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Local-in-time existence of strong solutions

to an averaged thick sprays model

V. Fournet∗, C. Buet† and B. Després‡

Abstract

We propose a new system for the modelling of thick sprays. We prove that this
system verifies conservation properties together with a maximum principle regarding the
volume fraction of the gas. Our main result is that the barotropic version of this system
is locally in time well-posed in Hs.

1 Introduction

Sprays are defined as disperse liquid (such as droplet) or solid (such as dust) phase
evolving in an underlying gas. Such models are usually presented as a coupling between
a kinetic equation (for example, a Vlasov equation or a Vlasov-Boltzmann equation) and
an hyperbolic (or Navier-Stokes) system and were introduced in [10,24]. A classification
of different types of spray have been proposed in [21]. See [12] for a recent review of the
different way to model sprays.

One type of sprays are the so-called thin sprays, in which the total volume occupied
by the particles is negligible compared to the volume occupied by the gas. In this case,
the coupling is usually made through a drag force, sometimes called the Brinkman force.
Such models have been heavily studied in the purely hyperbolic setting [3,20] and in the
Navier-Stokes setting, that is, with parabolic terms [2,5, 11,14,17].

In this work, we are interested in so-called thick sprays models, in which the total
volume occupied by the particles is no longer negligible compared to the volume of the
gas. On the mathematical side, less is known about thick sprays models compared with
thin sprays models. We refer to [6, 9] for recent works on thick sprays.

Hereafter the gas is described with a system of compressible Euler equations, for
which the variables are the density % := %(t,x) ≥ 0, the velocity u := u(t,x) ∈ R3

and the internal energy e := (t,x) ≥ 0. The particles are described with a phase space
density f := f(t,x,v) ≥ 0 following a Vlasov equation. It is also possible to use a Vlasov-
Boltzmann equation, but numerical results may suggest that adding a collision operator
is not necessary for accurate simulation [4]. Various other effects such as coalescence and
fragmentation can also be taken into account, we chose here to neglect all these effects.
The force acting on the particles, that shall be denoted m?Γ, is usually decomposed in
two parts: one related to drag or friction between the particles and the gas. The other
one is related, since the total volume of the particles is not negligible, to the pressure of
the gas:

m?Γ = −m?∇xp−D?(v − u).
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The presence of the term −∇xp is a specific feature of thick sprays models, and it
is formally linked to bifluid equations (see [13]). Depending of the modelisation, the
coefficient D? can be treated as a constant or as a function of v − u. We shall limit
ourselves to the constant case. The constant m? can be interpreted as the mass of the
particles and is linked to their radius r by the formula (we assume here that the particles
have a density equal to 1)

m? =
4

3
πr3.

The spray is assumed to be monodisperse, meaning that all particles have the same
radius. With those hypotheses, a possible thick sprays model [6] can be written

∂t(α%) +∇x · (α%u) = 0

∂t(α%u) +∇x · (α%u⊗ u) +∇xp = m?∇xp
∫
R3

f dv +D?

∫
R3

(v − u)f dv

∂t(α%e) +∇x · (α%eu) + p(∂tα+∇x · (αu)) = D?

∫
R3

|v − u|2f dv

∂tf + v · ∇xf +∇v · (Γf) = 0

α = 1−m?

∫
R3

f dv

m?Γ = −m?∇xp−D?(v − u).

(1.1)

This model can be used to describes various physical phenomena at different length
scales, such as aerosols for medical use [7, 8], the combustion in engines [1], aerosols
in the atmosphere [19], and also in astrophysics for the modelling of gas giants and
exoplanets [16].

In the thin spray case, the volume fraction α is absent from the equations. One
of the simplest example of thin spray model is the so-called (compressible, barotropic)
Euler-Vlasov system, which writes

∂t%+∇x · (%u) = 0

∂t(%u) +∇x · (%u⊗ u) +∇xp = D?

∫
R3

(v − u)f dv

∂tf + v · ∇xf +∇v ·
(
D?

m?
(u− v)f

)
= 0.

(1.2)

One remarks that taking the formal limit α → 1 in (1.1) does not yields (1.2), because
the term −∇xp does not vanish. Indeed, to the best of our knowledge, there is no well
established hierarchy between the two regime. One formal way to recover (1.2) from
(1.1) is to take the limit m? → 0 (which is, the radius of the particles r? goes to 0).
Then α → 1, and D?

m?
→ +∞. Then the terms ∇xp in the force acting on the particles

becomes negligible compared to the friction force, and one obtains the system (1.2).
The system (1.1) suffers from some mathematical issues. It (1.1) displays losses

of regularity, and therefore standard techniques to prove a local-in-time well posedness
result fail. Typically, the term ∇xp ·∇vf in the Vlasov equation cannot be treated within
standard theory for weak solutions of such system. To the best of our knowledge, even
local-in-time well-posedness result is lacking. It is even conjectured in [3] that the system
(1.1) is ill-posed locally in time. All those reasons motivate us to modify the model, with
regularisation-convolution of certain terms specific to thick sprays models. We propose
the following thick sprays model with regularisation

∂t(α%) +∇x · (α%u) = 0

∂t(α%u) +∇x · (α%u⊗ u) +∇xp = m?∇xp
∫
R3

〈f〉dv +D?

∫
R3

(v − u)f dv

∂t(α%e) +∇x · (α%eu) + p(∂tα+∇x · (αu)) = D?

∫
R3

|v − u|2f dv

∂tf + v · ∇xf +∇v · (Γf) = 0

α = 1−m?

∫
R3

〈f〉dv

m?Γ = −m?〈∇xp〉 −D?(v − u).

(1.3)

2



where the convolution operator 〈·〉 is introduced in the second, fifth and sixth line of the
initial model (1.1). A possible ”physical” form of the convolution operator is justified
in section 2. This convolution operator preserves the conservation of mass, momentum,
total energy and still produce entropy. We will show that it is enough to show that
smooth solutions to (1.3) preserve the positivity of mass fraction and to obtain the local-
in-time well posedness of smooth solutions.

This work is organized as follows. In section 2, we justify the convolution operator
and explain the modifications of the usual thick sprays equations leading to (1.3). In
section 3, we show that the system verifies conservation properties for the total mass, the
total momentum, and the total energy of the system, and is equipped with an entropy
balance law. We also show that under reasonable assumptions, the volume fraction α
stays in (0, 1] for all times, provided that the initial condition verifies this property.
Finally, in section 4, we prove the main result of this work on the local-in-time well-
posedness in Hs of the barotrope version of (1.3).

2 Justification of the convolution operator

The idea of a convolution operator is easy to conceive on the equation that defines to
force m?Γ, ignoring the friction force. Let us consider a single spherical particle of radius
r > 0 with center coordinate x?. In a surrounding gas with a pressure field p, the gas
acts on the particle with the force

F = −
∫
S2(x?,r)

pndx.

In a thought experiment, the pressure can be extended inside the particle. Assuming
that the pressure is differentiable in the particle, one obtains using Stokes’s theorem

F = −
∫
S3(x?,r)

∇xp(x) dx = −m?

∫
R3

w(x− x?)∇xp(x) dx = m?(w ?∇xp)(x?),

where the convolution kernel is

w(y) =
1

m?
1|y|<r(y).

Using the notation 〈·〉 = w ? · for the convolution operator, the force is rewritten as

m?Γ = −m?〈∇xp〉.

This formula is valid independently of the extension of p inside the particle, provided it
is differentiable. We recall the definition [15] of the total variation of a function

TV(f) := sup

(∫
R3

f divϕdx, ϕ ∈ C 1
c (R3;Rn), ‖ϕ‖L∞≤ 1

)
,

Lemma 1. The kernel w verifies w ∈ BV(R3), ‖w‖L1= 1 and TV(w) = 3
r .

Proof. Since w is the indicator function of a sphere, then w ∈ BV(R3). The kernel w has
unit L1-norm because m? = 4

3πr
3. Finally the total variation of an indicator function is

the perimeter of its support, therefore TV(w) = 4πr2

m?
= 3

r .

In order to introduce this principle in the original system (1.1), one needs to reintro-
duce the friction in the forcem?Γ and to modify other equations in a way that preserve the
global conservation properties. Considering additionally that the modifications should
be kept to the minimum, we are led to propose the following system
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

∂t(α%) +∇x · (α%u) = 0

∂t(α%u) +∇x · (α%u⊗ u) +∇xp = m?∇xp
∫
R3

〈f〉dv +D?

∫
R3

(v − u)f dv

∂t(α%e) +∇x · (α%eu) + p(∂tα+∇x · (αu)) = D?

∫
R3

|v − u|2f dv

∂tf + v · ∇xf +∇v · (Γf) = 0

α = 1−m?

∫
R3

〈f〉dv

m?Γ = −m?〈∇xp〉 −D?(v − u).

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

Let us comment in more details the equations (2.1)-(2.6). Equations (2.1), (2.3) and (2.4)
are unchanged. Equation (2.2) is modified with the convolution kernel on the right-hand-
side since we found that it is a way to recover the conservation of the total momentum,
as justified in Proposition 2. Equation (2.5) is also modified by compatibility with the
conservation of the total energy. In the last equation (2.6), the friction is reintroduced
without a convolution because there is no conservation issue related to this term. Notice
that when the size of the support of w goes to 0 (ignoring the fact that m? is dependent
of the size of the particle r), meaning that w converges to a Dirac mass, one recovers the
system (1.1). To close the system, we assume that p follows a perfect gas law

p = (γ − 1)%e, γ > 1 (2.7)

and the energy law

e = CvT, (2.8)

with T > 0 the temperature and Cv > 0 is a constant.

