose

implementation is discussed in Appendix C.
Schematic views of layers LD and LR can be found in
Figure 8a and Figure 8b, and a composition A of such layers
is displayed in Figure 8c.
Here we propose using K = 7 in (16) with Nk = 4 for each
k ∈ {0, · · · ,K − 1}, resulting in a total of 28 layers:

L0 = · · · = L6 = (LR ◦ LD)2. (18)

C. Incremental training strategy

Our learning modules for each layer are described in
Appendix C. We circumvent the issue of optimizing the
initial values of their parameters using an incremental training
strategy, as sometimes advocated for when initializing the
weights of recurrent neural networks [47], [48]. The learning
in each layer (k, n) (n ⩾ 1) starts by considering all the
previous layers from (0, 0) to (k, n−1) with their past trained
parameters as an initialization. This means that an increasing
number of layers is trained simultaneously. In the last step, all
layers are trained end-to-end.

VI. EXPERIMENTS

We now describe our experimental setup. First, we illustrate
the benefits of using a Cauchy-based data fidelity function.
We compare the results of our RDBFB iterative approach to a
simpler DBFB scheme minimizing the same cost function but
with g in (8) replaced with the ℓ2 norm.
Second, we comment on the improved performance brought
by our unfolding strategy (learning of adjoints and parameters
as well as the use of the ramp filter), and so U-RDBFB
(Section V) is compared to the original RDBFB algorithm.
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Third, we compare U-RDBFB to several state-of-the-art recon-
struction methods and comment on the transfer of performance
over different synthetic datasets.

A. Datasets

We used three datasets for evaluation.
1) Abdomen dataset: Our first dataset consists of 2D im-

ages obtained from 60 CT volumes of size 512 × 512 × 512
from the lower lungs to the lower abdomen of 60 patients,
which were extracted from the public dataset CT Lymph Nodes
from https://www.cancerimagingarchive.net/. These volumes
correspond to fully sampled CT reconstructions. They were
made isotropic by interpolating the axial slices. A total of 50
out of 512 slices were kept per volume. We randomly added
intense metallic wires between 3000 and 5000 Hounsfield units
(HU) of varying sizes on the axial slices. We shifted the HU
values of the images by 1000 so that air is 0 HU and water is
1000 HU, using atissue 7→ (atissue−µwater)× (1000/µwater),
where µwater is the value of the attenuation coefficient of water
equal to 0.017 mm−1 and atissue ∈ RQ is the initial vector
of attenuation values. Finally the 512 × 512 slices xP were
normalized between [0, 1] (a value of 1 corresponding to an
object of HU intensity equal to 5000).
To eliminate bias with respect to model discretization, pro-
jections were simulated for each slice of each volume in a
2D parallel geometry with a short detector of 600 bins (bin
size equal to half a pixel size, i.e., 0.5 mm) and an angular
density of 110 projections over 180° through to the projector
HP ∈ R5122×(110×600). The projections were then rebinned
by a factor 2 (operator R ∈ R300×600). Noisy projections
y = (yt)

T
t=1 are computed as

(∀t ∈ {1, . . . , T}) yt = µ log

(
I0

P(I0 exp (−µ(RHPxP)t))

)
,

where we set µ = µwater/1000, I0 = 104, and, for some
δ > 0, P(δ) denotes a realization of a Poisson law with mean
δ. In this context, the ROI was a centered disk of diameter 300.
The resulting pairs of axial slice/projections (xP,y) were split
into a training of 2500 pairs from a pool of 50 patients and a
testing set of 500 pairs from 10 other patients.

2) Head dataset: We used a second dataset con-
taining 2D images extracted from 10 CT high-dose
brain reconstructions. These volumes are from the pub-
lic repository 2016 Low Dose CT Grand Challenge from
https://www.cancerimagingarchive.net/. After extracting 50
slices of size 512 × 512 per volume (pixel size of 0.5
mm), we performed the same processing as for the Abdomen
dataset (addition of intense wires, normalization, projection,
rebinning) for generating a testing set of 500 pairs of axial
slices/projections (xP,y).

3) Geometrical dataset: Our third dataset was created
using the toolbox TomoPhantom [56]. 500 geometrical 2D
piecewise-constant phantoms were randomly generated on a
512 × 512 grid and normalized between 0 and 1. Again, we
performed the same processing as for the Abdomen dataset for
generating a testing set of 500 pairs of axial slices/projections
(xP,y).

