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This paper addresses the anomaly detection problem for videosurveillance. Due to the inherent rarity and heterogeneity of abnormal events, this problem is tackled from a normality modeling perspective, where our model learns object-centric normal patterns without seeing anomalous samples during training. Our main contributions consist in coupling objectlevel action features with a cosine distance-based anomaly estimation function. We therefore extend previous methods by introducing explicit geometric constraints to the mainstream reconstruction-based strategy. Our framework leverages both appearance and motion information to learn object-level behavior and captures prototypical patterns within a memory module. Experiments on several well-known datasets demonstrate the effectiveness of our method as it outperforms current state-of-the-art on most relevant spatio-temporal evaluation metrics.

INTRODUCTION

Video Anomaly Detection (VAD) is an open research problem which consists in detecting rare occurrences of abnormal events. This is a challenging problem due to two main reasons. Although anomalous events are generally defined as rare occurrences that deviate from normal patterns observed in familiar events [1], this definition does not differentiate anomalous events from rare normal ones. Secondly, abnormal events are inherently more difficult to collect and to learn, due to their few occurrences and the multiplicity of their nature. For these reasons, the VAD problem is often viewed within the one-class paradigm [START_REF] Pang | Deep learning for anomaly detection: A review[END_REF].

In a pioneering work [START_REF] Liu | Future frame prediction for anomaly detection -a new baseline[END_REF], a model is trained to predict future "normal" frame, and anomalies are viewed as inaccurate predictions. The recent method [START_REF] Georgescu | Anomaly detection in video via selfsupervised and multi-task learning[END_REF] combines multiple proxy tasks (e.g. arrow of time prediction) to characterize anomalous events. Other approaches quantify the deviation from learned normal patterns including distance-based [START_REF] Radu | Object-centric autoencoders and dummy anomalies for abnormal event detection in video[END_REF][START_REF] Radu | Detecting abnormal events in video using narrowed normality clusters[END_REF][START_REF] Ramachandra | Street scene: A new dataset and evaluation protocol for video anomaly detection[END_REF][START_REF] Ramachandra | Learning a distance function with a siamese network to localize anomalies in videos[END_REF][START_REF] Doshi | Any-shot sequential anomaly detection in surveillance videos[END_REF] and * Equal contributions reconstruction-based methods [START_REF] Nguyen | Anomaly detection in video sequence with appearance-motion correspondence[END_REF][START_REF] Gong | Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection[END_REF][START_REF] Park | Learning memory-guided normality for anomaly detection[END_REF][START_REF] Georgescu | Anomaly detection in video via selfsupervised and multi-task learning[END_REF][START_REF] Georgescu | A background-agnostic framework with adversarial training for abnormal event detection in video[END_REF]. Although they have been empirically shown to attain impressive performance levels on current standard benchmark datasets, the used strategy is not always in line with the nature of anomalous event detection. In fact, as pointed out in [START_REF] Georgescu | Anomaly detection in video via selfsupervised and multi-task learning[END_REF] , a car stopped in a pedestrian area should be labeled as an anomaly, yet the car is trivial to reconstruct (at a pixel-wise level) in a future frame, since it is still standing. This example shows that pixel-wise reconstruction error is suboptimal for anomaly detection. The recent work [START_REF] Georgescu | A background-agnostic framework with adversarial training for abnormal event detection in video[END_REF] addressed this challenge by learning objectlevel patterns of normal appearance and motion by training a discriminator network to classify (normal vs. abnormal samples) given pairs of reconstruction error maps. Despite being the current state of the art, this method includes out-ofdomain observations during training, introducing a bias to the normality modeling. Instead, we propose to tackle these challenges by extending the mainstream reconstruction assumption on which most state-of-the-art methods [START_REF] Liu | Future frame prediction for anomaly detection -a new baseline[END_REF][START_REF] Gong | Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection[END_REF][START_REF] Park | Learning memory-guided normality for anomaly detection[END_REF][START_REF] Georgescu | A background-agnostic framework with adversarial training for abnormal event detection in video[END_REF] are implicitly based: Given a normality model, normal observations are easier to reconstruct from a low-dimensional representation than abnormal observations. We propose to add geometric constraints in the reconstruction space in order to further narrow down this assumption to be more in line with the anomaly detection task. Different from prior works, we combine a cosine distance-based anomaly estimation function with pretrained object-level features. Additionally, we propose to constrain our model to reconstruct independent motion and appearance features from a single embedding space. This way, our network has fewer degrees of freedom to perform the training task, which is in line with the aforementioned reconstruction assumption. Following [START_REF] Radu | Object-centric autoencoders and dummy anomalies for abnormal event detection in video[END_REF][START_REF] Doshi | Any-shot sequential anomaly detection in surveillance videos[END_REF][START_REF] Doshi | Continual learning for anomaly detection in surveillance videos[END_REF][START_REF] Georgescu | Anomaly detection in video via selfsupervised and multi-task learning[END_REF][START_REF] Georgescu | A background-agnostic framework with adversarial training for abnormal event detection in video[END_REF] we apply an object detector allowing to localize anomalies at the object level, which is semantically more relevant than at the pixellevel. Similarly to [START_REF] Gong | Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection[END_REF][START_REF] Park | Learning memory-guided normality for anomaly detection[END_REF], we incorporate a memory block in our framework in order to model diverse normality patterns. In summary, our contributions are:

