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ENUMERATION OF THREE QUADRANT WALKS WITH SMALL STEPS
AND WALKS ON OTHER M-QUADRANT CONES

ANDREW ELVEY PRICE

CNRS, Institut Denis Poisson, Université de Tours, France

ABsTrRACT. We address the enumeration of walks with small steps confined to a two-dimensional
cone, for example the quarter plane, three-quarter plane or the slit plane. In the quarter plane
case, the solutions for unweighted step-sets are already well understood, in the sense that it is
known precisely for which cases the generating function is algebraic, D-finite or D-algebraic,
and exact integral expressions are known in all cases. We derive similar results in a much more
general setting: we enumerate walks on an M-quadrant cone for any positive integer M, with
weighted steps starting at any point. The main breakthrough in this work is the derivation
of an analytic functional equation which characterises the generating function of these walks,
which is analogous to one now used widely for quarter-plane walks. In the case M = 3, which
corresponds to walks avoiding a quadrant, we provide exact integral-expression solutions for
walks with weighted small steps which determine the generating function C(z,y;t) counting
these walks. Moreover, for each step-set and starting point of the walk we determine whether
the generating function C(z,y;t) is algebraic, D-finite or D-algebraic as a function of x and
y. In fact we provide results of this type for any M-quadrant cone, showing that this nature
is the same for any odd M. For M even we find that the generating functions counting these
walks are D-finite in  and y, and algebraic if and only if the starting point of the walk is on
the same axis as the boundaries of the cone.

1. INTRODUCTION

The systematic study of walks with small steps in the quarter plane was initiated by Bousquet-
Mélou and Mishna in 2010 [7], and since then there has been great progress on the model
[3, 21, 29], 26, 25], 2], 23, 13|, [14]. The model is defined as follows: given a step set S C {—1,0,1}2\
{(0,0)}, determine the generating function

oo
Qla,yit) =Y Y qli,jin)t"a"y/,

n=017,7>1
where ¢(i, j;n) is the number of walks of length n, starting at (1,1), and ending at (4, j) using
steps in S and staying in the strictly positive quadrantE] A priori, there are 256 distinct step sets
S, but after removing duplicates and cases that are equivalent to half-plane models, Bousquet-
Mélou and Mishna identified 79 non-trivial and combinatorially distinct models. The study
of these models is now in some sense complete as it is known for each S precisely where the
generating function fits into the hierarchy

Algebraic C D-finite C D-Algebraic.

Recall that a generating function is called Algebraic with respect to a certain variable if it is
related to that variable by a non-trivial polynomial equation with coefficients only depending
on the other variables, and it is called D-finite (resp. D-algebraic) if it satisfies a linear (resp.
polynomial) differential equation with respect to that variable whose coefficients are polynomial

E-mail address: andrew.elveyQuniv-tours.fr.
IIn most of the literature, walks start at (0,0) and stay in the non-strictly positive quadrant, for which the
resulting generating function is ﬁQ(as7 y;t).
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in that variable. For a multivariate series to be algebraic (resp. D-finite, D-algebraic) it must
be algebraic (resp. D-finite, D-algebraic) with respect to each variable.

Of the 79 models proposed by Bousquet-Mélou and Mishna, 4 models admit an algebraic
generating function [7, B], 19 further models admit a D-finite generating function [7, 21], 9
further models admit a D-algebraic generating function [2 23] and the remaining 47 models
admit a generating function which is not D-algebraic [13|, 14], in which case we say that the
generating function is D-transcendental. Moreover, in the 74 cases known as non-singular, an
exact integral expression is known for the generating function [29], while other exact expressions
are known in the 5 singular cases |26, [25]. In recent years a number of articles have focused on
the equivalent question for walks in the three-quadrant cone

C=A{(,7):i>0o0rj>0},
Shown in Figure Il That is determining the generating function
Cla,yst) =Y Y cli,jin)t"a'y’,
n=0 (i,j)€C

where ¢(i, j;n) is the number of walks of length n, starting at (1,1), and ending at (7, ) using
steps in S and staying in C.

/.

FiGure 1. Walks in the three-quadrant cone C. Left: A walk starting at the
standard starting point (1,1) using step set #12 from Table 1} Right: A walk
starting at (4,0) using step set #10. Even though the generating function for
walks with step set #10 starting at (1, 1) is D-transcendental, we will show that
the generating function for walks starting at (4,0) is D-algebraic in x.

The study of walks in the three-quadrant cone was initiated by Bousquet-Mélou in [5], where
she enumerated walks with two step sets (#1 and #2 in Table , showing that the associated
generating function is D-finite. Raschel and Trotignon [30] then found a transformation relating
walks with any of the step sets #4-#10 to walks in the quarter plane - allowing them to deduce
integral expression solutions in these cases. Building on this work Dreyfus and Trotignon [16]
showed that the last three of these step sets (#8 - #10) admit non-D-algebraic generating
functions, while step set #7 admits a D-algebraic generating function. Subsequently, using
algebraic methods, Bousquet-Mélou and Wallner [9] adapted the method of [5] to enumerate
walks with step set #3, again showing that these admit a D-finite generating function. Finally,
in a very recent article [6], Bousquet-Mélou used invariants to show that three cases known as the
Kreweras cases (#4-#6) admit algebraic generating functions. Together these classify 10 models
into the complexity hierarchy (algebraic, D-finite, D-algebraic). Walks with specified endpoints
have been enumerated for 2 further models (#11-#12) by Budd [10] and 2 further models by the
current author (#13-#14) [17], both of these results by relating the model to walks counted by
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winding angle. Moreover, in [27], Mustapha used asymptotic properties to show that C(x,y;t)
is not D-finite in ¢ for any of the 51 non-singular step sets S admitting an infinite group, that
is, precisely the models which are not D-finite in the quarter plane. Remarkably, in all of the
cases (#1-#10) shown in Table |1} the generating function has the same nature as in the quarter
plane. Dreyfus and Trotignon were the first to conjecture that this holds more generally - that
the nature is the same for any of the 74 non-singular step-sets .S [I4]. We note that for models
(#10-#13), the (single variable) generating functions considered in [10, [17] were found to be
algebraic in t, which only coincides with the general quarter-plane case for model #10. For
models #11-#13, the generating function Q(z,y;t) is D-finite but not algebraic [7]. This is
perhaps explained by the fact that the walks considered in [10, [I7] for models #11-#13 start at
(1,0) rather than the standard starting point (1, 1).