B. Training details for U-RDBFB

Let i ∈ {1, . . . , I} be the index covering all I = 2500
instances of the training set. The reconstruction grid (G) is
a disk of diameter 400. Let x∗

G,i ∈ RL be the output of U-
RDBFB for a given projection input yi. Our network is thus
designed to minimize

∑I
i=1 ℓ(CGx

∗
G,i,CPxP,i), where CG is

a cropping operator which extracts the ROI from the grid G,
CP is a cropping operator which extracts the ROI from the
entire 512 × 512 grid, and ℓ is the loss retained for training
the network. For all instances of the training set,

ℓ(CG·,CPxP,i) =
1

I
∥CG · −CPxP,i∥2, (19)

corresponding to the MSE loss.
We implemented U-RDBFB following (18) in Pytorch, using
a Tesla V100 32 Gb GPU. We used six epochs for training
each layer LR and ten epochs for training each layer LD;
the only exception was the last layer, for which we used 20
epochs. The learning rate is decreased with a step decay by
a factor of 0.99 from 10−2 every 4 epochs. The batch size
for each epoch varied from 20 to 8 as the number of trained
layers increased. We employed the toolbox TorchRadon [46] to
include Pytorch-compatible parallel-beam tomographic opera-
tors in all architectures. Standard auto-differentiation tools can
compute all necessary derivatives for backpropagation. The
training procedure takes about one day and a half.

C. Competing methods

The quantitative metric used to assess the reconstruction
quality of CGx

∗
G,i is the PSNR. We also evaluate the re-

construction performance using the structural similarity index
(SSIM), the PieApp value [49], and the Mean Absolute Error
(MAE) of the difference between CGx

∗
G,i and CPxP,i.

We compare U-RDBFB with FBP, an iterative method, and
four deep-learning methods that we describe hereinafter.

1) FBP: This analytical method consists of computing
H⊤

ROIFy, where HROI ∈ R3002×(110×300). As is commonly
the case when applying FBP on truncated data, we extrapolated
the projections prior to ramp filtering (using anti-symmetric
padding).

2) RDBFB algorithm: For completeness, we perform com-
parisons with the iterative method proposed in Section IV.
For each reweighted iteration k, we used Nk = 10 DBFB
iterations alternating between data and regularization steps
(1:1 correspondence). For an easier manual tuning of the
hyperparameters, instead of using J = 6 as in U-RDBFB,
we set J = 1 so that STV reduces to TV and α1,ℓ ≡ α1, for
all ℓ ∈ {1, · · · , L}. The remaining cost function parameters
(ξ, κ, β) are selected by optimizing PSNR on the training set
via a grid search.

3) Post-processing U-net: The third competing method is
the CNN proposed in [16], [17], which is a post-processing
of FBP. It relies on a trained residual U-net, with a depth of 4
levels, filters of size 32, and batch normalization to improve
the stability of training.

https://www.cancerimagingarchive.net/
https://www.cancerimagingarchive.net/
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4) Preconditioned Neumann Network (PNN): Our fourth
competing method is a preconditioned Neumann network
(PNN) initially introduced in [52] for MRI reconstruction. It
builds on a method for solving Problem (2) with f(x) =
1
2∥Hx − y∥2. For a differentiable function r, the resulting
minimizer reads

(H⊤H+∇r)x = H⊤y, (20)

which can be rewritten as

(H⊤H+ λ Id )x+ (∇r − λ Id )x = H⊤y. (21)

Setting Tλ = (H⊤H+ λ Id )−1 yields

(Id −λTλ +Tλ∇r)x = TλH
⊤y. (22)

Using the Neumann identity B−1 =
∑∞

n=0(Id −B)n, the
authors derive the architecture of PNN with N ∈ N∗ layers
(see Figure 3)

(λTλ −Tλ∇r)N ◦Tλ(H
⊤y). (23)

All instances of Tλ are applied approximately using an
unrolling of 10 iterations of the conjugate gradient algorithm.
The operator Tλ∇r is replaced by a U-net, denoted by Ψ,
which has the same architecture as the aforementioned U-net
without the residual connection. The weights of the U-net are
shared for all layers. Following [52], no batch normalization
is used. The inner U-net has a depth of 4, the learning rate
is set to 10−4, and the initial value for λ is 0.01. We choose
N = 3. One feature of PNN compared to other deep unfolding
networks is that it contains skip connections.

