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Abstract

We review an argument of Renardy proving existence and regularity for a subset of a class of models of

non-Newtonian fluids suggested by Oldroyd, including the upper-convected and lower-convected Maxwellian

models. We suggest an effective method for solving these models, including a variational formulation

suitable for finite element computation.
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1 Introduction

We consider some model equations proposed for non-Newtonian fluids that are a subset of the Oldroyd
models [15]. This includes the upper-convected and lower-convected Maxwellian models. Our objective
is to extend the existence proof of Renardy [16] for these equations in various ways. In particular, we
show that a variant of his proof can be the basis for an effective solution algorithm. The subset of
the Oldroyd models that we study involves three parameters, the fluid kinematic viscosity η and two
rheological parameters λ1 and µ1. We will refer to this subset as the “three-parameter” subset. An
extended version of these results appeared in [11] and was announced in [10].

1.1 Notation

Let d denote the space dimension. We assume that the fluid domain D ⊂ R
d is connected and has

a boundary ∂D with different degrees of regularity for different results. For simplicity, we assume
that the boundary conditions on the fluid velocity are Dirichlet: u = 0 on ∂D, although these can be
relaxed to allow u = g on ∂D provided g · n = 0, where n is the unit outer normal to ∂D. We utilize
standard Sobolev spaces W s

q (D) for nonnegative integers s and 1 ≤ q ≤ ∞, consisting of functions
whose derivatives of order s or less are in the Lebesgue space Lq(D) [6, 1, 4]. For vector-valued

functions v and matrix-valued functions T, we will write v ∈ W s
q (D)d or T ∈ W s

q (D)d
2
to indicate

that each component of v or T is in W s
q (D). For tensor-valued functions of tensor order larger than

2, we will use analogous notation. The highest order of tensors considered here is 3, but we develop
some identities in section 9 for general tensor-valued functions.
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1.1 Notation Oldroyd models without explicit dissipation

We will also write the corresponding norms with the understanding that the norms for vector-
valued and tensor-valued functions are evaluated appropriately. More precisely, we define

‖T ‖W s
q (D) =

s∑

m=0

‖ |∇mT| ‖Lq(D),

where, for example, |T(x)| is the Frobenius norm of T(x) in the case when T(x) is a matrix and the
Euclidean norm in the case when T(x) is a vector. We give details about generalizations to arbitrary
tensors in Section 9. For simplicity, we do not use bold face to indicate points in R

d.
We collect here our assumptions regarding the regularity of the domain boundary. We will always

assume that D is bounded and ∂D is Lipschitz, but in addition we make the following assumptions.
Consider the elliptic equations

v −∆v = f in D
∇v · n = 0 on ∂D,

(1.1)

and

−∆v = f in D
v = 0 on ∂D.

(1.2)

We introduce the following condition: suppose that the domain D has the property that there is a
constant C such that each problem (1.1) and (1.2) has a unique solution v ∈ H2(D) for all f ∈ L2(D)
satisfying

(1.3) ‖ v ‖H2(D) ≤ C‖ f ‖L2(D).

Similarly, we consider a Stokes system,

−∆v+∇p = f in D
∇·v = 0 in D, v = 0 on ∂D.

(1.4)

We introduce the following condition: suppose that, for some q > 1, the domain D has the property
that there is a constant Cq,D such that for all f ∈ Lq(D)d there is a unique pair v ∈ W 2

q (D)d and
p ∈ W 1

q (D)/R solving (1.4) such that

(1.5) ‖v ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D‖ f ‖Lq(D) for all f ∈ Lq(D)d.

We assume this holds for all q ≤ q0 where q0 > 1. Ultimately, many of the results will be restricted to
the case q0 > d, where d is the dimension of D.

We will utilize Sobolev’s inequality, which says that for q > d, functions in W s+1
q (D) may be

viewed as being in Cs(D). We will in particular use the case s = 0 frequently, and we introduce the
corresponding Sobolev constant σq which is the smallest real number such that

(1.6) ‖ v ‖L∞(D) ≤ σq‖ v ‖W 1
q (D) for all v ∈ W 1

q (D).

We will be interested in the cases d = 2 and d = 3, and our estimates will always be restricted to the
case q < ∞. The constant σq depends on d and the domain D, but we will suppress this dependence
in what follows.

Another type of Sobolev inequality is

(1.7) ‖ v ‖L2q/(q−2)(D) ≤ σq‖ v ‖H1(D) for all v ∈ H1(D),

provided that q > 2 for d = 2 and q ≥ d for d ≥ 3. Although the constant σq may be different from the
one in (1.6), we will use the same notation for both, that is, we will assume that σq is the maximum
of the two constants.
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Oldroyd models without explicit dissipation

2 Three–parameter Oldroyd models

In all (time-independent) models of fluids, the basic equation can be written as

(2.1) u · ∇u+∇p = ∇·T+ f ,

where T is called the extra (also called deviatoric) stress and f represents externally given data. The
models only differ according to the dependence of the stress on the velocity u.

In the case of a Newtonian fluid
T = η(∇u+∇ut) .

Thus, when ∇·u = 0, it follows that ∇·T = η∆u, and we obtain the well known Navier-Stokes
equations for Newtonian flow, where η is the kinematic viscosity [13].

We now describe the particular family of non-Newtonian models on which we focus here.
A three parameter subset of the eight parameter model of Oldroyd [15] for the extra stress takes

the form
T+ λ1(u · ∇T+R◦T+T◦Rt)− µ1(E◦T+T◦E) = 2ηE,

where the five parameters λ2, µ2, µ0, ν0, and ν1 in [15] are set to zero, and

R = 1
2(∇ut −∇u) and E = 1

2(∇u+∇ut).

Note that Et = E, Rt = −R, R+E = ∇ut, and R−E = −∇u.
We can write the full model in the steady case as

u · ∇u+∇p = ∇·T+ f in D,

∇·u = 0 in D, u = 0 on ∂D,
(2.2)

(2.3) T+ λ1(u · ∇T+R◦T+T◦Rt)− µ1(E◦T+T◦E) = 2ηE in D.

By combining R and E, formula (2.3) has the equivalent expression

(2.4) T+ λ1(u · ∇T− (∇u)◦T−T◦(∇ut)) + (λ1 − µ1)(E◦T+T◦E) = 2ηE.

There are physical reasons to assume that λ1 > 0, but we will allow λ1 < 0 as well. The case λ1 = 0
and µ1 = 0 which corresponds to the Navier-Stokes equations, has not been considered here, but it
can be treated similarly and is essentially trivial by comparison. Therefore, from now on, we assume
that λ1 6= 0.

3 Alternative formulation

The difficulty with the simple formulation (2.2–2.3) is that there is no obvious smoothing for u, i.e.,
there is no explicit dissipation in the basic equation (2.1). In Section 8, we describe a technique
proposed by Renardy in [16] that addresses this issue by making a substitution based on (2.2). Of
course, this is not the only option. Following the work of Fernandez-Cara et al in [5], we develop a
modified version of the Renardy formulation that uses a more selective substitution. This formulation
is simplified in several terms and may be more effective both analytically and numerically. Renardy
suggested writing (2.2) as

(3.1) ∇·T = u · ∇u+∇p− f ,

and then inserting this expression for ∇·T into the divergence of (2.3), or equivalently (2.4). We
can use the expression (3.1) for ∇·T selectively in (2.3) to get different formulations with different
properties. In order to do so, we need to use some identities, which we now develop.
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3.1 Some identities

The reader will find in Section 9 the general definitions of the operators used here. Let us now compute
the divergence of the left-hand side of (2.4). We compute the divergence of u · ∇T as follows:

(∇· (u · ∇T))i =
∑

j

(u · ∇T)ij,j =
∑

j

(u · ∇Tij),j =
∑

jk

(
ukTij,k

)
,j

=
∑

jk

(
ukTij,kj + uk,jTij,k

)
= (u · ∇ (∇·T))i +

∑

jk

uk,jTij,k.

We compute the divergence of T◦∇ut as follows:
(
∇·
(
T◦(∇u)t

))
i
=
∑

j

(
T◦(∇u)t

)
ij,j

=
∑

jk

(Tik(∇u)jk),j =
∑

jk

(Tikuj,k),j

=
∑

jk

(
Tik,juj,k + Tikuj,kj

)
=
∑

jk

Tik,juj,k +
∑

k

Tik(∇·u),k

=
∑

jk

Tik,juj,k =
∑

jk

Tij,kuk,j =
∑

jk

uk,jTij,k,

provided that ∇·u = 0. Therefore we have proved the following identity:

(3.2) ∇·
(
u · ∇T−T◦(∇u)t

)
= u · ∇ (∇·T) ,

valid in the sense of distributions for all sufficiently regular functions and tensors. For instance, it
holds when the left and right sides of equation (3.2) define elements of H−1(D), e.g., if the components
of u and T belong to W 1

q (D) for q > d; then

〈∇·(u · ∇T),φ〉 = −
∫

D

(u · ∇T) : ∇φ dx

〈∇·(T◦(∇u)t),φ〉 = −
∫

D

(T◦(∇u)t) : ∇φ dx

for all φ ∈ H1
0 (D)d. If moreover ∇·u = 0, then

〈u · ∇ (∇·T) ,φ〉 = 〈
∑

i

ui
∂

∂xi
(∇·T) ,φ〉 =

∑

i

〈 ∂

∂xi
(∇·T) , uiφ〉

= −〈∇·T,
∑

i

∂

∂xi
(uiφ)〉 = −〈∇·T,

∑

i

ui
∂

∂xi
φ〉

= −
∫

D

(∇·T) · (u · ∇φ) dx ∀φ ∈ H1
0 (D)d.

(3.3)

The main point of (3.2) is that the expression on the left, which involves second derivatives of T,
has the property that all such second derivatives can be written as a first-order derivative of ∇·T.

If ∇·u = 0, then we can establish another identity:

∇· ((∇u)◦v) =
∑

ℓ

∂

∂xℓ

(
(∇u)◦v

)
ℓ
=
∑

ℓ

∂

∂xℓ

(∑

k

(∇u)ℓ,kvk

)

=
∑

ℓ

∂

∂xℓ

∑

k

uℓ,kvk =
∑

ℓ

∑

k

∂

∂xℓ

(
uℓ,kvk

)

=
∑

ℓ

∑

k

(
uℓ,kℓvk + uℓ,kvk,ℓ

)
=
∑

k

∑

ℓ

uℓ,kℓvk +
∑

ℓ

∑

k

uℓ,kvk,ℓ

=
∑

k

∂

∂xk

(∑

ℓ

uℓ,ℓ

)
vk +∇ut : ∇v = ∇ut : ∇v.

(3.4)
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3.2 Applying the identities

For example, using (3.2), we get

(3.5) ∇·
(
u · ∇T− (∇u)◦T−T◦(∇u)t

)
= u · ∇ (∇·T)−∇· ((∇u)◦T) .

Thus the divergence of (2.4) becomes

(3.6) ∇·T+ λ1(u · ∇ (∇·T)−∇· ((∇u)◦T)) + (λ1 − µ1)∇· (E◦T+T◦E) = η∆u.

The only troublesome term in (3.6) is u ·∇ (∇·T). Although we have bounds for this term, we cannot
show that it is suitably smooth in the relevant spaces required for a proof of existence. Thus we
eliminate it by using (3.1). Inserting the expression (3.1) for ∇·T into (3.6) gives

η∆u = u · ∇u+∇p− f + λ1u · ∇ (u · ∇u+∇p− f)

− λ1∇· ((∇u)◦T) + (λ1 − µ1)∇· (E◦T+T◦E).

Therefore

−η∆u+ u · ∇u+∇p+ λ1u · ∇(∇p) = f + λ1u · ∇f − λ1

(
u · ∇(u · ∇u)

−∇· ((∇u)◦T)
)
− (λ1 − µ1)∇· (E◦T+T◦E).

(3.7)

Remark 3.1 If we consider an Oldroyd model with additional parameters, other than λ1, µ1, and η,
for instance the five-parameter model with λ2 and µ2, then the right-hand side of formula (3.7) has
an additional term, say ∇· T (∇u, λ2, µ2), where T is some function, which is much more problematic,
since it involves third derivatives of u. This is consistent with the fact that certain Oldroyd models
are asymptotically equivalent to a grade two model [17]. This is the reason why we focus only on the
equation (2.3).

3.3 Pressure equation

Define an auxiliary pressure function π by

(3.8) π = p+ λ1u · ∇p.

Then

∇π = ∇p+ λ1∇(u · ∇p) = ∇p+ λ1∇
(∑

i

uip,i

)

= ∇p+ λ1

∑

i

(
(∇ui)p,i + ui∇p,i

)
= ∇p+ λ1

(
(∇u)t∇p+ u · ∇(∇p)

)
,

(3.9)

which agrees with (9.6) in this case. Substituting (3.9) in (3.7) yields

−η∆u+ u · ∇u+∇π − λ1(∇u)t∇p = f + λ1u · ∇f − λ1

(
u · ∇(u · ∇u)

−∇· ((∇u)◦T)
)
− (λ1 − µ1)∇· (E◦T+T◦E).

(3.10)

We can think of (3.8) as determining p from π. This is exactly the problem addressed in [12] as
described subsequently in Lemma 4.2. Thus the following result can be proved; for the proof see [12]
or the proof of Lemma 4.2.

