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ABSTRACT
The surface of the cerebral cortex is very convoluted, with a large number of folds, the cortical
sulci. These folds are extremely variable from one individual to another, and this large variability
is a problem for many applications in neuroscience and brain imaging. In particular, sulcal
geometry (shape) and sulcal topology (branches, number of pieces) are very variable. “Plis
de passages” (PPs) or “annectant gyri” can explain part of the topological variability, namely
why sulci have a variable number of pieces across subjects. The concept of PPs was first
introduced by Gratiolet (1854) to describe transverse gyri that interconnect both sides of a
sulcus, that are frequently buried in the depth of sulci, and that are sometimes apparent on the
cortical surface, hence seemingly interrupting the course of sulci and separating them in several
pieces. Nevertheless, the difficulty of identifying PPs and the lack of systematic methods to
automatically detect them has limited their use. However, based on a recent characterization
of PPs in the superior temporal sulcus, we present here a method to automatically detect PPs
in the superior temporal sulcus. Local morphology within the sulcus is characterized using
cortical surface profiling, and the three-dimensional PP recognition problem is performed as a
two-dimensional image classification problem with class-imbalance. This is solved by using an
ensemble support vector machine model (EnsSVM) with a rebalancing strategy. Cross validation
and quantitative experimental results on an external dataset show the effectiveness and robustness
of our approach.

1. Introduction
The cerebral cortex is a very convoluted surface that folds itself into gyri and sulci, which vary a lot across

individuals. As early as the 19th century, anatomists were interested in its organisation and features. They observed that
many long primary sulci could be subdivided into several pieces but sometimes appeared as a whole. This topological
variability, together with a strong geometrical variability (shape and size of the sulci), leads to difficulties for the
systematic study of gyri and sulci across different brains (Ono et al., 1990; Regis et al., 2005) and makes the many
sulcal patterns observed on the cortex hard to decipher.

The concept of “Pli de passage” (PP) was introduced by Gratiolet (1854) to describe transverse gyri that
interconnect both sides of a sulcus, are frequently buried in the depth of these sulci, and are sometimes apparent
on the cortical surface. Later on, Broca specifically reported the presence of three transverse gyri that connect the pre-
and post-central gyri along the central sulcus(CS) Broca (1888) : PPs frontal superior, middle and inferior. Such sulcal
segmentation was then confirmed by Cunningham’s work on cortical morphology and development (Cunningham,
1890a,b, 1897), in which he described how the central sulcus appears during ontogeny from two separate folding seeds
merging later on during cortical expansion. The PPs, named “deep annectant gyri” (Cunningham, 1890a,b, 1897),
appear early between two isolated parts of sulci, and can eventually get buried deep into the bottom of sulci, with their
presence identified as elevations of the sulcal fundus, or interlocking gyri. In the CS, a specific PP has been identified
and named “Pli-de-passage fronto-parietal moyen”(PPFM) (Cunningham, 1897; Regis et al., 2005; Cykowski et al.,
2008). It has been linked to the location of the primary motor area of the hand (Boling et al., 1999) and sometimes
associated with a specific complex U-fiber connectivity (Pron et al., 2021; Catani et al., 2012; Shinohara et al., 2020).
Moreover, these potential links with connectivity and function raise the possibility of a clinical relevance, particularly
when it comes to localizing specific areas in a context of neurosurgery (Boling et al., 1999). Their potential early
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development (Bodin et al., 2021; Mangin et al., 2019) also points to theit potential use for identifying developmental
abnormalities once their normal distribution is known (Leroy et al., 2015; Le Guen et al., 2018; Bodin et al., 2021).

Regis (1994) proposed the first map of PPs over the entire brain. This map gives the approximate locations of
PPs, which were deduced from the frequent interruptions of folding patterns within specified brain localization and
generally consistent with the initial folding patterns during development (Mangin et al., 2019). Because of the large
inter-individual sulcal variability across individuals, this map cannot exactly contain all the PPs and there is no evidence
so far that it even contains a stable subset of PPs. However, it provides a framework that explains part of the inter-
individual differences. Together with this map, Regis developed the “Sulcal Root” generic model that states a putative
spatial organisation of the sulcal units separated by PPs over the entire cortical surface (Regis et al., 2005; Régis
et al., 1995). Following the “Sulcal Root” model, Ochiai et al. (2004) proposed a detection of all PPs in the superior
temporal sulcus (STS) according to their location and relative depth of the sulcus. Nevertheless, this work hypothesize
the existence of a fixed number of PPs in the STS, which is in contradiction with more recent work (Leroy et al., 2015;
Le Guen et al., 2018; Bodin et al., 2021). In several recent studies, PPs have been described with various names such
as annectant gyrus, gyral bridge, submerged gyrus (Germann et al., 2005), submerged gyral passage (Zlatkina and
Petrides, 2010; Sprung-Much and Petrides, 2018) or transition (Huntgeburth and Petrides, 2012). Several authors have
pointed out that the PPs provided an explanation for variable sulcal patterns: the presence of a PP, visible or buried
deep in the depth of a sulcus, explains the presence of sulci interruptions in some subjects and not others, making PPs
relevant morphological landmarks for the understanding of sulcal folding (Regis et al., 2005; Zlatkina and Petrides,
2010; Huntgeburth and Petrides, 2012; Mangin et al., 2019; Bodin et al., 2021).

In the context of understanding gyrification and its variability across individuals, the geometry of the cortical
surface has been widely studied. Quantitative descriptions of folding patterns (Zilles et al., 1988; Yu et al., 2007; Toro
et al., 2008; Li et al., 2010; Rabiei et al., 2016) and models of the underlying mechanisms (Van Essen, 1997; Toro and
Burnod, 2005; Geng et al., 2009; Auzias et al., 2015; Chen et al., 2017) have been proposed . Nevertheless, very few
works explicitly studied PPs, and when they did it has been mostly in the central sulcus (CS) and superior temporal
sulcus (STS). This is partly due to the lack of precise geometrical definition of the PPs, which are still an ill-defined
concept.