5) ISTA-net: Our fifth competing method is ISTA-net,
derived from the work of [26]. ISTA-net is designed to solve
Problem (2) for f(x) = 1

2∥Hx − y∥2, and r(x) = λ∥Wx∥1
(λ > 0), where operator W is not known a priori but
learned. W is an orthogonal linear operator in the initial ISTA
algorithm, whose iteration reads

xn+1 = W⊤ soft
(
W(xn − τH⊤(Hxn − y), λτ

)
, (24)

where soft is the soft-thresholding operation and τ > 0
is the gradient step size. In ISTA-net, the authors replace
W and W⊤ by two decoupled nonlinear operators namely
An ◦ ReLU ◦Bn and Cn ◦ ReLU ◦Dn (see Figure 4a). The
property of orthogonality of W is not imposed but favored
during training by adding a term, weighted by χ ∈ ]0,+∞[,
penalizing the difference between (Cn ◦ReLU ◦Dn) ◦ (An ◦
ReLU ◦Bn)xn and xn in the loss function. Each An, Bn,
Cn and Dn is a 2D convolutional operator. Bn and Cn are
associated with a kernel of size 3×3 and 32 input and output
channels; An has 1 input channel and 32 output channels and
vice-versa for Dn. As suggested by the authors, we learn these
convolutional operators as well as λ and τ , which are allowed
to vary at each iteration.
Experiments are carried out with 10 layers, χ = 0.1, x0 is the
FBP reconstruction, λ and τ are initialized to 0.1 and 0.01
respectively.

6) PD-net: The last competing method is the learned
Primal-Dual (PD-net) introduced in [53] by unrolling the
Primal-Dual Hybrid Gradient (PDHG) optimization algorithm
[54]. The authors consider Problem (2) with a more generic
data fidelity term f(x) = G(Hx;y). They replace both the
proximity operators of G and r in PDHG by residual CNN so
that one layer n of their network reads

zn+1 = CNN(zn + σHx̃n;y) (25)

xn+1 = CNN(xn − τH⊤zn+1) (26)
x̃n+1 = xn+1 + γ(xn+1 − xn). (27)

The CNNs act both in the image and projection domains.
Furthermore, buffers of previous iterates of size Np ∈ N in
the primal domain (image) and of size Nd ∈ N in the dual
domain (projection) are kept to enable the network to learn
an acceleration. We used 9 layers, Nd = Np = 3, and 32
filters in the convolutional layers. This network is illustrated
in Figure 4b.

The competing networks were also trained with the MSE
loss (using (19) for unfolding networks and a regularization
term for ISTA-net weighted by χ) in a standard end-to-
end manner. The number of epochs was chosen such that
all networks have converged. Note that codes are publicly
available for these networks. We re-implemented them in
Pytorch, and kept the setting of the parameters advocated by
the authors, except for PNN, for which we reduced the number
of layers to 3 to obtain a stable behavior for training. The total
number of parameters of each network is reported in Table I.

Fig. 3: Architecture of PNN [52]: The network maps a linear function
of the measurements TλH

⊤y to a reconstruction xn by successive
applications of an operator of the form λTλ−Ψ, while summing the
intermediate outputs of each block. All instances of Tλ are replaced
by an unrolling of 10 iterations of the conjugate gradient algorithm.
Ψ is a trained network and the scale parameter λ is also trained.

VII. RESULTS

A. Assessing the benefits of the Cauchy fidelity term

Figure 5c shows the full reconstructed images on grid G
of size 400 × 400 obtained using the DBFB algorithm with
a quadratic fidelity term and the reweighed DBFB algorithm
with a Cauchy fidelity on a test instance of the Abdomen
dataset (shown in Figure 5a). Since the two data fidelity
terms can be put into our optimization framework Alg. 1-
Alg. 2, the comparison is straightforward. Figure 5d shows
the corresponding ROIs as well as the FBP reconstruction.
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(a) Architecture of ISTA-net [26]: Each layer is composed of a gradient step followed by the application of a nonlinear operator, which is the combination of
two learnable linear convolutional operators (An, Bn) separated by a ReLU, a soft-thresholding operation and then two other learnable linear convolutional
operators (Cn, Dn) separated by a ReLU. The property (Cn ◦ ReLU ◦Dn) ◦ (An ◦ ReLU ◦Bn) = Id is favored during training.