LEMMA 3.2 Suppose that 2 ≤ d ≤ 4, q > d, D ⊂ R
d is a bounded, Lipschitz domain, and u ∈

W 1
∞(D)d with ∇ · u = 0 in D and u · n = 0 on ∂D. Define U = ‖∇u ‖L∞(D) and suppose that

U < |λ1|−1. Let p be determined from π via (3.8). Then

‖ p ‖W 1
q (D) ≤

1

1− |λ1| U
‖π ‖W 1

q (D).
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3.4 A Navier-Stokes system

Re-phrasing (3.10), we find

(3.11) −η∆u+ u · ∇u+∇π = F(f ,u, p,T),

where F is defined by

F(f ,u, p,T) = f + λ1u · ∇f + λ1(∇u)t∇p− λ1

(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)

− (λ1 − µ1)∇· (E◦T+T◦E).
(3.12)

LEMMA 3.3 Suppose that q > d, v ∈ W 2
q (D)d, T ∈ W 1

q (D)d
2
, f ∈ W 1

q (D)d, and p ∈ W 1
q (D). Then

‖F(f ,v, p,T) ‖Lq (D) ≤ ‖ f ‖Lq(D) + σq|λ1| ‖v ‖W 2
q (D)

(
‖ f ‖W 1

q (D) + ‖ p ‖W 1
q (D)

+2σq‖v ‖2W 2
q (D) + ‖T ‖W 1

q (D)

)
+ 4σq|λ1 − µ1| ‖v ‖W 2

q (D)‖T ‖W 1
q (D),

(3.13)

where σq is the Sobolev constant (1.6).

Proof. We use some relations in Section 9. From (9.7), we have

‖v · ∇(v · ∇v) ‖Lq(D) ≤ 2‖v ‖L∞(D)‖v ‖W 1
∞
(D)‖v ‖W 2

q (D).

From (9.5), we have

‖∇· ((∇v)◦T) ‖Lq(D) ≤ ‖v ‖W 2
q (D)‖T ‖L∞(D) + ‖v ‖W 1

∞
(D)‖T ‖W 1

q (D),

‖∇· (E◦T+T◦E) ‖Lq(D) ≤ 2
(
‖v ‖W 2

q (D)‖T ‖L∞(D) + ‖v ‖W 1
∞
(D)‖T ‖W 1

q (D)

)
.

The remaining terms are simpler. Thus

‖F(f ,v, p,T) ‖Lq (D) ≤ ‖ f ‖Lq(D) + |λ1| ‖v ‖W 1
∞
(D)

(
‖ f ‖W 1

q (D) + ‖ p ‖W 1
q (D)

+ 2‖v ‖L∞(D)‖v ‖W 2
q (D) + ‖T ‖W 1

q (D)

)
+ |λ1| ‖v ‖W 2

q (D)‖T ‖L∞(D)

+ 2|λ1 − µ1|
(
‖v ‖W 1

∞
(D)‖T ‖W 1

q (D) + ‖v ‖W 2
q (D)‖T ‖L∞(D)

)

≤ ‖ f ‖Lq(D) + σq|λ1| ‖v ‖W 2
q (D)

(
‖ f ‖W 1

q (D) + ‖ p ‖W 1
q (D) + 2σq‖v ‖2W 2

q (D) + 2‖T ‖W 1
q (D)

)

+ 4σq|λ1 − µ1| ‖v ‖W 2
q (D)‖T ‖W 1

q (D). QED

3.5 The new system

We can now state the alternative system. It involves (2.4) to define T in terms of u, the Navier-Stokes
system (3.11), and the pressure transport equation (3.8):

−η∆u+ u · ∇u+∇π = F(f ,u, p,T)

∇·u = 0 in D and u = 0 on ∂D
p+ λ1u · ∇p = π

T+ λ1(u · ∇T− (∇u)◦T−T◦(∇ut)) + (λ1 − µ1)(E◦T+T◦E) = 2ηE,

(3.14)

where F is defined by (3.12) and E = 1
2(∇u+∇ut).

We have the following equivalence theorem. Its proof is not straightforward and is developed below
in several steps.
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3.5 The new system Oldroyd models without explicit dissipation

THEOREM 3.4 The formulations (2.2)–(2.3) and (3.14) are equivalent. More precisely, let q > d.
If u ∈ W 2

q (D)d, T ∈ W 1
q (D)d

2
, and p ∈ W 1

q (D)/R satisfy one of them, then they satisfy the other.

In our derivation of (3.14), we assumed we had a solution of (2.2)–(2.3) with the stated regularity.
Thus we have proved one direction of the equivalence. To prove the other direction, we must deal
with the issue that we have created a new system by differentiation. Thus we need a way to be sure
that we can go back to the original system and still have a solution. To do so, we will make use of the
following result.

LEMMA 3.5 Suppose that v ∈ W 2
q (D)d with ∇·v = 0 in D and v = 0 on ∂D, that z ∈ Lq(D)m,

and that

(3.15) z+ v · ∇z = 0,

where we interpret v · ∇z ∈ H−1(D)m as in (3.3). Then z = 0.

Proof. The equation (3.15) implies that v · ∇zi = −zi ∈ Lq(D) for i = 1, . . . ,m. Thus the uniqueness
results in [9] imply z = 0. QED

Remark. What makes the uniqueness result of Lemma 3.5 so much simpler than the results of [9]
is the extra regularity we are assuming on v. Thus the product of v ∈ W 2

q (D)d and ∇z is well defined

in H−1(D)dm, whereas if we only assume that v ∈ H1(D)d as in [9], such a product is defined only in
a weaker space than H−1(D)dm.

We now return to the proof of Theorem 3.4. Recall that (2.3) and (2.4) are equivalent algebraic
restatements of the last equation in (3.14). So we need to verify only the first line of (2.2), which is
equivalent to (3.1). Let us verify that (3.1) holds provided that (3.14) holds. Define

(3.16) w = u · ∇u+∇p− f ∈ Lq(D)d.

To prove (3.1), we have to show that ∇·T = w. With the definition (3.16) of w, we have

−η∆u+w = −η∆u+ u · ∇u+∇p− f

= −η∆u+ u · ∇u+∇π +∇(p− π)− f

= F(f ,u, p,T) +∇(p− π)− f

= ∇(p− π) + λ1u · ∇f + λ1(∇u)t∇p

−λ1

(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T+T◦E),

using (3.11) and (3.12). Now using (3.9), which is the gradient of the third equation in (3.14), we find

−η∆u+w = −λ1

(
(∇u)t∇p+ u · ∇(∇p)

)
+ λ1u · ∇f + λ1(∇u)t∇p

−λ1

(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T+T◦E)

= −λ1 (u · ∇(∇p)) + λ1u · ∇f

−λ1

(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)
− (λ1 − µ1)∇· (E◦T+T◦E)

= −λ1u · ∇w + λ1∇· ((∇u)◦T)− (λ1 − µ1)∇· (E◦T+T◦E).

Therefore

η∆u = w + λ1u · ∇w − λ1∇· ((∇u)◦T) + (λ1 − µ1)∇· (E◦T+T◦E).(3.17)

Note that (3.6) is just the divergence of the last equation in (3.14), in view of (3.5). Subtracting (3.17)
from (3.6), we find

∇·T+ λ1u · ∇ (∇·T) = w + λ1u · ∇w.

7
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By the uniqueness result in Lemma 3.5, we conclude that ∇·T = w.
This completes the proof of Theorem 3.4. QED

The next three sections are devoted to showing that the system (3.14) has a solution u ∈ W 2
q (D)d,

T ∈ W 1
q (D)d

2
, and p ∈ W 1

q (D) for q > d. This will be done in three steps, first establishing regularity
of solutions of (2.3) given smooth u in Section 4. The reversed roles, showing u is smooth given
smooth T is standard Navier-Stokes theory, which we address in Section 5. We then show how, by an
iterative scheme, we can combine the two together in Section 6.

4 Regularity for T

We now consider the question of determining the regularity of the solution T of (2.3), or equivalently
(2.4), in terms of corresponding regularity of u. We will later return to the Navier-Stokes type equation
(3.11) to close the loop, deriving regularity of u in terms of T.

The tensor T can be viewed as a type of projection of the symmetric gradient E of u. For tensor
quantities T of any order r ≥ 1, we denote by |T| the Euclidean norm of T when viewed as a vector
of dimension d r. We can simplify (2.4) by defining v = λ1u, and it becomes

T+ (v · ∇T− (∇v)◦T −T◦(∇vt)) + (1− µ1/λ1)(Ẽ◦T+T◦Ẽ) = 2ηE,

where Ẽ = λ1E = 1
2(∇v +∇vt).

4.1 Bounds for T in Lq

The following result can be derived from [3, 12].

LEMMA 4.1 Suppose that 2 ≤ d ≤ 4, µ̃ ∈ R, q ≥ 2, D ⊂ R
d is bounded and Lipschitz, and

v ∈ W 1
∞(D)d, with ∇·v = 0 in D, v · n = 0 on ∂D and

(4.1) ‖∇v ‖L∞(D) = ‖ |∇v| ‖L∞(D) ≤
(1− c0)

|1 + µ̃|+ |1− µ̃| , where 0 < c0 < 1.

Then for each g ∈ Lq(D)d
2
, there is a unique solution T ∈ Lq(D)d

2
of the equation

(4.2) T+ v · ∇T+ R̃◦T+T◦R̃t − µ̃(Ẽ◦T +T◦Ẽ) = g,

satisfying

(4.3) ‖T ‖Lq(D) ≤
1

c0
‖g ‖Lq(D).

Here R̃ = 1
2(∇vt −∇v) and Ẽ = 1

2 (∇v +∇vt). Furthermore,

(4.4) ‖v · ∇T ‖Lq(D) ≤
3

c0
‖g ‖Lq(D).

The proof of this result will assume q < ∞, but once it is proved for arbitrary q < ∞, the case
q = ∞ immediately follows by taking limits on both sides of (4.3) and (4.4) as q → ∞.
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Proof. The estimate (4.4) follows from (4.3) by using the equation (4.2) as follows:

‖v · ∇T ‖Lq(D) ≤ ‖T ‖Lq(D) + ‖ R̃◦T+T◦R̃t ‖Lq(D)

+ |µ̃| ‖ Ẽ◦T+T◦Ẽ ‖Lq(D) + ‖g ‖Lq(D)

≤ ‖T ‖Lq(D)

(
1 + 2(1 + |µ̃|)‖∇v ‖L∞(D)

)
+ ‖g ‖Lq(D)

≤
(
1 +

1 + 2(1 + |µ̃|)
c0

‖∇v ‖L∞(D)

)
‖g ‖Lq(D)

=
1 + c0 + 2(1 + |µ̃|)

c0
‖∇v ‖L∞(D)‖g ‖Lq(D)

≤ (1 + c0 + 2(1 + |µ̃|))(1 − c0)

c0(|1 + µ̃|+ |1− µ̃|) ‖g ‖Lq(D).

But

(1 + c0 + 2(1 + |µ̃|))(1 − c0)

|1 + µ̃|+ |1− µ̃| =
1− c20 + 2(1 − c0)(1 + |µ̃|)

|1 + µ̃|+ |1− µ̃|

≤ 1 + 2(1 + |µ̃|)
|1 + µ̃|+ |1− µ̃| ≤ 3.

Thus we only have to prove the well-posedness of (4.2) and establish the bound (4.3). Let us make
the change of variable

(4.5) S = −1
2 µ̃(∇vt +∇v) + R̃ = −µ̃Ẽ+ R̃ = 1

2(1− µ̃)∇vt − 1
2(1 + µ̃)∇v.

Then

S◦T+T◦St = (−µ̃Ẽ+ R̃)◦T+T◦(−µ̃Ẽ+ R̃t) = R̃◦T+T◦R̃t − µ̃(Ẽ◦T+T◦Ẽ).

Thus (4.2) becomes

(4.6) T+ v · ∇T+ S◦T+T◦St = g.

To fit into the framework of [12], we view T as a function whose values are vectors of dimension d 2,
and we use the Frobenius product “ : ” as the inner-product on such vectors, with norm |T(x)| =√

T(x) : T(x). In particular, [12, (4)] and [12, Theorem 3] can be phrased as follows.

LEMMA 4.2 Suppose that 2 ≤ d ≤ 4, q ≥ 2, D ⊂ R
d is a bounded, Lipschitz domain, and v ∈

H1(D)d with ∇ · v = 0 in D and v · n = 0 on ∂D. Suppose further that C is an m×m matrix valued

function such that for some constant c0 > 0

(
C(x)ξ

)
· ξ ≥ c0|ξ|2 ∀ ξ ∈ R

m

for almost all x ∈ D. Then for all g ∈ Lq(D)m, there is a unique solution T ∈ Lq(D)m to

v · ∇T+C◦T = g,

satisfying

(4.7) ‖T ‖Lq(D) ≤
1

c0
‖g ‖Lq(D).

9



4.1 Bounds for T in Lq Oldroyd models without explicit dissipation

We note that the results in [12] were stated for the special case when the size of the vector m was
the same as the dimension of the domain d (i.e., m = d), but it can be easily checked that the result
holds for vectors of arbitrary length m ≥ 1. As stated after Lemma 4.1, (4.7) is also valid for q = ∞.

Since the mapping
T → S◦T+T◦St

is linear, there is a matrix-valued function M such that

(4.8) M◦T = S◦T+T◦St.

Therefore (4.2) takes the form

(4.9) T+ v · ∇T+M◦T = g,

which corresponds to the equation in [12, (2)] with C = I +M. Thus we need to show that I +M
can be bounded below appropriately (that is, it is coercive). For almost all x ∈ D,

(T(x) +M(x)◦T(x)) : T(x) = |T(x)|2 +M(x)◦T(x) : T(x)

≥ |T(x)|2 − |M(x)◦T(x) : T(x)|.
(4.10)

By the definitions of S and M, we have by the multiplicative property of the Frobenius norm that,
for any tensor U of order 2,

|M(x)◦T(x) : U| = |S(x)◦T(x) : U+T(x)◦S(x)t : U|
≤ |S(x)◦T(x) : U|+ |T(x)◦S(x)t : U|
≤ |S(x)◦T(x)| |U| + |T(x)◦S(x)t| |U|
≤ |S(x)| |T(x)| |U| + |T(x)| |S(x)t| |U|
= 2|S(x)| |T(x)| |U|.

