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Abstract. The classic computational scheme of convolutional layers
leverages filter banks that are shared over all the spatial coordinates of
the input, independently on external information on what is specifically
under observation and without any distinctions between what is closer
to the observed area and what is peripheral. In this paper we propose
to go beyond such a scheme, introducing the notion of Foveated Con-
volutional Layer (FCL), that formalizes the idea of location-dependent
convolutions with foveated processing, i.e., fine-grained processing in a
given-focused area and coarser processing in the peripheral regions. We
show how the idea of foveated computations can be exploited not only
as a filtering mechanism, but also as a mean to speed-up inference with
respect to classic convolutional layers, allowing the user to select the
appropriate trade-off between level of detail and computational burden.
FCLs can be stacked into neural architectures and we evaluate them in
several tasks, showing how they efficiently handle the information in the
peripheral regions, eventually avoiding the development of misleading
biases. When integrated with a model of human attention, FCL-based
networks naturally implement a foveated visual system that guides the
attention toward the locations of interest, as we experimentally analyze
on a stream of visual stimuli.

Keywords: Foveated Convolutional Layers · Convolutional Neural Net-
works · Visual Attention.

1 Introduction

In several visual tasks the salient information is distributed in regions of limited
size. Objects of interest do not typically occupy the whole visual field, while
peripheral areas could contain both relevant or redundant (if not misleading)
information. Processing the whole visual scene in a uniform manner can lead to
the development of learning machines which inherit spurious correlations from
the training data [18,23], that might behave in an unexpected manner at infer-
ence time, when exposed to out-of-distribution inputs. A foveated artificial vision
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system is characterized by a high-acuity fovea, at the center of gaze and a lower
resolution in the periphery. Several recent approaches implement this principle
by transforming the input [4,22], for example blurring the image periphery [16]
or sub-selecting a portion of it. Many other works introduced foveation pat-
terns into a variety of tasks [8], architectures [24] and rendering operations [11].
Foveation in machine vision systems has been investigated both for its computa-
tional advantages [15] and for its representational and perceptual consequences,
it can play a relevant role in terms of reducing undesirable correlations, noise
dependence and weakness to adversarial attacks [10,17].

The importance of foveated vision systems clashes with how classic 2D con-
volutional layers are designed, where all the input locations are treated the same
way, exploiting and sharing the same bank of filters over all the image plane [1].
This entails an architectural prior, implicitly assuming that all the input lo-
cations equally contribute to the learning process of the layer filters. From the
perspective of the computational costs, extracting convolutional features requires
the same computational budget over all the spatial locations. Transformer ar-
chitectures and related models [5,20,21] marked a paradigm shift towards the
removal of the inductive bias induced by convolutional layers, thanks to the self-
attention mechanism which basically gives different importance to sub-portions
of the vision field. However, this actually takes place due to further operations
that are applied to predict the importance of the convolutional features extracted
on image patches, and not due to an inherently foveated computational scheme,
with low computational efficiency. Similar considerations hold for the efficiency
of Locally Connected Layers (LCL) [6,13], that implements different filters for
each local receptive field. Moreover, LCLs hinder the generalization capability of
the network, losing interesting properties (invariances) and not capturing some
correlations due to their strong locality [14].

Recent activity in the context of modeling human attention [26] has shown
that it is possible to predict human-like scanpaths to tell deep networks what
are the important locations to “observe/focus”, thus filtering out non-relevant
information [19]. When paired with the aforementioned properties and benefits
of foveated visual systems, this calls to the need of developing neural models
that can naturally and efficiently exploit the information on what is focused.
Inspired by this intuition, we introduce a novel kind of foveated neural layer for
computer vision, named Foveated Convolutional Layer (FCL), that rethinks the
role of classic 2D convolutions. FCLs go beyond the idea of exploiting the same
filters over all the spatial coordinates of the input stimuli, formalizing the idea
of location-dependent foveated convolutions. Given the coordinates of a point of
interest, also referred to as focus of attention (FOA), either coming from exter-
nal knowledge on the task at hand or generated by a scanpath predictor [26], an
FCL extracts feature maps that depend on the FOA coordinates and on where
convolution is evaluated, giving a different emphasis to what is closer and far-
ther from the FOA. In particular, FCLs perform a finer-grained processing in
the focused areas (foveal region), and a progressively coarser processing when
moving far away (peripheral regions). We propose several variants of FCL, which
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differ in the way this principle is implemented. One of the proposed instances of
FCLs easily leads to faster processing with respect to classic convolutional layers,
allowing the user to select the appropriate trade-off between the processing ca-
pability and computation streamlining, where the reduction of per-pixel floating
point operations (faster processing) is due to the coarser feature extraction in
non-focused areas. We show how some instances of FCLs can loosen the weight
sharing constraint of classic 2D convolutions [13], limiting it to portions of the
image at similar distances from the FOA, thus introducing a FOA-based form
of locality in the connections [6]. When integrated with the dynamic model of
human attention of [26], FCL-based networks naturally implement an efficient
foveated visual system that guides the attention toward plausible locations of
interest, leveraging peripheral low-budget computations, as we experiment in the
context of a continual stream of visual stimuli.