(b) Architecture of PD-net [53]: The red and blue boxes represent the primal and dual networks, respectively. Buffers of 3 primal (x1
n,x

2
n,x

3
n) and dual

(z1n, z
2
n, z

3
n) estimates are used at each iteration. The initial primal estimates are set to the FBP reconstruction given by H⊤Fy, and the initial dual estimates

are set to zero.

Fig. 4: Two competing unfolded proximal algorithms

The full image contains two intense objects out of the ROI
and at the border of the reconstruction grid. In the solution
obtained using the quadratic data fidelity term, the reduction of
sub-sampling streaks is selective; only the streaks originating
from objects within G have been eliminated in the ROI. When
trading the quadratic term with a Cauchy term, as we proposed,
the intensity of these streaks is reduced. This artifact reduction
translates into an improvement of the PSNR as shown in
Figure 5b. Figure 5e shows the ROIs obtained using the
same reconstruction methods and grid size when increasing
the number of projections from 110 to 600. The images now
look identical and close to the ground truth. This observation
highlights that, for relatively ’clean’ data (no modeling of
beam hardening and scattering), the benefits of using a Cauchy
fidelity over a quadratic fidelity emerge when data is sub-
sampled.
We have shown that by using a regularized cost function with
a Cauchy fidelity term and, thus, a more complex optimization
framework, we can successfully reconstruct truncated data on
a short grid, and that the reconstruction is at least as good as
the one obtained with quadratic fidelity and even better when
the data are sub-sampled.

B. Comparing iterative RDBFB algorithm with U-RDBFB

Figure 6a shows the evolution of the PSNR along the
iterations when inserting the ramp filter in the reweighted
DBFB algorithm, re-tuning the regularization strength, and
still using the same data. The PSNR stagnates around 300
iterations with the ramp filter while it stagnates around 12500
iterations without it (see Figure 5b). Thus applying the ramp
filter on the reprojection error before backprojection can em-
pirically accelerate convergence without degrading the solution
(reconstructed ROI displayed in Figure 6c) in an early stopping
scenario. This motivates our translation of a data iteration of
DBFB to a data layer of U-RDBFB which embeds the ramp
filter. It also provides empirical evidence that performance
can be optimized by introducing mismatched adjoints without
learning.
U-RDBFB also includes learned parameters, especially ad-
joints to the STV operators. It performs a total of 28 RDBFB
iterations. Figure 6c compares the reconstruction ROI obtained
with U-RDBFB, 500, and 28 iterations of the reweighed DBFB
algorithm with the ramp filter. We see that after 28 iterations
of the reweighed DBFB algorithm, there is a local offset
near the intense object, and some streaks remain. On the
contrary, the image obtained with U-RDBFB does not contain

U-RDBFB U-net PNN PD-net ISTA-net
|Θ| 2.3169× 104 1.9278× 106 1.9278× 106 2.5470× 105 1.7109× 105

TABLE I: Number of learnable parameters (Θ)
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(a) (b) (c)

(d)

(e)

Fig. 5: (a) Ground truth xP. (b) Evolution of the PSNR along iterations using a Cauchy or quadratic data term for 110 projections. (c)
Reconstructed extended ROIs using 110 projections, a Cauchy data fidelity, and a quadratic data fidelity. (d) Reconstructed ROIs using 110
projections. (e) Reconstructed ROIs using 600 projections. From left to right: Ground truth, reweighted DBFB with Cauchy fidelity, DBFB
with quadratic fidelity, FBP.

these artifacts. It is similar to the ground truth and slightly
smoother than the reconstruction after 500 iterations of the
reweighed DBFB algorithm but with approximately 18 times
fewer iterations.

C. Comparing U-RDBFB with deep learning methods on the
Abdomen dataset

Table II reports the performance of U-RDBFB compared to
U-net and other deep unfolding networks on the testing set of
the Abdomen dataset and Figures 7a-7b display the training
and testing losses as a function of the number of epochs for
all these networks. U-RDBFB performs, on average, better
than the other unfolding networks (PNN, PD-net, and ISTA-
net) and U-net for all considered metrics. We note that the
peaks in the training and testing losses associated with U-
RDBFB correspond to the addition of a new data layer during
incremental training.
Figure 9c illustrates the reconstructed ROIs for four exam-
ples from the test set of the Abdomen dataset. The FBP
reconstruction is also displayed as it is also the input of
U-net. The figure confirms that U-RDBFB reduces streaks
more effectively than the other unfolding networks. At first

sight, the images produced by U-net have fewer artifacts
than most deep unfolding networks. However, in the second-
row and fourth-row images, U-net introduces an artificial
dark background. This observation highlights that U-net can
hallucinate structures under the sub-sampling streaks of the
FBP input. Unfolding networks avoid these hallucinations;
by simply alternating between U-net and several consistency
layers, PNN already minimizes this effect.
Figure 9b shows the complete reconstruction on grid G for all
unfolding networks. In all cases, since the training loss acts
on the ROI only, the exterior is always poorly reconstructed
(with ISTA-net, it is very sparse).