• Imposing geometric constraints in the reconstruction space using cosine distance.

• Introducing object-level action prototypical features.

• State-of-the-art results on the most relevant metrics.
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Fig. 1. Overview of OMAE. At the preprocessing step, object bounding boxes and Optical Flow (OF) are computed. Object appearance features, extracted using a pretrained CNN, motion magnitude and angle maps are fed to the corresponding autoencoders. The encoded representations are fused (h) and sent as a query to the memory module which fetches similar memory items. Their linear combination concatenated with h is sent to the decoder to obtain object appearance and motion reconstructions. The anomaly score is defined based on the dissimilarity between the input features and their reconstructions as well the dissimilarity between the query h and its neighbors.

METHOD

Overview

The architecture of the proposed method: OMAE which stands for object centric memory-guided auto-encoder is displayed in Fig. 1.First, we detect objects and compute optical flow for each frame. Next, appearance x app and motion x mo features are extracted for each object. The former are obtained using a pretrained CNN, whereas the latter consist of motion magnitude and angle maps. We denote the input features X = {(x app , x mo ) j ; 1 ≤ j ≤ O}, where O is the total number of objects in the training set. Then, the object representations are encoded and fused into a single embedding h. The three encoders have the same structure: two successive blocks, each block is a shallow fully connected network of two layers. The fusion block consists of a single shallow fully connected network of two layers that learns new embeddings from the concatenation of the three encoders' bottlenecks. Thus, we obtain a single hidden representation combining motion and appearance, which can be interpreted as an object-level action feature vector. We will use H to denote the set of these hidden features corresponding to input vectors in X . This action feature is then used as a query to the memory of normal patterns to extract similar existing prototypes in the memory module M = {m i , 1 ≤ i ≤ N }, where N is the total number of memory items. Similar to [START_REF] Park | Learning memory-guided normality for anomaly detection[END_REF] the most similar memory item m k to the query h is defined as the soft nearest neighbor:

k = argmax 1≤i≤N (w i ) ; w i = exp(h T m i ) N j=1 exp(h T m j ) ; 1 ≤ i ≤ N.
After the memory readout step, and following an attentionmechanism strategy, a linear combination of the memory items is computed as c = N j=1 w j .m j and then concatenated to the query h to obtain an augmented hidden representation z = (c||h) that will be used as input to the decoder network. Finally, a single fully connected decoder network learns to reconstruct x given z. This way, our auto-encoder model is trained to reconstruct object-centric features x under two major constraints:

1. The auto-encoder learns normality patterns (memory items) that allow the reconstruction of both appearance and motion features from a single embedding space.

2. The decoder's reconstructive capacity is limited by the set of memory items thus its generalization ability is reduced, which is useful for detecting anomalies (via poor outlier reconstructions).

During inference, an anomaly score is attributed to each object (cf. Section 2.3) based on the dissimilarity between x and x as well as the dissimilarity between h and its neighbors in the space of prototypical patterns ((m i ) 1≤i≤N ).