The scope of our work is different from the one of Recurrent Attention Mod-
els [12] (and related work), that iteratively process the input, focussing on dif-
ferent portions of it, and learning to identify what is more relevant for the task
at hand [9]. In these models, the way attention behaves is intrinsically inter-
leaved with the task-related predictor, either by means of non-differentiable
components [12] or differentiable approximations, while what we study is in-
deed completely agnostic to the source of the attention coordinates. Moreover,
this paper is not oriented toward designing systems that make predictions as the
outcome of a dynamic exploration of the input, being potentially complemen-
tary to the aforementioned approaches and other dynamic models [7]. The idea
of re-structuring the kernel function is also present in Locally Smoothed Neural
Networks (LSNNs) [14], that, however, are based on the idea of factorizing the
weight matrix to determine the importance of different local receptive fields.

In detail, the contributions of this paper are the following: (i) We pro-
pose Foveated Convolutional Layers (FCLs) to implement location-dependent
foveated processing, investigating several out-of-the-box FCLs. (ii) We study how
FCLs can be stacked or injected into neural architectures, reducing the overall
number of floating point operations and running times, as experimentally in-
vestigated in multiple tasks. (iii) Thanks to faster processing on the peripheral
areas, we implement an all-in-one foveated visual system that can be used to
drive the gaze patterns of a focus-of-attention trajectory predictor, extending a
state-of-the-art scanpath model [26]. (iv) We evaluate the foveated visual sys-
tem in continual learning, manipulating attention at a symbolic level, coherently
with the skills that are progressively gained by the network.

2 Foveated Convolutional Layers

Let us consider an input image/tensor I:Ω → Rc with c channels, where I(x)
is the c-element vector at coordinates x = (x1, x2) ∈ Ω, being Ω the domain to
which the spatial coordinates belong. Let us also introduce a 2D convolutional
layer composed of a bank of F kernels/filters. Without any loss of generality,
and for the sake of simplicity, we restrict the following analysis to the case of
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c = 1. For each kernel kj :R2 → R, j = 1, . . . , F , the convolution between I and
kj is defined as follows,

oj(x) =
(
kj ∗ I

)
(x) =

∫
Ω

kj(τ)I(x− τ)dτ =

∫
Ω

I(τ)kj(x− τ)dτ. (1)

where oj(x) denotes the j-th output feature map computed at coordinates x.
Notice that, as usual, the same filter is shared over all the spatial locations. This
implies that all oj(x)’s, ∀x, are the outcome of having applied the exact same
filter function, after having centered it in x. However, from a very qualitative
standpoint, this clashes with the fact that humans do not process the visual
scene in such a uniform manner. The extraction of visual information depends
on what the gaze is specifically observing, a ∈ Ω. What is closer to a, the foveal
region, is not processed the same way as what is far from it. Usually, a finer-
grain processing is applied when close to a, while a coarser visual representation
is modeled as long as we depart from a. It is convenient to think that the former
is related to a larger usage of the computational resources, while the latter is
associated to less expensive processing.

We propose a novel class of convolutional layers, named Foveated Convolu-
tional Layers (FCLs), that make convolution dependent on a given location of
interest a, and that do not exploit the exact same filter over all the x’s. The infor-
mation on a might come from additional knowledge (e.g., knowing the location
of an object or simply focussing on the center of the image in Image Classifica-
tion) or from a model of human attention that predicts where to focus, both in
static images and videos [26,2]. In FCLs, the kernel exploited for the convolution
operation in Eq. 1 becomes a function of a, in order to model the dependency
on the location focused by the gaze, and also function of x, to differentiate the
way convolution is performed in different locations of the image plane. For ex-
ample, the notion of foveated processing implies that a coarser computation is
performed when x is far from a. We propose to implement this behaviour by
transforming the original kernel kj through a spatial convolution with a newly
introduced function µ, that depends both on a and x, and, in particular, on the
relative location of x with respect to a,

k̃jx,a(z) =
(
µθ,x−a ∗ kj

)
(z) :=

∫
Ω

µ(θ, x− a, z − ξ)kj(ξ)dξ. (2)

We refer to µ as the modulating function, while θ are its structural parameters.
Notice that when c > 1, kj includes c 2D spatial components, and the spatial
convolution of Eq. 2 is intended to be applied to each of them. Features o(x) are
obtained as in Eq. 1, replacing kj with k̃jx,a from Eq. 2.