Indeed, PPs have been described qualitatively but no precise consensual definition has been proposed, and most
attempts have been relying on depth variation in the fundus of sulci. As far as we know, Cykowski et al. (2008) proposed
the first observer-independent automatic and quantitative study of depth variations in the CS. In particular, in this work
it was shown that a typical depth profile of the CS shows the PPFM as a local minimum of depth. And although not
systematic, it is clear that the presence a PP can lead to a local variation (increase) of sulcal depth. This concept has
been used to explicitly study PPs in the STS. For instance, Leroy et al. (2015) used the depth profile along the fundus of
the STS to detect PPs as depth minima that are blow a depth threshold. An equivalent definition was used by Le Guen
et al. (2018) in which depth minima were extracted then filtered by a threshold on their depth value.

The general issue with such approach is that depth variations are useful when their amplitude is above a certain
threshold, thus detecting “superficial” or “intermediate” PPs (according to the definition of PPs in (Ochiai et al., 2004)),
but they are not able to differentiate small depth variations associated with very deep PPs and depth variations that
are caused by noise in the surface geometry or non-PP related variations in general. For instance, inCykowski et al.
(2008), it is shown that for 3% of the population there is no depth minimum associated with the PPFM. Moreover, the
use of a threshold necessarily leads to false negative that are just below the threshold.

This has led to controversial results such as an asymmetry of the number of PPs in the STS between the left and
right hemispheres (Bodin et al., 2021). Indeed, PPs are three-dimensional structures, and their identification based on a
two-dimensional depth profile is prone to be deficient (Bodin et al., 2021). In their original 19th century description, it
was stated that PPs buried in the depth of sulci were associated with elevations of sulcal fundi but also with interlocking
gyri on the walls of sulci (Cunningham, 1890a,b, 1897). The latter has been very little studied until recently (Zlatkina
et al., 2016; Bodin et al., 2021). Zlatkina et al. (2016) identified deep PPs which were only 1 mm in depth variation
and characterized by an unusual curvature of the sulcus. Such approach based on the geometry of the sulcus itself,
together with the concept of the interlocking gyri, led Bodin et al. (2021) to propose a PP characterization based on
3D deformation of sulcal walls (in this case the STS walls). These deformations, named "wall pinches", provide a
continuum between superficial PPs for which the pinches on each side are joining to make a clear bridge interrupting
the sulcus (Figure 1-a), and deeply buried PPs for which the pinches are facing each other without joining thus showing
no or little elevation on the fundus (Figure 1-b). Bodin et al. (2021) also showed that wall pinches are associated with
the presence of specific dense u-shape fiber bundles locally joining the two banks of the sulcus. This study provided not
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only a new definition of PPs, but confirmed an association with superficial white matter that had been hypothesized
before (Regis et al., 2005) or observed at the level of the PPFM in trhe CS (Catani et al., 2012; Pron et al., 2021).
Nevertheless, the manual identification of PPs based on this definition is tedious and prone to human errors. This is
why we want to implement this definition in order to detect PPs in an automatic and more systematic manner. Starting
from the work in Bodin et al. (2021), we propose to automate the detection of pli-de-passages in the superior temporal
sulcus. In order to do so using the presence of wall pinches (WPs) on the sulcal banks, we have to keep in mind
that on one hand there is no strict quantifiable definition of WPs, and on the other hand we have a dataset on which
all WPs and PPs have been delineated by hand (see next section and (Bodin et al., 2021)). Therefore we decided to
use supervised learning, using this dataset as a training set. In the next section we present the definition of features
that locally characterise the presence of wall pinches, followed by a supervised machine learning-based method that
can detect PPs using these features, hence automating the definition provided in (Bodin et al., 2021). After these
methodological details, we present experiments on two different datasets to quantify the performances of our method
and assess its ability to generalize to different datasets.

Figure 1: Local morphology of superficial and deep PPs. (a) Superficial PPs; (b) Deep PPs.

2. Materials and methods
2.1. Subjects and image acquisition

In this work, we used two independent datasets, where one is used for training and testing the machine learning
models and the other for empirically evaluating the performance of our methods.
2.1.1. Human Connectome Project (HCP) database

The first dataset is composed of structural T1 MR images of 100 subjects from the Human Connectome
Project (HCP) database, for which detailed information is available: https://www.humanconnectome.org/study/
hcp-young-adult/document/900-subjects-data-release. Subjects were randomly having completed the full
diffusion and structural acquisitions, being non-twins, right-handed, between 22 and 40 years old.

Data taken from the HCP database were acquired as follows: structural images were acquired using a modified
version of Siemens Skyra 3T scanner (Siemens, Erlangen, Germany) with a maximum gradient strength of 100mT ∕m,
slew rate of 200T ∕m∕s (reduced to 91T ∕m∕s for diffusion due to peripheral nerve stimulation limits) and a 32-channel
head coil. T1-weighted images were acquired using 3D MPRAGE sequence (TR/TE = 2400∕2.14ms, flip angle = 8,
FOV = 224 × 224mm2, resolution = 0.7mm isotropic). Note that this dataset have been already used in (Bodin et al.,
2021).
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2.1.2. Temporal Voice Areas (TVA) database
The second dataset is composed of structural T1 MR images of 92 subjects, aged between 17 and 44 years old,

from the Temporal Voice Areas (TVA) dataset previously used in (Bodin et al., 2018). The origin dataset contains one-
hundred and sixteen healthy subjects that were scanned (n = 116; 53 males, 63 females; mean age 23.7±5.8) as part of
published and unpublished experiments of the Voice Neurocognition Laboratory (http://vnl.psy.gla.ac.uk/) of
the Institute of Neuroscience and Psychology at University of Glasgow. Participants, drawn mostly from the Glasgow
student population, were of various ethnic backgrounds, education and manual lateralization and all provided written
informed consent prior to participation. The experiments were approved by the local ethics committee at University of
Glasgow. Exclusion of subjects was due to the failure for the depth profile extraction.

All scans were acquired on a 3T Siemens (Erlangen, Germany) Tim Trio scanner at the Centre for Cognitive
Neuroimaging (http://www.ccni.gla.ac.uk/), University of Glasgow. High-resolution 3D T1-weighted sagittal
scans were acquired for each subject (voxel size 1 mm3 isotropic; acquisition matrix 256 × 256 × 192).
2.2. Image preprocessing and identification of landmarks
2.2.1. Anatomical images and related maps

All individual T1-imageswere first segmented using Freesurfer (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki),
and then imported into the Morphologist pipeline of the BrainVisa (BV) software (http://brainvisa.info)
(Mangin et al., 2004) to generate triangular meshes of the grey/white matter interface for both hemispheres of all
subjects (see Figure 2-a). These surfaces will be further referred to as ?cortical surface?.Meshes are reconstructed
independently for each hemispheres and contain on average 60000 vertices.