D. Changing the testing set

We now evaluate the generalization ability of the methods
trained on the Abdomen dataset, using examples from the
Head and Geometrical datasets. In Table III and Table IV, we
report the performance of the trained networks when tested on
the Head and the Geometrical datasets. U-RDBFB outperforms
the competing unfolding networks for both datasets. ISTA-net
is second-best on the Head dataset, and the iterative algorithm
ranks second-best on the Geometrical dataset.
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(a) (b)

(c)

Fig. 6: (a) Evolution of the PSNR along iterations using a Cauchy fidelity term with and without the ramp filter for the example of Fig 5a.
(b) Evolution of the PSNR along layers in U-RDBFB for the example of Fig 5a. (c) Reconstructed ROIs. From left to right: Ground truth,
Cauchy with ramp filter (500 iterations of the modified reweighted DBFB), Cauchy with ramp filter (28 iterations of the modified reweighted
DBFB), U-RDBFB.

Metrics U-RDBFB U-net PPN PD-net ISTA-net RDBFB
PSNR 38.7 38.6 38.6 36.5 38.1 33.9
SSIM 0.981 0.972 0.974 0.956 0.975 0.903
MAE (×10−3) 3.54 4.81 3.94 5.53 4.97 8.41
PieApp 0.389 0.501 0.603 0.599 0.614 0.653

TABLE II: Quantitative assessment of the reconstructed ROIs. Mean values computed over the test set of the Abdomen dataset.

Metrics U-RDBFB U-net PPN PD-net ISTA-net RDBFB
PSNR 31.7 16.8 18.3 17.6 23.2 21.1
SSIM 0.979 0.903 0.845 0.765 0.956 0.908
MAE (×10−3) 2.17 7.86 4.85 6.47 3.70 6.25
PieApp 0.276 0.881 0.941 0.984 0.650 0.476

TABLE III: Quantitative assessment of the reconstructed ROIs. Mean values computed over the test set of the Head dataset.

Metrics U-RDBFB U-net PPN PD-net ISTA-net RDBFB
PSNR 27.3 25.1 26.7 25.2 25.8 26.1
SSIM 0.856 0.656 0.736 0.736 0.817 0.848
MAE (×10−3) 16.6 44.1 51.4 25.4 18.4 16.5
PieApp 0.267 1.166 1.255 1.324 0.894 0.158

TABLE IV: Quantitative assessment of the reconstructed ROIs. Mean values computed over the testing set of the Geometrical dataset.

The four reconstructed images displayed in Figures 10a-10b
confirm this trend. For the Head dataset, U-net performs poorly
relative to U-RDBFB on all metrics except for SSIM, where
the two methods are rather close. One explanation is that
it introduces an offset in some images while limiting the
streaks (cf second head image). However, when applied to the
geometrical images, it yields unwanted background patterns
that strongly degrade our metrics. Offsets and background
artifacts are also visible with most unfolding networks, es-
pecially PNN and PD-net, except for U-RDBFB. We still note
that the head images and the first geometrical image obtained
with U-RBFB have a slightly patchy look, often characteristic

of TV regularization. This shows that U-RDBFB retains the
characteristics of the original optimization problem, avoiding
the generation of unexpected content as is possible with U-net.