3 Properties of the system

In this section, we present basic properties of the new model (1.3).

3.1 Conservation properties

To obtain the conservation properties, we will make use of the classical formula: let f, g
two functions and w even, then∫

Rd

(f ? w)g dx =

∫
Rd

f(g ? w) dx, (3.1)

which is easily shown using a change of variable and the fact that w is even.

Proposition 2. Formally, one has the following

(i)
d

dt

∫
R3

α%dx = 0,
d

dt

∫∫
R3×R3

f dxdv = 0,

(ii)
d

dt

(∫
R3

α%udx+

∫∫
R3×R3

fv dxdv

)
= 0,

(iii)
d

dt

(
1

2

∫
R3

α%|u|2 dx+
1

2

∫∫
R3×R3

|v|2f dxdv +

∫
R3

α%edx

)
= 0.
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Proof. By formally we mean that all functions are smooth and integrable. The proof of
(i) is obvious because the equations are already in divergence form.

To obtain (ii) one multiplies the Vlasov equation (2.4) by v. Integration yields

m?∂t

∫
R3

fv dv+m?∇x ·
∫
R3

fv⊗v dv = −m?〈∇xp〉
∫
R3

f dv−D?

∫
R3

(v−u)f dv.

(3.2)

Summing with the fluid momentum equation (2.2), one gets

(3.3)
∂t

(
α%u+m?

∫
R3

fv dv

)
+∇x ·

(
α%u⊗u+m?

∫
R3

fv⊗v dv

)
+∇xp

= m?

(
∇xp

∫
R3

〈f〉dv − 〈∇xp〉
∫
R3

f dv

)
.

Using formula (3.1), one has
∫
R3

(
∇xp

∫
R3〈f〉dv − 〈∇xp〉

∫
R3 f dv

)
dx = 0, so integrating

(3.3) in x yields (ii).
To obtain (iii) one multiplies the momentum equation (2.2) by u. One obtains

∂t

(
α%
|u|2

2

)
+∇x ·

(
α%u
|u|2

2

)
+ u · ∇xp

= m?u · ∇xp ·
∫
R3

〈f〉dv +D?

∫
R3

u · (v − u)f dv.

Multiplying the Vlasov equation (2.4) by m?
|v|
2 and integrating, one gets

m?∂t

(∫
R3

f
|v|2

2
dv

)
+m?∇x ·

(∫
R3

fv
|v|2

2
dv

)
= −m?〈∇xp〉 ·

∫
R3

fv dv −D?

∫
R3

v · (v − u)f dv.

Then, summation of these equations with the internal energy equation (2.3) yields

A := ∂t

(
α%
|u|2

2
+m?

∫
R3

f
|v|2

2
dv + α%e

)
+∇x ·

(
α%u
|u|2

2
+m?

∫
R3

fv
|v|2

2
dv + α%eu

)
= −p∂tα− p∇x · (αu)− u · ∇xp−m?u · ∇xp

∫
R3

〈f〉dv −m?〈∇xp〉 ·
∫
R3

fv dv

+D?

∫
R3

u · (v − u)f dv −D?

∫
R3

v · (v − u)f dv +D?

∫
R3

|v − u|2f dv

= −p∂tα− p∇x · (αu)− u · ∇xp + m?u · ∇xp
∫
R3

〈f〉dv −m?〈∇xp〉 ·
∫
R3

fv dv.

Then, using 1− α = m?

∫
R3〈f〉dv, one has m?u · ∇xp

∫
R3〈f〉dv = (1− α)u · ∇xp,

A = −p∂tα− p∇x · (αu)− u · ∇xp+ (1− α)u · ∇xp−m?〈∇xp〉 ·
∫
R3

fv dv

= −p∂tα− p∇x · (αu)− αu · ∇xp−m?〈∇xp〉 ·
∫
R3

fv dv.
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One writes p∇x · (αu) + αu · ∇xp = ∇x · (αup) and ∂tα = m?∇x ·
∫
R3〈f〉v dv to obtain

A = −∇x · (αup)− p∂tα−m?〈∇xp〉 ·
∫
R3

fv dv

= −∇x · (αup)−m?p∇x ·
∫
R3

〈f〉v dv −m?〈∇xp〉 ·
∫
R3

fv dv

= −∇x · (αup)−m?p∇x ·
∫
R3

〈f〉v dv −m?∇xp ·
∫
R3

〈f〉v dv

+m?

(
∇xp ·

∫
R3

〈f〉v dv − 〈∇xp〉 ·
∫
R3

fv dv

)
= −∇x · (αup)−m?∇x ·

(
p

∫
R3

〈f〉v dv

)
+m?

(
∇xp

∫
R3

〈f〉v dv − 〈∇xp〉
∫
R3

fv dv

)
.

Using again formula (3.1), we have
∫
R3

(
∇xp

∫
R3〈f〉v dv − 〈∇xp〉

∫
R3 fv dv

)
dx = 0, so

integrating in x yields (iii).

3.2 Entropy property

Following the analysis made in [9], we show that the system (2.1)-(2.6) closed by the
equation of state (2.7) is equipped with an entropy inequality.

Proposition 3. Formally, one has the entropy inequality

∂t(α%S) +∇x · (α%Su) =
D?

T

∫
R3

|v − u|2f dv ≥ 0. (3.4)

Proof. The density equation (2.1) yields

%(∂tα+∇x · (αu)) + αDt% = 0 ⇐⇒ ∂tα+∇x · (αu) = α%Dtτ,

with τ = 1/% > 0 the specific volume, and Dt = ∂t+u ·∇x. The internal energy equation
(2.3) can be rewritten as

α%(Dte+ pDtτ) = D?

∫
R3

|v − u|2f dv.

With the perfect gas pressure law (2.7) and the energy law (2.8), the entropy S is

S = Cv ln(e%1−γ).

The second principle of thermodynamics writes

TdS = de+ pdτ,

so that

α%DtS =
D?

T

∫
R3

|v − u|2f dv,

which is rewritten as (3.4).

3.3 Positivity of the volume fraction of the gas for smooth solu-
tions

In this section, we study the positivity of the volume fraction α, which is that if 0 < α ≤ 1
at time t = 0, then the inequality stays true for all times t > 0. Although is to clear
that α ≤ 1 (thanks to the fact that f ≥ 0 is propagated by the characteristic curves),
it is less immediate to prove that α > 0. In [9], the authors proved that this property
holds for the thick sprays equations (1.1) under reasonable assumptions. We prove here
the same result for (1.3), under similar assumptions.
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Proposition 4. Assume that a solution of the system (1.3) is defined on the whole space
R3 and is smooth on [0, Tend[ for some Tend > 0. We assume

• For all (x,v) ∈ R3 ×R3, f(0,x,v) > 0.

• One has 0 < %− = inf
x∈R3

%(0,x) ≤ %+ = sup
x∈R3

%(0,x) < +∞.

• One has −∞ < S− = inf
x∈R3

S(0,x).

• One has 0 < α− = inf
x∈R3

α(0,x) ≤ 1.

We assume the following regularity of the velocity variables

u ∈W 1,∞([0, Tend[×R3),

∫
R3 fv dv∫
R3〈f〉dv

∈ L∞([0, Tend[×R3).

We finally assume that the pressure vanishes at infinity, that is for all ε > 0, there exists
A > 0 such that

0 < p(t,x) = (γ − 1)%(t,x)e(t,x) < ε, for 0 ≤ t < Tend and |x|> A.

Then there exists a constant C > 0 depending on Tend, %+, %−, α−, S−, A (corre-

sponding to ε = 1), ‖u‖W 1,∞([0,Tend[×R3) and
∥∥∥ ∫ fv dv∫
〈f〉 dv

∥∥∥
L∞([0,Tend[×R3)

so that the follow-

ing estimate holds :

0 < C ≤ α(t,x) ≤ 1, t ∈ [0, Tend[, x ∈ R3.

Proof. The momentum equation (2.2) can be rewritten as

α∇xp = −α%Dtu +D?
1− α
m?

(∫
R3 fv dv∫
R3〈f〉dv

− u

∫
R3 f dv∫
R3〈f〉dv

)
,

with Dt = ∂t + u · ∇x. Using the regularity u ∈ W 1,∞ and the assumptions above, we
find

‖α∇xp‖L∞≤ C (1 + ‖1− α‖L∞) .

Following the fact that p follows a perfect gas law, we have the identity

α∇xp =
[
(γ − 1)1/γeS/Cvγα%

] 1

p1/γ
∇xp =

[
(γ − 1)1/γeS/(Cvγ)

1− 1/γ
α%

]
∇x(p1−1/γ).

Now, using again u ∈W 1,∞ and a classical treatment of the characteristic curves of the
continuity equation, we obtain for some C−, C+ > 0,

C− = inf
x∈R3

(α%)(t,x) ≤ sup
x∈R3

(α%)(t,x) = C+, 0 ≤ t < Tend. (3.5)

Therefore, because S is lower bounded.

‖∇x(p1−1/γ)‖L∞≤ C (1 + ‖1− α‖L∞) .

We then use the fact that the pressure vanishes at infinity

‖p1−1/γ‖L∞≤ C (1 + ‖1− α‖L∞) .

We then obtain that the density % is bounded, using the perfect gas law for the pressure
and the boundedness of the entropy S,

‖%γ−1‖L∞≤ C (1 + ‖1− α‖L∞) .