This definition paves the road to a broad range of instances of FCLs that
differ in the way in which the modulating function µ(θ, ·, ·) is defined, and in how
we make operations less costly when departing from the FOA, that will be the
subject of the rest of this section, and that are briefly summarized in Fig. 1 (top-
left). In 2D convolutional layers, kj is assumed to be defined on a limited region
that, in the discrete case, is (c×) K × K. The portion of I (resolution w × h)
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that is covered by kj when computing such a discrete convolution at a certain
location x is what is usually referred to as receptive input. The major assumption
that we follow in designing out-of-the-box FCLs is that features extracted in the
peripheral regions (far from a) or in the focused regions (close to a) should be
about input portions of the same size, to avoid introducing strong biases in the
nature of the features extracted when varying x or a. In other words, all the
filters k̃jx,a, regardless of x and a, must cover a receptive input of the same size.
We term this condition the uniform spatial coverage assumption.
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ℜ4
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Processing
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Fig. 1: Top-left: out-of-the-box FCLs. Bottom-left: example of R = 4 regions in
the piecewise-defined kernel case, when the attention a is given. Right: three
strategies (one-per-column) to implement a piecewise-defined kernel, with ex-
amples of spatial coverage of the 4 region-wise kernels (coordinates not covered
due to dilation are blank). We report right after the strategy name further op-
erations needed to fulfil the uniform spatial coverage assumption.

The most basic instance of FCLs that directly applies the idea of a finer-grade
feature extraction around a and a coarser processing in the periphery, can be
obtained by blurring kernel kj with increasing intensity of the blurring operation
as long as we move farther from a. We can achieve this behaviour by selecting
µ(θ, x− a, ·) to be a Gaussian function g(σ, x− a, ·), or, more compactly, gσ,x−a,
characterized by a standard deviation σ(x − a) that depends on the distance
between x and a. FCLs that exploit such Gaussian modulator are referred to as
Gm-FCLs, and are based on σ defined as

σ(x− a) = σ̂a · ℓ
(
∥x− a∥2

)
+ σ̂A ·

(
1− ℓ

(
∥x− a∥2

))
, (3)

being · the classic multiplication, ℓ a function that is 1 when x = a and it is
0 when ∥x − a∥ reaches the maximum possible distance considering the image
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resolution, while σa and σA are the standard deviations on a and on the farthest
location from it.4 Due to the commutative property of the convolution (when Ω
is R2), putting together Eq. 2 and Eq. 1 and replacing µθ,x−a with the gσ,x−a, we
have oj(x) = (k̃jx,a ∗ I)(x) = (gσ,x−a ∗ kjx,a ∗ I)(x) = (kjx,a ∗ (gσ,x−a ∗ I))(x). This
shows that we can implement this type of FCLs by blurring I with a location-
dependent Gaussian, filling the gap between FCLs and the common idea of
blurring the visual scene with a progressively increasing levels of intensity [15,16].
However, the computational burden is larger than classic 2D convolutional layers,
due to the additional convolution with gσ,x−a.

If σ of Eq. 3 is modeled with a piecewise-constant function defined in non-
overlapping ranges involving its argument, such as ρi ≤ ∥x − a∥ < ρi+1, i =
1, . . . , R − 1, ρ1 = 0, ρR = ∞, then k̃jx,a in Eq. 2 becomes a piecewise-defined
kernel. In other words, once we are given a, the exact same kernel is used to
compute features oj(x) of Eq. 1, for all x’s which fall inside the same range.
Moreover, as long as σ returns larger standard deviations, k̃jx,a becomes a blur-
rier copy of kj , leaving room to approximated representations that reduce its
K×K spatial resolution. These considerations open to the definition of another
instance of FCLs that is specifically aimed at exploiting foveated processing to
speedup the computations, giving the user full control on the trade-off between
computational cost and the level of detail of the features extracted when moving
away from a. In piecewise-defined FCLs (Pw-FCLs), the input image is divided
into R ≥ 2 regions R1, . . . ,RR, centered in a and with no overlap, e.g., in func-
tion of ∥x− a∥ as previously described, naturally introducing a dependency on
the focused location, as shown in Fig. 1 (bottom-left).5 The cost of the convolu-
tion operation is controlled by a user-customizable reduction factor 0 < ri ≤ 1,
defined for each Ri, where r1 = 1 and ri+1 < ri,∀i. In particular, the cost of
computing a convolution in x ∈ Ri is forced to be riC1, where C1 is the cost of a
convolution for x ∈ R1. This means that convolutions in peripheral regions are
performed in a faster way than those in regions closer to a. As we will describe in
the following, there are multiple ways of fulfilling this computational constraints
by introducing a coarser processing. In turn, coarser processing makes Pw-FCLs
exposed to less details and less data variability when far away from a, that can
result in a more data-efficient learning in non-focused areas.

