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Enumeration of walks with small steps avoiding a
quadrant

Andrew Elvey Price *1

1 CNRS, Institut Denis Poisson, Univertsité de Tours, France

Abstract. We address the enumeration of walks with weighted small steps avoiding
a quadrant. In particular we give an exact, integral-expression solution for the gener-
ating function C(x, y; t) counting these walks by length and end-point. Moreover, we
determine precisely when this generating function is algebraic, D-finite or D-algebraic
with respect to x, showing that this complexity is the same as for walks in the quarter-
plane with the same starting point, as long as the starting point (p, q) of the walks lies
in the quarter plane then. Finally, we give an integral-free expression for the solution
in the cases where (p, q) lies just outside the quarter plane, that is p = 0 or q = 0 with
our convention, proving a conjecture of Raschel and Trotignon.

Keywords: Lattice path, elliptic function, cone

1 Introduction

The systematic study of walks with small steps in the quarter plane was initiated by
Bousquet-Mélou and Mishna in 2010 [5], and since then there has been great progress
on the model [2, 14, 19, 18, 17, 1, 16, 8, 9]. The model is defined as follows: given a step
set S ⊂ {−1, 0, 1}2 \ {(0, 0)}, determine the generating function

Q(x, y; t) =
∞

∑
n=0

∑
i,j≥1

q(i, j; n)tnxiyj,

where q(i, j; n) is the number of walks of length n, starting at (1, 1), and ending at (i, j)
using steps in S and staying in the strictly positive quadrant.1 A priori, there are 256 dis-
tinct step sets S, but after removing duplicates and cases that are equivalent to half-plane
models, Bousquet-Mélou and Mishna indentified 79 non-trivial and combinatorially dis-
tinct models. The study of these models is now in some sense complete as it is known
for each S precisely where the generating function fits into the hierarchy

Algebraic ⊂ D-finite ⊂ D-Algebraic.

*andrew.elvey@univ-tours.fr.
1Note that most of the literature has considered the equivalent question of walks starting at (0, 0) and

staying in the non-strictly positive quadrant, for which the resulting generating function is 1
xy Q(x, y; t).
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Recall that a generating function G(x) is called Algebraic with respect to the variable
x if it satisfies some non-trivial polynomial equation P(G(x), x) = 0, whose coefficients
do not depend on that variable (but may depend on other variables), and it is called
D-finite (resp. D-algebraic) if it satisfies a linear (resp. polynomial) differential equation
with respect to x whose coefficients are polynomials in x. For a multivariate series to be
algebraic (resp. D-finite, D-algebraic) it must be algebraic (resp. D-finite, D-algebraic)
with respect to each variable.

Of the 79 models proposed by Mishna and Bousquet-Mélou, 4 models admit an alge-
braic generating function [5, 2], 19 further models admit a D-finite generating function
[5, 14], 9 further models admit a D-algebraic generating function [1, 16] and the remain-
ing 47 models admit a generating function which is not D-algebraic [8, 9]. Moreover, in
the 74 cases known as non-singular, an exact integral expression is known for the gen-
erating function [19], while other exact expressions are known in the 5 singular cases
[18, 17]. In recent years a number of articles have focused on the equivalent question for
walks avoiding a quadrant [4, 20, 6, 11, 3], that is determining the generating function
C(x, y; t) which counts walks starting at (1, 1) whose intermediate points are required to
lie in the three-quadrant cone

C = {(i, j) : i > 0 or j > 0}.

Between them these 5 articles classify 10 models into the complexity heirarchy (algebraic,
D-finite, D-algberaic), while excursions have been enumerated for 4 further models [7,
12]. Remarkably the generating function has the same nature in each case as in the
quarter plane, a fact that led Dreyfus and Trotignon to conjecture that the nature is the
same for any of the 74 non-singular step-sets S [9]. We give exact integral expression
solutions for C(x, y; t) in each of these 74 cases, analogous to those of Raschel in the
quarter-plane [19]. We then prove that the nature of C(x, y; t) as a function of x (or y)
is the same as that of Q(x, y; t), and we conjecture that these series also have the same
nature as functions of t. In fact we do this in the more general setting of walks with
weighted steps and starting at any point in the positive quadrant or on the positive x-
axis.