(4.11)

Recalling the definition of S in (4.5), we have

|S(x)| = 1
2 |(1− µ̃)∇v(x)t − (1 + µ̃)∇v(x)|

≤ 1
2(|1− µ̃|+ |1 + µ̃|)|∇v(x)|.(4.12)

Therefore (4.11) and (4.12) imply

(4.13) |M(x)◦T(x) : T(x)| ≤ (|1− µ̃|+ |1 + µ̃|)|∇v(x)| |T(x)|2 ≤ (1− c0)|T(x)|2,
where c0 is given by (4.1). Thus (4.10) and (4.13) imply that

(4.14) (T(x) +M(x)◦T(x)) : T(x) ≥ c0|T(x)|2.
This gives the required coercivity to use the results of [12]. In particular, (4.3) follows from [12,
Theorem 3]. QED

Writing v = λ1u, and picking µ̃ = µ1/λ1, Lemma 4.1 implies the following.

LEMMA 4.3 Suppose that D and q satisfy the conditions of Lemma 4.1 and that u ∈ W 1
∞(D)d, with

∇·u = 0 in D and u = 0 on ∂D. Define

ν = |λ1 + µ1|+ |λ1 − µ1|.
Suppose

U = ‖∇u ‖L∞(D) = ‖ |∇u| ‖L∞(D) <
1

ν
.

Then there is a unique solution T ∈ Lq(D)d
2
to (2.3) such that

max
{
‖T ‖Lq(D),

1
3‖u · ∇T ‖Lq(D)

}
≤ 2η

1− ν U ‖∇u ‖Lq(D).

The proof follows from Lemma 4.1, by taking c0 = 1 − ν U and g = 2ηE and applying (4.3) and
(4.4).

10



4.2 Smoothness of T Oldroyd models without explicit dissipation

4.2 Smoothness of T

LEMMA 4.4 Suppose that the conditions of Lemma 4.1 hold, that condition (1.3) holds, and that

g ∈ H1(D)d. Suppose moreover that v ∈ W 2
q (D)d for some q > d and

(4.15) ‖∇v ‖L∞(D) ≤
(1− c1)

1 + |1 + µ̃|+ |1− µ̃| ,

where 0 < c1 < 1. Then the solution T to (4.2) satisfies T ∈ H1(D)d
2
.

Proof. We recall that (4.2) is equivalent to (4.6). Following [2], we introduce a regularized problem:
find Tǫ ∈ H1(D)d

2
such that

(4.16) −ǫ∆Tǫ +Tǫ + v · ∇Tǫ + S◦Tǫ +Tǫ◦St = g in D,

where S is defined in (4.5), with natural boundary conditions as in (1.1), that is,

∇(Tǫ)ij · n = 0 on ∂D, for i, j = 1, . . . , d.

Multiplying (4.16) by Tǫ, integrating over D, and integrating by parts, we find

ǫ

∫

D

|∇Tǫ|2 dx+

∫

D

|Tǫ|2 dx+

∫

D

(v · ∇Tǫ) : Tǫ dx

+

∫

D

(S◦Tǫ +Tǫ◦St) : Tǫ dx =

∫

D

g : Tǫ dx.

(4.17)

We have ∫

D

(v · ∇Tǫ) : Tǫ dx =
∑

ij

∫

D

(v · ∇T ǫ
ij)T

ǫ
ij dx = 0,

since ∇·v = 0 in D and v · n = 0 on ∂D. From (9.14), (4.12), and (4.1), we have

∣∣∣
∫

D

(S◦Tǫ +Tǫ◦St) : Tǫ dx
∣∣∣ ≤ 2‖S ‖L∞(D)‖Tǫ ‖2L2(D)

≤ (|1 + µ̃|+ |1− µ̃|)‖∇v ‖L∞(D)‖Tǫ ‖2L2(D)

≤ (1− c0)‖Tǫ ‖2L2(D).

Applying these estimates to (4.17), we obtain

ǫ

∫

D

|∇Tǫ|2 dx+ c0

∫

D

|Tǫ|2 dx ≤
∣∣∣
∫

D

g : Tǫ dx
∣∣∣ ≤ ‖g ‖L2(D)‖Tǫ ‖L2(D)

≤ 1

2c0
‖g ‖2L2(D) +

1
2c0‖T

ǫ ‖2L2(D).

In particular, we obtain

(4.18) ‖Tǫ ‖L2(D) ≤
1

c0
‖g ‖L2(D),

consistent with (4.3).
To proceed, we want to take the L2(D)d

2
inner-product of the terms on both sides of (4.16) with

−∆Tǫ and integrate by parts. Formally, this gives

ǫ

∫

D

|∆Tǫ|2 dx+

∫

D

|∇Tǫ|2 dx+

∫

D

∇(v · ∇Tǫ) : ∇Tǫ dx

+

∫

D

∇(S◦Tǫ +Tǫ◦St) : ∇Tǫ dx =

∫

D

∇g : ∇Tǫ dx.

(4.19)
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4.2 Smoothness of T Oldroyd models without explicit dissipation

On the one hand, since Tǫ ∈ H1(D)d
2
, we infer from (4.16) that −∆Tǫ ∈ L2(D)d

2
and thus the scalar

products leading to (4.19) are well defined. But on the other hand, integration by parts requires that
v · ∇Tǫ be in H1(D)d

2
. This follows from the regularity assumption (1.3). In particular, (9.6) implies

∇(v · ∇Tǫ) = ∇Tǫ◦∇v+ v · ∇(∇Tǫ) = ∇Tǫ◦∇v + (∇2Tǫ)◦v,

and we see that it is necessary that ∇2Tǫ be integrable to some degree to justify (4.19). We can
expand the corresponding term as follows:

∫

D

∇(v · ∇Tǫ) : ∇Tǫ dx =

∫

D

(∇Tǫ◦∇v + v · ∇(∇Tǫ)) : ∇Tǫ dx

=

∫

D

(∇Tǫ◦∇v) : ∇Tǫ dx.

Thus we have the bound
∣∣∣
∫

D

∇(v · ∇Tǫ) : ∇Tǫ dx
∣∣∣ ≤ ‖∇Tǫ ‖2L2(D)‖∇v ‖L∞(D).(4.20)

Next, by (9.12), we have

∫

D

∇(S◦Tǫ +Tǫ◦St) : ∇Tǫ dx

=

∫

D

(
S◦∇Tǫ + B(∇S,Tǫ) +Tǫ◦∇St + B(∇Tǫ,St)

)
: ∇Tǫ dx,

(4.21)

where B is a bilinear mapping on tensors defined by (9.10), which here reduces to

(4.22) (B(W,U))ijk =

d∑

ℓ=1

(W)iℓkUℓj .

In what follows, we will frequently make use of two estimates. The first is

(4.23) ‖u v ‖L2(D) ≤ ‖u ‖Lq(D)‖ v ‖
L

2q
q−2 (D)

,

valid provided q > 2. To prove this, we use Hölder’s inequality to get

‖u v ‖2L2(D) =

∫

D

u2v2 dx ≤ ‖u2 ‖Ls(D)‖ v2 ‖Ls′ (D) = ‖u ‖2Lq(D)‖ v ‖2L2s′ (D)
,

where s = q/2 and s′ = s/(s−1) = q/(q−2). This proves (4.23). The second inequality, which follows
from (4.23) and the Sobolev inequality (1.7), is

∣∣∣
∫

D

u(x)v(x)w(x) dx
∣∣∣ ≤ ‖u v ‖L2(D)‖w ‖L2(D)

≤ ‖u ‖Lq(D)‖ v ‖L 2q
q−2

(D)‖w ‖L2(D)

≤ σq‖u ‖Lq(D)‖ v ‖H1(D)‖w ‖L2(D),

(4.24)

valid provided q > d for d = 2 or q ≥ d for d ≥ 3.
From (9.13), |B(∇V(x),U(x))| ≤ |∇V(x)| |U(x)|, so (4.21) and (4.23) imply

∣∣∣
∫

D

∇(S◦Tǫ +Tǫ◦St) : ∇Tǫ dx
∣∣∣ ≤ 2‖∇Tǫ ‖2L2(D)‖S ‖L∞(D)

+ 2‖∇Tǫ ‖L2(D)‖Tǫ ‖L 2q
q−2

(D)‖∇S ‖Lq(D).
(4.25)
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By the Gagliardo–Nirenberg inequality [4, 6] and (4.18), there is a constant cq < ∞ such that

(4.26) ‖Tǫ ‖L 2q
q−2

(D) ≤ cq‖∇Tǫ ‖d/qL2(D)‖T
ǫ ‖1−d/q

L2(D) ≤
cq

c
1−d/q
0

‖∇Tǫ ‖d/qL2(D)‖g ‖1−d/q
L2(D),

provided q > d. We need to use the elementary inequality

(4.27) aθb1−θ ≤ θa+ (1− θ)b,

valid for a, b ≥ 0 and 0 ≤ θ ≤ 1, which is a consequence of the concavity of the logarithm function.
As a consequence of (4.27), we have

(4.28) AB ≤ 1

r
Ar +

1

r′
Br′ for A,B ≥ 0,

1

r
+

1

r′
= 1 (1 < r < ∞),

by choosing r = 1/θ, A = aθ, and B = b1−θ. From (4.26) and (4.27), we have

‖Tǫ ‖L 2q
q−2

(D) ≤ δ‖∇Tǫ ‖L2(D) + Cδ‖g ‖L2(D),

where δ > 0 is arbitrary. Thus the estimate (4.25) becomes

∣∣∣
∫

D

∇(S◦Tǫ +Tǫ◦St) : ∇Tǫ dx
∣∣∣ ≤ 2‖∇Tǫ ‖2L2(D)

(
‖S ‖L∞(D) + δ‖∇S ‖Lq(D)

)

+ 2Cδ‖g ‖L2(D)‖∇Tǫ ‖L2(D)‖∇S ‖Lq(D).

(4.29)

Combining (4.20) and (4.29), and using (4.15) and (4.12), (4.19) becomes

ǫ

∫

D

|∆Tǫ|2 dx+

∫

D

|∇Tǫ|2 dx ≤ ‖∇g ‖L2(D)‖∇Tǫ ‖L2(D)

+ ‖∇Tǫ ‖2L2(D)

(
‖∇v ‖L∞(D) + 2‖S ‖L∞(D) + δ‖∇S ‖Lq(D)

)

+ 2Cδ‖g ‖L2(D)‖∇Tǫ ‖L2(D)‖∇S ‖Lq(D)

≤ ‖∇g ‖L2(D)‖∇Tǫ ‖L2(D) + ‖∇Tǫ ‖2L2(D)

(
(1− c1) + δ‖∇S ‖Lq(D)

)

+ 2Cδ‖g ‖L2(D)‖∇Tǫ ‖L2(D)‖∇S ‖Lq(D).

(4.30)

If we choose δ > 0 so that δ‖∇S ‖Lq(D) ≤ 1
2c1, then (4.30) implies

ǫ

∫

D

|∆Tǫ|2 dx+ 1
2c1

∫

D

|∇Tǫ|2 dx ≤ ‖∇g ‖L2(D)‖∇Tǫ ‖L2(D)

+ C‖g ‖L2(D)‖∇Tǫ ‖L2(D)‖∇S ‖Lq(D).

(4.31)

Dividing by ‖∇Tǫ ‖L2(D), we see that ‖∇Tǫ ‖L2(D) is bounded independently of ǫ. Using (4.18), we
conclude that ‖Tǫ ‖H1(D) is also bounded independently of ǫ. Thus there is a subsequence ǫj such

that Tǫj converges weakly to T̃ ∈ H1(D)d
2
. The estimate (4.31) also shows that

ǫ

∫

D

|∆Tǫ|2 dx ≤ C

for some constant C independent of ǫ, and thus

‖ ǫ∆Tǫ ‖L2(D) ≤
√
Cǫ

for all ǫ. Taking the weak limit ǫj → 0 in (4.16) shows that T̃ ∈ H1(D)d
2
is a solution to (4.2), and

by uniqueness of such solutions, we conclude that the original solution T must be in H1(D)d
2
. QED
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4.3 Bounds for ∇T

LEMMA 4.5 Under the conditions of Lemma 4.4, for each g ∈ W 1
q (D)d, q > d, there is a unique

solution T ∈ W 1
q (D)d

2
to (4.2) such that

‖∇T ‖Lq(D) ≤
1

c1

(
‖∇g ‖Lq(D) +

|1− µ̃|+ |1 + µ̃|
c0

‖∇2v ‖Lq(D)‖g ‖L∞(D)

)
.

Recall that we have already obtained a bound for ‖v · ∇T ‖Lq(D) in (4.4).

Proof. To estimate ∇T in Lq(D)d
3
, we write W = ∇T. In view of our previous arguments, if

g ∈ H1(D)d, then T ∈ H1(D)d
2
. Applying ∇ to (4.6), which is equivalent to (4.2), we see that

W ∈ L2(D)d
2
solves

(4.32) W + v · ∇W+W◦∇v + S◦W+ B(W,St) = ∇g − B(∇S,T)−T◦∇St,

where S is defined in (4.5), B is defined in (4.22), and we have used the tensor identities (9.6) and
(9.12). Thus we seek coercivity for the linear map C where

C◦W = W+W◦∇v + S◦W+ B(W,St).

By analogy with (4.8), we can write C = I+M where

(4.33) MW = W◦∇v + S◦W+ B(W,St).