VIII. DISCUSSION

The results show that U-RDBFB outperforms its iterative
counterpart as measured in PSNR, SSIM, and PieApp. It
not only presents results similar to its iterative counterpart
RDBFB in terms of streaks reduction, but it also recovers
image details in a much lower number of iterations. We note
that U-RDBFB leads to smoother images: the noise is reduced,
but the resolution of the image is somehow decreased. This
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(a)

(b)

Fig. 7: (a) MSE on the training set as a function of the epoch number.
(b) MSE on the testing set as a function of the epoch number.

could be explained by the fact that U-RDBFB is designed
to minimize the ℓ2 norm of the error with respect to the
noiseless ground truth, using very few regularization layers; it
tends to selectively smooth some parts of the image to remove
remaining artifacts.
All metrics agree that U-RDBFB improves upon learned post-
processing U-net and other unfolding networks for our Ab-
domen dataset. U-net was often associated with a high PSNR
compared to the other reconstructions, but this was not always
reflected by the PieApp metric. This may be explained by
the learned post-processing being limited by the information
content of the FBP input, while the unfolding networks act
directly with the information content of the data, which is
greater than that of the FBP.
The computation time for U-RDBFB was about 200 ms in
GPU for a 400× 400 reconstruction grid. This is much faster
than the iterative reconstruction, which, in our case, requires
around 180 s after the regularization parameters have been
selected, but slower than other deep learning methods (38 ms
for U-net, 68 ms for PNN, 74 ms for ISTA-net, 85 ms for
PD-net).
U-RDBFB contains fewer learnable parameters than all the
other networks. Thanks to our incremental strategy, training
U-RDBFB was also found to be easier than other unfolding
networks, such as PNN, whose stability highly depends on the
initialization for parameter λ and the learning rate. Optimizing
the architecture and, more precisely, the number of parameters
of a neural network is key to transferring its performance
to out-of-distribution examples, as shown on the Head and
Geometrical datasets. Generally, deep unfolding networks are
introduced mainly to ensure data consistency through H and
embed a fast optimization scheme for fast inference. Our
results suggest that including additional a priori knowledge

can further boost the performance of deep-learning-based
techniques. Note that the structure of U-RDBFB (K, Nk and
distribution of LD and LR) was not extensively fine-tuned.
Our results illustrate that the most straightforward choices
work well in our context of ROI imaging from angularly sub-
sampled data.
Our results also hinted that, even without learning, trading a
quadratic fidelity for a Cauchy fidelity, discarding the data
incompatible with the a priori support of the object, and
including some preconditioning through the ramp filter are still
of interest to improve reconstruction and reduce the number
of iterations.

IX. CONCLUSION

In this paper, we proposed an iterative reweighted algorithm
where each inner optimization problem is solved using dual
block coordinate forward-backward iterations, and an unfolded
version of it, yielding a neural network for ROI reconstruction
from a few measurements. These methods include a convex
surrogate to a Cauchy data fidelity and a TV-based regulariza-
tion to limit sub-sampling streaks originating from inside and
outside the reconstruction grid. Our experiments demonstrated
the benefits of the unfolded strategy over the original iterative
algorithm. By balancing the capacity of the network and
the use of prior knowledge, our architecture displayed high
generalization ability compared to various neural networks,
including U-net and other deep unfolding networks. Future
work will investigate loss functions that better preserve image
resolution and further optimization of the structure of our
network for application to other geometries (e.g., cone-beam)
using real CT data.

APPENDIX A
REWEIGHTING STRATEGY

Let ϕ be given by (3). It was shown in [55] that, for every
ζ ∈ R, the following convex quadratic function ϕ̃(·, ζ), defined
for every ζ ∈ R as

ϕ̃(ζ, ζ) = ϕ(ζ) + β
(ζ − ζ)ζ

1 + (ζ/κ)2
+

β

2

(ζ − ζ)2

(1 + (ζ/κ)2)
, (28)

is a tangent majorant approximation to ϕ at ζ, that is

(∀ζ ∈ R) ϕ̃(ζ, ζ) ⩾ ϕ(ζ) and ϕ̃(ζ, ζ) = ϕ(ζ). (29)

This allows us to deduce a tangent majorant function g̃ of
function g at any point z ∈ RT : (∀z ∈ RT ),

g̃(z, z) =

T∑
t=1

ϕ(zt, zt)

= g(z) + β diag

((
zt

1 + (zt/κ)2

)T

t=1

)
(z− z)

+
β

2
(z− z)⊤ diag

((
1

1 + (zt/κ)2

)T

t=1

)
(z− z) ⩾ g(z).