Then, we generated several morphological surface maps used for anatomical analysis including sulcal depth, depth
potential function (DPF) and curvature map. The depth map for each individual surface was computed as the geodesic
distance from the sulcal fundus to the outer cortex (Rettmann et al., 2002) (see Figure 2-b).

The DPF map (Boucher et al., 2009) was computed using an in-house implementation available in BrainVisa, as
already done in (Auzias et al., 2015). It is known to provide a regularized estimation of the sulcal depth that considers
the information from both convexity and curvature. Importantly, it was also shown independent of brain size and
therefore does not require a normalization procedure (Auzias et al., 2015). DPF measure can be either negative or
positive depending on whether the vertex is superficial or located in the depth of a sulcus (see Figure 2-c).

For all cortical surfaces, we generated their mean curvature maps using a finite element method as implemented in
BrainVisa. In general, the vertices in the sulcal fundi have low negative curvature value while gyral crests show high
positive curvature (see Figure 2-d).
2.2.2. STS identification and drawing

The STS is a fold separating the superior temporal gyrus (STG) from the middle temporal gyrus (MTG) in
the temporal lobe (see Figure 3-a). The STS fundi were drawn semi-automatically on the cortical surface for both
hemispheres and all subjects of both datasets using the SurfPaint module of the Anatomist visualization software
(Le Troter et al., 2011). This was performed by C.B. in the context of (Bodin et al., 2018, 2021). We manually selected
the anterior and posterior extremities based on anatomical landmarks identifiable in each subject as described in (Bodin
et al., 2018). The anterior extremity was chosen as the tip of the temporal pole, posterior to polar temporal sulcus.
In most cases, this sulcus was perpendicular to the STS and a clearly visible PP separates these two folds (Ochiai
et al., 2004). The posterior extremity was chosen at the intersection between the STS horizontal main branch and its
posterior ascending branches (Segal and Petrides, 2012). The fundus of the STS was drawn automatically between the
two extremities as the shortest path that maximizes the DPF between the extremities (Le Troter et al., 2011).
2.2.3. PPs identification

Herein, the PPs were manually labeled on the HCP dataset by C. Bodin in the context of (Bodin et al., 2021)
according to the morphological criteria described in (Bodin et al., 2021). Wall pinches were first identified and PPs
were then drawn by selecting the two intersections (two vertices) between the extremities ofWPs and gyral crests (STG
and MTG). A line was then automatically generated between these two vertices, as the shortest path that minimizes
the DPF (Bodin et al., 2021). Such PP lines were drawn for the STS on both hemispheres of the 100 HCP subjects (see
examples on Figure 3-c). For all points of the STS fundus, those at the intersection with PPs lines were labelled “PP”
and the rest were labelled “non-PP” (see Figure 3-d).
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(a) cortical surface mesh (b) Depth map

(c) DPF map (d) curvature map

Figure 2: A cortical surface with depth, DPF, and curvature maps.

2.3. Feature extraction and feature images
In order to clearly identifyWPs on the gyral walls, Bodin et al. (2021) used DPF and curvature maps on the cortical

mesh (Figure 2). These maps were carefully examined at the individual levels, and thresholded to highlight distortions
of the cortical surface. Specifically, the variation of DPF values (from blue to red) indicate variations of shape but are
more sensitive to depth variations. Curvature maps are more appropriate to detect general shape variations but WPs
that are not prominent enough are difficult to observe compared to shape variations at the top of gyri. Overall, both
maps make it difficult to detect WPs in a systematic manner with a unique set of parameters across subjects (see Figure
4).

This is why we propose to use different geometrical maps in order to produce features that can reliably characterize
wall pinches. In this work, we generated maps using surface profiling (Li et al., 2010) and we used these maps to build
feature images for each point of the STS fundus. These feature images will then be used to classify fundus points as
PP or non-PP.
2.3.1. Cortical surface profiling

We want to associate each vertex on the STS fundus to a feature vector that characterizes the presence of wall
pinches on the two surrounding sulcal walls. The first step is to build a cortical map that can capture the geometry of
wall pinches. For this we are using features presented in (Li et al., 2010) and built using cortical surface profiling.

The basic idea of cortical surface profiling is, for each point of the cortical surface, to represent the 3D shape
information of a disk-like cortical surface patch around the point, while modeling shape parameters of 2D profiles in
all directions within this patch. These 2D profiles capture the shape of the surface in a specific direction around the
point of interest. For each vertex, Li et al. (2010) combines a 3D Cartesian coordinate system (Tao et al., 2002) and a
2D polar coordinate system to built a new local 3D coordinate system (see Figure 5-a). For a vertex O on the cortical
surface S, we can get its normal directionN and tangent plane P . Consider the normal directionN as the Z-axis in a
3D Cartesian coordinate system and the tangent plane P as the space of a polar coordinate system, with an arbitrary
orientation origin R0. Note that there is no specific given X-axis or Y-axis in this 3D coordinate system in comparison
with the 3D Cartesian coordinate system.

Based on this 3D coordinate system, for a given vertex and its local cortical surface patch, the profiling process
is as follow. First we randomly select the starting direction R0, and let R� be the radial direction after rotating to an
angle � from R0. The profile of the local surface patch in the direction R� is recorded as C(�, x, y), where x is the
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(a) STS

(b) STS fundus

(c) Labeled PPs in STS

(d) Vertices labelled as PPs in STS fundus

Figure 3: Superior Temporal Sulcus (a) Examples of three different STS. The model in red is the STS. Figures adapted
from (Lefèvre and Mangin, 2010) (b) Example of STS fundus (in red) generated by the semi-automatic methods. (c)
Examples of labeled PPs in STS. Figures adapted from (Bodin et al., 2021) (d) Examples of labelled PPs vertices (in
white) in STS fundus.

radial distance of a point on profile to the normal directionN , and y is the normal distance of the point to the plane P
The profiling process is conducted with an angular step Δ� degrees, which will generate 360∕Δ� profiles for the local
cortical surface patch. Each profile is sampled with a radial step s, and the sampling stops when reached the maximum
number of sampling pointsM . Figure 5-b shows some examples of sampling results. The essence of cortical surface
profiling is using a collection of 2D profiles to sample the 3D local surface patch. In the following we used the exact
same values than what has been presented in (Li et al., 2010) for the same purpose, i.e. : Δ� = 5◦, s = 0.1, and
M = 45.
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Figure 4: Different feature maps. DPF and curvature maps were used in (Le Guen et al., 2018; Bodin et al., 2021). ASD
map was used in (Li et al., 2010). In the second and third rows, the dotted ellipses mark the WPs for the identification of
PPs. In the last row, the dotted curve label a superficial PPs.