However, W is a tensor of order 3, so we view it as a vector of dimension d 3, and we need to recapitulate
the previous arguments. Let us introduce the notation Tr for the set of tensors in d dimensions of
order r. We can extend the concept of the Frobenius product of matrices to Tr, because it corresponds
simply to the ℓ2 inner-product of vectors of dimension d r. Thus (4.10) becomes

(W(x) +M(x)W(x)) : W(x) = |W(x)|2 +M(x)W(x) : W(x)

≥ |W(x)|2 − |M(x)W(x) : W(x)|.

Here M is simply a linear operator mapping T3 to T3 given by (4.33). This requires the interpretation
that the tensor contractions W 7→ W◦∇v and W 7→ S◦W, and the map W 7→ B(W,St), give linear
operators on T3. Indeed,

(S◦W)ijk =

d∑

l=1

(S)il(W)ljk,

with a similar interpretation derived from (4.22). With the interpretation that “ : ” is the usual
ℓ2 inner-product on vectors of dimension d 3, and that |W| denotes the corresponding norm, (4.11)
remains valid in this context, as a consequence of (9.14):

|S(x)◦W(x) : W(x)| ≤ |S(x)| |W(x)|2.

Similarly, (9.14) implies
|W(x)◦∇v(x) : W(x)| ≤ |∇v(x)| |W(x)|2 .

Applying (9.13) with U = St, we find

|B(W(x),St(x)) : W(x)| ≤ |B(W(x),St(x))| |W(x)| ≤ |W(x)|2|S(x)|.

Thus the following analog of (4.13) holds

|M(x)W(x) : W(x)| ≤ (2|S(x)| + |∇v(x)|) |W(x)|2

≤ (1 + |1− µ̃|+ |1 + µ̃|)|∇v(x)| |W(x)|2 ≤ (1 − c1)|W(x)|2.
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4.3 Bounds for ∇T Oldroyd models without explicit dissipation

Therefore
(C(x)◦W(x)) : W(x) = |W(x)|2 +M(x)W(x) : W(x) ≥ c1|W(x)|2,

which provides an analog of (4.14). So applying Lemma 4.2 to (4.32) yields

(4.34) ‖W ‖Lq(D) ≤
1

c1
‖∇g − B(∇S,T)−T◦∇St ‖Lq(D).

Applying (9.13), we have
|B(∇S,T) +T◦∇St| ≤ 2|∇S| |T|.

Recall from (4.5) that 2S = (1− µ̃)∇vt − (1 + µ̃)∇v. Hence

|B(∇S(x),T(x)) +T(x)◦∇S(x)t| ≤ (|1− µ̃|+ |1 + µ̃|)|∇2v(x)| |T(x)|,

for almost all x ∈ D. Therefore (4.34) becomes, in view of (4.7) applied with q = ∞,

‖W ‖Lq(D) ≤
1

c1

(
‖∇g ‖Lq(D) + (|1− µ̃|+ |1 + µ̃|)‖∇2v(x) ‖Lq(D)‖T ‖L∞(D)

)

≤ 1

c1

(
‖∇g ‖Lq(D) +

|1− µ̃|+ |1 + µ̃|
c0

‖∇2v(x) ‖Lq(D)‖g ‖L∞(D)

)
.

Recalling that W = ∇T completes the proof. QED

Writing v = λ1u, and picking µ̃ = µ1/λ1, Lemmas 4.1 and 4.5 combine to yield the following.

LEMMA 4.6 Suppose that D satisfies the condition (1.3), q > d, and u ∈ W 2
q (D)d, with ∇·u = 0

in D and u = 0 on ∂D. Define

ν = |λ1 + µ1|+ |λ1 − µ1|.
Suppose

(4.35) U = ‖∇u ‖L∞(D) = ‖ |∇u| ‖L∞(D) <
1

|λ1|+ ν
.

Then there is a unique solution T ∈ W 1
q (D)d

2
to (2.3) such that

‖T ‖Lq(D) + ‖∇T ‖Lq(D) ≤
( 2η

1− U ν

)(
‖∇u ‖Lq(D) +

1

1− U(|λ1|+ ν)
‖∇2u ‖Lq(D)

)
.(4.36)

In particular, if we assume that

(4.37) |λ1| ≤ λ0η, |µ1| ≤ µ0|λ1|,

and

(4.38) η U ≤ 1

6λ0(1 +
2
3µ0)

,

then

(4.39) ‖T ‖Lq(D) + ‖∇T ‖Lq(D) ≤ 4η‖∇u ‖Lq(D) + 8η‖∇2u ‖Lq(D).

Similarly,

‖u · ∇T ‖Lq(D) ≤
6η

1− U ν
‖∇u ‖Lq(D).

15
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Proof. We can choose c0 = 1− νU in Lemma 4.1 and pick g = 2ηE, and this shows that

max
{
‖T ‖Lq(D),

1
3‖u · ∇T ‖Lq(D)

}
≤ 1

1− νU ‖g ‖Lq(D) =
2η

1− νU ‖E ‖Lq(D).

Similarly, we can choose c1 = 1− (|λ1|+ ν)U ≤ c0 in Lemma 4.5, and this yields

‖∇T ‖Lq(D) ≤
2η

1− (|λ1|+ ν)U ‖∇E ‖Lq(D) +
2ν η

c0 c1
‖∇2u ‖Lq(D)‖E ‖L∞(D)

≤ 2η

1− (|λ1|+ ν)U ‖∇2u ‖Lq(D) +
2ν η U
c0 c1

‖∇2u ‖Lq(D)

=
2η

c1

(
1 +

ν U
1− νU

)
‖∇2u ‖Lq(D) =

2η

c1

(
1

1− νU

)
‖∇2u ‖Lq(D),

where we recall that E = 1
2(∇u+∇ut). Summing these completes the proof of (4.36).

If (4.37) holds, then

ν = |λ1|
(∣∣1 + µ1

λ1

∣∣+
∣∣1− µ1

λ1

∣∣
)
≤ 2|λ1|(1 + µ0),

and so
|λ1|+ ν ≤ |λ1|

(
1 + 2(1 + µ0)

)
≤ η λ0

(
1 + 2(1 + µ0)

)
= 3η λ0(1 +

2
3µ0).

So the assumption (4.38) implies that

U ≤ 1

6ηλ0(1 +
2
3µ0)

≤ 1

2(|λ1|+ ν)
≤ 1

2ν
,

and hence Uν ≤ U(|λ1|+ ν) ≤ 1/2. Thus (4.36) implies

‖T ‖Lq(D) + ‖∇T ‖Lq(D) ≤ 4η
(
‖∇u ‖Lq(D) + 2‖∇2u ‖Lq(D)

)
,

which completes the proof of (4.39). QED

Based on Lemma 4.6, we can think of (2.3) as defining a mapping u 7→ T such that, for q > d,

(4.40) ‖T(u) ‖W 1
q (D) ≤ C1η‖u ‖W 2

q (D),

provided ‖u ‖W 2
q (D) ≤ C2, η ≥ η0, |λ1| ≤ λ0η0, and |µ1| ≤ µ0|λ1|, where C1 and C2 depend only on q,

D, η0 > 0, λ0 < ∞, and µ0 < ∞.

5 Regularity for u

We consider the system

−η∆u+ u · ∇u+∇p = f in D,

∇·u = 0 in D, u = 0 on ∂D.
(5.1)

It is well known [14] that, via a variational formulation, (5.1) always has a solution u ∈ H1(D)d even
for f ∈ H−1(D)d, and that all such solutions satisfy

(5.2) ‖u ‖H1(D) ≤ Cη−1‖ f ‖H−1(D).

From (1.5), we have

(5.3) η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ C
(
‖ f ‖Lq(D) + ‖u · ∇u ‖Lq(D)

)
,

16
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although so far the last term might be infinite. But if u ∈ H1(D)d, then ‖u · ∇u ‖Lq(D) < ∞ for some
q > 1 sufficiently small, and that allows us to bootstrap with respect to q to conclude that (5.3) holds
for the desired value of q, as follows. By Hölder’s inequality, and Sobolev’s inequality, we have, for
1 < q ≤ 3/2, when d = 3,

(5.4) ‖u · ∇u ‖Lq(D) ≤ ‖u ‖L 2q
2−q

(D)‖∇u ‖L2(D) ≤ C‖u ‖2H1(D).

When d = 2, (5.4) can be extended to hold for 1 < q < 2, but with a constant C = Cq → ∞ as q → 2.
Define qd = 1

2(6 − d), that is, q2 = 2 and q3 = 3/2, the limiting Lebesgue indices for the validity of
(5.4). With these results, we easily prove the following lemma.

LEMMA 5.1 Suppose that d = 2 or 3 and define qd = 1
2(6 − d). Suppose further that f ∈ H−1(D)d

and that u ∈ H1(D)d solves (5.1) in the sense of distributions. Suppose finally that (1.5) holds for some

q satisfying 1 < q < qd. Then there is a constant Cq,D < ∞ such that for all f ∈ Lq(D)d ∩H−1(D)d,
we have

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D

(
‖ f ‖Lq(D) + η−2‖ f ‖2H−1(D)

)
,(5.5)

where Cq,D remains bounded independently of q for d = 3 as q → q3 = 3/2, and moreover (5.5) holds

for q = 3/2 as well for d = 3.

Note that we must assume that f ∈ Lq(D)d ∩ H−1(D)d since the assumption f ∈ Lq(D)d alone
does not imply that f ∈ H−1(D)d for d = 3. The next lemma gives a preliminary range of q that will
be sharpened further on. Now we use bootstrapping to increase the range of q for which bounds can
be proved.

LEMMA 5.2 Suppose that q > 1, that (1.5) holds, that f ∈ Lq(D)d∩H−1(D)d, and that u ∈ H1(D)d

solves (5.1) in the sense of distributions. Define

(5.6) f−1 = ‖ f ‖H−1(D) and fq = ‖ f ‖Lq(D).

Then for d = 2,

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D

(
fq

+

{
η−2f2

−1 1 < q < 2

η−2f−1

(
f2 + η−2f2

−1

)
2 ≤ q < ∞

)
.

(5.7)

For d = 3,

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D

(
fq

+





η−2f2
−1 1 < q ≤ 3/2

η−2f−1

(
f3/2 + η−2f2

−1

)
3/2 < q ≤ 2

η−2f−1

(
f2 + η−2f−1(f3/2 + η−2f2

−1)
)

2 < q ≤ 3

η−2
(
f3 + η−2f−1

(
f2 + η−2f−1(f3/2 + η−2f2

−1)
))2

3 < q < ∞

)
.

(5.8)

Proof. Here C denotes various constants which may be different but are independent of η.
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Let us begin with the case d = 2. From Lemma 5.1, we have

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ C
(
‖ f ‖Lq(D) + η−2‖ f ‖2H−1(D)

)

≤ C
(
‖ f ‖L2(D) + η−2‖ f ‖2H−1(D)

)
,

(5.9)

for 1 < q < 2. By Sobolev’s inequality, we conclude u ∈ W 1
r (D)2 for any r ≤ 2q/(2 − q), and so we

find from (5.2) and (5.9), for any 1 < q < ∞, that

‖u · ∇u ‖Lq(D) ≤ ‖u ‖L2q(D)‖u ‖W 1
2q(D) ≤ C‖u ‖H1(D)‖u ‖W 2

2q/(q+1)
(D)

≤ Cη−2‖ f ‖H−1(D)

(
‖ f ‖L2(D) + η−2‖ f ‖2H−1(D)

)
,

(5.10)

since 2q/(q + 1) < q for all q > 1. From (5.3) and (5.10), we conclude that, for any 1 < q < ∞,

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ C
(
‖ f ‖Lq(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L2(D) + η−2‖ f ‖2H−1(D)

))
.

Now suppose d = 3. From Lemma 5.1, we have

η‖u ‖W 2
3/2

(D) + ‖ p ‖W 1
3/2

(D)/R ≤ C
(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)
.

By Sobolev’s inequality, we have u ∈ W 1
3 (D)3, with the bound

η‖u ‖W 1
3 (D) ≤ Cη‖u ‖W 2

3/2
(D) ≤ C

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)
.

Therefore Hölder’s and Sobolev’s inequalities give

‖u · ∇u ‖L2(D) ≤ ‖u ‖L6(D)‖∇u ‖L3(D) ≤ C‖u ‖H1(D)‖u ‖W 1
3 (D)

≤ Cη−2‖ f ‖H−1(D)

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)
.

Thus

η‖u ‖H2(D) + ‖ p ‖H1(D)/R ≤ C
(
‖ f ‖L2(D)

+ η−2‖ f ‖H−1(D)

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

))
.

(5.11)

Next, Schwarz’s and Sobolev’s inequalities show, using (5.11), that

‖u · ∇u ‖L3(D) ≤ ‖u ‖L6(D)‖∇u ‖L6(D) ≤ C‖u ‖H1(D)‖u ‖H2(D)

≤ Cη−2‖ f ‖H−1(D)

(
‖ f ‖L2(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

))
,

and so (5.3) yields

η‖u ‖W 2
3 (D) + ‖ p ‖W 1

3 (D)/R ≤ C

(
‖ f ‖L3(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L2(D)

+ η−2‖ f ‖H−1(D)

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)))
.

Finally, Sobolev’s inequality shows that, for any q < ∞,

‖u · ∇u ‖Lq(D) ≤ C‖u ‖2W 2
3 (D) ≤ Cη−2

(
‖ f ‖L3(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L2(D)

+ η−2‖ f ‖H−1(D)

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)))2

,
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and so (5.3) yields, for any q < ∞,

η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ C

(
‖ f ‖Lq(D) + η−2

(
‖ f ‖L3(D)

+ η−2‖ f ‖H−1(D)

(
‖ f ‖L2(D) + η−2‖ f ‖H−1(D)

(
‖ f ‖L3/2(D) + η−2‖ f ‖2H−1(D)

)))2
)
,

and this completes the proof. QED

Although the above result is sufficient for some purposes, it suggests that the dependence of u and
p on f is discontinuous with respect to q. We can smooth out this dependence in the following.