We propose three different strategies for enforcing the cost requirement im-
posed by the reduction factor, summarized in Fig. 1 (right). The first two ones
are based on the fact that the cost of convolution is directly proportional to the
number of spatial components of the kernel, thus the computational burden can
be controlled by reducing the size of the kernel defined in each region in function
of ri. However, a smaller kernel size implies covering smaller receptive inputs,
thus violating the previously introduced uniform spatial coverage assumption.

4 In our experiments we used an exponential law, with σ̂a almost zero and σ̂A = 10.
Function g is computed on a discrete grid of fixed-size 7× 7.

5 The innermost region R1 is then a circle, and the other regions are circular crowns
with increasing radii. The outermost region RR is simply the complementary area.
We also tested the case of a squared R1 and frame-like Ri, i > 1.
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For this reasons, further actions are needed in order to ensure such a condition is
fulfilled, leading to two variants of Pw-FCLs, based on input downscaling and
dilated convolutions [25], respectively. The former appropriately downscales the
input to compensate the kernel reduction, and it requires then to upscale the
feature maps to match their expected resolution (Fig. 1, top-right). The third
strategy consists in not reducing the kernel and relying on strided convolutions,
thus skipping some x’s, that still requires to upscale the resulting feature maps
(more details in Appendix A.1).

The piecewise defined kernel is the outcome of adapting the same base kernel
kj over the different regions, thus we denote what we described so far as Pw-
FCL with shared weights, or, more compactly, Pw-FCL-S (Fig. 1, top-left).
This implies that all the region-defined filters share related semantics across the
image plane, due to the shared nature of the learnable kj . A natural alternative
to this model consists in using independent learnable filters in each region. In
this case, referred to as Pw-FCL-I, features extracted in different areas could
be fully different (or not) and associated to different (or same) meanings. Of
course, if the information stored in the foveal and peripheral areas share some
properties, then a Pw-FCL-S might be more appropriate.

It is interesting to show how the framework of FCLs can be further extended
along directions that depart a little bit from the idea of foveated processing,
but that are still oriented toward location-dependent processing in function of
the FOA coordinates a. Of course, a detailed analysis of them goes beyond
the scope of this paper. In particular, the degrees of freedom of FCLs can be
extended when µ(θ, x − a, z) is implemented with a neural network modulator,
naming these layers Nm-FCLs. It is convenient to think about such modulator
as a multi-layer feed-forward network with input x− a, and that yields N ×N
real numbers as output, which is the filter that modulates kj in the discrete
counterpart of Eq. 1. Output values are normalized to ensure the filter sums to 1
in the N×N grid, and we set N = 7 in our experiments, in analogy with the way
gσ,x−a was discretized. Another step in relaxing the formulation of FCLs consists
in fully re-defining k̃x,a of Eq. 2 as a discrete filter whose values are generated
by a neural network. The net acts as a neural generator, thus Ng-FCLs, that
learns to produce a bank of F distinct (c×) K × K filters given x − a, to be
used when computing convolution in coordinates x. It is easy to see that the
computation/memory burden of generating a different kernel for (almost) every
location x in the image plane, by means of a multi-layer network, makes it less
practical than the other described types of FCLs, even if it opens to further
investigations into this direction (details in Appendix A.2/A.3 suppl. material).

2.1 Learning with Attention in Foveated Neural Networks

From the point of view of the input-output, FCLs are equivalent to classic 2D
convolutional layers, with the exception of the additional input signal a. As a re-
sult, they can be straightforwardly stacked into deep architectures, learning the
kernel components by Backpropagation. It is pretty straightforward to exploit
(single or stacked) FCLs to extract features for each pixel of the w × h network
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input. Whenever FCLs are used after pooling layers or, in any case, after having
reduced the resolution of the latent representations, a must be rescaled accord-
ingly. Depending on the properties of the considered task, it might be convenient
to use FCLs in the last portions of a deep architecture, at the beginning of it,
or in other configurations, for example stacking FCLs in a way that the lower
layers are mostly specialized in fine-grained processing over large areas around
a, that progressively get smaller in the upper layers.