Note that by our definition, steps directly between (1, 0) and (0, 1) are allowed,
whereas they are forbidden in [6], for example. We do not expect this to affect the
nature of the generating function.

2 Functional equations for walks avoiding a quadrant

We start with a step-set S ⊂ {−1, 0, 1}2 \ {(0, 0)}, a weight ws > 0 for each s ∈ S and
a starting point (p, q) with p > 0, q ≥ 0. We will determine the generating function
C(x, y; t) counting walks starting at (p, q), taking steps from S with all intermediate
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points lying in the three-quadrant cone C and with the weight of the walk being the
product of the weights ws of the steps. Note that the standard starting point is (p, q) =
(1, 1) and in the unweighted case ws = 1 for each s ∈ S.

The following lemma results from considering the final step of a walk counted by
C(x, y; t):

Lemma 1. Define the single step generating function P(x, y) by

P(x, y) = ∑
(α,β)∈S

w(α,β)x
αyβ

Then there are series AH(
1
x ; t) ∈ t

x Z[ 1
x ][[t]], AV(

1
y ; t) ∈ t

y Z[ 1
y ][[t]] and B(t) ∈ tZ[[t]] which

satisfy

C(x, y; t) = xpyq + tP(x, y)C(x, y; t)− B(t)− AH

(
1
x

; t
)
− AV

(
1
y

; t
)

. (2.1)

Moreover, this equation together with the fact that c(i, j; n) = 0 for i, j ≤ 0, characterises the
generating function

C(x, y; t) = ∑
t≥0

∑
i,j∈Z

c(i, j; n)xiyjtn,

as well as the series AH, AV and B.

The series AH, AV and B in the lemma above can be understood combinatorially:
They count walks starting at (p, q) and ending just outside C whose intermediate points
all lie within C. More precisely, AH(

1
x ; t) counts those walks ending on the negative

x-axis, AV(
1
y ; t) counts those walks ending on the negative y-axis, and B(t) counts those

walks ending at (0, 0).
The unusual condition that the coefficients c(i, j; n) of C(x, y; t) vanish for i, j ≤ 0

makes this equation difficult to solve directly, so we partition C into three quadrants
Q−1 = {(i, j) : i > 0, j < 0}, Q0 = {(i, j) : i > 0, j ≥ 0} and Q1 = {(i, j) : i ≤ 0, j > 0},
as shown in figure 1. A similar decomposition was used in [4, 6], but we have shifted the
quadrants Q−1,Q0 down one space compared to those articles so that it is impossible to
step directly between Q−1 and Q1 and so that our condition on the starting point (p, q)
is now that (p, q) ∈ Q0.

Now, for j = −1, 0, 1, we define Qj(x, y; t) to be the generating function counting
walks in C, starting at (p, q) and ending in Qj, so

C(x, y; t) = Q−1(x, y; t) +Q0(x, y; t) +Q1(x, y; t),

and Q−1 ∈ x
y Z
[

x, 1
y

]
[[t]], Q0 ∈ xZ [x, y] [[t]] and Q1 ∈ yZ

[
1
x , y
]
[[t]]. The follow-

ing lemma rewrites (2.1) as three equations characterising Q−1(x, y; t), Q0(x, y; t) and
Q1(x, y; t).
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Q0

Q−1

Q1

Figure 1: The three-quadrant cone C partitioned into three quadrants Q1, Q0 and Q−1.

Lemma 2. Define the kernel K(x, y; t) = tP(x, y) − 1. There are series V1(y; t), V2(y; t) ∈
Z[y][[t]] and H1(x; t), H2(x; t) ∈ Z[x][[t]] satisfying the three equations

K(x, y; t)Q−1(x, y; t) = AV

(
1
y

; t
)
+ H1(x; t) +

1
y

H2(x; t) (2.2)

K(x, y; t)Q0(x, y; t) = −xy + B (t)−V1(y; t)− xV2(y; t)− H1(x; t)− 1
y

H2(x; t) (2.3)

K(x, y; t)Q1(x, y; t) = AH

(
1
x

; t
)
+ V1(y; t) + xV2(y; t). (2.4)

Moreover, these three equations characterise the series Q−1(x, y; t), Q0(x, y; t), Q1(x, y; t), V1(y; t),
V2(y; t), H1(x; t), H2(x; t), AH

(
1
x ; t
)

, AV

(
1
y ; t
)

and B(t).