Model #1 #2 #3 #4 #5 #6 #7
Nature of C(z,y;t) || DF [5] | DF [5] | DF [9] | alg. [6] | alg. [6] | alg. [6] | D-alg. [14]
Model 7#{8( '#%9 #10 iz il; #13 ﬁf;
Nature of C(z,y;t) || D-trans [14] | D-trans [14] | D-trans [14] | [10] | [1O] | [17] | [17]

TABLE 1. Previously solved models on the 3-quadrant cone for walks starting
at (1,1). Models #11-#14 only solved for specified end-points.

Main Results. For each of the 74 distinct non-singular step-sets S, we relate the generating
function C(z,y;t) to the solution of a simple analytic functional equation (Theorem , anal-
ogous to one found by Raschel for the enumeration of walks in the quadrant [29]. Our method
is also a direct generalisation of that of Raschel, which in turn is based on a method of Fayolle,
Tasnogorodski and Malyshev [19] 20], which they used in a probabilistic context.

Using our analytic functional equation, we derive an exact integral expression solution for
C(z,y;t) (Theorem , analogous to those of Raschel in the quarter-plane [29]. We then prove
that the nature of C(z,y;t) as a function of x (or y) is the same as that of Q(z,y;t), and we
conjecture that these series also have the same nature as functions of . In fact we determine
the nature of the generating function C(z,y;t) with respect to = in the more general setting of
walks with weighted small steps starting at any point in the cone C.

We then define M-quadrant cones for any positive integer M and consider generating functions
Q;(z,y;t) counting walks on these spaces that finish within a quadrant determined by j. For
M < 4 the space is already familiar: The 1-quadrant cone is the quarter plane, the 2-quadrant
cone is the half plane, we already discussed the 3-quadrant cone, and the 4-quadrant cone is
the slit plane studied in [4], [8] and [3I]. For each M, each step-set S, each value j and each
starting point, we determine whether the generating function Q;(z,y;t) is algebraic, D-finite
or D-algebraic as a function of x and y. We find that the nature of these generating functions
depends on the parity of M, but otherwise does not depend on its value. That is, for all odd
M (and all j) we prove that Q;(z,y;t) has the same nature as C(z,y;t), whereas for M even,
we find that the generating function is always D-finite, and that it is algebraic if and only if the
starting point is on the same axis as the boundaries of the cone. For M > 2, we even determine
the nature of the generating functions for fixed ¢, showing that this nature still doesn’t depend
on the exact value of M, only its parity.

Note that by our definition of walks in the 3-quadrant cone, steps directly between (1,0) and
(0,1) are allowed, whereas they are forbidden in [9], for example. We do not expect this to
affect the nature of the generating function, in fact in Section [£.4] we show that in most cases



the nature is the same.

Outline of the paper. In Sections and 4] we address the enumeration of walks in the
three-quadrant cone. First, in Section [2] we relate the generating function C(z,y;t) counting
these walks to meromorphic functions A(z) and B(z) on C, then in Theorem [2.8] we charac-
terise these functions using a simple functional equation. In Section [3| we use this functional
equation to derive explicit integral expressions determining A(z) and B(z), and hence implicitly
determining C(z,y;t). In Section [4] we use the functional equation to determine the nature of
C(z,y;t) as a function of z, that is, when it is algebraic, D-finite or D-algebraic. As an example,
in Subsection [4.3| we give a more explicit solution for the case that the walk starts on the z-axis.

In Sections [5] and [6] we address the enumeration of walks on an M-quadrant cone for any
positive integer M. For M = 1 this is the familiar quarter plane case, while for M = 3 this
is precisely the case studied in Sections and 4] In Section [5] we define the model precisely
and derive analytic functional equations characterising the series involved, as in Section [2| In
Section [] we use these functional equations to determine the nature of the series involved as
functions of x. To our knowledge this was not previously completed even in the quarter plane
case in the full generality we consider.

Finally in Section [7} we pose a variety of questions left open by this work.

We have a number of appendices in which we prove technical results that we use throughout
the article. In Appendix [A] we use results from [15] to prove Lemmas [2.3] and 2.5 which allow
us to relate the generating function C(z,y;t) to the meromorphic functions A(z) and B(z). In
Appendix we describe how the nature of the generating functions such as C(x, y; t) relates to
the nature of the related analytic functions, such as A(z) and B(z). In appendix |[C| we define
and discuss the group of the walk. Finally in Appendix [D] we discuss results coming from the
Galois theory of g-difference equations that we use in the D-transcendental cases.

2. FUNCTIONAL EQUATIONS FOR WALKS IN THE THREE-QUADRANT CONE

We start with a step-set S C {—1,0,1}2\ {(0,0)}, a weight ws > 0 for each s € S and a
starting point (p,q) with p > 0, ¢ > 0. Throughout this article, we assume that S is a non-
singular step-set. That is, for any line ¢ through the origin, at least one element of .S lies on each
side of £. As explained by Bousquet-Mélou and Wallner, [9], Section 2.2], the generating function
C(z,y;t) is algebraic if S is singular, as then the model can be written in terms of half-plane
models.

We will determine the generating function C(x,y;t) counting walks starting at (p, q), taking
steps from .S with all intermediate points lying in the three-quadrant cone C and with the weight
of the walk being the product of the weights wg of the steps. Note that the standard starting
point is (p,q) = (1,1) and in the unweighted case ws, = 1 for each s € S.

The following lemma results from considering the final step of a walk counted by C(z,y;t):

Lemma 2.1. Define the single step generating function P(x,y) by

P(l‘,y) = Z w(a,B)IayB
(a,B)ES
Then there are series A (%;t) € éR [ﬂ [[1]], B(2:t) € LR[L][[t] and F(t) € tR[[t] which
satisfy
1 1
Cla,y;t) = aPy? + tP(x, y)Clz, y;t) — F(t) — B <;t> —A (;t) - (1)
T Y
Moreover, this equation together with the fact that c(i,j;n) = 0 for i,j < 0, characterises the

generating function
Cla,yst) =D > eli, jim)a'y’t",
t>0i,5€R
as well as the series A, B and F.