2.3.2. Computation of morphological feature maps
At every point of the surface, after applying surface profiling, we need to compute a feature that can efficiently

characterize the presence of wall pinches on the gyri walls. To do so we propose to use the AverSampleDis (ASD)
that was introduced in (Li et al., 2010). ASD values are computed at every point by computing the average of the first
order moment of the distance of all points of the profile to the tangent plane (see Figure 5-a), computed as follow:

Fprofile =
1
M

M
∑

i=1
yi (1)

whereM is the maximum number of points, yi is the distance of each point on the profile to the tangent plane. TheASD map captures the properties we are interested in and display values on the WP that are equivalent to the values
on gyral crests, as illustrated in 4.
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Figure 5: Cortical surface profiling. (a) An illustrative figure to show the coordinate system. O is any vertex on the cortical
surface S; P is the tangent plane; N is the normal direction of vertex O; R0 is the starting direction of sampling; R� is
the sampling direction with � degree away from R0; C is the sampling profile at direction R�. (b) Examples of profiles.
Sampling parameters: Δ� = 5◦, s = 0.1, and M = 45

2.3.3. Feature images
After building the geometrical map (ASD), we now want to associate a feature vector to each vertex on the fundus

of the STS, such that it characterizes the presence of WPs. An illustration of the method is shown in Figure 6. The
method is as follow: starting with the ASD map on the mesh of an hemisphere (see Figure 6-a), for each vertex on the
STS fundus we use a second cortical surface profiling process to sample ASD values in a disk around the vertex, and
build a feature vector. For this second round of surface profiling, we kept the parameter values Δ� = 5◦, andM = 45,
but the radiusR of the disk has to be adapted to the depth of the STS, in order to capture enough of the surrounding STS
wall geometry without including points that are outside the sulcus (see Figure 6-b). We tested R = 9, 13.5, 18mm, by
running a simple 10-nearest neighbors (10-NN) classification with a structural similarity metric (SSIM) that provided
a larger accuracy for R=13.5mm. ForM = 45, it corresponds to a value of s = 0.3mm. The disk is aligned such that
angle 0◦ corresponds to the direction of the fundus in the antero-posterior direction, which normalizes the orientation
of the features across locations and subjects. The profiling results in a circular feature map that is then transformed
into a rectangular feature image as shown in (Figure 6-c). This feature image therefore captures the geometry of the
surrounding surface, in particular the potential presence of wall pinches (visible in blue on Figure 6-c). On account of
the high sampling density, for any given local circular surface patch, the number of sampling points is larger than the
number of mesh vertices included in the patch. Therefore, the ASD value at each sampling point is interpolated using
barycentric coordinates.

After the feature extraction, each vertex of the STS fundus is associated with a local feature image. We therefore
propose to use these feature images to solve the 3D PP recognition problem as a 2D image supervised classification
problem.
2.4. Ensemble Support Vector Machines (EnsSVM)

We describe here the supervised learning strategy we use to detect PPs in the STS fundus.
As mentioned before, for all points of the STS fundus, after manual labelling those at the intersection with plis-de-

passage were labelled “PP” and the rest were labelled “non-PP”. On the HCP dataset, we got a total of 15703 vertices
of STS fundus, where only 865 of them were labelled as PPs, and 14208 were not, leading to an unbalanced data set
with a ratio 1 ∶ 16 and PP as the minority class. This could lead to difficulties as most algorithms perform better on
balanced datasets.
2.4.1. Augmentation of PPs data

To deal with the imbalanced dataset, we proposed to augment the PPs instances by considering their nearest
neighbours. If a point is a PP, then its nearest neighbours on the STS fundus also can be considered as PPs since
their surrounding cortical geometry is very similar (see Figure 7-a, b). This increases the number of PPs instances
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Figure 6: The framework of local feature extraction. (a) Surface with feature map ASD; (b) Surface profiling on a local
region. Sampling parameters: Δ� = 5◦, s = 0.3, and M = 45; (c) Feature images generation, from a disk to a rectangular
image. (d) STS fundus (dark red).

while reducing the number of Non-PPs. Here we consider the two nearest neighbors, i.e. one on each side of the
vertex. Hence by doing so, not only do we rebalance the dataset to some extent, but we also define a PP on the fundus
as a small area (called “PP region”) around the vertex instead of a single point. Notably, by considering the 2 nearest
neighbours, a PP region contains at least 3 points on the STS.

(a) Superficial PPs

(b) Deep PPs

(c) Non-PPs

Figure 7: Feature images of neighbouring vertices on STS fundus. On the left is the STS fundus (red) and intersecting
PPs (blue). On the right, the feature vector of 5 vertices is showed: the intersection of the fundus and the PP (white point
on the left), and two nearest neighbors on each side. The arrows show the direction from the anterior to the posterior
parts of the STS fundus.
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2.4.2. EnsSVM pipeline
After the PP data augmentation, the unbalanced ratio is reduced to 1 ∶ 5. Although improved, it is still an very

imbalanced dataset. In order to deal with this aspect and provide an adequate sampling of each category without bias
due to the imbalance, we chose a strategy that has been succesful in many ensemble methods (Liu, 2009; Liu et al.,
2011). Multiple subsets of the majority class N (non-PPs) are randomly generated {N1, N2,… , NT

} such that their
size is the same as the minority class P , i.e.|Ni| = |P |. Then, the union of each pair of Ni and P is used to train a
base classifier and a decision is taken by combining all base classifier results with a majority vote.

More precisely, we proposed the following ensemble SVM (EnsSVM) algorithm, illustrated in Figure 8. At first,
we apply the augmentation strategy presented in section 2.4.1 and get a total of nS PPs. We then divide the data into
training and test data (note that this step is only needed for the algorithm evaluation, while for a final model applied
to detect PPs in new data, we learn from the full dataset). After that, the majority (non-PP) data in the training set is
under-sampled nT times by bootstraping with replacement and the size of each subset is nS . We then combine each
bootstraped subset with the over-sampled positive instance (PPs) to form a perfectly balanced training dataset of size
2 ∗ nS that we use to train a base SVM. Finally, for a test instance, the classification decision is made through a
majority voting from all nT base classifier results.