We need to estimate the nonlinear term in (5.3) for q > qd. By Hölder’s inequality, we have, for
any t satisfying 1 < t < ∞,

(5.12) ‖u · ∇u ‖Lq(D) ≤ C‖u ‖Lqt(D)‖u ‖W 1
t′q

(D),

where t′ = t/(t− 1). By the Gagliardo–Nirenberg inequality [6, page 24, Theorem 9.3], we have

‖u ‖W 1
t′q

(D) ≤ C‖u ‖θH1(D)‖u ‖1−θ
W 2

q (D)
,(5.13)

where θ(t′) is determined from

−1 +
d

t′q
= θ(t′)

(
− 1 +

d

2

)
+ (1− θ(t′))

(
− 2 +

d

q

)
= θ(t′)

(
1 + κ

)
+
(
− 2 +

d

q

)
,

where κ = (d/2) − (d/q), so that

(5.14) θ(t′) =
1

1 + κ

(
1 +

d

t′q
− d

q

)
=

1

1 + κ

(
1− d

tq

)
.

The estimate (5.13) is valid only for θ ∈]0, 1[.
For d = 2, we have by Sobolev’s inequality that

‖u ‖Lqt(D) ≤ C‖u ‖H1(D)

for all 1 < t < ∞. Thus (5.12) and (5.13) imply that

‖u · ∇u ‖Lq(D) ≤ C‖u ‖1+θ
H1(D)

‖u ‖1−θ
W 2

q (D)
,

where θ is given in (5.14), but the constant C depends on the choice of t. Applying (4.28), we have
for any δ > 0,

(5.15) ‖u · ∇u ‖Lq(D) ≤ C
(
θδ(θ−1)/θ‖u ‖(1+θ)/θ

H1(D)
+ δ(1 − θ)‖u ‖W 2

q (D)

)
.

By taking δ = cη with an appropriate choice of c, we find from (5.3), (5.15), and (5.2) that

1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ C

(
‖ f ‖Lq(D) + η(θ−1)/θ‖u ‖(1+θ)/θ

H1(D)

)

≤ C
(
‖ f ‖Lq(D) + η−2/θ‖ f ‖1+(1/θ)

H−1(D)

)
.

Note that 1 + κ = 2− (2/q) = 2/q′. Thus for any ǫ > 0, we can choose t < ∞ such that θ = 1
2q

′ − ǫ,
and we have proved the following.
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LEMMA 5.3 Suppose that d = 2, that 2 < q < ∞, that (1.5) holds, that f ∈ Lq(D)2, and that

u ∈ H1(D)2 solves (5.1) in the sense of distributions. Then there is a constant C < ∞ such that

(5.16) 1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ C

(
‖ f ‖Lq(D) + η−2/θ‖ f ‖1+(1/θ)

H−1(D)

)
,

for any θ < 1
2q

′, where q′ = q/(q − 1),and C depends on θ and q but is independent of f , u, and η.

The right-hand side of estimate (5.16) is arbitrarily close to

‖ f ‖Lq(D) + η−4(1−1/q)‖ f ‖3−(2/q)
H−1(D)

,

which interpolates the extremes in (5.7). Now we consider the case d = 3.

LEMMA 5.4 Let d = 3 and suppose that q > 3/2. Define q′ = q/(q − 1), so that q′ < 3. Define

(5.17) θ =
1

1− q′/6
.

Then there is a constant C such that, for all v ∈ W 2
q (D)3,

(5.18) ‖v · ∇v ‖Lq(D) ≤ C‖v ‖θH1(D)‖v ‖2−θ
W 2

q (D)
.

The conditions of Lemma 5.4 imply that 6
5 < θ < 2.

Proof. For the moment, let us consider a general dimension d. By the Gagliardo–Nirenberg inequality
[6, page 24, Theorem 9.3], for s = 0, 1 we have

‖u ‖W s
qt(D) ≤ C‖u ‖θsH1(D)‖u ‖1−θs

W 2
q (D),(5.19)

where 1 < t < ∞, t′ = t/(t− 1), and θs(t) is determined from

−s+
d

qt
= θs(t)

(
− 1 +

d

2

)
+ (1− θs(t))

(
− 2 +

d

q

)
= θs(t)

(
1 + κ

)
+
(
− 2 +

d

q

)
,

where κ = (d/2) − (d/q) as in (5.14), so that

θs(t) = θs(t; q) =
1

1 + κ

(
2− s+

d

tq
− d

q

)
=

1

1 + κ

(
2− s− d

t′q

)
.

The estimate (5.19) is valid only for θs ∈]0, 1[. Assuming for the moment that it is possible to find
a value of t such that this holds for θ0(t) and θ1(t

′), we conclude from (5.12) that (5.18) holds for
θ = θ0(t) + θ1(t

′). Since (t′)′ = t, we find

θ = θ0(t) + θ1(t
′) =

1

1 + κ

(
2− d

t′q

)
+

1

1 + κ

(
1− d

tq

)

=
1

1 + κ

(
3− d

q

)
=

1

1 + κ

(
3− d+

d

q′

)
.

Choosing d = 3 yields θ = (1 + κ)−1(3/q′) and θ verifies (5.17).
It remains to prove that, for all q > 3/2, there is a t such that 0 < θ0(t) < 1 and 0 < θ1(t

′) < 1.
Let d = 3 and consider the choice t = 4 for s = 0. (In Section 5.2, we will see why we cannot have
d = 2 and the reasoning behind the choice t = 4.) In this case

θ0(4) = h0(q) :=
1

1 + κ

(
2 +

3

4q
− 3

q

)
=

1

5/2− 3/q

(
2− 9

4q

)
=

4

5
+

3

50

(
q − 6

5

)−1
.
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Then h0(3/2) = 1, h0 is strictly decreasing for q > 6/5, and h0(q) → 4/5 as q → ∞. Thus for
3/2 < q < ∞, 4/5 < h0(q) < 1, and thus 4/5 < θ0(4) < 1 as well.

Let s = 1. Since t = 4, then t′ = 4/3, and

θ1(4/3) = h1(q) :=
1

5/2− 3/q

(
1− 3

4q

)
=

2

5
+

9

50

(
q − 6

5

)−1
.

Then h1(3/2) = 1, h1 is strictly decreasing for q > 6/5, and h1(q) → 2/5 as q → ∞. Thus for
3/2 < q < ∞, 2/5 < h1(q) < 1, and thus 2/5 < θ1(4/3) < 1 as well.

The result now follows from (5.12), with t = 4 (and t′ = 4/3). QED

The following is an immediate consequence of (5.3) and (5.18):

(5.20) η‖u ‖W 2
q (D) + ‖ p ‖W 1

q (D)/R ≤ Cq,D

(
‖ f ‖Lq(D) + ‖u ‖θH1(D)‖u ‖2−θ

W 2
q (D)

)
,

where θ is defined in (5.17) and satisfies 6/5 < θ < 2. Thus 2 − θ ∈ ]0, 4/5[ . Applying (4.28) with
1/r′ = 2− θ (and 1/r = θ − 1 ∈ ]1/5, 1[ ), we have for any δ > 0

‖u ‖θH1(D)‖u ‖2−θ
W 2

q (D)
= δθ−2‖u ‖θH1(D)

(
δ‖u ‖W 2

q (D)

)2−θ

≤ (θ − 1)
(
δθ−2‖u ‖θH1(D)

)1/(θ−1)
+ (2− θ)δ‖u ‖W 2

q (D).
(5.21)

By choosing δ = cη with an appropriate c, (5.20) and (5.21) combine to yield

1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ Cq,D

(
‖ f ‖Lq(D) + η(θ−2)/(θ−1)‖u ‖θ/(θ−1)

H1(D)

)

≤ Cq,D

(
‖ f ‖Lq(D) + η−2/(θ−1)‖ f ‖θ/(θ−1)

H−1(D)

)
.

Recall that θ = 1/(1 − q′/6), so

θ − 1 =
q′

6− q′
, (θ − 1)−1 =

6

q′
− 1 , and

θ

θ − 1
=

6

q′

Thus we have proved the following.

LEMMA 5.5 Suppose that d = 3, that 3/2 < q < ∞, that (1.5) holds, that f ∈ Lq(D)d, and that

u ∈ H1(D)d solves (5.1) in the sense of distributions. Let q′ = q/(q − 1) ∈ ]1, 3[ . Then

1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ Cq,D

(
‖ f ‖Lq(D) + η2−(12/q′)‖ f ‖6/q

′

H−1(D)

)
,(5.22)

where Cq,D is independent of f , u, and η.

5.1 Some corollaries

First we give an example that clarifies the meaning of Lemmas 5.3 and 5.5, especially in contrast with
Lemma 5.2. Let D =]0, 1[d and suppose that we define fh via

fh(x) = h−1
(
sin(x1/h), 0, . . . , 0

)
,

where x1 is the first coordinate of x. Then ‖ fh ‖H−1(D) ≤ C1 where C1 is independent of h, but
‖ fh ‖Lq(D) ≥ C2/h where C2 > 0 is also independent of h. Thus Lemmas 5.3 and 5.5 show that the
corresponding solution uh satisfies ‖uh ‖W 2

q (D) ≤ Ch−1 with C independent of h, whereas Lemma 5.2

would only guarantee that ‖uh ‖W 2
q (D) ≤ Ch−2 with C independent of h with d = 3 and q > 3.

As a corollary of Lemmas 5.1, 5.2, 5.3, and 5.5, we have the following.
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LEMMA 5.6 Suppose that q > 1 for d = 2 and q ≥ 6/5 for d = 3, that (1.5) holds, M is any

positive real number, and η ≥ η0 > 0. Then for d = 2 and d = 3, there is a constant Cq,D,η0,M such

that for all f ∈ H−1(D)d satisfying ‖ f ‖H−1(D) ≤ M and for all u ∈ H1(D) solving (5.1) in the sense

of distributions, we have

(5.23) 1
2η‖u ‖W 2

q (D) + ‖ p ‖W 1
q (D)/R ≤ Cq,D,η0,M‖ f ‖Lq(D).

Proof. Since ‖ f ‖H−1(D) ≤ C‖ f ‖Lq(D), we have for s ≥ 0 and t ≥ 1,

η−s‖ f ‖tH−1(D) ≤ Cη−s
0 M t−1‖ f ‖Lq(D).

Thus (5.23) follows from (5.5), (5.16), and (5.22), except that for d = 2 we require Lemma 5.2 for the
case q = 2. QED

As another corollary of Lemma 5.5, we have the following.

COROLLARY 5.7 Suppose that the conditions of Lemma 5.5 hold with two data functions f1, f2,

and that there are two solutions (u1, π1), (u2, π2) to (5.1), that is,

−η∆ui + ui · ∇ui +∇πi = fi in D
∇·ui = 0 in D, ui = 0 on ∂D,

(5.24)

for i = 1, 2. Then there is an ǫ > 0 such that, provided maxi=1,2 ‖ fi ‖H−1(D) ≤ ǫη2,

η‖u1 − u2 ‖H1(D) + ‖π1 − π2 ‖L2(D) ≤ CD,ǫ‖ f1 − f2 ‖H−1(D),

for both d = 2 and d = 3.

Proof. The proof is straightforward, see for example [8], but we present it here for the reader’s conve-
nience. From (5.2), we have, for i = 1, 2,

(5.25) η‖ui ‖H1(D) ≤ CD‖ fi ‖H−1(D).

Now we multiply (5.24) by u1 −u2 for each i, integrate over D, integrate by parts, and then subtract
to get

η

∫

D

|∇(u1 − u2)|2 dx+

∫

D

(u1 · ∇u1 − u2 · ∇u2) · (u1 − u2) dx

=

∫

D

(f1 − f2) · (u1 − u2) dx

≤ C ′

Dη
−1‖ f1 − f2 ‖2H−1(D) +

1
2η

∫

D

|∇(u1 − u2)|2 dx.

Therefore

1
2η

2

∫

D

|∇(u1 − u2)|2 dx ≤ C ′

D‖ f1 − f2 ‖2H−1(D)

+ η
∣∣∣
∫

D

(u1 · ∇u1 − u2 · ∇u2) · (u1 − u2) dx
∣∣∣.

(5.26)

22



5.1 Some corollaries Oldroyd models without explicit dissipation

Adding and subtracting, we find from (5.25) and Green’s formula that

∣∣∣
∫

D

(u1 · ∇u1 − u2 · ∇u2) · (u1 − u2) dx
∣∣∣ =

∣∣∣
∫

D

((u1 − u2) · ∇u1 + u2 · ∇(u1 − u2)) · (u1 − u2) dx
∣∣∣

≤ ‖u1 − u2 ‖L4(D)‖u1 ‖H1(D)‖u1 − u2 ‖L4(D)

≤ C ′′

D‖u1 − u2 ‖2H1(D)‖u1 ‖H1(D)

≤ C ′′

D

(
max
i=1,2

‖ui ‖H1(D)

)
‖u1 − u2 ‖2H1(D)

≤ C ′′′

D η−1
(
max
i=1,2

‖ fi ‖H−1(D)

)
‖u1 − u2 ‖2H1(D).

(5.27)

By combining (5.26) and (5.27), we find

1
2η

2

∫

D

|∇(u1 − u2)|2 dx ≤ C ′

D‖ f1 − f2 ‖2H−1(D) + C ′′′

D

(
max
i=1,2

‖ fi ‖H−1(D)

)
‖u1 − u2 ‖2H1(D)

≤ C ′

D‖ f1 − f2 ‖2H−1(D) + C ′′′

D ǫη2‖u1 − u2 ‖2H1(D).