Loss functions

To take into account the above-mentioned learning constraints, we combine different loss terms in our objective function. We incorporate a reconstruction term L rec to minimize the discrepancy between the input x and its reconstruction and a memory term L mem to capture normal prototypical patterns observed in the training set. Hence, the total loss is given by: L = L rec + L mem .

Reconstruction Loss: We constrain the reconstruction to not only be in the Euclidean neighborhood of the input but also to lie on the same spatial direction. The geometrical constraint is applied via a cosine distance loss and controlled via the hyperparameter λ cos such that:

L rec = ( x app -xapp 2 + x mo -xmo 2 ) + λ cos × 1 - < x app , xapp > x app 2 xapp 2
Memory Loss: This loss is obtained as a combination of three terms:

L mem = λ comp .L comp + λ tr .L tr + λ OLE .L OLE
Similarly to [START_REF] Park | Learning memory-guided normality for anomaly detection[END_REF], discriminative normality action features prototypes are learnt based on nearest neighbor distances within the memory space via a loss that favors compactness of data samples around prototypes:

L comp = N k=1 j∈U k ; U k =Ø h j -m k 2
where U k ⊂ {1, ..., O} is the subset of training object indices which have the memory item m k as their first nearest neighbor.

We also use the same triplet loss L tr introduced in [START_REF] Park | Learning memory-guided normality for anomaly detection[END_REF]. Contrarily to [START_REF] Park | Learning memory-guided normality for anomaly detection[END_REF], we incorporate a third term L OLE that adds orthogonality constraints within the memory space. This is achieved through the geometric loss formulation proposed in [START_REF] Lezama | Olé: Orthogonal low-rank embedding, a plug and play geometric loss for deep learning[END_REF] for supervised classification. We adapt the OLE (Orthogonal Low-rank Embedding) loss to our setting by formulating the memory query step as a classification problem:

L OLE = N c=1 max(∆, H c * ) -H *
where ∆ is a positive real number that we set to 1 in all our experiments, H c is the sub-matrix of object hidden representations within the batch that are attributed to memory item m c .

. * denotes the nuclear norm i.e the sum of matrix singular values.

Inference: Abnormality score

At test time, given the t th frame, a set of abnormality scores is denoted as S t = {s j t , 1 ≤ j ≤ O t }, where O t is the number of detected objects in frame t.

Each score s j t is computed as follows:

s j t = s = 1 3 s rec L2 + s rec cos + s mem
where:

s rec L2 = g ( x app -xapp 2 + x mo -xmo 2 ) s rec cos = g (1 -<x app ,x app > x app 2 xapp 2 ) + (1 -<x mo ,x mo > x mo 2 xmo 2 ) s mem = g 1 -<h,m k > h 2 m k 2
with g(.) a normalization function:

g( ) = -min max -min
where min and max are the lowest and the highest object level scores respectively across the entire video.

EXPERIMENTS AND RESULTS

Datasets. Several benchmarks had been proposed for evaluating anomaly detection methods [START_REF] Mahadevan | Anomaly detection in crowded scenes[END_REF][START_REF] Lu | Abnormal event detection at 150 fps in matlab[END_REF][START_REF] Luo | A revisit of sparse coding based anomaly detection in stacked rnn framework[END_REF][START_REF] Sultani | Realworld anomaly detection in surveillance videos[END_REF][START_REF] Liu | Exploring background-bias for anomaly detection in surveillance videos[END_REF][START_REF] Ramachandra | Street scene: A new dataset and evaluation protocol for video anomaly detection[END_REF][START_REF] Pranav | A day on campus -an anomaly detection dataset for events in a single camera[END_REF], In order to compare our methods with existing approaches, we performed experiments on the most common datasets : UCSD ped2 [START_REF] Mahadevan | Anomaly detection in crowded scenes[END_REF] includes 16 training and 12 testing videos of resolution 240x360. Anomalous events include riding a bike and driving a vehicle on a sidewalk. CUHK Avenue [START_REF] Lu | Abnormal event detection at 150 fps in matlab[END_REF] consists of 16 training and 21 test videos of resolution 360x640 with abnormal events such as running, walking towards the camera, or throwing papers. We use the annotations provided by [START_REF] Ramachandra | Street scene: A new dataset and evaluation protocol for video anomaly detection[END_REF]. ShanghaiTech [START_REF] Luo | A revisit of sparse coding based anomaly detection in stacked rnn framework[END_REF] contains 330 training and 107 testing videos of resolution 480x856 with 13 different scenes. Each scene has a different background or camera angle. Abnormal events include jumping, running, or stalking on a sidewalk.