Figure 8: The ensemble SVM algorithm. (1) Augment the PPs instances by considering the two nearest neighbors of PPs
as also PPs; (2) Divide the data into training and test data; (3) Build the base classifier; (4) The balanced datasets for
training base classifiers.

2.5. Post-processing
Figure 9 gives an example of a result produced by our EnsSVM model. As we can see, instead of detecting single

vertices, most of the results include several vertices forming a single connected region. This is expected given the fact
that, as mentioned in section 2.4.1, after data augmentation we assume that a PP region on the STS fundus is composed
of at least 3 consecutive points. Our hypothesis is that if a point is on a PP, its direct neighbors and possibly second
order neighbors should as well, because their surrounding geometry is equivalent, and defining a cortical feature as a
single point does not really make sense. On the other hand, a set of more than 5 consecutive points is on average more
than 4mm wide and should be considered as containing more than one PP (e.g. when PPs are close enough they will
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Figure 9: An example of predicted PPs using EnsSVM models.

Table 1
Confusion Matrix

Ground-truth Positive Ground-truth Negative
Predicted Positive TP (True Positive) FP (False Positive)
Predicted Negative FN (False Negative) TN (True Negative)

be detected as a single region). Therefore, once points of the STS fundus have been classified, we apply the following
post-processing strategy:

1. For each vertice on STS fundus, get its prediction label and the associated probability from the SVMs.
2. Compute PP regions as connected components of the PP label set.
3. Discard all regions with less than 3 vertices.
4. For regions with 5 vertices or less, select the vertex with maximum probability to represent the PP.
5. For regions with more than 5 vertices,

a. Split the region at the vertex with minimum PP probability.
b. If sub-region contains 5 vertices or less, go to step 4. Otherwise, iterate step 5.

2.6. Evaluation measures on the HCP dataset
In this work, our evaluation measures are based on the ConfusionMatrix, a two-class problem confusion matrix

with positive and negative values is illustrated in Table 1.
The choice of a performance index is critical to evaluate the goodness of a classifier. Traditionally, the overall

performance of machine learning algorithm is usually evaluated with the “accuracy”:
ACC = TP + TN

TP + TN + FP + FN
(2)

However, it is often meaningless to achieve high accuracy when the data is highly imbalanced. In our case, with
a ratio of PPs∕Non-PPs ≈ 1∕16, a straightforward method of guessing all instances as non-PPs would achieve an
accuracy 93.75%. Although this accuracy seems high, it does not reflect the performance of the strategy used. Therefore
a high overall accuracy may misrepresent the performance of classifiers in the context of an imbalanced class problem.
Recent work on this specific problem led to the definition of different metrics to propose appropriate performance
measures. Our performance measures are therefore expressed as follows:
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Table 2
Modified Confusion Matrix

Ground-truth Negative Ground-truth Positive
Predicted Positive TN (True Negative) FN (False Negative)
Predicted Negative FP (False Positive) TP (True Positive)

• The Recall measures the accuracy of positive instances.

Recall = TP
TP + FN

(3)

• The G-mean is the geometric mean of the accuracy of each class.
G-mean =

√

Specif icity × Recall (4)
where the Specif icity = TN

TN+FP . Here the sizes of different classes have already been considered so it is a
good measurement for class-imbalanced learning.

• The F-measure

F-measure = 2 × Precision × Recall
P recision + Recall

(5)

where the Precision = TP
TP+FP . It is designed as the harmonic mean of precision and recall, and can be

generalized in F�

F� = (1 + �2) ×
Precision × Recall

�2 × Precision + Recall
(6)

where � is a weight for precision and recall. The greater the �, the higher the domination of recall.
• The Adjusted F-measure (AGF) (Maratea et al., 2014)

AGF =
√

F2 × InvF0.5 (7)
where F2 is computed by setting � = 2 in F� and InvF0.5 is computed on the confusion matrix in Table 2:
Compared to the confusion matrix in Table 1, it switches the class labels of each samples (positive samples
become negative and vice versa). Using the confusion matrix in Table 2, InvF0.5 is computed as the standard
F0.5

Performances on the HCP dataset used for training and testing will be assessed using these measurements.
2.7. Statistical analysis on TVA data

After assessing results on the HCP dataset, we want to validate its use on an external dataset, the TVA dataset, and
quantitatively compare the distribution of PPs in the STS with the manually identified PPs of the HCP data (Bodin
et al., 2021), according to different depth ranges and PPs types. We also report the number of PPs per individual and
compare the distribution between hemispheres per type of PPs. We also looked at the link between PPS and their
position along the STS, as well as with the variations of sulcal depth along the STS fundus. A parametrisation of the
STS fundus was performed as in (Cykowski et al., 2008; Bodin et al., 2018), resulting in 101 equally spaced positions
along the fundus, with 0 being at the anterior extremity and 100 at the posterior extremity. Depth was computed at
each of these positions using the same method as in (Rettmann et al., 2002; Bodin et al., 2018). All comparisons were
performed using a non-parametric Wilcoxon signed rank test.
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3. Results
In order to assess the performance of our EnsSVM model, we compared it to other machine learning algorithms.