Finally, using (3.5) ∥∥∥∥ 1

α

∥∥∥∥
L∞
≤ C

(
1 + ‖1− α‖1/(γ−1)

L∞

)
≤ C.
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4 Local in time well-posedness

In this section, we consider the barotropic version of system (1.3), meaning that we
suppose that the pressure depends only on the density of the fluid %, that is

p = %γ , γ > 1,

so that the energy equation (2.3) is not needed. We also assume, without loss of gener-
ality, that D? = 0 and m? = 1. The treatment of the friction term presents no difficulty
because it does not contain any derivatives, so that the treatment of this term is very
similar to what is done in [3]. The barotropic system writes

∂t(α%) +∇x · (α%u) = 0

∂t(α%u) +∇x · (α%u⊗ u) +∇xp = ∇xp
∫
R3

〈f〉dv

∂tf + v · ∇xf − 〈∇xp〉 · ∇vf = 0

α = 1−
∫
R3

〈f〉dv

p = p(%) = %γ .

(4.1)

The goal of this section is to prove the following theorem:

Theorem 5. Let Ω =]0,+∞[×R3, s ∈ N such that s > 3/2 + 1 and Ω1,Ω2 two open
sets of Ω such that Ω1 ⊂ Ω2 and Ω1 and Ω2 are relatively compact in Ω. Let (%0, %0u0) :
R3 → Ω1 satisfying %0 − 1 ∈ Hs(R3) and u0 ∈ Hs(R3). Let f0 : R3 ×R3 → R+ be a
function in C 1

c (R3 ×R3) ∩Hs(R3 ×R3) satisfying

‖f0‖L∞<
1

24‖w‖L1VM (0)3
.

with VM (0) = sup
(x,v)∈R3×R3,f0(x,v)>0

|v|.

Then, one can find T ∈]0, 1[ such that there exists a solution (%, %u, f) of the system
(4.1) belonging to C 1([0, T ]×R3,Ω2)×C 1

c ([0, T ]×R3×R3,R+). Moreover this solution
is unique and it satisfies

C ≤ α(t,x) ≤ 1, t ∈ [0, T ], x ∈ R3.

.

Remark. This result could be extended to the whole system (1.3) with an energy equa-
tion. It could also be extended if p a sufficiently well-behaved function [3] not necessarily
a power function of %. For example, it works for p ∈ C (R+) ∩ C∞(R+ \ {0}). It is also
true if w is a non-negative convolution kernel in BV(R3).

The proof is based on the following idea. We want to combine classical theory of local-
in-time solution for symmetrisable hyperbolic system of conservation laws (see [18]) and
the theory of characteristics for the control of Hs norms of f and its support (like for
the Vlasov-Poisson system [22]). This idea has already been used in [3, 20]. Finding
appropriate symmetriser for the system (4.1) is not obvious. Our strategy is to expand
the derivatives on the left-hand-side of the equations, then to treat the term containing
derivatives of α as source terms. The left-hand-side then becomes the well-known Euler
equations of gas dynamics for which a symmetriser is classical. To apply the proof [18],
the source term needs to be of degree 0, that is, no derivative. An issue is that the initial
thick sprays equations (1.1) have derivatives in the source term. This is an asset of the
convolution operator in systems (1.3) and (4.1), because it avoids the loss of regularity
in the source term in the original thick sprays equations (1.1).

Proposition 6. The system (4.1) is equivalent, for strong solution verifying α > 0, to{
∂tU +∇x · F(U) = b(U, f)

∂tf + v · ∇xf − 〈∇xp〉 · ∇vf = 0,
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with

U =

(
%
%u

)
, F(U) =

(
%u

%u⊗ u + pId

)
,

and b(U, f) =


%u · ∇x

∫
R3〈f〉dv

1−
∫
R3〈f〉dv

−
%∇x ·

∫
R3〈f〉v dv

1−
∫
R3〈f〉dv

%u⊗ u
∫
R3 ∇x〈f〉dv

1−
∫
R3〈f〉dv

−
%u∇x ·

∫
R3〈f〉v dv

1−
∫
R3〈f〉dv

 .

Furthermore, the hyperbolic part of the system can be symmetrized as

S(U)∂tU +

3∑
i=1

(SAi)(U)∂xiU = S(U)b(U, f),

with

S(U) =

(
p′(%) + |u|2 −uT
−u Id

)
.

See [3] for the expression of the matrices Ai. Moreover, the symmetric positive definite
matrix S(U) is a smooth function of U. For all relatively compact set Ω1, there exists a
constant c > 0 such that ∀U ∈ Ω1

cId ≤ S(U) ≤ c−1Id.

Finally the matrices SAi(U) are symmetric.

Proof. First, notice that from the Vlasov equation in (4.1), one has, by first applying
the convolution operator 〈·〉 and integrating in v

∂tα = ∇x ·
∫
R3

〈f〉v dv.

Taking the first equation of (4.1), one has

%∂tα+ α∂t%+ α∇x · (%u) + %u · ∇xα = 0,

then, by putting in the right-hand-side the terms containing derivatives of α, then by
dividing by α = 1−

∫
R3〈f〉dv, one obtains

∂t%+∇x · (%u) =
%u · ∇x

∫
R3〈f〉dv

1−
∫
R3〈f〉dv

−
%∇x ·

∫
R3〈f〉v dv

1−
∫
R3〈f〉dv

.

Then, first writting the second equation of (4.1) as

∂t(α%u) +∇x · (α%u⊗ u) + α∇xp = 0,

and by using similar computations as before, one is led to

∂t(%u) +∇x · (%u⊗ u) +∇xp =
%u⊗ u

∫
R3 ∇x〈f〉dv

1−
∫
R3〈f〉dv

−
%u∇x ·

∫
R3〈f〉v dv

1−
∫
R3〈f〉dv

.

For the symmetrisation of the system, we refer to [3].

We now introduce some notations. Let % be a smooth enough function, then the
Vlasov equation in (4.1) is a linear transport equation

∂tf + v · ∇xf − 〈∇x%γ〉 · ∇vf = 0.

It has a unique solution, computed by the method of characteristics

f(t,x,v) = f0(X(0;x,v, t),V(0;x,v, t)),

9



where the characteristic curves are defined by

dX

dt
(t;x,v, s) = V(t;x,v, s),

X(s;x,v, s) = x,

dV

dt
(t;x,v, s) = −〈∇x%γ(X(t;x,v, s), t)〉,

V(s;x,v, s) = v.

If f0 has a compact support, then f(t, ·, ·) also has a compact support for all t. We
denote

XM (t) = sup
(x,v)∈R3×R3,f(t,x,v)>0

|x|,

and
VM (t) = sup

(x,v)∈R3×R3,f(t,x,v)>0

|v|.

Then the following holds: supp f(t, ·, ·) ⊂ B(0, XM (t))×B(0, VM (t)).
In all the sequel, we will use the following notations (s ∈ N, T > 0, and α is a

multi-index):

‖h‖Hs=
∑
|α|≤s

‖∂αh‖L2=
∑
|α|≤s

√∫
R3

|∂αh(x)|2 dx,

‖h‖Hs,T= sup
t∈[0,T ]

‖h‖Hs(t),

‖h‖L2,T= sup
t∈[0,T ]

‖h‖L2(t).

In particular the notation ∂α will always denote a derivative in the x variable. Those
notations will sometimes be used for function h = h(x, v), and in this case the norms are
always on both variables.

4.1 Iterative approximation scheme

We explain here the main steps of the proof of Theorem 5. We fix s ∈ N an integer such
that s > 3/2+1. To construct a solution of the system (4.1), it is equivalent to construct
a solution to the symmetrised quasi-linear systemS(U)∂tU +

3∑
i=1

(SAi)(U)∂xi
U = S(U)b(U, f),

∂tf + v · ∇xf − 〈∇xp〉 · ∇vf = 0.

(4.2)

The proof proceeds via a classical iteration scheme. We first work with smooth and
compactly supported initial data

%0 − 1 ∈ D(R3), u0 ∈ D(R3), f0 ∈ D(R3 ×R3). (4.3)

Later, we will use a mollification process to prove the case of all initial data in Hs. We
ask that f0 is small, more precisely, we assume

‖f0‖L∞<
1

24‖w‖L1VM (0)3
. (4.4)

We note Ω =]0,+∞[×R3 and Ω1 a relatively compact open set of Ω such that U0 :=(
%0

%0u0

)
∈ Ω1.

We will construct the solution of (4.2) through the following iteration process: for
k = 0, one sets θ0 = +∞, (U0(t), f0(t)) = (U0, f0). Then, given θk > 0 , and functions
Uk and fk that live on the time interval [0, θk[, one defines (Uk+1, fk+1) as the solution
of the linear system
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S(Uk)∂tU
k+1 +

3∑
i=1

(SAi)(U
k)∂xi

Uk+1 = S(Uk)b(Uk, fk), (4.5)

Uk+1(x, 0) = U0(x), (4.6)

∂tf
k+1 + v · ∇xfk+1 − 〈∇xpk〉 · ∇vfk+1 = 0, (4.7)

fk+1(x,v, 0) = f0(x,v). (4.8)

For now, it is not obvious that the sequence (Uk, fk)k∈N is well-defined.
Let Ω2 a relatively compact open subset of R3 such that Ω1 ⊂ Ω2. From the Sobolev

embedding for s > 3/2+1, Hs(R3) ↪→ L∞(R3), there exists a constant R > 0 depending
on Ω1, Ω2 and s, such that, if ‖U−U0‖Hs≤ R, then U ∈ Ω2. Then, one defines θk+1 as
the supremum of times θ < θk such that ‖Uk+1 −U0‖Hs,θ≤ R.