In this paper, we study the case in which a is given, either due to specific
external knowledge or when it is estimated by a human-like model of visual
attention. A very promising model of human attention was recently proposed in
[26], well suited for generic free-viewing conditions too. Such a model estimates
attention a at time t, i.e., a(t), as a dynamic process driven by the following law

ä(t) + γa(t)− E(t, a(t), {mj(x, t), j = 1, . . . ,M}) = 0, (4)

where E is a gravitational field that depends on a distribution of masses, each of
them indicated with mj , and γ is a customizable weight that controls dissipation.
Each mass attracts the attention in a way that is proportional to the value of
mj(x, t), eventually tuned by a customizable scalar. The authors of [26] consid-
ered the case of M = 2, with m1 and m2 that yield high values when x includes
strong variations of brightness and motion, respectively. However, other masses
could be added over time, as briefly mentioned in [26] but never investigated.
Let us introduce a stream of visual information, being It the frame at time t,
and a neural network f(It, ωt) with weights ωt. In a C-class semantic labeling
problem, f returns a vector of C class membership scores for each image coordi-
nate x, i.e., f(It, ωt)(x). The notation fi,j,z,...(It, ωt)(x) is used to consider only
the scores of the classes listed in the subscript. Let us assume that the user is
interested in forcing the model to focus on specific object classes h and z. For
example, in a stadium-like scene during a soccer match, the model should be
attracted by the players, by the ball, and not by all the people in the bleachers
or by the sky. We can pool the class membership scores to simulate a novel mass
function, such as mq(x, t) = (max fh,z(It, ωt)(x)), so that the attention model is
automatically attracted by those pixels that are predicted as belonging to classes
h or z (or both—it holds for any number of classes). If f is based on Pw-FCLs,
then peripheral areas will be characterized by faster processing and slightly lower
prediction quality (due to the coarser feature extraction), as it happens in the
human visual system, and attention will be also influenced by such predictions.

3 Experiments

We implemented FCLs using PyTorch,6 performing experiments in a Linux
environment, using a NVIDIA GeForce RTX 3090 GPU (24 GB). We per-
formed four types of experiments on four different datasets, aimed at com-
paring FCLs with classic convolutional layer in a variety of settings. Before
6 https://github.com/sailab-code/foveated_neural_computation

https://github.com/sailab-code/foveated_neural_computation
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going into further details, we showcase the speedup obtained when using Pw-
FCLs (R = 4 regions, r2 = 0.7, r3 = 0.4, r4 = 0.1), comparing the 3 different
strategies of Section 2 and Fig. 1 (right), also including a baseline with a clas-
sic convolutional layer, and a vanilla configuration of Pw-FCLs without any
cost reduction (i.e., ri = 1, ∀i). The bounding box of each region Ri (up to
i = R − 1) linearly increases from 10% of w up to 70% of it. Fig. 2 (left)
shows the average time required to process an input I with c = 64 channels,
whose resolution varies in {256× 256, 512× 512, 1024× 1024, 1920× 1080}, us-
ing K = 11, while Fig. 2 (right) is about 512 × 512 and variable base kernel
size K. Overall, the proposed reduction strategies achieve big improvements
with respect to classic convolutional layers, with better scaling capabilities for
larger resolutions and kernels. The region-management overhead, that is evi-
dent in the vanilla case, is completely compensated by all the reduction mech-
anisms. The downscaling strategy is the faster solution (of course, reducing
the number of regions or ri’s yields even better times–see Appendix C.1, sup-
plementary material), that is what we will use in the following experiments.
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Fig. 2: Inference time of the 3 Pw-FCLs
strategies, of a convolutional layer (baseline),
of a fixed-kernel-size Pw-FCLs (vanilla). Left:
changing input resolution. Right: varying K.

The first task we con-
sider is referred to as Dual-
Intention, and it consists in
classifying 200 × 200 images in
one out of 10 classes. In each
image two different digits are
present (each of them cover-
ing ≈ 28 × 28 pixel, MNIST
dataset), one in the middle of it
and one closer to the image bor-
der. A special intention sign is
also present, far from the mid-
dle (one of {□,  })). If the sign
is □, then the image class is the one of the digit placed close to the border. When
 is used the target class is the one of the digit in the center of the image—Fig. 3
(left). The challenging nature of the task comes from fact that the training data
only include intention signs randomly located in locations close to the bottom
border of the image, while in the test data the sign is randomly located closer to
the top border (the peripheral digit stands on the opposite side with respect to
the intention sign). In order to gain generalization skills, the network must be
able to learn representations that are pretty much location-independent in the
peripheral area, and to differentiate them from the ones developed in the cen-
tral area. We compared multiple convolutional feature extractors, each of them
followed by pooling operation and a classification head (128 hidden neurons,
ReLU). The first extractor is a CNN with 4 layers (denoted with CNN*), with
final global-max pooling. Then, we focused on a single classic convolutional layer
(CL) followed by max pooling (stride 10) or global-max pooling. We also intro-
duced another type of pooling that is aware of the existence of two main image
regions, that we simulated with a 33× 33 box surrounding the image center and
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the rest of the image, performing max pooling in each of them and concatenat-
ing the results. We refer to it as region-wise max pooling (reg-max ). Finally, we
extracted features with FCLs, leveraging Pw-FCL-S and Pw-FCL-I with FOA
positioned at the image center and R = 2 regions (a 33× 33 box region and the
complementary one—in this case, region-wise max pooling is always exploited).
We report the average test accuracy over three runs (and standard deviations) in

Fig. 3: Left: train and test samples from Dual-Intention dataset (class 0, and
class 6, respectively). Middle: training sample from Stock-Fashion (class is “in
stock shoes”). Right: sample from the data by Xiao et al. [23] in its Original,
Mixed-Same (1st row), Mixed-Rand and Mixed-Next (2nd row) versions.