5

Proof. We start by proving combinatorially that the equation holds for some series A, B and F.
Note that C(x,y;t) is the generating function counting walks restricted to C, so tP(z,y)C(z, y;1)
is the generating function counting these walks with an additional step added at the end (possibly
not restricted to C). To get the generating function C(z,y;t) we need to add the contribution
2Py? for the empty walk and subtract the contribution H(x,y;t) to tP(z,y)C(z,y;t) from walks
not ending in C. So

Clz,y;t) = 2Py? + tP(2,y)C(z, y; 1) — H(z,y31).
Since the walks counted by H(xz,y;t) finish outside C, and have at least one step, we must have
H(z,y;t) € tR [%, ﬂ [[t]]- Moreover, since only the final step lies outside C, the endpoint must

be at some (0, k) or (k,0) for k& < 0. Hence, we can write H as

H(x,y;t):F(t)—i—A(;;t) +B<;;t>, )

completing the proof that such an equation holds.

Now we will show that uniquely determines the series involved. Taking the 2'y7t" coeffi-
cient on both sides of the equation yields the initial condition (i, j;0) = d(; ;),(p,q), While taking
the ziy’t" coefficient for n > 1 and (i,j) € C yields

c(i,jin) = > wape(i—a,j—pfin—1),
(a,B)ES

which determines every value c¢(i, j;n) inductively. Finally the series H and therefore the series
A, B and F are determined by

H(x,y;t) = aPy? + tP(x,y)C(z,y; t) — C(x, 3 t).

FIGURE 2. Left: a walk counted by A <%;t) in the case where (p,q) = (1,1)

and S is the step-set shown. Right: a walk counted by B (£;t) in the case where
(p,q) = (3,2) and S is the step-set shown.

The equation reveals a combinatorial interpretation of the series A, B and F: While H
counts walks starting at (p, ¢) and ending just outside C whose intermediate points all lie within

C, the series A, B and F each count a subset of those walks. In particular, the series A (%;t)

counts those walks ending on the negative y-axis A := {(0, ) : j < 0}, the series B (1;¢) counts
those walks ending on the negative z-axis B := {(¢,0) : ¢ < 0}, and F(¢) counts those walks
ending at (0,0) (see Figure [2)).
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FIGURE 3. The three-quadrant cone C partitioned into three quadrants Ql, 9
and Q—l .

The unusual condition that the coefficients c(i,j;n) of C(x,y;t) vanish for ¢,j < 0 makes
this equation difficult to solve directly, so we follow [5, @] and partition C into three quadrants
Q_1,Qp, 91, defined as follows (see Figure )

Q—l = {(7’7.]) 11> O?.] < O}a
QO = {(Zaj) 1> Oa] > O}a
Q1 = {(i,j) : i < 0;5 > 0}.

In fact we have shifted the quadrants Q_1, Qo down one space compared to those considered in
[5] so that it is impossible to step directly between Q_; and Q; and so that our condition on
the starting point (p, q) is now that (p,q) € Q. Note that we have Qj rather than Q; when the
quadrant includes points on either the z-axis or y-axis.

Now, we define Q_; (:v, i; t), Qo(,y;t) and Qq (2,y;t) to be the generating functions count-
ing walks in C, starting at (p, q) and ending in Q_;, Qg and Q, respectively. So

1 1
Clz,y;t) = Q1 (x y;t> + Qo(z, y3t) + Qu <$7y;t> ;
and Q1 € IR [ac,ﬂ (1], Qo € 2R [z, y][[t]] and Q; € yR[L,y][[t]]. The following lemma
rewrites (1)) as three equations characterising Q_; (a:, %;t), Qo(z,y;t) and Qi (L, y;1).

Lemma 2.2. Define the kernel K(z,y;t) by
K(z,y;t) = tP(z,y) — 1.

There are series V1(y;t), Va(y;t) € Rly][[t]] and Hi(x;t), Ha(z;t) € R[z][[t]] satisfying the three
equations

K(z,y;t)Q-1 <x, ;;t) =A (;;t) + Hy(x;t) + ng(l‘;t) (3)
K(z,y;1)Qo(w, y; 1) = —aPy? + F (t) — Vi(y;t) — 2Va(y;t) — Hi(ast) — in(x;t) (4)

K(z, y;1)Qu (iyt> =B (;w) + Vi(yt) + aVa(y; b). (5)



T, 5 ) Qo(z,y3t), Q1 (L,y:1),

Moreover, these three equations characterise the series Q_1 (
Vi(y;t), Va(y;t), Hi(z;t), Ha(x;t), A (%t) B (3:t) and F(t).
Proof. We can rewrite (1)) as

K(z,y;t) (Q_1 <x 1;t> + Qo(z,y:t) + Qu <1,y;t>> = —aPy? +F(t) +A <1;t> +B (1;15) ,
Y x Y T

which is precisely the sum of , and . Rearranging yields

K(z,y;t)Q1 (i,y;t)—B (i;t> = —aPy?+F(t)+A (;;t>—K(I,y;t) (Qo(x,y;t) +Q_1 (x ;;t» .

The left hand side of this equation lies in #R [L,y] [[¢]] while the right hand side lies in R [m, v, ﬂ [[t]],

so, since the sides are equal, they must lie in the intersection

R | 20] 1R [ovys | 1] = R + <R,

which means there are series V1 (y;t), Va(y; t) € Ry][[t]] satisfying (5). Similarly, in the equation

Kz, y:t) (Qo(x,y;t)+Q1 (;,y;t>>—B (i;t)—l—aﬁpyq—F(t) :A(;;t> K(z,y:)Q_ 1( ; t),

The left hand side lies in %R [1,2,y] [[t]] while the right hand side lies in R {x, H [[t]], so they

both lie in the intersection R[z][[¢]]+ %R[x] [[t]]. Hence there are series Hy(x;t), Ha(z; t) € Rx][[t]]
satisfying . Finally follows from subtracting and from . n

We also note that there are combinatorial interpretations of the series Vi,Vs,Hp, Ho: they
each count walks starting at (p, ¢) and ending either in C or just outside C with a restriction on
the final step. In particular:

V1(0;t) — V1 (y;t) counts walks whose final step is from 9y to 9y,
V1(0; ) counts walks whose final step is from Q; to (0,0),

2Vy(y;t) counts walks whose final step is from Q; to Qp ,

H, (z;t) counts walks whose final step is from Q_; to Qq or (0,0),

. —ng(x;t) counts walks whose final step is from Qg to Q_; or (0, —1).

In section [5} we will use combinatorial interpretations of this form to generalise this section to
M-quadrant cones for any positive integer M.