The system (4.5) is linear in Uk+1, symmetric and has smooth coefficients on [0, θk[,
therefore it admits a smooth solution on [0, θk[ [18]. For equation (4.7), since it is a
linear transport equation with smooth coefficients on [0, θk[, it admits a smooth solution
that can be explicitly computed by the method of characteristics. Finally, θk+1 > 0 since
Uk+1 is smooth, and U0 ∈ Ω1. The sequence (Uk, fk)k∈N is then well-defined.

We will restrict further the lifetime of the solution. One defines Tk as the supremum
of times T ∈ [0, θk[ such that

‖Uk −U0‖Hs,T ≤ R, (4.9)

∀t ∈ [0, T ], Xk
M (t) ≤ 2XM (0), (4.10)

∀t ∈ [0, T ], V kM (t) ≤ 2VM (0), (4.11)∥∥∥∥∫
R3

〈fk〉dv
∥∥∥∥
L∞,T

≤ 24‖w‖L1VM (0)3‖f0‖L∞ , (4.12)

and such that Tk+1 ≤ Tk. In particular,∥∥∥∥ 1

1−
∫
R3〈fk〉dv

∥∥∥∥
L∞

≤
∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞

, (4.13)

and one consider the sequence (Uk, fk)k∈N on the time interval [0, Tk[. Note that the
right-hand-side of (4.13) is finite thanks to the hypothesis (4.4). We emphasize that the
number 2 in the inequalities (4.10)-(4.12) is only of a cosmetic nature. One could replace
the number 2 by any a > 1 and it would not change the proof.

The proof is then made of three parts:

• First, we prove that there exists a time T? > 0 such that Tk ≥ T? for all k ∈ N.
This is the subject of the Proposition 7, for which we will need Lemmas 14, 15 and
16. Note that without such result, the sequence of lifespan (Tk)k∈N could converges
to 0. This is the subject of Appendix A

• Next, we prove in Proposition 8 that the sequence (Uk, fk)k∈N converges in L∞(0, T??;L
2(R3))×

L∞(0, T??;L
2(R3 × R3)), where 0 < T?? ≤ T?. The proof of this Proposition is

found in Appendix B

• Finally, we conclude the proof of Theorem 5 and we prove that the limit (U, f) is a
solution of (4.2) in C 1([0, T ]×R3,Ω2)×C 1

c ([0, T ]×R3×R3,R+) and the solution
is unique. We also explain why the proof works in the case of all initial data in Hs.

4.2 Proof of Theorem 5

The proof of Theorem 5 is divided into three parts. First we prove the existence in the
case of smooth compactly supported initial data. Then we treat the uniqueness in this
case. Finally we explain how to modify the proof to obtain the result for general initial
data.

First, we state the two following propositions whose proofs is found in Appendix A
and B respectively.
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Proposition 7. There exists T? ∈]0, 1] which depends only upon Ω1, Ω2, s, U0, w and
f0 such that, for all k ∈ N, Tk ≥ T?.
Proposition 8. We consider initial data such that (4.3)-(4.4) hold and the associated
sequences Uk, fk defined by (4.5)-(4.8). Let T? given by Proposition 7.

Then one can find T?? ∈]0, T?[ such that, for k ≥ 2,

‖Uk+1 −Uk‖L2,T??
≤ 1

4
‖Uk −Uk−1‖L2,T??

+
1

4
‖Uk−1 −Uk−2‖L2,T??

, (4.14)

‖fk − fk−1‖L2,T??
≤ C(f0,Ω2, γ)TV(w)‖Uk−1 −Uk−2‖L2,T??

. (4.15)

Proof of Theorem 5.
1) Existence for smooth compactly supported initial data. From Proposition 8,
one has ∑

k∈N

‖Uk+1 −Uk‖L2,T??
< +∞.

Then the sequence (Uk)k is a Cauchy sequence and converges in L∞(0, T??;L
2(R3)) to

U. Since Uk is smooth for all k, we have U ∈ C (0, T??;L
2(R3)). In the same way,∑

k∈N

‖fk+1 − fk‖L2,T??
< +∞.

Then the sequence (fk)k is a Cauchy sequence and converges in L∞(0, T??;L
2(R3×R3))

to f . Since fk is smooth for all k, we have f ∈ C (0, T??;L
2(R3 ×R3)). Thanks to the

inequality (4.9), one has ‖U−U0‖Hs,T??
≤ R and U ∈ L∞(0, T??;H

s(R3)). In particular,
thanks to the Sobolev embedding Hs(R3) ↪→ C 1(R3) (remember that s > 3/2 + 1),
one has that U ∈ L∞(0, T??; C 1(R3)) takes its values in Ω2. For the same reasons,
f ∈ L∞(0, T??;H

s(R3 ×R3)).

We emphasize however, that we do not yet have UkC (0,T??;Hs(R3))−→ U. To get the
convergence in C (0, T??; C 1(R3)), we use an interpolation argument. By interpolation
inequality between Sobolev spaces, we have for all s′ ∈]3/2 + 1, s[:

‖Uk+1 −Uk‖Hs′ ,T??
≤ C(s)‖Uk+1 −Uk‖s

′/s
Hs,T??

‖Uk+1 −Uk‖1−s
′/s

L2,T??

≤ C(s)
(
‖Uk+1 −U0‖s

′/s
Hs,T??

+‖Uk −U0‖s
′/s
Hs,T??

)
× ‖Uk+1 −Uk‖1−s

′/s
L2,T??

≤ C(s)2Rs
′/s‖Uk+1 −Uk‖1−s

′/s
L2,T??

.

So (Uk)k converges to U in C (0, T??;H
s′(R3)) for s′ ∈]3/2 + 1, s[. By the Sobolev

embedding Hs′(R3) ↪→ C 1(R3), we conclude that

UkC (0,T??;C 1(R3))−→ U.

Then
(
∂xi

Uk
)
k

converges to ∂xi
U in C ([0, T??]×R3). The same is true for

(∑
iAi(U

k+1)∂xi
Uk
)
k

because the Ai are smooth. We now turn to the convergence of

b(Uk, fk) =


%k
∫
R3(uk − v) · ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

%kuk
∫
R3(uk − v) · ∇x〈fk〉dv
1−

∫
R3〈fk〉dv

 .

The support in v of fk is uniformly bounded for all k, therefore, using that (fk) con-
verges in L∞(0, T??;L

2(R3 ×R3)) towards f and a Cauchy-Schwarz inequality, the se-
quences

(∫
R3 f

k dv
)
k

and
(∫

R3 vf
k
)
k

converge in L∞(0, T??;L
2(R3)) towards

∫
R3 f dv

and
∫
R3 vf dv. Then, using the inequality∥∥∥∥∇x ∫

R3

〈fk〉dv
∥∥∥∥
Hs

≤ TV(w)

∥∥∥∥∫
R3

fk dv

∥∥∥∥
Hs

,
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we get that the sequences
(∫

R3 ∇x〈fk〉dv
)
k

and
(∫

R3 v · ∇x〈fk〉dv
)
k

converge in L∞(0, T??;L
2(R3)).

Using again the interpolation inequality between Sobolev spaces, we obtain that
(∫

R3 ∇x〈fk〉dv
)
k

and
(∫

R3 v · ∇x〈fk〉dv
)
k

converge in

L∞(0, T??;H
s′(R3)) towards

∫
R3 ∇x〈f〉dv and

∫
R3 v·∇x〈f〉dv and therefore in C ([0, T??]×

R3). Furthermore, since
∫
R3〈fk〉dv converges to

∫
R3〈f〉dv in C ([0, T??] × R3) (again

using an interpolation argument) and using the inequality (4.12) we obtain that∥∥∥∥ 1

1−
∫
R3〈f〉dv

∥∥∥∥
L∞

< +∞,

and
(

1
1−
∫
R3 〈fk〉 dv

)
k

converges to 1
1−
∫
R3 〈f〉 dv

in C ([0, T??]×R3). Finally b(Uk, fk) con-

verges towards b(U, f) in C ([0, T??]×R3). We now prove that

∂tU
kC (0,T??;C 1(R3))−→ ∂tU.

Passing to the limit in D′ in the equation

∂tU
k = −

3∑
i=1

Ai(U
k)∂xi

Uk+1 + b(Uk, fk),

we obtain that U solves

∂tU = −
3∑
i=1

Ai(U)∂xi
U + b(U, f), (4.16)

in D′. Since the right-hand-side defines a function in C ([0, T??] ×R3), we have ∂tU ∈
C ([0, T??]×R3) and U solves (4.16) in the classical sense.

We now turn to the Vlasov equation. We pass to the limit in D′ in

∂tf
k+1 + v · ∇xfk+1 −∇x〈(%k)γ〉 · ∇vfk+1 = 0.

We already know that (%k)k converges to % in C ([0, T??]×R3), so does
(
(%k)γ

)
k

towards

%γ , finally we have ∇x〈(%k)γ〉 converges towards ∇x〈%γ〉 in C ([0, T??]×R3). So we can
pass to the limit in the sense of distribution and f is a solution in D′ of

∂tf + v · ∇xf −∇x〈%γ〉 · ∇vf = 0. (4.17)

Now, using the fact that the characteristic curves of f are C 1 because U is C 1, we obtain
that f ∈ C 1

c ([0, T?? ]×R3×R3) and f is a solution of (4.17) in the classical sense. This
concludes the proof in the case where the initials data are smooth with compact support.
2) Uniqueness. For the uniqueness, we consider two solutions (%1, %1u1, f1) and
(%2, %2u2, f2) which are smooth in [0, T ]. Then, using the same algebra as in Propo-
sition 8, one has for some T?? ∈]0, T [,

‖U1 −U2‖L2,T??
≤ 1

4
‖U1 −U2‖L2,T??