Table 1, considering a 1K samples dataset and a 10K samples one (see Appendix
C.2, supplementary materials, for the model validation procedure; r2 is always
< 1). Models based on global-max pooling, being them deeper (CNN*) or shal-
lower (CL+global-max ), loose all the location-related information, thus they do
not distinguish among what is in the middle of the image and what is in the
peripheral area. CL-max only aggregates a few spatial coordinates, thus yielding
(relaxed) location-related features that let the classifier learn that the intention
sign that is expected to be always at the bottom. Thanks to region-wise max
pooling, the CL+reg-max network achieves good results, even if at the same com-
putational cost of CL. Interestingly, when a Pw-FCL is used, strongly reducing
the computational burden, we still achieve similar performances to CL+reg-
max, and in the low-data regime both Pw-FCLs outperform it. The foveated
computations in the peripheral region implicitly filters the image, reducing noise
and smoothing samples, that turns out in making FCLs more data efficient (1K
dataset). In Table 2 we restrict our analysis in the case of K = 15 and F = 64,
comparing the two best models equipped with reg-max pooling, and showing the
performance relative to the different values of the reduction factor r2 (the one of
the peripheral region), along with the number of performed floating point opera-
tions (GFLOPs).7 Interestingly enough, the proposed Pw-FCL-S can achieve a
very similar performance with respect to CL+reg-max, at a fraction of its cost.

Our next experimental activity is about a task that is based on what we
refer to as Stock-Fashion dataset, that is somewhat related to the previous
one, since we still have an entity in the middle of the image and another one

7 We measured the number of floating point operations using the PyTorch profiling
utilities https://pytorch.org/docs/stable/profiler.html.

https://pytorch.org/docs/stable/profiler.html
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Table 1: Dual-Intention. Average
test accuracy (and std) in low (1K) and
large (10K) data regimes.
Model 1K 10K

CNN* 54.3 ± 3.3 57.3 ± 1.0
CL+global-max 53.0 ± 1.4 53.1 ± 0.5
CL+max 24.7 ± 1.9 47.6 ± 1.1

CL+reg-max 71.0 ± 2.4 96.5 ± 0.0
Pw-FCL-S 73.7 ± 0.5 95.4 ± 0.3
Pw-FCL-I 72.3 ± 0.5 95.7 ± 0.1

Table 2: Dual-Intention. The case of
K = 15 and F = 64, varying the reduc-
tion factor r2 (peripheral region).

Model r2 GFLOPs Accuracy

1K 10K

CL+reg-max - 0.996 71.0 96.5

Pw-FCL-S
0.1 0.078 56.7 87.7
0.25 0.159 69.7 94.7
0.5 0.398 73.7 95.4

closer to the border. The middle area contains patterns that are harder to clas-
sify, simulated with samples from Fashion-MNIST dataset, paired with MNIST
digits placed in the upper image portion at training time, and in the bottom
image portion at test time. The goal is to recognize the class of the fashion item
in the middle (10 types) and also it is largely available in-stock or with limited
availability, in function of the value of the peripheral digit (0 to 4: limited; 5
to 9: in-stock)—Fig. 3 (middle). Hence, the total number of classes is 20. The
peripheral information is still crucial for the final purpose of classifying the im-
age, but it is of different type with respect to what is in the middle. We follow
the same experimental setup of the previous experiment (10K samples) and we
report in Table 3 the test accuracy of the compared models. Once again, region-
wise pooling-based models are the best performing ones. The independent filters
of Pw-FCL-I are able to learn dedicated properties for the foveal region and for
the peripheral region, that in this task do not share any semantic similarities,
leading to better performance (recall that r2 < 1). Recognizing the peripheral
digits is relatively simpler with respect to the fashion items, so that the foveated
computational scheme perfectly balances the computational resources over the
image. In Fig. 4 we report the test accuracy obtained by the foveated models,
restricting our analysis to the case of K = 15 and F = 128 and varying the
reduction factor r2. We remark that even with an evident reduction of their
computational capabilities (r2 ∈ {0.1, 0.25}), the models yield a robust repre-
sentational quality that allows the classifiers to reach large accuracies, with a
preference for Pw-FCLs-I.