1. PARAMETERISATION OF THE KERNEL CURVE

Following the method used in the quarter plane pioneered by Fayolle, Iasnogorodski and

Raschel [19, 20l 29] we start by fixing t € (O
{(w,y) . K(Z’,y, ) _0} .

Recall our assumption that S is a non-singular step-set. Under this assumption, the curve E;
is known to have genus 1, so we will be able to parameterise it using elliptic functions X (z) and
Y (2). More precisely we have the following lemma, which we prove in Lemma[A.2]in Appendix[A]
using results from [15]. The transformation that converts Lemmal[A 2] to Lemma[2.3]is described
above Lemma [A2]

) p(l 17 ) and then we consider the curve E, =

Lemma 2.3. There are meromorphic functions X,Y : C — CU {oo} and numbers v,7 € iR
with S(71) > $(27) > 0 satisfying the following conditions
K(X(2),Y(2)) =0

X(z) =X(z+m)=X(z+77) = X(—7 —2)
Y)=Y(z+4+nm)=YE+7rr)=Y(y—2)
XY (3 <1



o Counting with multiplicity, the functions X (z) and Y (2) each contain two poles and two
roots in each fundamental domain {z. + rim + rom7r : 11,72 € [0,1)}.

Moreover, X(2) and Y (2) are differentially algebraic with respect to z and t, while T and v are
differentially algebraic as functions of t.

In fact, it follows from Proposition that (X(z),Y(z)) parameterises E;, that is,

E;={(X(2),Y(2)) : z € C}. (7)

We intend to substitute x — X (z) and y — Y (2) into (3)), and (5), however we can only do
this as long as the series in these equations converge, which occurs in the situations described
by the following lemma

Lemma 2.4. The series...

o 1Q_ ( x, y,t) converges absolutely for x,y satisfying |x] <1 < |y| < oo,

o 1Qo(z,y;t) converges absolutely for x,y satisfying |z|,|y| < 1,
° %Ql (%,y;t) converges absolutely for x,y satisfying |y| < 1 < |z| < co.

In fact all of the series that we consider Q_1, Qq, Q1, A, B and C converge absolutely for x,y

satisfying
el Iyl € (x/tP(1,1)7 , /tp(lll)> .

Proof. Since the weighted number of walks of length n in the entire plane is (P(1,1))", the
number of walks restricted to the three quarter plane must not be higher than this. Hence,
the coefficient [t"]C(1,1;¢) < P(1,1)", so for fixed ¢t < (1 7y, the series C(1,1;t) converges. So
the series Q_1(1,1;%), Qo(1,1;¢) and Q1(1,1;¢), whose sum is C(1,1;¢), also converge. Since
IQ1 (x, i;t) eR [:1:7 ﬂ [[t]], and it has only non-negative coefficients, it must converge for
2] <1 < |y| < co. Similarly, since Qi (3,9:t) € R[5, 9] [[1]], it must converge for |y| <1 <
|z| < oc. Finally, since 1Qq(z,y;t) € R [z, y] [[t]], it must converge for |z, |y| < 1.

The only remaining statement to prove is the final statement of the Lemma, which requires
a bit more precision. As we discussed, the coefficient [t"]C(1,1,¢) < P(1,1)", moreover, the
polynomial [t"]C(z,y,t) is a Laurent polynomial in = and y with degrees of x and y lying in
[—n, n]. Hence for fixed z,y € C, the coefficient

Ixy\"

A

So for t € (0, ﬁ) and |z|,|y| € (w/tP(l,l),,/ﬁ), the series C(x,y,t) converges, as

required. We can use the same reasoning to prove the same result for all of the other series that
we consider. =

[7)C(ay,8)] < [F7]C(L 1, 8) max{|xy|“, 9”\

< (Pt max oyl

’ Y

According to the lemma above, in order to substitute  — X (z) and y — Y (z) into the series
Qj, it often suffices to understand how | X (z)| and |Y ()| compare to 1. To do this, we prove the
following lemma in Appendix EI, using [15, Lemma 2.9].
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ol Y (2)] <1< |X(2)
M
0 2
: 0 - X ()], [Y(2)] <1 -
— ]
O |X(2)] <1 <|Y(2)|
S ol ) B
0y o 1< X (2)], Y (2)]
e
_/V—\
Q5 Y(2)] <1< |X(2)]
__//v\
2rr+3
PR OO

FIGURE 4. The complex plane partitioned into regions €);. For z on the blue
lines, |Y'(2)| = 1, while on the red lines | X (z)| = 1.

Lemma 2.5. The complex plane can be partitioned into simply connected regions {Qs}sez (see
Fz'gure satisfying

U Qys UQ45+1 = {Z eC: |Y(Z)‘ < 1},

SEL
U Qa2 UQuer = {z € C: [V (2)| > 1},
ElsY/
U Qa1 UQus = {z € C: |X(2) <1},
SEL
| Qa1 U Qusra = {z € C:|X(2)] > 13,
SEZ

moreover, the equations

T+ Qs = Q,
STT +
S7TT+"}’7925 UQQS+1 = Qo UQQS+1 B} TP}/ +R,
STT —
sTT — 7 — Qs U Qg1 = Qs Uldog_1 D ki +R,

2
hold for each s € 7.

Proof. This is equivalent to Lemma using the transformations described in Appendix [A]
just before Lemma [A72] and just before Lemma [A-3] n

In some sections it will be useful to parameterise the series using the Jacobi theta function

19(2,77_) = Z(_l)neiﬂ"rn(nJrl) (6(2n+1)iz _ 67(2n+1)iz> i (8)

n=0
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which is defined for all z,7 € C satisfying 3(7) > 0. In the literature, the function 9(z,7) is
sometimes written as 911(2,7) or 1(z,e"™"). Recall that 7 is fixed in this section, so we will
generally think of ¥ as a function of z. Note that this function has neither m nor 77 as a period,
however elliptic functions with these two periods can easily be constructed using ¥ due to the
following relations

Wz +m,7)=—9(z,7) and Wz +77,7) = —e 2ETTTY(2, 7). 9)

Moreover, ¥(z,7) has no roots and its only poles are at the points z € 7Z + n7Z. Using these
properties allows us to parameterise X and Y using 9.