Combinatorially, the series (V1(0; t)− V1(y; t)) (resp. xV2(y; t), (H1(x; t)− H1(0, t)),
1
y (H2(0; t)− H2(x; t))) counts walks whose final step is from Q0 (resp. Q1, Q−1, Q0) to
Q1 (resp. Q0, Q0, Q−1).

2.1 Parameterisation of the kernel curve

Following the method used in the quarter plane pioneered by Fayolle and Raschel [13,
19] we start by fixing t ∈

(
0, 1

∑s∈S ws

)
and then we consider the curve W = {(x, y) :

K(x, y; t) = 0}. From now on, we will make the following assumption:
Assumption: S is a non-singular step-set. That is, for any line ` through the origin, at
least one element of S lies on each side of `.
As explained in [6], if S did not have this property, the generating function C(x, y; t)
would be algebraic.
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Under this assumption, the curve W is known to have genus 1, so we will be able
to parameterise it using elliptic functions X(z) and Y(z). More precisely the following
lemma follows from [10, Proposition 2.1, Lemma 2.6].

Lemma 3. There are meromorphic functions X(z), Y(z) : C → C ∪ {∞} and numbers γ, τ ∈
iR with =(πτ) > =(2γ) > 0 satisfying the following conditions

• K(X(z), Y(z)) = 0
• X(z) = X(z + π) = X(z + πτ) = X(−γ− z)
• Y(z) = Y(z + π) = X(z + πτ) = Y(γ− z)
• |X(−γ

2 )|, |Y(
γ
2 )| < 1

• Counting with multiplicity, the functions X(z) and Y(z) each contain two poles and two
roots in each fundamental domain {zc + r1π + r2πτ : r1, r2 ∈ [0, 1)}.

Moreover, X(z) and Y(z) are differentially algebraic with respect to z.

We intend to substitue x → X(z) and y→ Y(z) into (2.2), (2.3) and (2.4), however we
can only do this as long as the series in these equations converge, which occurs as long
as |x| ≤ 1 ≤ |y| for (2.2), |x|, |y| ≤ 1 for (2.3) and |y| ≤ 1 ≤ |x| for (2.4). So to substitute
x → X(z) and y → Y(z), we need to understand how |X(z)| and |Y(z)| compare to 1,
for which we use the following lemma, which follows from [10, Lemma 2.9].

Lemma 4. The complex plane can be partitioned into simply connected regions {Ωs}s∈Z (see
Figure 2) satisfying ⋃

s∈Z

Ω4s ∪Ω4s+1 = {z ∈ C : |Y(z)| < 1},
⋃

s∈Z

Ω4s ∪Ω4s−1 = {z ∈ C : |X(z)| < 1}

and for s ∈ Z,

π + Ωs = Ωs,
sπτ + γ−Ω2s ∪Ω2s+1 = Ω2s ∪Ω2s+1,
sπτ − γ−Ω2s ∪Ω2s−1 = Ω2s ∪Ω2s−1.

2.2 Analytic reformulation of functional equations

Using the results in the previous section, we can substitute x = X(z) and y = Y(z) into
(2.2), (2.3) and (2.4) for z in the regions Ω−1, Ω0 and Ω1, respectively, yielding (2.9),
(2.10) and (2.11) in the following proposition:
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Ω0

Ω1

Ω2

Ω3

Ω4

Ω−1

Ω−2

Ω−3

Ω−4

0 π−π

γ
2

−γ
2

−πτ−γ
2

−πτ
2

−πτ+γ
2

−πτ + γ
2

−πτ

πτ+γ
2

πτ
2
πτ−γ
2

πτ − γ
2

πτ

|X(z)|, |Y (z)| < 1

|Y (z)| < 1 ≤ |X(z)|

|X(z)|, |Y (z)| < 1

1 ≤ |X(z)|, |Y (z)|

|X(z)|, |Y (z)| < 1

|Y (z)| < 1 ≤ |X(z)|

|X(z)| < 1 ≤ |Y (z)|

|X(z)| < 1 ≤ |Y (z)|

1 ≤ |X(z)|, |Y (z)|

Figure 2: The complex plane partitioned into regions Ωj. For z on the blue lines,
|Y(z)| = 1, while on the red lines |X(z)| = 1.