In our next experimental activity, we consider a context in which the in-
formation in the background of an image might or might-not help in gaining
robust generalization skills, thus ending up in learning spurious correlations.
An out-of-distribution context change in the background usually leads to poor
performances in the classification accuracy of deep neural models, as studied in
the benchmark of Xiao et al. [23], based on ImageNet. Multiple test sets are
made available, Original, Mixed-Same, Mixed-Next, Mixed-Rand, where
the background of the images is left untouched, replaced with the one from an-
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Table 3: Stock-Fashion, 10K, average
test accuracy (and std).

Model Accuracy

CNN* 83.4 ± 1.6
CL+global-max 79.8 ± 1.4
CL+max 42.4 ± 0.7

CL+reg-max 85.9 ± 0.9
Pw-FCL-S 83.1 ± 0.1
Pw-FCL-I 86.0 ± 0.3

0.1 0.25 0.5 1.0
r2

0.76
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Fig. 4: Stock-Fashion, F = 128, K =
15, varying the reduction factor r2.

other example of the “same” class, of the “next” class, of a “random” class, as
shown Fig. 3 (right). We argue that the injection of FCLs into neural architec-
tures, even if very shallow or simple, favors the model robustness to issues related
to background correlations. In particular, several advantages come from the fact
that FCLs reserve the finest-grained processing solely to the focused area, whilst
the peripheral portion of the frame is processed via coarser resources/reduced
resolution. Thanks to this architectural prior, the variability of features extracted
from peripheral regions is reduced and they are harder to be tightly correlated
with a certain class. We considered the already described CNN* as reference,
replacing the first or last convolutional layer with a FCL, evaluating all the types
of FCLs of Section 2 (see Appendix C.4 for more details). In this case, the FOA
a can be either located at the center of the picture, or on the barycenter of the
main object of each picture (the one that yields the class label). Fig. 5 shows
our experimental findings in the latter case, analyzing the first three classes of
the dataset (dog, bird, vehicle)–similar results with the whole dataset (Appendix
C.4). These results support the intuition that a standard CNN* suffers from the
background correlation issues, when comparing accuracy in Original (90.8%)
and Mixed-Next (57.1%), where the background is always extrapolated from
a different class. As expected, thanks to the introduction of FCLs, the perfor-
mance drop is remarkably reduced in most of the cases. In Pw-FCL-I (all) such
drop is almost halved (accuracy goes from 86.3% to 68.1%—remind that this
model features a reduced number of parameters with respect to CNN*). Using
neural modulators or generators (Nm-FCL, Ng-FCL) was less effective in the
all and first architectures, while in the last setting they yielded outstanding per-
formances in terms of generalization both in the Original and Mixed-Next
test sets. This is due to the fact that these models are not explicitly foveated,
since they can freely learn how to perform convolutions at different coordinates
with no restrictions, thus they can still learn to specialize in background fea-
tures. However, when used in the last stages of a hierarchy, they actually learn
to further refine the learned representations to better focus on the main object.

Going beyond experiments on static images, we studied an incremental learn-
ing setting in which a video stream is presented, frame-by-frame, to an FCL-
based foveated network, with the goal of learning to classify each single pixel as
belonging to one of 20 classes or as being part of the background. The attention
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Fig. 5: Background correlations. Accuracy in the first three classes of the dataset
in [23]. We dropped the string FCL from all the model names (except CNN*).

model of [26] is exploited to explore the visual scene, yielding a(t) for each frame
(Eq. 4). The visual stream is composed of a sequence of what we refer to as
visual stimuli, each of them involving 20 unique pictures of handwritten digits
and letters from the EMNIST dataset, also generically referred to as “entities”
(10 digits and 10 letters–A to K, excluding I that is too similar to digit one). A
single entity covers ≈ 25× 25 pixels. For each stimulus (2260 frames) an entity
enters the scene from top, slowly moving down until it reaches the bottom of
the frame, and it stands still. A different entity does the same, until the scene is
completely populated by 20 entities with no overlap. Finally, the entities leave
the scene moving down (in reverse order, sequentially). The network processes
two sequences of training stimuli, learning in a supervised manner, initially re-
ceiving supervisions on digits only (first training sequence) and then on letters
only (second training sequence). We implemented a simple rehearsal-based con-
tinual learning scheme to store a small subset of frames (≈ 20− 40) for learning
purposes [3], that are selected whenever the attention a(t) performs a saccadic
movement (details in Appendix C.5, supplementary materials). After each train-
ing sequence, a test sequence is presented, generating end evaluating multiple
foveated-network-dependent masses that attract the attention toward custom
salient elements, as described in Section 2.1. Masses are initially about all the
digits, even digits, odd digits. Then, in the second test sequence, they are about
letters, the first 3 digits and first 3 letters (mix1 ), the last 3 digits and last 3
letters (mix2 ) respectively. Masses are activated in mutually exclusive manner
in evenly partitioned portions of each test sequence. All the types of FCLs of this
paper are evaluated, excluding the network-generated ones that resulted to be
too memory demanding. The foveated network is composed of 2 convolutional
layers and a final FCL (last), or of 3 FCLs (all), R = 2, r2 = 0.25, compared
with a reference network with classic convolutional layers only (CNN). The w×h
pixel-wise feature vectors of the last layer are processed by a classifying head that
marks as “background” those coordinates with too small prediction confidence.