Proposition 2.6. There is some o € Qo UQ_1, BE€QuUD, § €U, e €O _5UN_1 and
Ze,ye € C\ {0} satisfying
e —a,7)0z+7v+a,7)
Wz — 0, 7)0(z 4+ v+ 0,7)
y Hz =B, 1) z—~v+06,7)
Yz—e,m)(z—v+eT)

Proof. We will prove the result for X(z) as the proof for Y(z) is identical. From Lemma
we know that X (z) contains two roots and two poles in each fundamental domain. Consider the
fundamental domain F' = {z € Q_; UQoUQ; UQs : R(2) € [0,7)} and let « € F and § € F
be a root and pole of X(z), respectively. From Lemma [2.5] we must have a € Q_; Uy and
d € Q1 UQq. Now, since X(z) = X(—vy — z), the value —y — ¢ must also be a pole of X(z), so
more generally, all of the point in 0 +7Z 4+ 77ZU —~ — 0 + nZ + w77 are poles of X. In the case
that 6 ¢ —3 + 57+ 5T Z, this accounts for all poles of X (z), so X (2)J(z—9,7)J(z+~v+9,7) has
no poles. In the case that 0 € —3 + 57 + T Z, we have X (2 — ) = X(—y -6 —2) = X (6 — 2),
so X must have a double pole at §. Then again X (2)3(z — 6, 7)3(z + v + §,7) has no poles. In
either case this implies that the function X (z) defined by

Wz — 0, 7)z 4+ v+ 0,7)
Nz —a,7)0z+7+a,7)

X(z) =z,

Y(z)=

X(2):= X(z)

has no poles except possibly a single pole at each z € —y —a+7Z~+n7Z. But X(z) is an elliptic
function with periods 7 and 77, so it cannot have only a single pole in each fundamental domain
[1, Page 8]. Therefore it must have no poles, and is therefore a constant function. Writing
X (z) = . where z, € C yields the desired result. Note z. # 0 as this would imply that X (z)
was the 0 function. -

Example: In the case of simple walks, that is S = {(1,0), (0,1), (—1,0), (0, —1)} and w4 g) =
1 for (o, B) € S, the equation relating X (z) and Y(z) is
1 1 1
X(z)+m+Y(z)+m =7
One can check that if we define
Wz, 1)z +7,7)
Iz — v, 1)z + 27v,7)

Wz, )z —7,7)

=e
M) =e I+ 7m0 = 20,7)

and  Y(z)=e "

where v = IT, then X(z) + ﬁ +Y(2) + ﬁ has no poles, so it must be constant. Then

substituting z = 1 yields an equation relating 7 and ¢, which can be written as
2
e 9 (2,7) _1+n- Vit s
9 (2 T)Q 2t

2

iTT

This allows ¢ = e = e’ to be written as a series in ¢ with initial terms

q=t+ 43 + 34¢° + 3607 + - - -
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2.2. ANALYTIC REFORMULATION OF FUNCTIONAL EQUATIONS

Using the results in the previous section, we can substitute z = X (z) and y = Y (2) into (3),

and () for z in the regions Q_1, Qg and Qy, respectively, yielding (14), and in the
following proposition:

Proposition 2.7. The functions

Ly(z) :=Hi (X (2);t) + Y(Z)HQ(X(zr);t)7 for z € QoUQ_q, (10)
Ly(z) :=V1(Y(2);t) + X (2)Va(Y (2); 1), for z € Qo U Qy, (11)
Yzz ) for z € Q_1UQ_g, (12)
B(z) ::B(th);t) , for z € Q1 U Q. (13)
are well defined and satisfy the equations
0=A(z)+ Lu(z) for z € Q_4, (14)
0=—-X)PY(2)!+F(t)—Lv(z) — Lu(z) for z € Qo, (15)
0= B(z)+ Lv(2) forz e (16)
B(z)=B(rr—y—2)=B(z+n) (17)
Az) = A(—rmT+v—2) = Az + ) . (18)
Proof. In the specified domain of (10), |X(z)| < 1, so the series Hy(X(2);t) and Ha(X(2);¢)

converge, which implies that Lg(z) is well defined. Similarly the series in , and
converge, as the first parameter of each generating function has modulus at most 1.
Now, (14), and follow from substituting z = X (z) and y = Y (z) into (3)), (4) and
, respectively, as we always have K(X(z),Y (z)) = 0, and in each case the series Q; converges.
Finally, for z € Q1 U Qs we have 77 — v — z € Q1 U Qy, so B(nT — v — 2) is well defined.
Then follows from X(z) = X(n7 — v — 2z). Similarly, for z € Q_; U Q_, the function
A(—7nT + v — z) is well defined, and so follows from Y (z) = Y (—n7 + v — 2). n

While these equations are a priori defined on different sets, by meromorphic extension we will
be able to compare them directly, as we will see from the following theorem:

Theorem 2.8. The functions A(z) and B(z) extend to meromorphic functions on C which,
along with the constant F = F(t), are uniquely defined by the equations

X(2)PY (2)? = A(z) + F + B(z), (19)
B(z) = B(nrt — v — 2), (20)

A(z) = A(—nT+7v — 2), (21)

B(z) = B(z +7), (22)

Az) = A(= + ), (23)

along with the conditions
(i) A(2) has no poles in Qo UQ_1 UQ_o,
(ii) the poles of Y (z) for z € Q_1 UQ_o are roots of A(z),
(iii) B(z) has no poles in Qo U Qq U Dy,
(iv) the poles of X (2) for z € Q1 U Qy are roots of B(z).

Proof. From (14)), we have A(z) = —Lp/(z) for z € Q_;. But the right hand side is meromorphic
on 21Uy, so we can use it to extend A to a meromorphic function on Q_oUQ_1UQ,. Similarly,
allows us to write A(z) as a function of Ly (z) for z € Q, allowing us to extend the domain
of A to include ;. Finally allows us to write A(z) as a function of B(z) on €y, allowing
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us to extend A(z) to the entire domain Q_o UQ_1 U Qy Uy U Qs. Slmllarly B(z) extends to a
meromorphic function on Q_oUQ_1 UQoUN; UNs as do Ly (z) and Ly (z). Since ( . and
hold in regions with non-empty interior, they must hold on all of 2_4 U Q_1UQuU Ql UQs.
Finally, adding these three equations and multiplying by X (2)Y (z)/t yields (19).
To extend the functions to C, we use and as follows: From Lemma we know
that
7%(7TT*’)’)+RCQ_2UQ_1 and %(7’(7’7’)/)+RC91UQQ.