Proposition 1. The functions

LH(z) := H1(X(z); t) +
1

Y(z)
H2(X(z); t), for z ∈ Ω0 ∪Ω−1, (2.5)

LV(z) := V1(Y(z); t) + X(z)V2(Y(z); t), for z ∈ Ω0 ∪Ω1, (2.6)

PV(z) := AV

(
1

Y(z)
; t
)

, for z ∈ Ω−1 ∪Ω−2, (2.7)

PH(z) := AH

(
1

X(z)
; t
)

, for z ∈ Ω1 ∪Ω2. (2.8)

are well defined and satisfy the equations

0 = PV(z) + LH(z) for z ∈ Ω−1, (2.9)
0 = −X(z)pY(z)q + B (t)− LV(z)− LH(z) for z ∈ Ω0, (2.10)
0 = PH(z) + LV(z) for z ∈ Ω1 (2.11)

PH(z) = PH(πτ − γ− z) = PH(z + π) (2.12)
PV(z) = PV(−πτ + γ− z) = PV(z + π) . (2.13)
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While these equations are apriori defined on different sets, they can be used to show
that the functions extend meromorphically to all of C, and so the equations hold on all
of C. Simply taking the sum of the three equations (2.9), (2.10) and (2.11) yields (2.14) in
the theorem below.

Theorem 1. The functions PH(z) and PV(z) extend to meromorphic functions on C which, along
with the constant B(t), are uniquely defined by the equation

X(z)pY(z)q = PV(z) + B(t) + PH(z), (2.14)

along with (2.12), (2.13) and the conditions
• PH(z) has no poles in Ω0 ∪Ω1 ∪Ω2,
• the poles of X(z) for z ∈ Ω1 ∪Ω2 are roots of PH(z),
• PV(z) has no poles in Ω0 ∪Ω−1 ∪Ω−2,
• the poles of Y(z) for z ∈ Ω−1 ∪Ω−2 are roots of PY(z).

Note that combining (2.14), (2.12), (2.13) yields

PH(2πτ − 2γ + z)− PH(z) = W(z), (2.15)

where W(z) is an elliptic function with periods π and πτ given by

W(z) := (X(z− 2γ)p − X(z)p)Y(z)q.

3 Solving the functional equation

In the previous section we reduced the problem to finding the unique meromorphic
functions PV , PH : C→ C∪ {∞} and constant B(t) characterised by Theorem 1 (for each
t), as these determine AH(

1
x , t) and AV(

1
y , t) using 2.8 and 2.7, respectively, after which

C(x, y; t) is determined by (2.1).
an equation analogous to (2.14) was found by Raschel for walks in the quarter plane

[19], the only difference being that the transformations z→ πτ − γ− z and z→ −πτ +
γ− z here are z→ γ− z and z→ −γ− z in the quarter plane. Raschel used this equation
to derive an integral-expression solution determining Q(x, y; t), and the equation has
since been used to determine precisely when Q(x, y; t) is differentially algebraic [1, 8, 15]
and to determine when it is algebraic or D-finite with respect to x or y [14, 16].

Due to this striking similarity we were able to use these methods to prove the same
results for C(x, y; t), in particular showing that it is D-algebraic in exactly the same cases
as Q(x, y; t) and that it is algebraic or D-finite with respect to x (or y) in the same cases
as Q(x, y; t). We note that Fayolle and Raschel also showed that the unweighted models
that are algebraic or D-finite with respect to t have the same nature with respect to t,
however these results relied on the precise ratios πτ

γ that could occur in these cases, so
they do not apply so readily to our equation. Nonetheless, we expect that the same
result holds for C(x, y; t).
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3.1 Integral expression

In this section we give integral expressions analogous to those of Raschel [19] which
determine PV(z) and PH(z) exactly. In order to write these expressions, we define an
auxiliary elliptic function ω(z) which satisfies

ω(z) = ω(πτ − γ− z) = ω(−πτ + γ− z) = ω(z + π)

and shares the poles of X(z) in Ω1 ∪Ω2, while 1/ω(z) has the same poles as Y(z) in
Ω−1 ∪Ω−2. Finally, ω(z)/X(z) converges to 1 at the poles of X(z) in Ω1 ∪Ω2.