Evaluation metrics. Since we focus on spatio-temporal anomaly detection, we adopt the Region-Based Detection Criterion (RBDC) and the Track-Based Detection Criterion (TBDC) metrics introduced in [START_REF] Ramachandra | Street scene: A new dataset and evaluation protocol for video anomaly detection[END_REF] as an alternative to the flawed pixel-level AUC metric. We also report the Area Under of the ROC Curve (AUC) obtained with respect to the frame-level ground-truth annotations. Yet, it gives only a global frame score and, therefore, doesn't reflect the model capacity to localize anomalies. Emphasis is given to the parts of the ROC curve where false positive rate is too high for a practical use [START_REF] Lobo | Auc: a misleading measure of the performance of predictive distribution models[END_REF]. Hence, AUC is the least relevant metric in our study.

Parameters and implementation details. The first step of our framework is to perform object detection using Yolov3 [START_REF] Redmon | Yolov3: An incremental improvement[END_REF] pretrained on COCO dataset as in [START_REF] Georgescu | Anomaly detection in video via selfsupervised and multi-task learning[END_REF][START_REF] Georgescu | A background-agnostic framework with adversarial training for abnormal event detection in video[END_REF][START_REF] Radu | Object-centric autoencoders and dummy anomalies for abnormal event detection in video[END_REF]. We set the detection confidence to 0.7 on ShanghaiTech and Avenue for both the training and testing sets. Since the image resolution of UCSD ped2 is lower, we reduced the threshold to 0.5. We used ResNet101 to precompute appearance features of detected objects and Farneback's algorithm to compute optical flows [START_REF] Farnebäck | Two-frame motion estimation based on polynomial expansion[END_REF]. Similarly to [START_REF] Georgescu | Anomaly detection in video via selfsupervised and multi-task learning[END_REF], we trained the network for 30 epochs on each dataset using Adam optimizer with a learning rate of 10 -3 . We use a batch size of 256 object-level action features for the smallest dataset (UCSD ped2) and 512 for ShanghaiTech and Avenue. For all experiments, we set λ cos = 0.1 so that the cosine term has a similar order of magnitude as the L 2 reconstruction term; as well as fixed empirical values for the number of memory items and the memory loss weights: N = 40, λ comp = 1.6 , λ tr = 0.2, λ OLE = 0.3. The epoch achieving the lowest loss value in training is used for inference. As a post-processing step and similarly to [START_REF] Georgescu | A background-agnostic framework with adversarial training for abnormal event detection in video[END_REF], we apply a spatio-temporal mean filtering to smooth object level scores and a Gaussian filter at the frame level. In the case of Avenue dataset, scale change is taken into account by an anomaly score adjustment: the anomaly score of an object is multiplied by its bounding box width. This post-processing allows an increase of 26% in RBDC and 2% in TBDC without degrading AUC. Ablation study. We conduct an ablation study on Shang-haiTech dataset to assess the importance of each component in our framework. The corresponding results are shown in Table 2. We can see that both appearance and motion features are necessary to model usual actions to better detect anomalies. Indeed, the baseline model takes only appearance features as input and performs lower than the current state of the art on all metrics. Including the motion information through optical flow improves the frame-AUC by 8.97% and significantly increases RBDC and TBDC by 15.83% and 32.37% respectively allowing OMAE to outperform the current state of the art on these metrics. We also note that including the cosine similarity together with MSE or MAE in the reconstruction loss as well as in the abnormality scores improves all metrics significantly, showing the importance of the orthogonality constraints.