Hence both of these lines, and the region delimited by these lines, is contained in Q_o UQ_1 U
Qo U UQy. Now, since A(z) satisfies for z € Q_y UQ_1, it extends meromorphically to
the function A(z) := A(—nr+~y—2)for z € —m74+v—Q_2UQ_1 UQyUQ; UQs, which contains
the region between the lines
3 1
—5(7TT—’Y)+R and —§(w7—fy)+R.

Together, these extend the definition of A(z) to the entire region containing 2 U Qs and —n7 +
Y= UQy =y UQQ — 7r7' ) as well as the region between these spaces. Now, for z € 2 U

we can combine (17), (18) and (19), giving
A(z) = X(z)pY(z) — X —y = 2)PY (7 — v — 2)P + A(z — 2(7r7 — 7)).

This recursively allows us to extend A(z) meromorphically to the space between Q3 U Qs +
2k(mr — 7) and Q1 U Qs + 2(k 4+ 1)(7n7 — 7) for any integer k. Hence A(z) is a meromorphic
function on the union C of these spaces. The relations between A(z), Ly (z), Lv(z) and B(z)
then allow these other three functions to extend meromorphically to C.

We will now show that conditions [(i)H(iv)] hold. The series defining B(z) for z € 1 U s
converges, so B(z) has no poles in this region. Moreover, since the series has 1/|X(z)| as a
factor, it has roots at the poles of X(z) in Q; U Qs. In Qp, we have

B(z) = —Ly(z) = =-Vi(Y(2);t) — X(2)Va(Y (2);¢).
Since | X (2)],|Y(2)| < 1 in this region, the series converge and there are still no poles. This
proves the two conditions and Similarly, the conditions [(1)] and [(ii)] hold.
Finally we need to show that these conditions uniquely define the functions B(z), A(z) and
the constant F. Suppose that B(z), A(z) and F is an arbitrary triple satisfying the same

conditions. Then it suffices to show that A(z) = A(z) and B(z) = B(z). Then implies that

the difference R
A(z) == A(z) = A(2) = B(2) = B(z) + F — F,
satisfies A(z) = A(nT — v — 2) = A(—77 + v — z) = A(z + 7). Moreover, the four conditions on
A(z) and B(z) imply, respectively, that
(i) A(z) has no poles in U Q; U Qy,

(i) the poles of X (z) for z € ©; U Qy are roots of A(z)+F — F),

(iii) A(z) has no poles in Qo UQ_1 UQ_y,

(iv) the poles of Y (z) for z € Q_1 UQ_5 are roots of A(z).
together with A(z) = A(nr — v — 2) = A(—7nT + 7 — 2), these imply that A(z) is an elliptic
function with no poles, so it is constant. Moreover, the fourth condition implies that A(z) does
have roots, so A(z) is the 0 function. The second condition then implies that F = F'. Together
with the definition of A we have A(z) = A(z) and B(z) = B(z). n

At first glance it may seem that follows from substituting (x,y) = (X(2),Y (z)) directly
into , however this ignores the questions of whether the series involved converge and the fact
that A(z) and B(z) are defined on non-intersecting domains. So in some sense the intermediate
steps are just used to understand which domains should be used to define A(z) and B(z).

Note that combining , , yields

B(2nT — 2y 4 z) — B(z) = J(2), (24)
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where J(z) is an elliptic function with periods 7w and «7 given by

J(2) = (X(z = 29) = X()) Y (2)". (25)

3. INTEGRAL EXPRESSIONS FOR WALKS IN THE THREE-QUADRANT CONE

In Section [2) we reduced the problem to finding the unique meromorphic functions A, B :
C — CU {oo} and constant F' characterised by Theorem (for each t), as these determine
A(i,t) and B(1,1) using and (12), respectively, after which C(x,y;t) is determined by ().

An equation analogous to was found by Raschel for walks in the quarter plane [29], the
only difference being that the transformations z — 77 — v — z and z — —77 4+ 7 — z here are
z — v—z and z — —y — z in the quarter plane. Raschel used this equation to derive an integral-
expression solution determining Q(z,y;t) (in the case where the starting point (p,q) = (1,1)),
and the equation has since been used to determine precisely when Q(z,y;t) is differentially
algebraic [2], 13| 22] and to determine when it is algebraic or D-finite with respect to x or y
21, 23].

Due to this striking similarity we can use these methods to prove the same results for C(x, y; t).
In this Section we will derive an explicit integral expression for A(z) and B(z) (see Theorem
. In Section 4} we will discuss the nature of the generating function C(z,y;t) in particular
showing that it is algebraic, D-finite or D-algebraic with respect to  (or y) in the same cases as

Q(z,y;t).
3.1. ANOTHER ELLIPTIC FUNCTION

In order to solve the functional equations in Theorem we will introduce an explicit elliptic
function W(z) with periods 7 and 277 — 2, as this will be related to B(z) due to (24). We will
define W (z) using the Jacobi theta function 9(z, 7) defined in (8).

Definition 3.1. We define the function W(z) by
Iz—e 21—V (z — T+ +6,27 — 27”)

™

19(2:—(5,27’—2l)19(2—ﬂ7+7+6a27_2%)

T

W(z) == w,

; (26)

where w, is given by

90,27 — Z)9(26 — 77 + 7,27 — Z2)9(0 — a, 7)I( + v + o, T)

V(S —e,21 — 2)I(§ — T + v +&,27 — 2)(0,7)9(20 + v, 7)

unless 26 + v € wT + wZ, in which case the numerator and denominator are both 0 so we define
V(0,27 — 277)219(5 —o,7)I0+v+a,T)

(6 —e,21 — 2)I(5 — 7T+ +¢,27 — 2)¥(0,7)2

We = T

We = _eurrxc

In the following proposition we show a number of properties of W (z) which will be useful in
relating it to A(z), B(z) and F:

Proposition 3.2. The function W (z) satisfies the following properties
) WeE)=Wrr—vy—2)=W(-n1+v—2)=W(z+m).

)

) W(z) and X (z) have exactly the same poles in Q3 U Qs.
(iv) W(z) — X (2) has no poles in Oy U Q.