+
1

4
‖U1 −U2‖L2,T??

,

‖f1 − f2‖L2,T??
≤ C(Ω2, s, R, f0)‖U1 −U2‖L2,T??

.

As a consequence, U1 = U2 and f1 = f2.
3) General initial data. We turn to the case where %0 − 1 ∈ Hs(R3), u ∈ Hs(R3)
and f0 ∈ C 1

c (R3 ×R3) ∩Hs(R3 ×R3). We introduce an approximation of the identity
ϕεk with εk = 2−kε0, with ε0 small enough. Then we define Uk

0 = ϕεk ? U0 and
fk0 = (ϕεk ⊗ϕεk) ? f0, where the convolution and tensor product are in (x, v). With such
a choice, one has (See [23])∑

k∈N

‖Uk+1
0 −Uk

0‖L2< +∞,
∑
k∈N

‖fk+1
0 − fk0 ‖L2< +∞.

13



The solution is then obtained by the same approximation scheme but we replace the initial
data by Uk+1

0 and fk+1
0 . The proof is then similar, expect for two small modifications.

Firstly, one has to prove estimates on Uk−U0
0 instead of Uk−U0, this is where we need

to chose ε0 small enough. Secondly, the estimates (4.14)-(4.15) are replaced by

‖Uk+1 −Uk‖L2,T??
≤ 1

4
‖Uk −Uk−1‖L2,T??

+
1

4
‖Uk−1 −Uk−2‖L2,T??

+C‖Uk+1
0 −Uk

0‖L2 ,

and

‖fk − fk−1‖L2,T??
≤ C(f0,Ω2,TV(w), γ)‖Uk−1 −Uk−2‖L2,T??

+‖fk0 − fk−1
0 ‖L2 .

A Preliminary lemmas and a priori estimates

A.1 Preliminary lemmas

We write some preliminary lemmas which we use in this work.

Lemma 9. Let S,Ai ∈ C 1([0, T [×R3,M3(R)) be smooth matrices such that S and SAi
are symmetric, We suppose moreover that there exists c > 0 such that cId ≤ S(t,x) ≤
c−1Id. Then, every smooth and compactly supported vectors W and F satisfying the
equation S∂tW +

∑
i

SAi∂xi
W = F with the initial data W(0,x) = W0(x) verify the

energy estimate

‖W‖L2≤ c−1

‖W0‖L2+
1

2

∥∥∥∥∥∂tS +
∑
i

∂xi
(SAi)

∥∥∥∥∥
L∞,T∫ t

0

‖W‖L2(τ) dτ +

∫ t

0

‖F‖L2(τ) dτ

)
. (A.1)

Proof. By multiplying by WT and integrating, one has

1

2
∂t

∫
R3

WTSW dx =
1

2

∫
R3

WT (∂tS +
∑
i

∂xi(SAi))W dx+

∫
R3

WTFdx,

then one integrates with respect to t and uses the estimate WTSW ≥ cWTW .

Lemma 10 (See [18]). Let g : Ω ⊂ R3 → R3 a smooth vector-valued function, u : R3 →
Ω1 ⊂ Ω with Ω1 relatively compact in Ω. Assume that u ∈ Hs(R3)∩L∞(R3). Then for
|α|≤ s, one has the inequality

‖∂αg(u)‖L2≤ C(s) sup
v∈Ω1

(
sup
|β|≤s−1

|∂βg(v)|

)
‖u‖s−1

L∞ ‖u‖Hs .

Lemma 11 (See [18]). Let f, g ∈ Hs(R3) ∩ L∞(R3), one has the inequality

‖∂α(fg)‖L2≤ C(s)(‖f‖L∞‖g‖Hs+‖f‖Hs‖g‖L∞).

Lemma 12. Let f ∈ Hs(R3) and g ∈ BV(R3). Then

‖∇(f ? g)‖Hs≤ ‖f‖HsTV(g)

and
‖∇(f ? g)‖L∞≤ ‖f‖L∞TV(g).
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Proof. The proof is done via an approximation argument. The function g belongs to
BV(R3), therefore [15] (Theorem 5.3), there exists a sequence (gk)k∈N ∈ BV(R3) ∩
C∞(R3) such that gk

L1

−→g and TV(gk) → TV(g). In particular, gk ∈ W 1,1(R3) for
all k, and TV(gk) = ‖∇gk‖L1→ TV(g). Applying Young’s convolution inequality to
f and gk, we obtain ‖∇(f ? gk)‖L2≤ ‖f‖L2‖∇gk‖L1 , passing to the limit we obtain
‖∇(f ? g)‖L2≤ ‖f‖L2TV(g). Replacing f by ∂αf with |α|≤ s in the previous inequality,
we obtain ‖∇(f ? g)‖Hs≤ ‖f‖HsTV(g). The second inequality follow directly from the
definition of the total variation.

Lemma 13 (See [18]). Let h ∈ Hs(R3), ∇h ∈ L∞(R3), g ∈ Hs−1(R3) ∩ L∞(R3) and
|α|≤ s, then

‖∂α(hg)− h∂αg‖L2≤ C(s) (‖∇h‖L∞‖g‖Hs−1+‖g‖L∞‖h‖Hs) .

A.2 A priori estimates

The goal is to prove that the sequence (Tk)k∈N has a strictly positive lower bound T?.
In all this section, one considers initial data that such (4.3)-(4.4) hold and define the
sequences θk, Uk, fk by (4.5)-(4.8) and Tk by (4.9)-(4.11).

Lemma 14. For all k ≥ 0,

‖∂tUk+1‖Hs−1,Tk+1
≤ C(s, f0,U0,Ω2, R,w)TV(w). (A.2)

Proof. Let t ∈ [0, Tk+1[, then

‖∂tUk+1‖Hs−1(t) ≤
∑
i

‖Ai(Uk)∂xi
Uk+1‖Hs−1,Tk+1

+‖b(Uk, fk)‖Hs−1,Tk+1
.

One has to control each term, let’s start with b. One has,

‖b(Uk, fk)‖Hs−1,Tk+1
=

∑
|α|≤s−1

∥∥∥∥∥∥∥∥∥∥


∂α

(
%k
∫
R3(uk − v) · ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

)

∂α

(
%kuk

∫
R3(uk − v) · ∇x〈fk〉dv
1−

∫
R3〈fk〉dv

)

∥∥∥∥∥∥∥∥∥∥
L2,Tk+1

.

Applying Lemma 11 for |α|≤ s− 1,∥∥∥∥∥∂α
(
%kuk ·

∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

)∥∥∥∥∥
L2

≤C(s)

(
‖%kuk‖Hs−1

∥∥∥∥∥
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
L∞

+‖%kuk‖L∞
∥∥∥∥∥
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
Hs−1

)
.

(A.3)

Thanks to (4.9), one has

‖%kuk‖Hs−1≤ ‖Uk‖Hs−1≤ ‖U0‖Hs−1+‖Uk −U0‖Hs−1≤ C(U0, R).

Thanks to the Sobolev embedding Hs−1(R3) ↪→ L∞(R3), one has

‖%kuk‖L∞≤ C(Ω2)‖%kuk‖Hs−1≤ C(Ω2,U0, R).

15



Thanks to (4.9)-(4.12) and Lemma 12, one has∥∥∥∥∫
R3

∇x〈fk〉dv
∥∥∥∥
L∞
≤ TV(w)

∥∥∥∥∫
R3

fk dv

∥∥∥∥
L∞

≤ TV(w)23(V kM )3‖fk‖L∞

≤ TV(w)23(V kM )3‖f0‖L∞
≤ C(f0)TV(w).

So that, using (4.4), (4.13) and the previous inequality∥∥∥∥∥
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
L∞

≤ C(f0, w)TV(w).

It remains to bound the last term in (A.3)
∥∥∥ ∫R3 ∇x〈fk〉 dv

1−
∫
R3 〈fk〉 dv

∥∥∥
Hs−1

. Again applying Lemma

11 and Lemma 12, one has for |α|≤ s− 1:∥∥∥∥∥∂α
( ∫

R3 ∇x〈fk〉dv
1−

∫
R3〈fk〉dv

)∥∥∥∥∥
L2

≤ C(s)

(∥∥∥∥∫
R3

∇x〈fk〉dv
∥∥∥∥
Hs−1

∥∥∥∥ 1

1−
∫
R3〈fk〉dv

∥∥∥∥
L∞

+

∥∥∥∥∫
R3

∇x〈fk〉dv
∥∥∥∥
L∞

∥∥∥∥ 1

1−
∫
R3〈fk〉dv

∥∥∥∥
Hs−1

)

≤ C(s)

(
C(f0, w)TV(w)

+ C(f0)TV(w)

∥∥∥∥ 1

1−
∫
R3〈fk〉dv

∥∥∥∥
Hs−1

)
.