Each algorithm was trained and tested on the HCP dataset, with the evaluation measures presented in section 2.6. After
this comparison, we present an application of our method to the independent TVA dataset, and discuss a statistical
analysis of the prediction results compared to the manual labelling on the HCP dataset.
3.1. Comparison with alternative methods

Two different datasets have been generated in order to compare and evaluate the different algorithms: 1. Balanced
dataset, where a subset of the negative dataset was randomly chosen to have the same size as positive dataset; 2.
Imbalanced dataset after augmentation of PPs, where the ratio PPs ∶ non-PPs ≈ 1 ∶ 5

In this section, we compare the performances of our proposed EnsSVM model with the following methods:
1. single SVM trained on the imbalanced dataset.(Chang and Lin, 2011)
2. single SVM trained on the imbalanced dataset, weighted by the 1 : 5 unbalance ratio. Labels are weighted

inversely proportional to class frequencies.
3. single SVM trained on the balanced dataset.
4. bagging SVM trained on the balanced dataset with linear and radial basis function (RBF) kernels respec-

tively.(Breiman, 1996)
5. random forest on the balanced dataset.(Breiman, 2001)
6. extra-trees on the balanced dataset.(Geurts et al., 2006)
Bagging, random forests, and extra-trees are other form of ensemble learning in order to deal with imbalanced data,

which is why we chose them for comparison, and random forests are a an extension of Bagging. The main difference
between bagging and our ensemble learning is the way the sub-training sets are generated. Bagging is done using the
balanced dataset, and sub-training sets are generated randomly from this balanced dataset (bootstrap with replacement),
whereas the EnsSVM approach is drawing subsets of the majority class in order to build multiple sub-training sets that
are balanced and contain the entire minority class. In our experiments, we trained and tested all the algorithms on
the HCP data with a 10-fold cross-validation. For hyper-parameter selection of models, we used a 10 × 10 nested
cross-validation. Here, for each fold of cross-validation, the test data category has the same distribution as the original
data and the feature images (or vectors) are generated using the ASD maps. Without specification, we used radial
basis function (RBF)(Buhmann, 2003) kernels for all SVMs. In particular, the training of general bagging models and
EnsSVM was performed using 21 component classifiers, and the Random Forest and Extra-trees used 500 decision
trees (DT), which we determined empirically to be a high enough number to get robust and high performances. All
base classifiers were implemented using the scikit-learn packages (Pedregosa et al., 2011).

Table 3 presents the performance for all the methods and the best results are in bold. As visible, EnsSVM achieves
the best results in Recall, G-mean and AGF, and the Extra-trees of 500 decision trees performs best in F-measure,
whereas the single SVM trained on the imbalanced dataset was the worst. In comparison with all single SVMs,
ensemble methods show improved performances. In particular, this shows the importance of a proper sampling for
the majority class (negative data) that has a significant impact on prediction results.

We tested the significance of these differences by performing statistical testing (non parametric signed-rank
Wilcoxon) over the 10-fold cross-validation on the Recall values. As shown in Table 4, all differences were significant
with at least p<0.05, except for the difference between SVM on the balanced dataset and SVM with Bagging.
3.2. Prediction results

In order to better understand our results, we focus on the prediction results of our EnsSVM model. Figure 10-a
shows the Recall rate across different ranges of depth. Intuitively, the deeper a PP the more buried it is and the more
difficult it is to detect. Our model yielded an excellent prediction (mean Recall> 90%) on the most superficial PPs with
depth ∈ [0, 5.0)mm. As depth increases, the prediction accuracy decreases, as expected. In particular, for the deepest
PPs, with depth above 20mm, Recall falls below its overall mean (81.1%) but is still high with a score of 78.5%. The
mean recall is above 80% for all depth up to 15mm. In order to compare to previous work on PPs, we used the same
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Table 3
The average values of model performance measures

Models Recall G-mean F-measure AGF
EnsSVM 0.811 0.773 0.527 0.774
Bagging SVM 0.786 0.764 0.520 0.764
Bagging linear SVM 0.715 0.487 0.291 0.540
Random Forest 500DT 0.749 0.762 0.528 0.760
Extra-trees 500DT 0.761 0.766 0.531 0.764
SVM (balanced data) 0.781 0.764 0.522 0.764
SVM (weighted data) 0.704 0.766 0.547 0.762
SVM (imbalanced data) 0.298 0.540 0.423 0.550

Table 4
signed-rank Wilcoxon test results between classifiers, for Recall on 10-fold cross validation

Models EnsSVM BagSVM BaglinSVM RF500 ET500 SVMbal SVMwei SVMimb
EnsSVM − ∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
BagSVM ∗ − ∗∗ ∗∗ ∗ − ∗∗ ∗∗
BaglinSVM ∗∗ ∗∗ − ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
RF500 ∗∗ ∗∗ ∗∗ − ∗ ∗ ∗∗ ∗∗
ET500 ∗∗ ∗ ∗∗ ∗ − ∗∗ ∗∗ ∗∗
SVMbal ∗∗ − ∗∗ ∗ ∗∗ − ∗∗ ∗∗
SVMwei ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ − ∗∗
SVMimb ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ −

−: no significant difference, ∗: p < 0.05, ∗∗: p < 0.01

DPF-based criterion to separate deep and superficial PPs than the one used in (Bodin et al., 2021; Le Guen et al., 2018).
In particular, in (Le Guen et al., 2018) only superficial PPs were detected. We then calculated Recall (Figure 10-b) for
both categories. The mean Recall of superficial PPs and Deep PPs is 92.4% and 78.98% respectively. The above results
indicate that the EnsSVM has a good prediction accuracy for the detection of PPs, including for the very difficult cases
with PPs buried in the depth of the STS, and very good results for the more superficial PPs.

(a) Recall vs. Depth (b) Recall vs. Types of PPs

Figure 10: The Recall of EnsSVM across various categories of PPs.

3.3. Post-processing
To further test the post-processing algorithm, we randomly selected 10 subjects with manually labelled PPs (both

left and right hemispheres) and used the remaining data to train the EnsSVM model. For each detected PP region, we
count the number of points in the region (one region is a set of consecutive points labelled as PP), and show the resulting
histogram in Figure 11-a. For each PP region, we computed the associated mean EnsSVM probability. The EnsSVM
probability of a PP point is the mean probability of all SVM base classifiers.The probability value as a function of the
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number of points in a PP region is shown in Figure 11-(b). As we can see, regions containing one or two points are
frequent, with 32 and 28 occurrences respectively. However, they also have the lowest associated probability, with a
median probability of 0.67 and 0.73 respectively, below the average probability of all predicted PPs regions containing
three or more points (> 0.8).

Interestingly, after comparing with manual labels, the regions containing only one to two vertices are all false
positive cases. This therefore confirms the choice we made for our post-processing strategy (section 2.5).

(a) (b)

Figure 11: Statistics of predicted PPs regions using EnsSVM on test dataset of 10 subjects. (a) we count the number
of predicted regions with different points; (b) the average probability of each region is calculated by the average of the
probabilities of the predicted PPs points in each region.

We also computed the number of regions that were detected as PPs after post-processing, and compared it to the
number of PPs manually labelled. As shown in Figure 12, distributions of these numbers across depth intervals are
similar between automatic and manual detection.