)

Proof. Property (i) follows immediately from the quasi-periodicity conditions satisfied by ¢ (see
([©)). As a consequence of (i), the function W (z) is elliptic with periods 7 and 277 —2. Moreover
W (z) has two roots inside each fundamental domain, one coming from each ¢ in the numerator
of (26). As a consequence, W (z) takes each value in C U oo exactly twice on each fundamental
domain. We will now prove (v) as this will be useful for proving (ii)-(iv).
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%/\

T —y—

— 77— y-b 0 —

® 1

F1GURE 5. The space F is shaded. This is a fundamental domain of the function

Let S denote the strip S = {z € C: 0 < R(z) < n}. We claim that the set F defined by
j:ZQ_QUQ_lUQ()UQ1UQQU(7TT—’)/—Q())
F=FnS

is a fundamental domain of W, and the sets involved in the union defining F are disjoint (see
Figure . Indeed the upper border ¢; of )y is the lower border of Q1 U Qsy, so 77 — v — ¢; is
the upper border of {25 and the lower border of 77 — vy — . Hence the sets Q_o, Q_1, Qq, Q1,
Q9 and 7T — v — p are disjoint and their union F is a connected strip delimited by the lower
border of 2_5 and the upper border of 77 — v — Q4. Now let /5 be the lower border of ©_s.
Then the upper border of €2_1, which is also the lower border of Qg is —7m7+ v — {5, so the upper
border of 77 — v — Qg is 277 — 2y + £5. Hence the lower and upper borders of F are £y and
27T — 27 + f5. Moreover, only the lower border is contained in F. This implies that

C= U F+ (2r7 — 29)n
neL

= U F+ (277 — 29)n + m,

n,mezZ

where these unions are in fact disjoint unions. So F is a fundamental domain for W(z), as
claimed. Hence, counting with multiplicity, W (z) takes each value in C U oo twice on F. Now,
since W(z) = W(nT—~—2z), each value is taken either 0 or 2 times for z € (£2; U Q2)NS and each
value taken by W (z) for z € QNS is taken the same number of times in 77 —~v—Q¢NS. Similarly,
since W(z) = W(—n7 + v — z), each value is taken either 0 or 2 times in (2_5UQ_1)NS. This
implies that each value in C is either taken twice in (Q2_2 UQ_1) NS, once in 29 NS or twice in
(1 UQ2) NS, which proves (v).
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To prove (ii), it suffices to prove that W (z)~! and Y (z) have the same poles in (Q2_» U Q_1)NS.
Indeed, they share the poles 6 and —77 4 —§ in this region, and since we know that this region
is a subset of a fundamental domain of Y (z) and of W(z), neither of these functions can have
any other poles in this region.

The proof of (iii) is similar to the proof of (ii): in this case X (z) and W (z) share the poles ¢
and 77 — 7 — € in the region (Q; UQ) N S.

Finally to prove (iv) it suffices to observe that the poles at € and 77 — v — € cancel in the
difference X (z) — W(z). This is due to the choice of w.. =

3.2. INTEGRAL EXPRESSION FOR GENERAL SOLUTION

We now give integral expressions analogous to those of Raschel [29] which determine A(z),
B(z) and F exactly:

Theorem 3.3. Let 20 € Qo and let £ be a path from 2z to zo + m contained in the closure Qg of
Qg. Then A(z), B(z) and F are given by the integrals

)’ W) Z or u
27T2/X Y(e W(z) — W(u)d ) f € Q1 UQy, (27)
¥ Wiw) Wi(z) 2 or u
T 2mi / XY (z W(z) W(2) —W(u)d ) f €N 1UQ (28)
_ Ay (e YV (2)

Proof. We will start by showing that the integrands in the definitions above are all holomorphic
in Qo, that is, they contain no poles in this region. A consequence is that the integrals do not
depend on the contour £ taken from zg to zg + 7.

Since | X (2)[,|Y (2)] < 1 in this region, X (z) and Y'(z) have no poles in this region. Moreover,
W (z) has no roots or poles in this region, so the only way that a pole could occur in one of
the integrands is if W(z) = W (u) for some u € Q_oUQ_; Uy UQs and z € Qp, but this is
impossible by Proposition (v). this proves that the integrands are all holomorphic in Q.

We will now extend the definitions of B and A to definitions that hold in €g. Let £q be the
contour which goes in the negative imaginary direction from zg until reaching a point ¢; on the
boundary of g, then travels along the boundary of Qy until reaching ¢; + 7 then finally travels
in the positive imaginary direction until reaching zo + 7 (see Figure @ Then B can be defined
by taking the integral along £;. In fact the first and last sections of the integral cancel with
each other, so this can be defined by taking the integral only using the section Ly of £, lying
between ¢; and ¢; + w. With this definition it is clear that B(u) extends analytically to €. In
particular, this proves that B(z) satisfies condition (iii) of Theorem Similarly can be
defined using the contour Lo which travels in the positive imaginary direction until reaching a
point ¢o on the boundary of €y, then travels along this boundary to cs + 7 before travelling in
the negative imaginary direction to m. In particular, this proves that A(z) satisfies condition (i)
of Theorem 2.8

We will now show that (T9)-(23) hold. In fact, (20)-(23) follow immediately from

W(u)=Wu+n)=W(rr—v—u)=W(y—a1 —u).
To show that holds, first note that, from the definitions we have
1 W'(z)
- X pY q
27 S, (@)Y (z) W(z) — W(u)

So, defining L3 as the contour formed by £; followed by Lo reversed, then we have, for u inside
this region (and hence inside ),

F+ A(u) = — dz.

F+ A(u) + B(u) = — X(2)PY (2)?
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FIGURE 6. The contours £, £ and L5 from zy to zg + .

The only pole of the integrand in the interior of this region occurs at z = u, and the residue at
this point is X (u)?Y (u)?, so follows from the residue theorem.

We will now show that conditions (ii) and (iv) of theorem hold. First, we note that by
the definition of W (z), the poles of X (z) in Q1 UQy are exactly the poles of W(z) in this region,
while the poles of Y(2) in Q_; UQ_5 are exactly the roots of W(z) in this region. So, condition
(iv) follows from the fact that the integrand in is 0 when W (u) = oo, while condition (ii)
follows from the fact that the integrand in is 0 when W(u) = 0.

We have now shown that F, A(u) and B(u) as defined in (29), and satisfy all of
the conditions of Theorem This completes the proof that these are indeed the functions F,
A(u) and B(u) defined in the previous section. -

4. NATURE OF SERIES IN THE THREE-QUADRANT CONE

In the Section 2] we reduced the problem to finding the unique meromorphic functions A, B :
C — CU{cc} and constant F characterised by Theorem (for each t). As we discussed, an
equation analogous to was found by Raschel for walks in the quarter plane [29], and this
equation has since been used to determine precisely when Q(x,y;t) is differentially algebraic
[2, 13, 22] and to determine in many cases whether it is algebraic or D-finite with respect to x
or y [211, 23].