Theorem 2. Let z0 ∈ Ω0 and let L be a path from z0 to z0 + π contained in the closure Ω0 of
Ω0. Then PV(z), PH(z) and B(t) are given by the integrals

PH(u) =
1

2πit

∫
L

X(z)pY(z)q ω′(z)
ω(z)−ω(u)

dz for u ∈ Ω1 ∪Ω2 (3.1)

PV(u) = −
1

2πit

∫
L

X(z)pY(z)q ω(u)
ω(z)

ω′(z)
ω(z)−ω(u)

dz for u ∈ Ω−1 ∪Ω−2 (3.2)

B(t) = − 1
2πit

∫
L

X(z)pY(z)q ω′(z)
ω(z)

dz (3.3)

The proof of this theorem involves checking that these expressions satisfy the condi-
tions in Theorem 1.

3.2 Classification of C(x, y; t) into complexity hierarchy

In this section we very briefly describe the properties of the step set S, or equivalently
X(z) and Y(z), which determine the nature of the generating function C(x, y; t).

In certain cases, called finite group cases, γ = M
N πτ for some positive M, N ∈ Z

independent of t. Then applying (2.15) N times yields

PH(2πτ(N −M) + z)− PH(z) = PH((2πτ − 2γ)N + z)− PH(z) = E(z),

where E(z) is called the orbit sum of the model. We can use this equation to solve for
PH(z), yielding an expression for C(x, y; t) which is D-finite in x. in the cases where
E(z) = 0, we can even prove that C(x, y; t) is algebraic in x.

In all other cases we have γ
πτ /∈ Q for generic t. The model is then said to decouple if

there are rational functions R1, R2 satisfying X(z)pY(z)q = R1(X(z)) + R2(Y(z)). These
cases can be solved (with integral-free expressions) as, using (2.14), the function

f (z) := R1(X(z))− PH(z) = −R2(Y(z)) + B(t) + Pv(z)

is an elliptic function which can be determined exactly. In these cases every function
used is D-algebraic in all of its variables.
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Finally in the infinite group cases which do not decouple, the generating function
can be shown to be non-D-algebraic in x using galois theory of q-difference equations,
as in [8, 15] for Q(x, y; t).

3.3 Special case: walks starting on x-axis

We will now study the special cases where the walk starts at some point (p, 0) for p > 0.
Trotignon and Raschel conjectured that with this starting point all finite group models
admit algebraic generating functions [20]. Indeed, if q = 0 it is easy to see that the
orbit sum E(z) defined is section 3.2 is equal to 0, so this follows from our more general
results. Moreover, if q = 0, the model trivially decouples, so even in the infinite group
case the generating function C(x, y; t) is D-algebraic.

The following lemma follows directly from Theorem 1, where ω(z) is defined as in
Section 3.1.

Lemma 5. If the starting point of the walks is (p, 0) for some p ≥ 1, then there is a degree p
polynomial H satisfying

PV(z) = H(ω(z))− H(0), (3.4)
B(t) = H(0), (3.5)

PH(z) = X(z)p − H(ω(z)). (3.6)

Moreover, this polynomial is uniquely determined by the fact that the right hand side of (3.6) has
a root at z = δ.

In fact, we can convert these directly to formulae for AH, AV and B using series
W1

(
1
x ; t
)
∈ xZ[ 1

x ][[t]] and W2

(
1
y ; t
)
∈ 1

yZ[ 1
y ][[t]] satisfying W1

(
1

X(z) ; t
)

= ω(z) for

z ∈ Ω−1 ∪Ω−2 and W2

(
1

Y(z) ; t
)
= ω(z) for z ∈ Ω1 ∪Ω2. Note that these depend on

the step-set but not the starting point (p, q) of the walk. For general p, we can rewrite
Lemma 5 as the following theorem:

Theorem 3. If the starting point of the walks is (p, 0) for some p ≥ 1, then there is a degree p
polynomial H satisfying

AV

(
1
y

)
= H

(
W2

(
1
y

; t
))
− H(0), (3.7)

B(t) = H(0), (3.8)

AH

(
1
x

)
= xp − H

(
W1

(
1
x

; t
))

. (3.9)

Moreover, this polynomial is uniquely determined by the fact that the right hand side of (3.9) is
a series in 1

x Z[ 1
x ][[t]].
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In the p = 1 case, we have W2

(
1
y ; t
)
= AV

(
1
y

)
and W1

(
1
x ; t
)
= x− B(t)− AH

(
1
x

)
,

which can be used as alternative definitions for W1 and W2.