Choosing ǫ = (4C ′′′

D
)−1, we find

(5.28) η2
∫

D

|∇(u1 − u2)|2 dx ≤ 4C ′

D‖ f1 − f2 ‖2H−1(D).

To estimate the pressure terms, let V be the subspace of divergence-free functions of H1
0 (D)d, and V ⊥

its orthogonal in H1
0 (D)d for the scalar product (∇u,∇v). We multiply (5.24) by v ∈ V ⊥, integrate

over D, integrate by parts, subtract, and use the orthogonality of V ⊥, to get
∫

D

(π1 − π2)∇·v dx = −
∫

D

(f1 − f2) · v dx+

∫

D

(u1 · ∇u1 − u2 · ∇u2) · v dx.

The same argument used in deriving (5.27) gives for the nonlinear term,
∣∣∣
∫

D

(
u1 · ∇u1 − u2 · ∇u2

)
· v dx

∣∣∣ ≤ C ′′′

D η−1
(
max
i=1,2

‖ fi ‖H−1(D)

)
‖u1 − u2 ‖H1(D)‖v ‖H1(D),

and from (5.28), we conclude that
∣∣∣
∫

D

(π1 − π2)∇·v dx
∣∣∣ ≤ C

(4)
D

‖ f1 − f2 ‖H−1(D)‖v ‖H1(D).

Then we complete the proof by applying Ladyzhenskaya’s Lemma [7]. QED

The equations (3.11), (3.8), and (2.3) provide an alternative formulation of the 3-parameter Ol-
droyd model (2.2)–(2.3). Using this formulation, we shall prove the following in Section 6.

THEOREM 5.8 Suppose that q > d, that (1.3) and (1.5) hold, that the coefficients λ1 and µ1 satisfy

(5.29) |λ1| ≤ λ0η, |µ1| ≤ µ0|λ1|, and η ≥ η0.

Then there are constants C < ∞ and C̃ > 0, depending only on q, D, λ0, µ0, and η0, such that the

3-parameter Oldroyd system (2.2)–(2.3) has solutions satisfying

(5.30) η‖u ‖W 2
q (D) + ‖T ‖W 1

q (D) + ‖ p ‖W 1
q (D)/R ≤ C‖ f ‖W 1

q (D),

provided that ‖ f ‖W 1
q (D) ≤ C̃.

Note that this is suboptimal in terms of the relation between the regularity of f and u, but the
term u · ∇f in (3.12) appears to require this in the case of the estimate (5.30).

The parameter λ in [16] corresponds to λ−1
1 here, and thus the auxiliary pressure function q in [16]

corresponds to λ−1
1 π. However, there appears to be a discrepancy with equations (2.5-6) in [16] with

regard to the scaling of the pressure function q.
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5.2 The choice of t Oldroyd models without explicit dissipation

5.2 The choice of t

We now return to the proof of Lemma 5.4 to understand the choice of t and the restriction d 6= 2.
Define Q = d/q and T = 1/t′. Then

θs =
2− s−QT

1 + 1
2d−Q

.

Thus for d = 2 and s = 0,

θ0 =
2−QT

2−Q
> 1,

and so the inequality (5.19) is not valid. This is the reason why we restrict to the case d = 3, as we
do from now on.

Although we have seen that the choice of t = 4 in (5.19) works, it may be of interest to see how
we arrived at this unique choice. The condition 0 < θs < 1 translates to

0 < 2− s−QT <
5

2
−Q,

which we can write as two inequalities:

(5.31) QT < 2− s and
Q

t
= Q(1− T ) < s+

1

2
.

Since q > 3/2, Q < 2. Since 1 < t < ∞, 0 < T < 1. Thus the first of the inequalities in (5.31) holds
automatically for s = 0. The second of the inequalities in (5.31) for s = 0 translates to t > 2Q = 6/q
or

t > t0(q) = max{1, 6/q} =

{
6/q q ≤ 6

1 q ≥ 6
.

Note that max
{
t0(q)

∣∣ q > 3/2
}
= t0(3/2) = 4. Thus we can say that (5.19) holds for all t > t0(q) for

the case s = 0.
The first of the inequalities in (5.31) for s = 1 is equivalent to QT < 1, which means t′ > Q = 3/q,

or

t′ > t′1(q) = max{1, 3/q} =

{
3/q q ≤ 3

1 q ≥ 3
.

Note that max
{
t′1(q)

∣∣ q > 3/2
}

= t′1(3/2) = 2. The second of the inequalities in (5.31) for s = 1
translates to t > 2

3Q = 2
q or

t > t1(q) = max{1, 2/q} =

{
2/q q ≤ 2

1 q ≥ 2
.

Note that max
{
t1(q)

∣∣ q > 3/2
}

= t1(3/2) = 4/3. Thus we can say that (5.19) holds, in the case
s = 1, for all t > t1(q) and t′ > t′1(q). We need to translate this to a bound on t′ only, and the former
inequality can be written 1/t < 1/t1(q) and hence 1/t′ = 1− 1/t > 1 − 1/t1(q). Thus our conditions
on t′ for the case s = 1 are

(5.32) t′1(q) < t′ and t′ <
t1(q)

t1(q)− 1
.

Here the singularity in the denominator in the right-hand inequality in (5.32) simply translates to
t′ < ∞, so it provides no extra condition. We can make the constraints (5.32) explicit in the case
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s = 1 for various ranges of q as follows:

3

q
< t′ <

2

2− q
= γ1(q) for (3/2) < q < 2

3

q
< t′ < ∞ for 2 ≤ q ≤ 3

1 < t′ < ∞ for 3 < q < ∞,

(5.33)

where the constraint function γ1(q) = 2/(2−q). Note that the first line of (5.33) is the most restrictive
of the three and any t′ ∈ [2, 4] satisfies all three for all 3/2 < q < ∞. For the case s = 0, the constraints
can be made explicit via

γ0(q) =
6

q
< t < ∞ for 3/2 < q ≤ 6

1 < t < ∞ for 6 < q < ∞,

(5.34)

where the constraint function γ0(q) = 6/q. Note that the critical constraint functions satisfy γ1(3/2) =
4 = γ0(3/2). However, γ1 is strictly increasing on [3/2, 2[, and γ0 is strictly decreasing on [3/2, 2[.
Thus for 3/2 < q < 2,

γ0(q) < 4 < γ1(q).

Thus t′ = 4 satisfies the constraints (5.33) for all (3/2) < q < ∞ and t = 4 satisfies the constraints
(5.34) for all (3/2) < q < ∞. Moreover, for all (3/2) < q < ∞, there is an open interval of values of t
such that the constraints are satisfied, and t = 4 is in the interior of this interval.

6 Solution algorithm

In this section, we present the proof of Theorem 5.8. The following algorithm is a modification of the
iteration proposed by Renardy to demonstrate existence. Given un−1, Tn−1, pn−1, we define un, Tn,
pn as follows. First we solve

−η∆un + un · ∇un +∇πn = F(f ,un−1, pn−1,Tn−1) in D,

∇·un = 0 in D, un = 0 on ∂D
(6.1)

to determine un and πn, where F was defined in (3.12). Then we solve

(6.2) pn + λ1u
n · ∇pn = πn

to determine pn. We recall the notation

En = 1
2

(
∇un + (∇un)t

)
and Rn = 1

2

(
−∇un + (∇un)t

)
.

Finally, we solve

Tn + λ1

(
un · ∇Tn − (∇un)◦Tn −Tn◦(∇un)t

)

+ (λ1 − µ1)(E
n◦Tn +Tn◦En) = 2ηEn(6.3)

for Tn. Recall that (6.3) is equivalent to

Tn + λ1(u
n · ∇Tn +Rn◦Tn +Tn◦(Rn)t)

− µ1(E
n◦Tn +Tn◦En) = 2ηEn.

(6.4)

More precisely, we first solve the Navier-Stokes equations (6.1) for un ∈ W 2
q (D)d and πn ∈ W 1

q (D).
Then we solve the scalar transport equation (6.2) for pn ∈ W 1

q (D). Finally, we solve either (6.3) or

(6.4) for Tn ∈ W 1
q (D)d

2
. We begin the iteration with u0 = 0, p0 = 0 and T0 = 0.

The following lemma gives bounds on pn and Tn in terms of un, collecting the results of Lemmas
4.6 and 3.2.
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LEMMA 6.1 Suppose that D satisfies the condition (1.3) and q > d. Assume that (4.37) holds. Let

σq > 0 be the constant in the Sobolev inequality (1.6).
Then there is a constant σ̂ < ∞, depending only on λ0, µ0, q and D, such that if

‖un ‖W 2
q (D) ≤

1

2σq(|λ1|+ |λ1 + µ1|+ |λ1 − µ1|)
,

there is a unique solution Tn ∈ W 1
q (D)d

2
to (6.3) such that

(6.5) ‖Tn ‖W 1
q (D) ≤ σ̂η‖un ‖W 2

q (D)

and a unique solution pn ∈ W 1
q (D) to (6.2) such that

(6.6) ‖ pn ‖W 1
q (D) ≤ σ̂‖πn ‖W 1

q (D).

6.1 Bounds for the iterates

Let us prove (by induction) that, for some γ > 0, the following holds for n ≥ 0:

(6.7) η‖un ‖W 2
q (D) + ‖πn ‖W 1

q (D) ≤ γ.

For n = 0, this holds for any γ > 0. Suppose that γ > 0 has been chosen small enough so that

(6.8) γ ≤ η

2σq(|λ1|+ |λ1 + µ1|+ |λ1 − µ1|)
,

where σq is the Sobolev constant in (1.6). In particular, this implies that

‖∇un ‖L∞(D) ≤ σq‖un ‖W 2
q (D) ≤ γσq/η ≤ 1

2(|λ1|+ |λ1 + µ1|+ |λ1 − µ1|)
.

In this case, we can apply Lemma 6.1. Note that (6.7) and (4.37) imply that

(6.9) |λ1| ‖un ‖W 2
q (D) ≤ λ0γ.

Let ϕ > 0 and assume that ‖ f ‖W 1
q (D) ≤ ϕ. In view of (3.13), (5.29), (6.5), (6.6), and (6.9), we have

‖F(f ,un, pn,Tn) ‖Lq(D) ≤ ‖ f ‖Lq(D) + σq

(
|λ1| ‖un ‖W 2

q (D)

(
‖ f ‖W 1

q (D)

+ σ̂‖πn ‖W 1
q (D) + 2σq‖un ‖2W 2

q (D) + σ̂η‖un ‖W 2
q (D)

)
+ 4σ̂|λ1 − µ1|η‖un ‖2W 2

q (D)

)

≤ ϕ+ σq

(
λ0γ

(
ϕ+ σ̂γ + 2σq(γ/η)

2 + σ̂γ
)
+ 4σ̂λ0|1− µ1/λ1|γ2

)

≤ ϕ+ σq

(
λ0γ

(
ϕ+ 2σ̂γ + 2σq(γ/η)

2
)
+ 4σ̂λ0(1 + µ0)γ

2
)

≤ ϕ(1 + σqλ0γ) + 2σqλ0γ
(
σq(γ/η0)

2 + (3σ̂ + 2σ̂µ0)γ
)

=
(
1 + Cγ

)
ϕ+ C ′γ2 +C ′′γ3,

where C = σqλ0, C
′ = 2C(3σ̂ + 2σ̂µ0), and C ′′ = 2Cσq/η

2
0 . By taking ϕ and γ small enough, we can

guarantee that

(6.10) ‖F(f ,un, pn,Tn) ‖H−1(D) ≤ cq,D‖F(f ,un, pn,Tn) ‖Lq(D) ≤ 1.

Thus we can apply (5.23) with M = 1 to get

η‖un+1 ‖W 2
q (D) + ‖πn+1 ‖W 1

q (D) ≤ Cq,D,η0,1‖F(f ,un, pn,Tn) ‖Lq(D)

≤ Cq,D,η0,1

((
1 + Cγ

)
ϕ+ C ′γ2 + C ′′γ3

)
≤ γ,
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provided that ϕ and γ are small enough. We thus ensure (by induction) that

η‖un ‖W 2
q (D) + ‖πn ‖W 1

q (D) ≤ γ

for all n. Note that by (6.5) and (6.6), we also have

(6.11) ‖ pn ‖W 1
q (D) + ‖Tn ‖W 1

q (D) ≤ σ̂γ.

We collect the constraints required by γ and ϕ, with the constants defined above:

γ ≤ η

2σq(|λ1|+ |λ1 + µ1|+ |λ1 − µ1|)
,

(
1 + Cγ

)
ϕ+ C ′γ2 + C ′′γ3 ≤ min

{
1

cq,D
,

γ

Cq,D,η0,1

}
.

(6.12)

The first condition in (6.12) is satisfied if we assume

γ ≤ 1

2σqλ0(1 + 2(1 + µ0))
.

All constraints can be satisfied independently of f provided that ‖ f ‖W 1
q (D) ≤ ϕ.

6.2 Convergence of the iterates

To prove convergence of the iterates, we use the bounds in Section 6.1. Thus we assume that the
parameters γ > 0 and ϕ > 0 have been chosen small enough so that all of the iterates remain bounded
independently of n. More precisely, we will assume that we have iterates satisfying

η‖un ‖W 2
q (D) + ‖πn ‖W 1

q (D) ≤ γ

‖Tn ‖W 1
q (D) + ‖ pn ‖W 1

q (D) ≤ σ̂γ,
(6.13)

where γ has been chosen to satisfy (6.12) and σ̂ is given in Lemma 6.1.
To show convergence, we will demonstrate Lipschitz continuity of the solution operator for (3.11)

and also for the mapping T(u), cf. (4.40). Thus we will assume that we have vi satisfying the bound
(6.7). We will apply this in the specific case where v1 = un and v2 = un−1.