For the term
∥∥∥ 1

1−
∫
R3 〈fk〉 dv

∥∥∥
Hs−1

, one has∥∥∥∥ 1

1−
∫
R3〈fk〉dv

∥∥∥∥
Hs−1

=
∑
|α|≤s−1

∥∥∥∥∂α( 1

1−
∫
R3〈fk〉dv

)∥∥∥∥
L2

=
∑
|α|≤s−1

∥∥∥∥ Pα
(1−

∫
R3〈fk〉dv)q(α)

∥∥∥∥
L2

,

where Pα is a polynomial in ∂α(1−
∫
R3〈fk〉dv), and q(α) is an integer that depends on

α. One can bound the numerator Pα thanks to the inequality∥∥∥∥∫
R3

〈fk〉dv
∥∥∥∥
Hs

≤ (V kM )3/2‖〈fk〉‖Hs

≤ TV(w)C(f0),

where we used Lemma 12, and the denominator thanks to (4.12). As a consequence, one
obtains ∥∥∥∥∥∂α

(
%kuk ·

∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

)∥∥∥∥∥
L2

≤ C(U0, f0,Ω2, R,w)TV(w). (A.4)

Next, one has the term∥∥∥∥∥∂α
(
%k
∫
R3 v · ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

)∥∥∥∥∥
L2

≤ C(s)

(
‖%k‖Hs−1

∥∥∥∥∥
∫
R3 v · ∇x〈fk〉dv
1−

∫
R3〈fk〉dv

∥∥∥∥∥
L∞

+‖%k‖L∞
∥∥∥∥∥
∫
R3 v · ∇x〈fk〉dv
1−

∫
R3〈fk〉dv

∥∥∥∥∥
Hs−1

)
.
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We have, using Lemma 12∥∥∥∥∫
R3

v · ∇x〈fk〉dv
∥∥∥∥
L∞
≤ 23‖fk‖L∞(V kM )4TV(w) ≤ C(f0, w)TV(w),

and, ∥∥∥∥∫
R3

v · ∇x〈fk〉dv
∥∥∥∥
Hs−1

≤ C(VM )

∥∥∥∥∫
R3

∇x〈fk〉dv
∥∥∥∥
Hs−1

≤ C(f0)TV(w),

so ∥∥∥∥∥∂α
(
%k
∫
R3 v · ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

)∥∥∥∥∥
L2

≤ C(U0, f0,Ω2, R,w)TV(w). (A.5)

It is clear thanks to the previous inequalities that we have the bound∥∥∥∥∥%kuk
(∫

R3 v · ∇x〈fk〉dv
)

1−
∫
R3〈fk〉dv

∥∥∥∥∥
Hs−1

≤ C(s, f0, R,U0,Ω2, w)TV(w). (A.6)

For the term∥∥∥∥∥%kuk ⊗ uk
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
Hs−1

=

∥∥∥∥∥%kuk
(
uk ·

∫
R3 ∇x〈fk〉dv

)
1−

∫
R3〈fk〉dv

∥∥∥∥∥
Hs−1

,

we use the fact that Ω2 is relatively compact and so %k is bounded from below by a
constant that depends only on Ω2. Writing∥∥∥∥∥∂α

(
%kuk

(
uk ·

∫
R3 ∇x〈fk〉dv

)
1−

∫
R3〈fk〉dv

)∥∥∥∥∥
L2

≤ C(s)

(
‖%kuk‖Hs−1

∥∥∥∥∥uk ·
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
L∞

+ ‖%kuk‖L∞
∥∥∥∥∥uk ·

∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
Hs−1

)
,

and

‖uk‖L∞=

∥∥∥∥%kuk%k

∥∥∥∥
L∞
≤ C(Ω2)‖%kuk‖L∞ ,

one obtains ∥∥∥∥∥uk ·
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
L∞

≤ C(s,U0, f0, R,Ω2, w)TV(w).

Therefore∥∥∥∥∥∂α
(
uk ·

∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

)∥∥∥∥∥
L2

≤ C(s)

(
‖uk‖Hs−1

∥∥∥∥∥
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
L∞

+ ‖uk‖L∞
∥∥∥∥∥
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
Hs−1

)
.

Writing

‖∂αuk‖L2≤ C(s)

(
‖%kuk‖Hs−1

∥∥∥∥ 1

%k

∥∥∥∥
L∞

+ ‖%kuk‖L∞
∥∥∥∥ 1

%k

∥∥∥∥
Hs−1

)
,
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one notices that ∥∥∥∥∂α( 1

%k

)∥∥∥∥
L2

=

∥∥∥∥∥Pα(∂α%k)

(%k)
q(α)

∥∥∥∥∥
L2

≤ 1

‖(%k)
q(α) ‖L∞

‖Pα(∂α%k)‖L2

≤ C(Ω2, R,U0),

where Pα is a polynomial in ∂α(%k) and q(α) an integer depending on α. One gets∥∥∥∥∥%kuk
(
u ·
∫
R3 ∇x〈fk〉dv

)
1−

∫
R3〈fk〉dv

∥∥∥∥∥
Hs−1

≤ C(s, f0, R,U0,Ω2, w)TV(w). (A.7)

In the end, combining the inequalities (A.4)-(A.7)

‖b(Uk, fk)‖Hs−1,Tk+1
≤ C(s,U0, f0, w,R,Ω2)TV(w).

We turn to the term

‖Ai(Uk)∂xiU
k+1‖Hs−1,Tk+1

=
∑
|α|≤s−1

‖∂α(Ai(U
k)∂xiU

k+1)‖L2,Tk+1
.

Using Lemma 10 and the Sobolev embedding Hs(R3) ↪→ L∞(R3), one has for |α|≤ s−1,

‖∂α(Ai(U
k)∂xi

Uk+1)‖L2,Tk+1
≤‖∂α((Ai(U

k)−Ai(U0))∂xi
Uk+1)‖L2,Tk+1

+ ‖Ai(U0)∂α(∂xi
Uk+1)‖L2,Tk+1

≤C(s)(‖Ai(Uk)−Ai(U0)‖Hs,Tk+1
‖∂xi

Uk+1‖L∞,Tk+1

+ ‖AI(U0)‖L∞,Tk+1
‖∂xi

Uk+1‖Hs−1,Tk+1
)

≤C(s,Ω2, R,U0).

This completes the proof.

Lemma 15. For all k ≥ 0 and T ∈ [0, inf(1, Tk+1)[

sup
t∈[0,T ]

‖Uk+1 −U0‖Hs(t) ≤ TC(s,R,Ω2,U0, f0, w,TV(w))eC(s,R,f0,U0,Ω2,w,TV(w))T .

(A.8)

Proof. The function Wk+1 = Uk+1 −U0 satisfies

S(Uk)∂tW
k+1 +

∑
i

(SAi)(U
k)∂xi

Wk+1 = S(Uk)b(Uk, fk) + Hk,

Wk+1(x, 0) = 0,

with Hk = −
∑
i

(SAi)(U
k)∂xi

U0. We look for a bound in Hs of Wk+1. The function

∂αWk+1 satifies

S(Uk)∂t∂
αWk+1 +

∑
i

(SAi)(U
k)∂xi∂

αWk+1

= S(Uk)∂α(S−1(Uk)Hk + b(Uk, fk)) + Fα,
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with Fα = S(Uk)
∑
i

(
Ai(U

k)∂xi∂
αWk+1 − ∂α(Ai(U

k)∂xiW
k+1)

)
. Moreover, one has

1

2
∂t

∫
R3

(∂αWk+1)TS(Uk)∂αWk+1 dx =
1

2

∫
R3

(∂αWk+1)T

(
∂tS(Uk)

+
∑
i

∂xi
(SAi)(U

k)

)
∂αWk+1 dx

+

∫
R3

(∂αWk+1)TS(Uk)∂α(S−1(Uk)Hk

+ b(Uk, fk)) dx+

∫
R3

(∂αWk+1)TFα dx.

Up to time Tk, Uk takes its values in Ω2 on which S and SAi are smooth. One can
bound the derivatives of S and SAi at any order by a constant that depends on Ω2. One
also uses the Sobolev embedding Hs−1(R3) ↪→ L∞(R3) and Lemma 14 to obtain the
estimates

‖∂tUk‖L∞,Tk
≤ C(s)‖∂tUk‖Hs−1,Tk

≤ C(s,Ω2, R,U0, f0, w)TV(w),

‖∂xi
Uk‖L∞,Tk

≤ C(s)‖∂xi
Uk‖Hs−1,Tk

≤ C(s)
(
‖Uk −U0‖Hs,Tk

+‖U0 − Ū0‖Hs,Tk

)
≤ C(s,R,U0).

So that ∥∥∥∥∥∂tS(Uk) +
∑
i

∂xi(SAi)(U
k)

∥∥∥∥∥
L∞,Tk+1

≤ C(s,Ω2, R,U0, f0, w,TV(w)).

One now uses Lemma 13 to obtain, for |α|≤ s

Ai(U
k)∂xi∂

αWk+1 − ∂α
(
Ai(U

k)∂xiW
k+1
)

=
(
(Ai

(
Uk
)
−Ai

(
Ū0

))
∂α∂xi

Wk+1 − ∂α
((
Ai
(
Uk
)
−Ai

(
Ū0

))
∂xi

Wk+1
)
.

According to the previous inequality, one has

‖Fα‖L2,Tk+1
≤‖S(Uk)‖L∞,Tk+1

C(s)
∑
i

(
‖∂α(Ai(U

k)−Ai(Ū0))‖L∞,Tk+1

× ‖∂xi
Wk+1‖Hs−1,Tk+1

+‖∂xiW
k+1‖L∞,Tk+1

‖Ai(Uk)−Ai(Ū0)‖Hs,Tk+1

)
≤C(s,Ω2, R,U0).