3.4 Special case: simple walks

We now describe the case of simple walks, that is, unweighted walks with step-set S =
{(0, 1), (1, 0), (0,−1), (−1, 0)}. In this case X(z) and Y(z) can be written in terms of the
Jacobi theta function

ϑ(z, τ) :=
∞

∑
n=0

eiπτn(n+1)
(

e(2n+1)iz − e−(2n+1)iz
)

.

as

X(z) = e−iγ ϑ(z, τ)ϑ(z + γ, τ)

ϑ(z− γ, τ)ϑ(z + 2γ, τ)
and Y(z) = e−iγ ϑ(z, τ)ϑ(z− γ, τ)

ϑ(z + γ, τ)ϑ(z− 2γ, τ)
,

where γ = πτ
4 and is related to t by

e−iγ ϑ
(γ

2 , τ
)2

ϑ
(

3γ
2 , τ

)2 =
1 + 2t−

√
1 + 4t

2t
.

Moreover, the function ω(z) defined in Section 3.1 is given by

ω(z) = e−3iγ ϑ(2γ, τ)ϑ′(0, 3τ
2 )ϑ(γ, 3τ

2 )

ϑ′(0, τ)ϑ(2γ, 3τ
2 )ϑ(3γ, 3τ

2 )
·

ϑ(z + γ, 3τ
2 )ϑ(z + 2γ, 3τ

2 )

ϑ(z− γ, 3τ
2 )ϑ(z + 4γ, 3τ

2 )
,

which has π and 3πτ
2 as periods. Since X(z) and ω(z) share the periods π and 3πτ, they

are related by a polynomial equation. One such equation is

1
2t
−Y(z)− 1

Y(z)
= X(z) +

1
X(z)

− 1
2t

=
ω(z) + c1

ω(z)− c1

(
ω(z) +

c2
1

ω(z)
+ c2

)
,

where c1 and c2 are given by

c1 = −e−iγ ϑ(2γ, τ)ϑ′(0, 3τ
2 )ϑ(γ, 3τ

2 )

ϑ′(0, τ)ϑ(2γ, 3τ
2 )ϑ(3γ, 3τ

2 )
,

c2 =
1 + 4t

2t
· 1 + c3

1− c3
+ c1c3 +

c1

c3
, where c3 = −eiγ ϑ(5γ

2 , 3πτ
2 )

ϑ(γ
2 , 3πτ

2 )
.
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So the series W1

(
1
x ; t
)
∈ xZ[ 1

x ] and W2

(
1
y ; t
)
∈ 1

yZ[ 1
y ] defined in Section 3.3 satisfy

− 1
2t

+ x +
1
x
=

W1

(
1
x ; t
)
+ c1

W1

(
1
x ; t
)
− c1

W1

(
1
x

; t
)
+

c2
1

W1

(
1
x ; t
) + c2

 ,

1
2t
− y− 1

y
=

W2

(
1
y ; t
)
+ c1

W2

(
1
y ; t
)
− c1

W2

(
1
y

; t
)
+

c2
1

W2

(
1
y ; t
) + c2

 .

Then for any starting point (p, 0), the generating functions AH, AV , B and hence C(x, y; t)
can be determined by Theorem 3. Moreover, c1, c2 and t can be shown to be modular
functions of τ, so they are all algebraically related. Hence in these cases the generating
function C(x, y; t) is algebraic in t as well as the other variables.

4 Nature of C(x, y; t) with respect to t

The main remaining problem is to prove that the generating function C(x, y; t) has the
same nature (algebraic, D-finite, D-algebraic) as a function of t as it does as a function
of x and y. Even for Q(x, y; t), which counts walks confined to a quadrant, this has not
been proven for weighted models, so it is not surprising that we have so far been unable
to prove it for C(x, y; t). However, we expect that if this is proven for Q(x, y; t), the result
for C(x, y; t) will follow using the same method applied to Theorem 1.
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