The system (2.3) can be written as in (4.9) via

T+M(v̂)T+ v̂ · ∇T = η(∇v +∇vt) in D,

where v̂ = λ1v and M(v̂)T is defined by

(6.14) M(v̂)T = R̃◦T+T◦R̃t − µ̃(Ẽ◦T+T◦Ẽ),

where Ẽ and R̃ are defined by

Ẽ = 1
2λ1(∇v +∇vt) = 1

2(∇v̂ +∇v̂t) and R̃ = 1
2λ1(∇vt −∇v) = 1

2(∇v̂t −∇v̂)

and µ̃ = µ1/λ1. We want to show that the mapping v → T = T(v) is Lipschitz continuous. Let
gi = η(∇vi +∇vt

i) and consider the problems

Ti +M(v̂i)Ti + v̂i · ∇Ti = gi in D,

for i = 1, 2. Define U = T1 −T2 and u = v1 − v2. Let G = g1 − g2 = η(∇u+∇ut). Then

U+M(v̂1)U+ v̂1 · ∇U =
(
I +M(v̂1)

)
(T1 −T2) + v̂1 · ∇(T1 −T2)

= G− û · ∇T2 +
(
M(v̂2)−M(v̂1)

)
T2 .

(6.15)
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Applying Lemma 4.1 with q = 2 to (6.15), we find

‖T1 −T2 ‖L2(D) = ‖U ‖L2(D)

≤ 1

c0

∥∥G− λ1

(
u · ∇T2 +

(
M(v2)−M(v1)

)
T2

) ∥∥
L2(D)

,
(6.16)

where we can define c0 via

(6.17) c0 = 1−
(
|1 + µ̃|+ |1− µ̃|

)
‖∇v̂1 ‖L∞(D) = 1−

(
|λ1 + µ1|+ |λ1 − µ1|

)
‖∇v1 ‖L∞(D),

provided that the formula (6.17) yields c0 > 0. But our assumptions (6.13) and (6.8) on γ imply that

(
|λ1 + µ1|+ |λ1 − µ1|

)
‖∇v1 ‖L∞(D) ≤

(
|λ1 + µ1|+ |λ1 − µ1|

)
σq‖∇v1 ‖W 2

q (D)

≤
(
|λ1 + µ1|+ |λ1 − µ1|

)
(γσq/η) ≤ 1

2 ,

so that c0 ≥ 1
2 . Thus we can prove the following lemma.

LEMMA 6.2 Suppose that the conditions of Lemma 4.6 hold for u = vi ∈ W 2
q (D), i = 1, 2, so that

∇·vi = 0 in D and vi = 0 on ∂D, and the bound (4.35) holds for both v1 and v2. Let Ti solve

Ti +M(v̂i)Ti + v̂i · ∇Ti = gi in D,

for gi = η
(
∇vi + (∇vi)

t
)
, where M is defined in (6.14) and v̂i = λ1vi, i = 1, 2. Then

(6.18) ‖T1 −T2 ‖L2(D) ≤ C‖T2 ‖W 1
q (D)‖v1 − v2 ‖H1(D),

where C = 2(2η + |λ1|σq(3 + 2|µ̃|).

Proof. Estimates (6.16), (4.23) and (1.7) imply

‖T1 −T2 ‖L2(D) ≤ 2
(
‖G ‖L2(D) + |λ1|

(
‖u ‖L 2q

q−2
(D)‖T2 ‖W 1

q (D) + ‖M(u)T2 ‖L2(D)

))

≤ 2
(
2η + |λ1|(σq + cM )‖T2 ‖W 1

q (D)

)
‖u ‖H1(D),

where the constant cM is the smallest real number such that

‖M(u)T ‖L2(D) ≤ cM‖T ‖W 1
q (D)‖u ‖H1(D) ∀u ∈ H1(D)d, T ∈ W 1

q (D)d
2
.

We estimate cM as follows. From the definition (6.14), we see that

‖M(u)T ‖L2(D) ≤ 2(1 + |µ̃|)‖T ‖L∞(D)‖u ‖H1(D) ≤ 2σq(1 + |µ̃|)‖T ‖W 1
q (D)‖u ‖H1(D),

where σq is the constant in Sobolev’s inequality (1.6) and µ̃ = µ1/λ1, so we can be assured that
cM ≤ 2σq(1 + |µ̃|). QED

Using (6.13), (6.18) becomes

‖T1 −T2 ‖L2(D) ≤ 2
(
2η + |λ1|σq(3 + 2|µ̃|)(σ̂γ)

)
‖u ‖H1(D)

= CT ‖v1 − v2 ‖H1(D),
(6.19)

where σ̂ is the constant in (6.5) and (6.11), γ is the constant in the bound (5.29), and

(6.20) CT = 2
(
2η + λ0ησq(3 + 2|µ̃|)(σ̂γ)

)
.
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Thus we conclude that the mapping v → T(v) is Lipschitz continuous H1(D) → L2(D), but only on
bounded sets in W 2

q (D). Moreover, we note that the Lipschitz constant CT is not particularly small
in this case.

In a similar way, we can provide a Lipschitz bound for the pressure terms. Suppose that

pi + λ1vi · ∇pi = πi.

Then
p1 − p2 + λ1v1 · ∇(p1 − p2) = π1 − π2 + λ1(v2 − v1) · ∇p2.

Using [9], (4.23), and (1.6), we find

‖ p1 − p2 ‖L2(D) ≤ ‖π1 − π2 ‖L2(D) + |λ1| ‖ (v2 − v1) · ∇p2 ‖L2(D)

≤ ‖π1 − π2 ‖L2(D) + |λ1| ‖v2 − v1 ‖L2q/(q−2)(D)‖ p2 ‖W 1
q (D)

≤ ‖π1 − π2 ‖L2(D) + σq|λ1| ‖v2 − v1 ‖H1(D)‖ p2 ‖W 1
q (D)

≤ ‖π1 − π2 ‖L2(D) + σqλ0ησ̂γ‖v2 − v1 ‖H1(D).

(6.21)

Next, we estimate
‖F(f ,v1, p1,T(v1))−F(f ,v2, p2,T(v2)) ‖H−1(D).

It helps to split

F(f ,v, p,T) = F1(f ,v) + λ1F2(v, p)− λ1F3(v) + λ1F4(v) − (λ1 − µ1)F5(v),

where

F1(f ,v) = f + λ1v · ∇f

F2(v, p) = (∇v)t∇p

F3(v) = v · ∇(v · ∇v)

F4(v) = ∇· ((∇v)◦T(v))

F5(v) = ∇· (E(v)◦T(v) +T(v)◦E(v))

and E(v) = 1
2(∇v +∇vt).

To begin with, we have the simple estimate

‖F1(f ,v1)−F1(f ,v2) ‖H−1(D) ≤ |λ1| ‖ (v1 − v2) · ∇f ‖H−1(D).

For φ ∈ H1(D)d we have by (4.24)

|〈(v1 − v2) · ∇f ,φ〉| = |〈f , (v1 − v2) · ∇φ〉|
≤ σq‖ f ‖Lq(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

(6.22)

Here and below, we are able to derive an estimate for φ ∈ H1(D)d even though we only need it for
φ ∈ H1

0 (D)d. When the restriction to the smaller space is needed for the derivation of the inequality,
we will note it. Returning to (6.22), we see that it implies

‖F1(f ,v1)−F1(f ,v2) ‖H−1(D) ≤ σq|λ1| ‖ f ‖Lq(D)‖v1 − v2 ‖H1(D)

≤ σq|λ1|ϕ ‖v1 − v2 ‖H1(D) ≤ σqλ0ηϕ ‖v1 − v2 ‖H1(D) = c1ϕη ‖v1 − v2 ‖H1(D),

where c1 = σqλ0 and we recall that ϕ ≥ ‖ f ‖Lq(D) and that λ1 satisfies the bound (5.29).
For the next term, we find

(6.23) F2(v1, p1)−F2(v2, p2) = ∇(v1 − v2)
t∇p1 − (∇v2)

t∇(p2 − p1).

29



6.2 Convergence of the iterates Oldroyd models without explicit dissipation

For φ ∈ H1
0 (D)d, we have

|〈(∇v2)
t∇(p2 − p1),φ〉| = |〈∇(p2 − p1), (∇v2)φ〉| = |〈p2 − p1,∇·

(
(∇v2)φ

)
〉|

= |〈p2 − p1, (∇v2)
t : ∇φ〉|,

where we have used (3.4) at the last step. Thus

|〈(∇v2)
t∇(p2 − p1),φ〉| ≤ σq‖ p2 − p1 ‖L2(D)‖v2 ‖W 2

q (D)‖φ ‖H1(D),

using (4.24). Thus (6.21) implies

‖ (∇v2)
t∇(p2 − p1) ‖H−1(D) ≤ σq‖ p2 − p1 ‖L2(D)‖v2 ‖W 2

q (D)

≤ σqγη
−1
(
‖π1 − π2 ‖L2(D) + σqλ0ησ̂γ‖v2 − v1 ‖H1(D)

)
.

(6.24)

For φ ∈ H1
0 (D)d, we also have

|〈∇(v1 − v2)
t∇p1,φ〉| = |〈∇p1, (∇(v1 − v2))φ〉|

≤ σq‖ p1 ‖W 1
q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D),

again using (4.24). Thus

‖∇(v1 − v2)
t∇p1 ‖H−1(D) ≤ σq‖ p1 ‖W 1

q (D)‖v1 − v2 ‖H1(D)

≤ σqσ̂γ‖v1 − v2 ‖H1(D).
(6.25)

Combining (6.23), (6.24), and (6.25) we obtain

‖F2(v1, p1)−F2(v2, p2) ‖H−1(D) ≤ c2γ
(
‖π1 − π2 ‖L2(D) + ‖v2 − v1 ‖H1(D)

)
,

where c2 = σq max{η−1, σ̂(λ0γσq + 1)}. Moving along, we expand

F3(v1)−F3(v2) = v1 · ∇(v1 · ∇v1)− v2 · ∇(v2 · ∇v2)

= (v1 − v2) · ∇(v1 · ∇v1)− v2 · ∇(v2 · ∇v2 − v1 · ∇v1)

= (v1 − v2) · ∇(v1 · ∇v1)− v2 · ∇((v2 − v1) · ∇v2)

+ v2 · ∇(v1 · ∇(v1 − v2)).

We estimate the first of these three terms using (4.24):

|〈(v1 − v2) · ∇(v1 · ∇v1),φ〉| = |〈(v1 · ∇v1), (v1 − v2) · ∇φ〉|
≤ σq‖v1 · ∇v1 ‖Lq(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D)

≤ σq‖v1 ‖L∞(D)‖∇v1 ‖Lq(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D)

≤ σ2
q‖v1 ‖2W 1

q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

Similarly, the second of the three terms is estimated using (4.24) by

|〈v2 · ∇((v2 − v1) · ∇v2),φ〉| = |〈(v2 − v1) · ∇v2,v2 · ∇φ〉|
≤ σ2

q‖v2 ‖2W 1
q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

Finally, Hölder’s and Sobolev’s inequalities give

|〈v2 · ∇(v1 · ∇(v1 − v2)),φ〉| = |〈v1 · ∇(v1 − v2),v2 · ∇φ〉|
≤ ‖v1 ‖L∞(D)‖v2 ‖L∞(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D)

≤ σ2
q‖v1 ‖W 1

q (D)‖v2 ‖W 1
q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).
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Thus (6.7) implies

‖F3(v1)−F3(v2) ‖H−1(D) ≤ σ2
q

(
‖v1 ‖2W 1

q (D) + ‖v2 ‖2W 1
q (D)

+ ‖v1 ‖W 1
q (D)‖v2 ‖W 1

q (D)

)
‖v1 − v2 ‖H1(D)

≤ 3σ2
qγ

2η−2‖v1 − v2 ‖H1(D) = c3γ‖v1 − v2 ‖H1(D),

where c3 = 3σ2
qγη

−2. For the next term, we have

F4(v1)−F4(v2) = ∇· ((∇v1)◦T(v1))−∇· ((∇v2)◦T(v2))

= ∇· ((∇(v1 − v2))◦T(v1))−∇· ((∇v2)◦(T(v2)−T(v1)).
(6.26)

For the first of these terms, we have, for φ ∈ H1
0 (D)d,

|〈∇· ((∇(v1 − v2))◦T(v1)),φ〉| = |〈(∇(v1 − v2))◦T(v1),∇φ〉|
≤ ‖T(v1) ‖L∞(D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D)

≤ σq‖T(v1) ‖W 1
q (D)‖v1 − v2 ‖H1(D)‖φ ‖H1(D).

(6.27)

Then (6.27) and (6.13) imply

‖∇· ((∇(v1 − v2))◦T(v1)) ‖H−1(D) ≤ σq‖T(v1) ‖W 1
q (D)‖v1 − v2 ‖H1(D)

≤ σqσ̂γ‖v1 − v2 ‖H1(D).
(6.28)

For the second of the two terms in (6.26), we have, for φ ∈ H1
0 (D)d,

|〈∇· ((∇v2)◦(T(v2)−T(v1)),φ〉| = |〈(∇v2)◦(T(v2)−T(v1)),∇φ〉|
≤ ‖v2 ‖W 1

∞
(D)‖T(v1)−T(v2) ‖L2(D)‖φ ‖H1(D)

≤ σq‖v2 ‖W 2
q (D)‖T(v1)−T(v2) ‖L2(D)‖φ ‖H1(D).