Table 4 reports our results for a stream at the resolution of 200 × 200, and
it shows that foveated models are able to perform similarly to (or even better
than) CNN, even if in Pw-FCLs the number of floating point operations is ap-
proximately 3 to 5 times smaller. It is interesting to see that Nm-FCLs (last)
and Gm-FCLs yield significantly better results in the digit/letter pixels, com-
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Table 4: Stream of visual stimuli, 200×200.
GFLOPs and average accuracy (3 runs) in
classifying digits, letters and background.

Model GFLOPs Digits Letters Back.

CNN 6.13 71.9 23.7 84.0

L
as

t Pw-FCLs 2.72 69.2 25.3 80.6
Gm-FCLs 6.19 70.4 22.7 79.8
Nm-FCLs 6.23 81.0 28.4 67.7

A
ll

Pw-FCLs 1.16 70.8 24.7 80.0
Gm-FCLs 6.25 75.2 24.2 77.6
Nm-FCLs 6.37 58.0 25.3 52.0

Digits Letters Even Odd Mix1 Mix2

0.2

0.4

0.6

Fig. 6: Stream of visual stimuli,
200 × 200. Fraction of time spent
on the salient elements of the test
stimuli (colors are about the mod-
els of Table 4).

pared to CNN, but they have more difficulties in classifying background, since
the modulated kernel tends to respond in a less precise manner closer to the
digit/letter boundaries. In Fig. 6 we report the fraction of time spent in those
pixels that are about elements for which an apposite mass was created (colors are
about different models, see Table 4). Results show that foveated networks based
on Pw-FCLs (last/blue), Gm-FCLs (last/light-green, all/red) explore the ex-
pected elements in a similar manner to what happens in CNN (light-blue). The
other models frequently return a small margin between the winning prediction
and the other ones, thus the resulting mass is noisy. Fig. 7 shows the saliency
map generated by the attention model exploiting foveated networks with Pw-
FCLs (last), from which we can qualitatively observe that the expected salient
elements are indeed explored by a(t).
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Fig. 7: Attention model of [26] with masses predicted by Pw-FCLs (last). For
each salient element (all digits, even digits, odd digits, letters, mix1, mix2 ),
saliency maps are shown for 2 visual stimuli, when the frame is fully populated
(brighter-red: frequently visited by a(t); lighter-red: sporadically visited by a(t)).

In order to emphasize the computational gains when using Pw-FCLs, we
performed the same experiment considering a stream with resolution 1000 ×
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1000. The original size of the digits/letters is left untouched, so that frames
are almost composed of background pixels. One might be tempted to simply
downscale each frame and provide it to the net, that actually turns out to be
a complete failure, since the size of digits/letters become significantly small,
as shown in Table 5. Differently, the performance of CNN processing the high-
resolution stream is almost matched by Pw-FCLs (last, all), with a running
time that is approximately 70% − 60% smaller than CNN (the time spent on
the salient elements is still comparable to the one of CNN–Appendix C.5). This
shows how foveated processing can let the network implement a good trade-off
between speed and computational burden, being able to focus and recognize
small digits/letters on a large resolution image.

Table 5: Stream of visual stimuli, 1000× 1000. Average test accuracy (± std, 3
runs), GFLOPs, inference time in classifying digits, letters and background.

Model GFLOPs Time (ms) Digits Letters Background

CNN (resize to 200× 200) 6.13 1.3 ± 0.04 27.1 ± 1.1 6.0 ± 0.8 94.4 ± 0.6
CNN (full resolution) 153.15 13.2 ± 0.01 77.6 ± 5.4 30.3 ± 1.4 99.5 ± 0.0

Pw-FCLs (last) 63.72 9.1 ± 0.13 76.0 ± 1.5 30.6 ± 1.8 99.4 ± 0.1
Pw-FCLs (all) 18.84 8.6 ± 0.04 74.4 ± 2.3 28.5 ± 1.1 99.4 ± 0.0

4 Conclusions and Future Work

We presented Foveated Convolutional Layers to extract features in function of a
focused location with foveated processing. We proposed several instances of this
model, emphasizing the one that yields a significantly faster processing than
plain 2D convolutions. When injected into a human-like attention model, FCL-
based networks naturally implement a user-customizable visual system with fast
inference and coarser processing in the peripheral areas. Future work includes the
analysis of foveated networks in problems driven by motion invariance principles.
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