Figure 12: Comparison between the numbers of manually annotated and predicted labels on the testing set of the HCP
data across depth ranges.

Beyond the accuracy of the detection, and since we detect regions of 3 to 5 points instead of single vertices,
we wanted to test the spatial precision of the detection. We computed the distance between the vertex with highest
probability value in each region with the closest manually labelled PP. The average distance is 4.53mm, which
corresponds on average to 3 vertices (the average distance between consecutive vertices on the fundus of the STS
is 1.57mm for our dataset). This might be considered slightly high but it is not completely informative because false
positives are introducing a strong bias: a false positive having no real counterpart will have a possibly large distance to
another PP and will therefore bias the average towards a higher value. On the 10 subjects of the testing set, 87.5% of
the PPs are included in a detected region (which is in line with our average Recall score). For these, the mean distance
is 1.72mm, which on average corresponds to a little more than one vertex away. Therefore we reach a good level of
precision for features that we consider being at least 3 vertices wide. For the remaining 12.5%, the mean distance is
9.76mm, which confirms that our overall mean distance is being biased by these.
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Table 5
Distances among different max PPs region size

Max region size 3 4 5 6 7 8 9
Distance 4.69 4.73 4.53 4.69 4.57 4.55 4.6

Finally, we investigated our post-processing choice of limiting region size to 5 vertices. We computed the same
overall mean distance between detected regions and true PPs, with the maximum size of regions varying from 3 to 9.
Results are given in Table 5. It shows that a maximum size of 5 provides the best performance, i.e. the minimum value
(4.53mm), which also supports our post-processing choice.
3.4. Validation with external data

Using the classifiers trained on the HCP dataset, we conducted a validation on the external TVA dataset. We applied
the trained classifiers, and the post-processing of regions, on the TVA dataset and some examples are shown in Figure
13. We then quantitatively compared the distribution of PPs in the STS with the one from the manually identified PPs
on the HCP data.

Figure 13: Examples of predicted PPs regions and selected PPs points. The LEFT figures show the PPs regions generated
from the EnsSVM. The RIGHT figures show the selected PPs points using post-processsing algorithm.

On both hemispheres of the 92 subjects of the TVA data, 1085 PPs were detected, with 540 PPs in the left STS and
545 PPs in the right hemisphere. We detected 2 to 11 PPs in the left STS (Meanl = 5.86) against 3 to 10 in the right
STS (Meanr = 5.92), and there was no significant difference between left and right STS across individuals (p = 0.84;
Wilcoxon signed-rank test), which is identical to the manual results produced on the HCP data in (Bodin et al., 2021).
It is noticeable that our automatic classification detected more PPs per hemisphere than the manual identification on
the HCP data (Meanl = 4.5, Meanr = 4.3). Nevertheless, the distribution of the number of PPs across depth ranges or
different types of PPs is similar, as shown in Figure 14-a.

Again, PPs were subdivided into into superficial and deep ones. In the left STS, the number of superficial PPs
Ns = 125 and the number of deep PPs Nd = 415, with a ratio of 1 ∶ 3.32, while in the right STS, Ns = 67 and
Nd = 478, with a ratio of 1 ∶ 7.13. The ratios of superficial PPs to deep PPs differed significantly between left and
right STS across individuals (p < 0.05; Wilcoxon) which is consistent with manual results presented in (Bodin et al.,
2021). This difference in distribution across depth ranges between left and right is illustrated in Figure 14(b). It is
visible that the PPs in the right STS are located in deeper regions than the left (see examples in Figure 13), which again
is consistent with (Bodin et al., 2021) and is in agreement with the fact that the right STS is notoriously deeper than
the left STS (Leroy et al., 2015).

T. Song, C. Bodin, O. Coulon: Preprint submitted to Elsevier Page 16 of 22



(a) HCP vs. TVA

(b) Left STS vs. Right STS

Figure 14: The prediction results of PPs

In order to further study the distribution of PPs along the STS, we counted the number of all PPs according to their
coordinate range in the STS, as shown on the histogram in Figure 15. We found that there was no significant difference
between left and right hemispheres per STS coordinates (p = 0.71; Wilcoxon). As we can see, the number of PPs
between left and right hemisphere across ranges of STS coordinates is similar. These results show that the relative
positions of PPs between left and right STS are stable at the group level.

Figure 15: The distribution of PPs based on STS coordinates
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We then specifically looked at the superficial PPs (SPs) along the STS at the group level. Figure 16 illustrates both
the distribution of superficial PPs and the sulcal depth of the left and right STS. A rightward asymmetry of depth
emerges almost simultaneously with a large difference in the number of superficial PPs between left and right: small
differences in both depth and number of SPs are visible up to coordinate 48, then, from coordinate 49 to 75, a depth
asymmetry becomes progressively larger together with a difference in the the number of SPs between left and right
hemispheres. The depth asymmetry in the coordinate interval 49-93 corresponds to the “STAP” (Superior Temporal
Asymmetrical Pit) previously described in (Leroy et al., 2015; Bodin et al., 2018). In this region, there is more SPs
in the left hemisphere than in the right (51 > 10), and the number of SPs differs significantly between left and right
hemispheres across individuals (p < 0.0001; Wilcoxon). In combination with the distribution of all PPs in this region,
we found that the number of PPs was identical between left and right hemispheres in this region, while there were more
SPs in the left-hemispheres than the right.

Figure 16: Superficial PPs and the STS depth asymmetry. The histogram shows the number of superficial PPs (SP)
between left (in red) and right (in green) STS. The average depth of left (in light blue) and right (in dark blue) STS
fundus, with depth values (mm) on the right vertical axis. The STAP region defined in (Bodin et al., 2018) is represented
by the orange overlap.

4. Discussion
In this work, we were interested in the “annectant gyri” or “plis de passages” (PPs), which have been regarded as

potential landmarks to partly explain the variability of cortical foldings across individuals. The PPs describe transverse
gyri that interconnect both sides of a sulcus, are frequently buried in the depth of these sulci, and are sometimes apparent
on the cortical surface. Based on this definition, the PPs are classified into two categories, namely the “Superficial PPs”
and the “Deep PPs”. For the superficial PPs, they always appeared with a clear variation of sulcal depth such that some
automated algorithms have been implemented (Cykowski et al., 2008; Le Guen et al., 2018) but their use of a strict
depth threshold leads to difficulties in distinguishing deep PPs and small fluctuations of the fundus depth (Ochiai et al.,
2004). Inspired by the description of interlocking gyri (Cunningham, 1890a,b, 1897), a new general three-dimensional
characteristic, named “wall pinches” (WPs), was proposed by (Bodin et al., 2021) that establishes a continuity between
deep and superficial PPs. This local geometrical clue laid the foundation for the automatic detection of PPs. In our work,
we proposed the first machine learning based method to automatically detect PPs based on these features, trained and
tested it on the HCP dataset and validated it on an independent dataset (TVA).