(6.29)

Then (6.29) and (6.19) imply

‖∇· (∇v2)◦(T(v2)−T(v1)) ‖H−1(D) ≤ σq‖v2 ‖W 2
q (D)‖T(v1)−T(v2) ‖L2(D)

≤ σq(γ/η)CT ‖v1 − v2 ‖L2(D),
(6.30)

where CT is defined in (6.20). Estimates (6.28) and (6.30) combine to yield

‖F4(v1)−F4(v2) ‖H−1(D) ≤ σq(γ/η)
(
CT + σ̂η

)
‖v1 − v2 ‖H1(D) ≤ c4γ‖v1 − v2 ‖H1(D),

where c4 = σqη
−1
(
CT + σ̂η

)
. Last and least, we examine F5. Note first that, for any φ ∈ H1

0 (D)d and

T ∈ L2(D)d
2
,

|〈∇·T,φ〉| = |〈T,∇φ〉| ≤ ‖T ‖L2(D)‖φ ‖H1(D),

so that for all T ∈ L2(D)d
2
,

(6.31) ‖∇·T ‖H−1(D) ≤ ‖T ‖L2(D).

Expanding, we have

F5(v1)−F5(v2) = ∇·
(
E(v1)◦T(v1)−E(v2)◦T(v2)

)
+∇·

(
T(v1)◦E(v1)−T(v2)◦E(v2)

)

= ∇·
(
E(v1 − v2)◦T(v1)−E(v2)◦(T(v2)−T(v1))

)

+∇·
(
(T(v1)−T(v2))◦E(v1)−T(v2)◦E(v2 − v1)

)
.
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Thus (6.31) implies

‖F5(v1)−F5(v2) ‖H−1(D) ≤
(
‖E(v1 − v2)◦T(v1) ‖L2(D)

+ ‖E(v2)◦(T(v2)−T(v1)) ‖L2(D) + ‖ (T(v1)−T(v2))◦E(v1) ‖L2(D)

+ ‖T(v2)◦E(v2 − v1) ‖L2(D)

)

≤
(
‖E(v1 − v2) ‖L2(D)

(
‖T(v1) ‖L∞(D) + ‖T(v2) ‖L∞(D)

)

+ ‖T(v1)−T(v2) ‖L2(D)

(
‖E(v1) ‖L∞(D) + ‖E(v2) ‖L∞(D)

))

≤ σq
(
‖E(v1 − v2) ‖L2(D) + ‖T(v1)−T(v2) ‖L2(D)

)

×
∑

i=1,2

(
‖T(vi) ‖W 1

q (D) + ‖E(vi) ‖W 1
q (D)

)
.

(6.32)

Applying (6.19) and (6.13) to (6.32), we find

‖F5(v1)−F5(v2) ‖H−1(D) ≤ σq(1 + CT )‖v1 − v2 ‖H1(D)2(σ̂η + 1)(γ/η)

≤ c5γ‖v1 − v2 ‖H1(D),

where c5 = σq(1 + CT )2(σ̂η + 1)η−1.
For any α > 0, we can choose γ and ϕ sufficiently small so that

‖F(f ,v1, p1,T1)−F(f ,v2, p2,T2) ‖H−1(D) ≤ α
(
η‖v1 − v2 ‖H1(D) + ‖π1 − π2 ‖L2(D)

)
.(6.33)

Choosing α > 0 appropriately, we find

η‖un+1 − un ‖H1(D) + ‖πn+1 − πn ‖L2(D)

≤ 1
2

(
η‖un − un−1 ‖H1(D) + ‖πn − πn−1 ‖L2(D)

)
.

Here we used Corollary 5.7 and (6.10). This proves that the sequence (un, πn) converges geometrically
in H1(D)d × L2(D), and (6.19) and (6.21) prove that the full sequence (un, πn, pn,Tn) converges
geometrically to a limit (u, π, p,T) ∈ H1(D)d × L2(D)× L2(D)× L2(D)d

2
.

To show that this gives a solution of the 3-parameter Oldroyd system, we need to show that the
limit satisfies the Navier-Stokes system (3.10). To show convergence in the Navier-Stokes system, we
need to study the convergence of F(f ,un, pn,Tn) to F(f ,u, p,T). From (6.33), we conclude that

(6.34) Fn := F(f ,un, pn,Tn) → F(f ,u, p,T)

strongly in H−1(D)d as n → ∞. This implies that (3.11) holds via the following standard variational
argument. We can express (3.11) in variational form as

η

∫

D

∇un : ∇v dx−
∫

D

(un · ∇v) · un dx−
∫

D

πn∇·v dx =
〈
Fn,v

〉

for all v ∈ H1
0 (D)d. Given the strong convergence of un → u in H1(D)d and πn → π in L2(D),

together with (6.34), we conclude that

η

∫

D

∇u : ∇v dx−
∫

D

(u · ∇v) · u dx−
∫

D

π∇·v dx =
〈
F(f ,u, p,T),v

〉

for all v ∈ H1
0 (D)d, confirming (3.11), and equivalently (3.10).
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7 Variational formulation

The variational formulation is based on a standard one for Navier-Stokes:

η

∫

D

∇un+1 : ∇v dx+

∫

D

(un+1 · ∇un+1) · v dx−
∫

D

πn+1∇·v dx =

∫

D

F(f ,un, pn,Tn) · v dx,

where we recall that

F(f ,u, p,T) = f + λ1u · ∇f + λ1(∇u)t∇p− λ1

(
u · ∇(u · ∇u)−∇· ((∇u)◦T)

)

− (λ1 − µ1)∇· (E(u)◦T +T◦E(u)).

We develop some identities that are useful for simplifying the terms involving F . For any tensor
function T of arity 2 (that is, a matrix function) and any vector function v ∈ H1

0 (D)d,

(7.1)

∫

D

(∇·T) · v dx =

∫

D

∑

ij

Tij,j vi dx = −
∫

D

∑

ij

Tij vi,j dx = −
∫

D

T : ∇v dx.

Note that, if ∇·u = 0 in D and v = 0 on ∂D,
∫

D

(
(∇u)t · ∇p

)
· v dx =

∫

D

∑

ij

uj,i p,j vi dx = −
∫

D

∑

ij

(
uj,i vi

)
,j
p dx

= −
∫

D

(∑

ij

uj,ij vi + uj,i vi,j

)
p dx

= −
∫

D

∑

i

((∇ · u),i)vi p dx−
∫

D

(
(∇u)t : (∇v)

)
p dx

= −
∫

D

(
(∇u)t : (∇v)

)
p dx ;

(7.2)

compare with (3.4). Similarly, if ∇·u = 0 and v = 0 on ∂D, for any w ∈ H1(D)d we have

(7.3)

∫

D

(u · ∇w) · v dx = −
∫

D

w · (u · ∇v) dx.

Using (7.1), (7.2) and (7.3), we find
∫

D

F(f ,un, pn,Tn) · v dx =

∫

D

f · (v − λ1u
n · ∇v) dx− λ1

(∫

D

pn(∇un)t : ∇v dx

−
∫

D

(un · ∇un) · (un · ∇v) dx+

∫

D

(∇un◦Tn) : ∇v dx
)

+ (λ1 − µ1)

∫

D

(E(un)◦Tn +Tn◦E(un)) : ∇v dx.

(7.4)

Thus a variational form for the algorithm (6.1) is as follows. First, knowing un, pn, and Tn, we find
un+1 ∈ V and πn+1 ∈ Π such that

η

∫

D

∇un+1 : ∇v dx+

∫

D

(un+1 · ∇un+1) · v dx−
∫

D

πn+1∇·v dx =

∫

D

F(f ,un, pn,Tn) · v dx

=

∫

D

f · (v − λ1u
n · ∇v) dx − λ1

(∫

D

pn(∇un)t : ∇v dx

−
∫

D

(un · ∇un) · (un · ∇v) dx +

∫

D

(∇un◦Tn) : ∇v dx
)

+ (λ1 − µ1)

∫

D

(E(un)◦Tn +Tn◦E(un)) : ∇v dx,
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for all v in a suitable space V , where as usual, E(w) = 1
2

(
∇w + (∇w)t

)
. We omit the details for

solving for πn+1; in the discrete case, this will depend on the particular implementation of the velocity
and pressure spaces. Next, we solve the transport problem for pn+1 via two possible formulations:
find pn+1 ∈ Π̂ such that

∫

D

pn+1(v − λ1u
n+1 · ∇v) dx =

∫

D

πn+1v dx ∀v ∈ Π̂

or∫

D

(pn+1 + λ1u
n+1 · ∇pn+1)v dx =

∫

D

πn+1v dx ∀v ∈ Π̂

for a suitable space Π̂. Finally, we solve the transport problem (6.3) or (6.4) for Tn+1 in a similar
fashion. For example, one option would be

∫

D

Tn+1 : (U− λ1u
n+1 · ∇U) dx+

∫

D

M(un+1)Tn+1 : U dx

= 2η

∫

D

E(un+1) : U dx ∀U ∈ Π̃d2

for a suitable space Π̃, where v̂ = λ1v and M(v̂)T is defined by (6.14).

8 Renardy’s original proof

Define the operator T : ∂2 as follows:

(
T : ∂2u

)
i
=
∑

jk

Tjkui,jk.

We compute the divergence of (∇u)◦T as follows:

(∇· ((∇u)◦T))i =
∑

j

((∇u)◦T)ij,j =
∑

jk

((∇u)ikTkj),j

=
∑

jk

(ui,kTkj),j =
∑

jk

(
ui,jkTkj + ui,kTkj,j

)

=
(
T : ∂2u

)
i
+
∑

jk

ui,kTkj,j =
(
T : ∂2u

)
i
+
∑

k

ui,k

(∑

j

Tkj,j

)

=
(
T : ∂2u

)
i
+
∑

k

ui,k
(
∇·T

)
k
=
(
T : ∂2u

)
i
+ (∇ui) · (∇·T).

Therefore

(8.1) ∇· ((∇u)◦T) = T : ∂2u+ (∇u)◦(∇·T).

Thus (3.2) and (8.1) imply that

∇·
(
u · ∇T−T◦(∇u)t − (∇u)◦T

)
= u · ∇ (∇·T)−T : ∂2u− (∇u)◦∇·T
= R(u) (∇·T)−T : ∂2u,

where we define the operator R(u) by

R(u)v = u · ∇v − (∇u)◦v.
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Renardy used (2.1) to replace ∇·T in the divergence of (2.4) to get

η∆u+ λ1T : ∂2u = u · ∇u+∇p− f

+ λ1R(u) (u · ∇u+∇p− f) + (λ1 − µ1)∇· (E◦T+T◦E),

which is equivalent to

−η∆u− λ1T : ∂2u+ u · ∇u+∇p = f

− λ1R(u) (u · ∇u+∇p− f)− (λ1 − µ1)∇· (E◦T+T◦E).
(8.2)

Renardy used the modified Stokes operator on the left-hand side of (8.2) as the basis of his existence
proof. For the regularity results, this requires verifying the appropriate coercivity and regularity
results for variable-coefficient, Stokes-like equations. Details were omitted from [16].

9 Tensor Calculus

Here we collect some tensor identities from [11].
For T,U ∈ Tr, we define the contraction T : U via

(9.1) T : U =
∑

i1,...,ir

Ti1,...,irUi1,...,ir .

Another tensor contraction formula is

(9.2) (T◦U)i1...ir−1j2...jr′ =
d∑

ℓ=1

Ti1...ir−1ℓUℓj2...jr′
,

where T ∈ Tr and U ∈ Tr′ , and this defines T◦U ∈ Tr+r′−2. We have the following identities:

(9.3) v · ∇T = (∇T)◦v.

(9.4) (W : U)i =

d∑

j,k=1

WijkUjk for W ∈ T3, U ∈ T2.

(9.5) ∇· (T◦U) = (∇T) : U+T◦(∇·U).

Note that the operator “ ◦ ” in T◦(∇·U) denotes an ordinary matrix-vector product.

(9.6) ∇(v · ∇T) = ∇T◦∇v+ v · ∇(∇T) = ∇T◦∇v+ (∇2T)◦v.

We can combine (9.3) and (9.6) to compute

(9.7) v · ∇(v · ∇v) = ∇(v · ∇v)◦v =
(
∇v◦∇v+ (∇2v)◦v

)
◦v.

When T is a scalar-valued function, (9.6) can be written alternatively as

(9.8) ∇(v · ∇f) = ∇vt∇f + v · ∇(∇f),

since
(∇f ◦∇v)k =

∑

j

f,jvj,k =
∑

j

(∇vt)k,jfj.
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Based on the tensor contraction formula (9.2), we compute the derivative of a product:

(9.9) (∇(T◦U)−T◦∇U)i1...ir−1j2...jr′k
=

d∑

ℓ=1

(∇T)i1...ir−1ℓkUℓj2...jr′
,

but the term on the right-hand side is not an obvious product. Define a bilinear mapping B : Tr+1 ×
Tr′ → Tr+r′−1 by

(9.10) (B(W,U))i1 ...ir−1j2...jr′k
=

d∑

ℓ=1

(W)i1...ir−1ℓkUℓj2...jr′
.

Then (9.9) becomes

(9.11) ∇(T◦U) = T◦∇U+ B(∇T,U).

In particular,

(9.12) ∇(S◦T+T◦St) = S◦∇T+ B(∇S,T) +T◦∇St + B(∇T,St).

From the definition (9.10), we have

(9.13) |B(W,U))| ≤ |W| |U|.

There is a useful inequality involving three tensors. Suppose that T ∈ T2 and W,U ∈ Tr where
r ≥ 1. Note that T◦W ∈ Tr and T◦U ∈ Tr. We can interpret the contraction “ : ” as the usual ℓ2
inner-product on vectors of dimension d r, and |W| as the corresponding norm. Then we claim that

(9.14) |T◦W : U| ≤ |T| |W| |U|,

which is a generalization of (4.11).
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