One has using Lemma 11∥∥S(Uk)∂α(S−1(Uk)Hk
∥∥
L2,Tk+1

≤ ‖S(Uk)‖L∞,Tk

∑
i

‖∂α(Ai(U
k)∂xiU0)‖L2,Tk

≤ C(s,Ω2)
∑
i

‖Ai(Uk)−Ai(Ū0)‖L∞,Tk
‖∂xi

U0‖Hs,Tk

+
∑
i

‖∂xi
U0‖L∞,Tk

‖Ai(Uk)−Ai(Ū0)‖Hs,Tk
+C‖∂xi

U0‖Hs,Tk

≤ C(s,Ω2, R,U0).

It yields

‖S(Uk)∂α(b(Uk, fk))‖L2,Tk+1
≤ C(s,R, f0,Ω2, w,TV(w)).
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One now uses the estimate (A.1). For t ∈ [0, Tk+1], one obtains

‖∂αWk+1‖L2(t)

≤ C(Ω2)[‖∂αWk+1‖L2(0) +
1

2
‖∂tS +

∑
i

∂xi
(SAi)‖L∞,Tk+1

∫ t

0

‖∂αWk+1‖L2(τ) dτ

+

∫ t

0

(
‖Fα‖L2+‖S(Uk)∂α(S−1(Uk)Hk)‖L2+‖S(Uk)∂α(b(Uk, fk))‖L2

)
dτ.

Then one gets

‖∂α Wk+1‖L2(t)

≤ ‖∂αWk+1‖L2(0) + C(s,Ω2, R,U0, f0)

∫ t

0

‖∂αWk+1‖L2(τ) dτ

+

∫ t

0

(C(s,Ω2, R,U0) + C(s,Ω2, R,U0) + C(s,U0, f0, w,TV(w), R,Ω2)) dτ.

Summing for all |α|≤ s these estimates, one ends up with

‖Wk+1‖Hs(t)

≤ C(Ω2)

(
‖Wk+1‖Hs(0) + C(s,Ω2, R,U0, f0)

∫ t

0

‖Wk+1 ‖Hs(τ) dτ

)
+ tC(s,R,Ω2,U0, f0, w,TV(w)).

Thanks to Gronwall’s lemma, one has for all t ∈ [0, T ] with T ≤ Tk+1

‖Wk+1‖Hs(t)

≤ C(Ω2)
(
‖Wk+1‖Hs(0) + TC(s,R,Ω2,U0, f0, w,TV(w))

)
eC(s,R,f0,U0,Ω2,w,TV(w))T .

Choosing T ≤ 1, and since Wk+1(x, 0) = 0, one obtains the claim.

Lemma 16. The following inequalities hold for all T ∈ [0, inf(1, Tk+1)[

sup
t∈[0,T ]

V k+1
M (t) ≤ VM (0) + C(Ω2, w, γ,U0)TV(w)T, (A.9)

sup
t∈[0,T ]

Xk+1
M (t) ≤ XM (0) + C(f0,Ω2, w, γ,U0)TV(w)T, (A.10)∥∥∥∥∫

R3

〈fk+1〉dv
∥∥∥∥
L∞,T

≤ 23‖w‖L1‖f0‖L∞(VM (0) + C(Ω2, w, γ,U0)T )3. (A.11)

Proof. Recall the characteristic curves of the Vlasov equation

dXk+1

dt
(t;x,v, s) = Vk+1(t;x,v, s), (A.12)

Xk+1(s;x,v, s) = x, (A.13)

dVk+1

dt
(t;x,v, s) = −〈∇xp(Xk+1(t;x,v, s), t)〉, (A.14)

Vk+1(s;x,v, s) = v. (A.15)

One has, writting in an implicity way the equations (A.12) and (A.14),

Xk+1(t;x,v, s) = x +

∫ t

s

Vk+1(τ ;x,v, s) dτ, (A.16)

Vk+1(t;x,v, s) = v −
∫ t

s

〈∇xpk(Xk+1(τ,x,v, s), τ)〉dτ. (A.17)
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We recall the notations

Xk+1
M (t) = sup

(x,v)∈R3×R3,fk+1(t,x,v)>0

|x|,

V k+1
M (t) = sup

(x,v)∈R3×R3,fk+1(t,x,v)>0

|v|.

Then

Vk+1(0;x,v, t) = v −
∫ 0

t

〈∇pk(Xk+1(τ ;x,v, t), τ)〉dτ,

and

|v|≤ Vk+1(0;x,v, t) +

∫ t

0

‖pk‖L∞TV(w) dτ.

One obtains

V k+1
M (t) ≤ VM (0) +

∫ t

0

‖pk‖L∞(τ)TV(w) dτ.

And it yields (A.9). One proceeds similarly for Xk+1
M . Using the formula (A.17), one has

x = Xk+1(0;x,v, t) +

∫ t

0

Vk+1(τ ;x,v, t) dτ

= Xk+1(0;x,v, t) + v

∫ t

0

dτ −
∫ t

0

∫ τ

t

〈∇xpk(Xk+1(τ̃ ;x,v, t), τ̃)〉dτ̃ dτ,

so, using Lemma 12

Xk+1
M (t) ≤ XM (0) + VM (0)t+

∫ t

0

∫ t

τ

‖pk‖L∞(τ̃)TV(w) dτ̃ dτ.

And one obtains (A.10).
Moreover, one has, with Lemma 12∥∥∥∥∫

R3

〈fk+1〉dv
∥∥∥∥
L∞,T

≤ ‖w‖L1

∥∥∥∥∫
R3

fk+1 dv

∥∥∥∥
L∞,T

≤ 23‖w‖L1‖fk+1‖L∞,T (V k+1
M )3

≤ 23‖w‖L1‖f0‖L∞(VM (0) + C(Ω2, w, γ,U0)TV(w)T )3.

We conclude this part with the proof of Proposition 7

Proof of Proposition 7. From Lemma 15, one has

sup
t∈[0,T ]

‖Uk+1 −U0‖Hs(t) ≤ TC(s,R,Ω2,U0, f0, w,TV(w))eC(s,R,f0,U0,Ω2,w,TV(w))T .

The right-hand-side of this inequality defines a continuous function of T independent of
k, with value 0 if T = 0. Therefore, for all k there exists Tk > T1 > 0 such that

sup
t∈[0,T ]

‖Uk+1 −U0‖Hs(t) ≤ T1C(s,R,Ω2,U0, f0, w,TV(w))eC(s,R,f0,U0,Ω2,w,TV(w))T1

≤ R.

For the same reasons, using Lemma 16, for all k there exists T2, T3 and T4 in ]0, Tk[ such
that

sup
t∈[0,T ]

V k+1
M (t) ≤ VM (0) + C(Ω2, w, γ,U0)TV(w)T2 ≤ 2VM (0),

sup
t∈[0,T ]

Xk+1
M (t) ≤ XM (0) + C(f0,Ω2, w, γ,U0)TV(w)T3 ≤ 2XM (0),∥∥∥∥∫

R3

〈fk+1〉dv
∥∥∥∥
L∞,T

≤ 23‖w‖L1‖f0‖L∞(VM (0) + C(Ω2, w, γ,U0)T4)3

≤ 24‖w‖L1‖f0‖L∞VM (0)3.
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Let T? = min(T1, T2, T3, T4) then for all k ∈ N, Tk ≥ T? > 0 and the bounds (4.9)-(4.12)
are verified.

B Convergence of the iterative process

This part is dedicated to the proof of Proposition 8

Proof of Proposition 8. Let k ≥ 2. The function Uk+1 −Uk is solution of the system

S(Uk)∂t(U
k+1 −Uk)

+

3∑
i =1

((SAi(U
k−1)− (SAi)(U

k)∂xi(U
k+1 −Uk) = b(Uk, fk)− b(Uk−1, fk−1) + Fk,

with

Fk = (S(Uk−1)− S(Uk))∂tU
k +

3∑
i=1

((SAi(U
k−1)− (SAi)(U

k))∂xiU
k.

Thanks to Lemma 9, one can write

‖Uk+1 −Uk‖L2(t)

≤C(
1

2
‖∂tS(Uk) +

∑
i

∂xi
(SAi)(U

k)‖L∞,T?

∫ t

0

‖Uk+1 −Uk‖L2(τ) dτ

+

∫ t

0

(‖Fk‖L2(τ) + ‖b(Uk, fk)− b(Uk−1, fk−1)‖L2(τ)) dτ).

Then, by Gronwall’s lemma, inequalities (4.9)-(A.2) and the fact that S and SAi are
smooth on Ω2 which is compact, one has

‖Uk+1 −Uk‖L2(t) ≤Ce

(
C(Ω2)‖∂tS(Uk)+

∑
i
∂xi

(SAi)(U
k)‖L∞,T?

)
T?

×
∫ t

0

(‖Fk‖L2(τ) + ‖b(Uk, fk)− b(Uk−1, fk−1)‖L2(τ) dτ

≤C(Ω2)eC(s,Ω2,R,U0,f0)T?T?

× (‖Fk‖L2,T?
+‖b(Uk, fk)− b(Uk−1, fk−1)‖L2,T?

).

The goal is then to obtain inequality (4.14).
To bound to right-hand-side of this inequality, one first notices that the first term

verifies ‖Fk‖L2≤ C(s,Ω2, R,U0,TV(w))‖Uk−Uk−1‖L2,T?
. It remains to bound the term

‖b(Uk, fk)− b(Uk−1, fk−1)‖L2,T?

=

∥∥∥∥∥∥∥∥


%k
∫
R3(uk − v) · ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

−
%k−1

∫
R3(uk−1 − v) · ∇x〈fk−1〉dv

1−
∫
R3〈fk−1〉dv

%kuk
∫
R3(uk − v) · ∇x〈fk〉dv
1−

∫
R3〈fk〉dv

−
%k−1uk−1

∫
R3(uk−1 − v) · ∇x〈fk−1〉dv
1−

∫
R3〈fk−1〉dv


∥∥∥∥∥∥∥∥
L2,T?