Comparison with state of the art. In Table 1, we present our results in comparison with the state-of-the-art methods on the 3 benchmark datasets. Our framework significantly outperforms current state-of-the-art methods on the most relevant evaluation metrics RBDC and TBDC which quantifies the model's ability to localize anomalies spatially and to track them temporally. It's important to highlight that, given a single dataset, there is not a single best method that outperforms the other approaches on the three metrics. On ShanghaiTech dataset, we outperform best previous work by a margin of 10.08% on RBDC and 3.4% on TBDC while remaining competitive with respect to other object-centric approaches in terms of frame-level AUC. Our model also reaches new stateof-the-art performances in terms of RBDC and TBDC on UCSD ped2 with significant margins of 6.07% and 2.24% respectively. On Avenue, our model improves the current state of the art by 10,78% on the RBDC metric and outperforms the recent object-centric approach [START_REF] Georgescu | A background-agnostic framework with adversarial training for abnormal event detection in video[END_REF] in terms of TBDC by a margin of 3.17% while remaining competitive on the AUC metric. Advantageously, inference time takes only 20ms for a batch of 256 precomputed object action features. The preprocessing time required for computing those features is the following: optical flow extraction (170ms), object detection (50ms) and feature extraction (40ms). In addition, training 3 is much faster than in [START_REF] Park | Learning memory-guided normality for anomaly detection[END_REF]: only 70 min on ShanghaiTech, 9 min on Avenue and 4 min on UCSD ped2 with a single NVIDIA TITAN X (PASCAL) GPU.

CONCLUSIONS

In this work we introduced OMAE, an object-centric VAD framework that uses a memory module for object-level appearance and motion features with a new abnormality scoring strategy based on cosine distance. In our experiments, OMAE reaches superior results on localization and tracking metrics while remaining competitive on the frame-level AUC. This shows the effectiveness of our approach to localize anomalies better than the current state of the art.

[1] Bharathkumar Ramachandra, Michael Jones, and Ranga Raju Vatsavai, "A survey of single-scene video anomaly detection," IEEE transactions on pattern analysis and machine intelligence, 2020.

  

Table 1 .

 1 Comparison with the state-of-the-art methods (%). Best results in bold and second best results are underlined

		Approach		Method	AUC	UCSD Ped2 RBDC TBDC	ShanghaiTech AUC RBDC TBDC	AUC	Avenue RBDC TBDC
					MemAE [11]	94.1	-	-	71.2	-	-	83.3	-	-
		frame-level	MNAD [12]	97.0	-	-	72.5	-	-	88.5	-	-
					SSMT [4]	92.4	-	-	83.5	-	-	86.9	-	-
			video		StreetScene [7] 88.3	62.50 80.50	-	-	-	72.0	35.80 80.90
		patch-level		Siamese [8]	94.0	74.0	89.3	-	-	-	87.2	41.20 78.60
		frame & object level	SSMT [4]	99.8	-	-	90.2	-	-	92.8	-	-
					dummyAE [5]	82.2	-	-	78.6	20.65 44.54	88.9	-	-
		object-level	SSMT [4]	99.8	72.8	91.2	89.3	-	-	91.9	-	-
					BAF [13]	98.7	69.23		82.7	41.43 78.79	92.3	65.05 66.85
					OMAE (ours) 96.46 80.07 95.39 79.18 51.51 82.19 93.56 75.83 70.02
	Features	Reconstruction loss (AE)	Anomaly score	Evaluation metrics				
		MSE	COS	MAE	COS	AUC	RBDC TBDC			
	appearance				(AE+Mem)	70.21 35.68 49.82			
			-		-	70.48 35.15 69.16			
			-	-	(Mem)	71.61 27.72 57.70			
	appearance		-	-	(AE)	76.66 43.02 68.13			
	+		-		(AE+Mem)	75.98 39.53 67.49			
	motion				-	70.71 35.96 71.27			
				-	(Mem)	69.50 31.18 74.47			
				-	(AE)	76.68 43.99 69.72			
					(AE+Mem)	77.81 49.37 83.61			
	+ 3D smoothing				(AE+Mem)	79.18 51.51 82.19			

Table 2 .

 2 Frame-AUC, RBDC and TBDC scores (in %) obtained on ShanghaiTech by making gradual design changes to the baseline method, until the final framework. (AE stands for the auto-encoder component; Mem for the nearest-neighbor memory item.)
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