Generally, our method provides a good prediction accuracy for PPs (Recall = 81.1%). Results on the independent
TVA data also show a similar distribution of PPs across different ranges of depth or categories of PPs as the manual
labels of HCP data. Both these results reinforce the robustness of our methods and its ability to identify WPs in order
to detect PPs. Meanwhile, the prediction accuracy of PPs across different ranges of depth or categories of PPs also
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shows the difficulty in identifying the deep PPs, but with still a Recall of 78.98%. Overall we are able to detect PPs at
all depths and without the use of a threshold.
4.1. Selection of feature maps and sampling strategy

One main limitation of the manual labeling of PPs, besides the fact that it is a very tedious task, is the subjective
assessment of the presence of WPs. In (Bodin et al., 2021), this is done by using manually tuned, subject dependent,
thresholds on both DPF and curvature maps. It took a large amount of training for the main author (C. Bodin) to provide
a robust and reproducible detection.

Besides, these maps have drawbacks considering the problem at hand: for the curvature map, very large curvatures
are found on gyral crests, leading to much higher values compared to WPs; the DPF mostly shows variations of
depth, and since depth represents geodesic distances to the gyral crown, the main direction of variation of the DPF is
orthogonal to the WPs. To overcome these limitations, we implemented the AverSampleDis (ASD) maps introduced in
(Li et al., 2010). Both experimental results and visualisation showed the superiority of new map in PPs identification
compared to the DPF and curvature map.

The comparison of several learning algorithms (section 3.1) also stresses the importance of taking into account
the imbalanced aspect of the problem. In particular it almost shows the importance of a proper sampling strategy
to correct for this. Indeed, learning on the imbalanced dataset performs extremely poorly (SVM on the imbalanced
dataset in Table 3) and learning on a balanced dataset does improve performances significantly. Nevertheless it involves
subsampling the majority class by a factor 5 in our case, which can randomly result in a bad representation of this group.
The efficiency of the ensemble SVM approach that repeats that subsampling in order to provide the best statistical
representation of the majority class is visible in Table 3.
4.2. PPs as local landmarks in superior temporal sulcus (STS)

From the prediction results on the TVA dataset, we observe that the number of PPs between left and right STS is
similar, which is consistent with the results in (Bodin et al., 2021) but different from the observation in (Le Guen et al.,
2018), where they found more PPs in the left than in the right STS. This is caused by the fact that automatic methods
applying a threshold on depth, such as the one proposed in (Le Guen et al., 2018), find their limitation when PPs are
buried in the depth of sulci, or simply when PPs are visible on the floor of a sulcus that is overall deeper than average.
This is the case for the STS, which is notably deeper in the right hemisphere than in the left (Leroy et al., 2015). Such
PPs do not pass the thresholds and are therefore rejected as noise (Bodin et al., 2021). Besides, we observed more
superficial PPs in the left STS than the right around the STAP region at the group level. It might be due to the fact that
the fundus of the left STS is more shallow than on the right one, but it also possibly is the reverse relationship, with
more superficial PPs in the left leading to a reduced average depth compared to the right. Nevertheless, the fact that
the entire STAP can be detected at the individual level (Leroy et al., 2015) tends to favor the first hypothesis.

We also showed that there is no significant difference between left and right STS in the distribution of PPs across
STS coordinates (along the sulcus), reinforcing the fact that PPs are potentially useful landmarks in the STS.
4.3. Wall pinches and their links with connectivity

Our method does not exactly provide the same number of PPs than manual labeling, in both hemispheres.
Specifically, we find on the TVA dataset that we detect on average one more deep PP per hemisphere than the manual
labelling performed on the HCP dataset. The exact nature of PPs and WPs need to be further explored to understand
why we might have such (small) discrepancy and to detect the proper number of PPs, in particular deep ones. One
limitation of our work is that we only used the local morphological information (shape features that characterize WPs)
to detect PPs. Nevertheless, we showed in a previous study (Bodin et al., 2021) that there is a specific relationship
between superficial white matter U-shape fiber connectivity. This can also been noted in other recent studies (Catani
et al., 2012; Pron et al., 2021). It is worth also noting that recent work about ”cortical 3-hinges” or “3-hinge Gyri”,
which are similar structures to WPs, have reported a stronger structural connectivity for these structures (Li et al.,
2010; Ge et al., 2018; Zhang et al., 2020a,b). Finally, a recent Klingler dissection work (Shinohara et al., 2020) has
studied cortical features called 3-way junctions, that has a striking resemblance with WPs and 3-hinge gyri. This study
showed that 3-way junctions are locations of denser superficial white matter fiber terminations and possibly the hubs
of superficial white matter connectivity networks. All these studies converge to suggest that WPs and therefore PPs
have a strong relationship with local superficial white matter connectivity, and this information could be used in a
automated detection algorithm to provide reliable maps of PPs.
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5. Conclusion
In this paper, we present the first machine learning based method to automatically detect plis-de-passage (PP) in

the superior temporal sulcus (STS). This difficult problem is addressed using geometrical descriptors and machine
learning while taking into account the imbalanced nature of the problem. Our results are very consistent with manual
labeling, and show similar distributions of PPs across two different datasets. They further confirm that the number of
PPs between left and right STS are similar while there are more superficial PPs in the left hemisphere than the right.

We advocate for the fact that PPs are essential landmarks to understand sulcal variability across individuals (Bodin
et al., 2021; Regis et al., 2005), and this work will open the way to their use for understanding cortical variability and
organisation.

In order to do so, further work will focus on introducing local white matter connectivity information in our models,
and we will study the possibility of generalization of our process to all sulci on the cortical surface.

6. Code availability
All codes for feature computation, classification using EnsSVM, and post-processing, are available on the following

public repositery: https://github.com/tianqisong0117/EnsSVMforPPs
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