Finally, for every x ∈ RL, we set

(∀x ∈ RL) f̃(x,x) = g̃(Hx− y;Hx− y), (30)
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that satisfies f̃(x,x) ⩾ g(Hx − y) = f(x). Given this
majoration, the iterative reweighting strategy approximates the
solution to (8) by the estimate produced by Algorithm 1, where

(∀(x,x) ∈ (RL)2) Q(x,x) =f̃(x,x) + r(x). (31)

APPENDIX B
IMPLEMENTATION OF DBFB

Step (D) involves the calculation of the proximity operator
proxγ−1

n σh0(·,B0x)
, which has a closed-form [29, Example

24.2], for (∀(z, z) ∈ (RT )2),

proxγ−1
n σh0(·,B0z)

(z) = proxγ−1
n σg̃(·−y,z−y)(z),

= y + proxγ−1
n σg̃(·,z−y)(z− y)

=

(
yt +

zt − yt

1+βγ−1
n σ

(
1 + (zt − yt)2/κ2

)−1

)T

t=1

. (32)

Step (R) requires calculating the proximity operator of h1

scaled by parameter γ ∈ ]0,+∞[. It also has a closed form: for

s = (s1, . . . , sJ) ∈ R2JL, proxγh1
(s) =

(
proxγrj (sj)

)J
j=1

,

where, for every z = (z1, z2) ∈ R2L,

proxγrj (z) =
(
max

{
0, 1− γαj,l

∥zℓ∥2

}
zℓ

)L

ℓ=1

, (33)

where, for every ℓ ∈ {1, . . . , L}, zℓ = ((z1)ℓ, (z2)ℓ) ∈ R2.

APPENDIX C
PARAMETER LEARNING

We discuss our choices for (L(θ)
k,n)

Nk−1
n=0 .

• step size for LD: νk,n,0 = L(ν)
k,n = softplus(ak,n) where

ak,n is a learnable real-valued parameter.
• Parameters of the Cauchy function for LD:

∗ κk,n = L(κ)
k,n = Wκ softplus(ck,n) where ck,n is

inferred from a fully connected layer, whose weights
are shared across the U-RDBFB network, applied on
a histogram of the absolute value of the filtered re-
projection error, i.e., H⊤(Fxn−y). We implemented
the learnable histogram layer proposed in [45], which
is piecewise differentiable. More precisely, we built
a cumulated histogram using 100 bins from 0 to the
maximum value of the filtered reprojection error.

∗ βk,n = L(β)
k,n = Wβ softplus(dk,n).

• Diagonal elements of M involved in (7) corresponding
to the locations of pixels outside of the ROI for both LD

and LR: ξk,n = L(ξ)
k,n = softplus(ek,n) where ek,n is

learned.
• step size for LR: For every j ∈ {1, . . . , J}, νk,n,j =

L(νj)
k,n = Wν softplus(bk,n,j).

• Parameters of the STV regularization for LR: For every
j ∈ {1, . . . , J},

αk,n,j = (αk,n,j,l)
L
ℓ=1 = L(αj)

k,n

= Wα softplus(Ak,n ◦ relu ◦Bk,n(∇jxk)),

where Ak,n is a grouped convolution of 7 groups with
size 3 × 3 kernels and J = 7 channels and Bk,n is a

grouped convolution of 14 groups with size 5×5 kernels
and 14 channels.

In LD, initial values of ak,n, dk,n are set to 1. In LR, initial
values for bk,n,j , ek,n are 1. Normalization scalars Wκ, Wν ,
Wβ and Wα are set to 10−5, 10, 10 and 0.05 respectively.
Finally, in each layer LR, operations (L̃k,n

j )Jj=1 are learned;
they are convolutions with a kernel of the same size as for
(Lk,n

j )Jj=1.
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(a) Schematic view of a Nk-th layer LD (14). The layer relies on x = xk , the k-th reweighted iterate to generate the next reweighted iterate xk+1. The
layer takes as inputs wn, z0n from the previous layers. The projections y are also used as input.

(b) Schematic view of a Nk-th layer LR (15). The layer takes as inputs wn, (zjn)J1 from the previous layer and generates the next reweighted iterate xk+1.
The update of parameters for j ∈ {2, . . . , 5} is hidden in the orange block for the sake of readability. Only parameters αj depend on the input.

(c) U-RDBFB in the case where A = L1 ◦ L0
2 where L0 = (LR)2 ◦ LD and L1

2 = LD (i.e., K = 2, N0 = 3, N1 = 1). Red blocks represent the hidden
structures to infer all the parameters θ ∈ Θ. When k = 1, the dual variables of DBFB are initialized with the values of the dual variables at the end of the
previous N0 iterations of DBFB (k = 0).

Fig. 8: Architecture of U-RDBFB
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