.
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One has, making use of Lemma 12∥∥∥∥∥%kuk ·
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

−
%k−1uk−1 ·

∫
R3 ∇x〈fk−1〉dv

1−
∫
R3〈fk−1〉dv

∥∥∥∥∥
L2,T?

≤

∥∥∥∥∥(%kuk − %k−1uk−1) ·
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
L2,T?

+

∥∥∥∥∥%k−1uk−1 ·

( ∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

−
∫
R3 ∇x〈fk−1〉dv

1−
∫
R3〈fk−1〉dv

)∥∥∥∥∥
L2,T?

≤ ‖%kuk − %k−1uk−1‖L2,T?

∥∥∥∥∥
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
L∞,T?

+ ‖%k−1uk−1‖L∞
∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞

∥∥∥∥∫
R3

∇x〈fk − fk−1〉dv
∥∥∥∥
L2,T?

≤ C(f0)TV(w)

∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞
‖Uk −Uk−1‖L2,T?

+ C(f0, R)TV(w)

∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞
‖fk − fk−1‖L2,T?

≤ C(f0, w)TV(w)‖Uk −Uk−1‖L2,T?

+ C(f0, R,w)TV(w)‖fk − fk−1‖L2,T?
.

Similarly, because of the inequality∥∥∥∥∫
R3

(fk − fk−1)v dv

∥∥∥∥
L2,T?

≤ C(f0)‖fk − fk−1‖L2,T?
,

one has ∥∥∥∥∥%k
∫
R3 v · ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

−
%k−1

∫
R3 v · ∇x〈fk−1〉dv

1−
∫
R3〈fk−1〉dv

∥∥∥∥∥
L2,T?

≤ C(f0)TV(w)

∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞
‖Uk −Uk−1‖L2,T?

+ C(f0, R)TV(w)

∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞
‖fk − fk−1‖L2,T?

≤ C(f0, w)TV(w)‖Uk −Uk−1‖L2,T?
+C(f0, R,w)‖fk − fk−1‖L2,T?

.

In the same way∥∥∥∥∥%kuk
∫
R3 v · ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

−
%k−1uk−1

∫
R3 v · ∇x〈fk−1〉dv

1−
∫
R3〈fk−1〉dv

∥∥∥∥∥
L2,T?

≤ C(f0)TV(w)

∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞
‖Uk −Uk−1‖L2,T?

+ C(f0, R)TV(w)

∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞
‖fk − fk−1‖L2,T?

≤ C(f0, w)TV(w)‖Uk −Uk−1‖L2,T?
+C(f0, R,w)‖fk − fk−1‖L2,T?

.

23



For the final term, one notices that∥∥∥∥∥%kuk
∫
R3 u

k · ∇x〈fk〉dv
1−

∫
R3〈fk〉dv

−
%k−1uk−1

∫
R3 u

k−1 · ∇x〈fk−1〉dv
1−

∫
R3〈fk−1〉dv

∥∥∥∥∥
L2,T?

≤‖%kuk − %k−1uk−1‖L2,T?

∥∥∥∥∥
∫
R3 ∇x〈fk〉dv

1−
∫
R3〈fk〉dv

∥∥∥∥∥
L∞,T?

‖uk‖L∞,T?

+ ‖%k−1uk−1‖L∞
∥∥∥∥ 1

1− 24‖w‖L1VM (0)3f0

∥∥∥∥
L∞

×max(‖uk‖L∞,T?
, ‖uk−1‖L∞,T?

)

∥∥∥∥∫
R3

∇x〈fk − fk−1〉dv
∥∥∥∥
L2,T?

.

Moreover, because that for all k, Uk ∈ Ω2 which is relatively compact in ]0,+∞[×R3,
the quantity %k is bounded from below for all k by a constant that depends only on Ω2.
So that one has, for all k ≥ 2

‖uk‖L∞=

∥∥∥∥%kuk%k

∥∥∥∥
L∞
≤ C(Ω2)‖%kuk‖L∞ .

So ∥∥∥∥∥%kuk
∫
R3 u

k · ∇x〈fk〉dv
1−

∫
R3〈fk〉dv

−
%k−1uk−1

∫
R3 u

k−1 · ∇x〈fk−1〉dv
1−

∫
R3〈fk−1〉dv

∥∥∥∥∥
L2,T?

≤ C(f0, w,Ω2)TV(w)‖Uk −Uk−1‖L2,T?
+C(f0, R,w,Ω2)TV(w)‖fk − fk−1‖L2,T?

.

In the end

‖b(Uk, fk)− b(Uk−1, fk−1)‖L2,T?

≤ C(f0, w,Ω2)TV(w)‖Uk −Uk−1‖L2,T?
+C(f0, R,w,Ω2)TV(w)‖fk − fk−1‖L2,T?

.
(B.1)

The goal is then to control the term ‖fk − fk−1‖L2,T?
by ‖Uk−1 −Uk−2‖L2,T?

.
The function fk − fk−1 verifies

∂t(f
k − fk−1) + v · ∇x(fk − fk−1)− 〈∇pk−1〉 · ∇v(fk − fk−1)

= (〈∇pk−1〉 − 〈∇pk−2〉) · ∇vfk−1.

Moreover fk(x,v, 0)− fk−1(x,v, 0) = 0, so

(fk − fk−1)(x,v, t) =

∫ t

0

B(Xk−1(τ ;x,v, t),Vk−1(τ ;x,v, t), τ) dτ,

with
B = (〈∇pk−1〉 − 〈∇pk−2〉) · ∇vfk−1.

One writes

‖fk − fk−1‖L2(t) ≤
∫ t

0

‖B‖L2(τ) dτ,

then one has, using Lemma 12, the following for B in the L2-norm,

‖B‖L2 ≤ ‖∇vfk−1‖L∞‖〈∇pk−1〉 − 〈∇pk−2〉‖L2

≤ ‖∇vfk−1‖L∞TV(w)‖(%k−1)γ − (%k−2)γ‖L2 .

One needs to bound ∇vfk in L∞. The function ∇vfk verifies

∂t(∇vfk) + v · ∇x∇vfk − 〈∇xpk−1〉 · ∇v∇vfk = −∇xf,
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where · is understood as a matrix-vector product. Therefore, the characteristic method
yields the formula

∇vfk(x,v, t) = ∇vf0(Xk−1(0;x,v, t),Vk−1(0;x,v, t))

−
∫ t

0

∇xfk(Xk−1(τ ;x,v, t),Vk−1(τ ;x,v, t), τ) dτ,

which yields, for t ∈ [0, T?[

‖∇vfk‖L∞(t) ≤ ‖∇vf0‖L∞+

∫ t

0

‖∇xfk‖L∞(τ) dτ.

Similarly, the function ∇xfk verifies

∂t(∇xfk) + v · ∇x∇xfk − 〈∇xpk−1〉 · ∇v∇xfk = 〈∇x∇xpk−1〉 · ∇vfk.

Again, applying the method of characteristic

∇xfk(x,v, t)

= ∇xf0(Xk−1(0;x,v, t),Vk−1(0;x,v, t))

+

∫ t

0

〈
∇x∇xpk−1(Xk−1(τ ;x,v, t), τ)

〉
∇vfk(Xk−1(τ ;x,v, t),Vk−1(τ ;x,v, t), τ) dτ,

and, with Lemma 12

‖∇xfk‖L∞(t) ≤ ‖∇xf0‖L∞+

∫ t

0

∥∥〈∇x∇xpk−1〉
∥∥
L∞

(τ)‖∇vfk‖L∞(τ) dτ

≤ ‖∇xf0‖L∞+C(s, γ,R,Ω2, U0TV(w))

∫ t

0

‖∇vfk‖L∞(τ) dτ.

It is a consequence of Gronwall’s lemma that for t ∈ [0, T?[

‖∇xfk‖L∞(t) + ‖∇vfk‖L∞(t) ≤ C(s,R, f0,Ω2, γ,TV(w)).

Then, applying the mean value theorem to z 7→ zγ and using the fact that Ω2 is relatively
compact in Ω yields

‖B‖L2(t) ≤ ‖∇vfk−1‖L∞(t)TV(w) sup
z
‖γzγ−1‖L∞‖%k−1 − %k−2‖L2(t)

≤ C(s,R, f0,Ω2, γ,TV(w))TV(w)‖Uk−1 −Uk−2‖L2,T?
,

and

‖fk − fk−1‖L2(t) ≤ tC(s,R, f0,Ω2, γ,TV(w))TV(w)‖Uk−1 −Uk−2‖L2(t).

Finally, using the inequality T? ≤ 1,

‖b(Uk, fk)− b(Uk−1, fk−1)‖L2,T?

≤ C(f0, w,Ω2)TV(w)‖Uk −Uk−1‖L2,T?

+ C(s,R, f0,Ω2, γ,TV(w))TV(w)‖Uk−1 −Uk−2‖L2,T?
.

So that one obtains for all t ∈ [0, T?[

‖Uk−1 −Uk‖L2(t)

≤ C(R, f0,U0,Ω2, w,TV(w), γ)T?
(
‖Uk −Uk−1‖L2,T?

+‖Uk−1 −Uk−2‖L2,T?

)
.

This inequality is also valid if one replaces T? by T?? ∈]0, T?[. In particular, one can
chose T?? such that

C(R, f0,U0,Ω2, w,TV(w), γ)T?? <
1

4
.

This concludes the proof.
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