Due to the similarity between our functional equation and the equation widely used in
the quarter plane, we can apply methods that have been used on the quarter plane functional
equation to our functional equation to determine the nature of C(x,y;t). In particular, in this
section we will show C(z,y;t) is algebraic, D-finite or D-algebraic with respect to x (or y) in
the same cases as Q(z,y;t). We note that Fayolle and Raschel also showed that for unweighted
models, Q(z,y;t) is D-finite with respect to ¢ in the cases where it is D-finite with respect to x
[21], however these results relied on the precise ratios % that could occur in these cases, so they
do not apply so readily to our equation. Nonetheless, we expect that the same result holds for
Clx,y;t).

There are two properties of the step-set which determine the complexity of the generating
function Q(z,y;t). The first is the property that the walk model has a finite group - in our context
this is equivalent to the ratio - being a rational number independent of ¢ (see Appendix |C].
The second is the property that the model decouples, that is under that under the assumption
that K(z,y) = 0, we can write 2Py? = Ry(z) + Rz(y) for some rational functions R; and Rs.
Equivalently these are the cases where one can write X (2)PY (2)? = R1(X(2)) + R2(Y (2)) for
some rational functions R; and Rs. The nature of the series C(z,y;t) as determined by these
properties is shown in able 2l We make this more precise in the following Theorems which will
be proved in this section.

In the following theorems we reference the functions A, B and C, that is, the functions defined
by the series at values of ¢, x,y where they converge absolutely, as described in Lemma
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Finite group Infinite group
Decoupling Algebraic D-algebraic, not D-finite
Non-decoupling | D-finite, not algebraic not D-algebraic

TABLE 2. Complexity of Q(x,y;t) and C(x,y;t) as functions of x as proven
more precisely by Theorems FIEHE

Importantly, for ¢ € (0, ﬁ) all of these series converge absolutely to functions of z and y

defined for x,y in an open, non-empty subset of C, so it makes sense to discuss the nature of
these functions.

Theorem 4.1. For fized t € (0, ﬁ

(i) The function C(x,y;t) is D-finite in x,
(ii) The function C(x y;t) is D-finite in y,
(iii) The function B(L;t) is D-finite in z,
) (3
)

) the following are equivalent

\HH\

(iv) The function A(=;t) is D-finite in y,
(v) B(z) satisfies a lmear differential equation whose coefficients are elliptic functions with
periods ™ and 7T,
(vi) A(z) satisfies a linear differential equation whose coefficients are elliptic functions with
periods ™ and T,
(vii) the ratio = € Q,
(viii) the orbit of each point (x,y) € E; under the group of the walk is finite.

We give the proof of some of these equivalences immediately, namely those which are either
simple to prove, or follow easily from our general results in Appendix

Proof of [1)] «<=[(ii)] <= [(ii)] <= [(iv)] «=[(v)] «<=[(vi)] The equivalences @ <« | (iii)|
and <= [(iv)| follow from (). The equivalences [(iii)] <= [(v]] and [(iv)] <= [(vi)] follow
from Proposition [B.8 due to the definitions and (13) of A(z) and B(z). Finally[(v) <
due to as X (2)PY(2)? has 77 as a period.

The proof of this theorem will be completed as follows: we define the group of the walk in

Appendix |C] and the equivalence of and |(viii)| is shown in Proposition We show that
these equivalent conditions imply the conditions |(i){(vi)| in Theorem [4.11] while we show the

converse in Theorem [£.13]

Theorem 4.2. Assume that t € (0, ﬁ) The following are equivalent

(i) The function C(z,y;t) is algebraic in x,

(ii) The function C(z,y;t) is algebraic in y,

iii) The function B(L;t) is algebraic in z,

The function A(%; t) is algebraic in y,

B(z) has mwT as a period for some positive integer m,

A(z) has mnT as a period for some positive integer m,

The equivalent conditions of Theorem hold and there are rational functions Ry and

Ry satisfying Py? = R1(z) + Ra(y) for all (z,y) € E;,

(viii) The equivalent conditions of Theorem hold and there are rational functions Ry and
Ry satisfying X (2)PY (2)? = R1(X (2)) + R2(Y (%)) for all z € C,

(ix) The equivalent conditions of Theorem hold and the orbit sum of the model is O (for

(z,y) € Ey).

Proof of [()] «<=[(ii)] +=[(ii)] <= [(v)| <=[(v)] <=[(vi) and|(vii)] <=[(viii)] The equlv—
alence |(vii)| <=>| (viii)|is due to the parameterisation 1.} of E;. The equivalences [.] < | (iii)
and <= [ (iv)| follow from (1). The equivalences <= [(v)] and [(iv)] <= [ (vi)] follow
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from Proposition due to the definitions and . Finally <:> due to as

X(2)PY ()9 has mnT as a period. =

To complete the proof of this Theorem, we define the orbit sum and show that and [(ix)
are equivalent conditions in Proposition We then show that equivalent conditions |(i){(vi)
are equivalent to |(vii)| in Theorem

Theorem 4.3. Fixt € (O, ﬁ) and assume the equivalent conditions of Theorem do not

hold. The following are equivalent

(i) The function C(z,y;t) is D-algebraic in x,

ii) The function C(x y;t) is D-algebraic in y,

The function B(%;t) is D-algebraic in x,

The function A(; t) is D-algebraic in y,

B(z) is D-algebraic in z,

A(z) is D-algebraic in z,

There are rational functions Ry and Ra satisfying xPy? = Ry (x) + Ra(y) for all (z,y) €

Et;

(viii) There are rational functions Ry and Ry satisfying X (2)PY (2)? = R1(X(2)) + R2(Y (%))
for all z € C.

[(i)] <= [(i0)] < [(v)] < [(v)] «<=[(v])] and[(vii)] <= [(viii)} The equiv-
(vnl) is due to the parameterisation (7) of F;. The equlvalences )| < (ii)
follow from (T)), the equivalences [(iii)] <= [(v)] and [(iv)] <= [ (vi)] follow
from Proposition [B.10] due to the definitions and ((13). Finally due to as
X (2)PY (2)9 is D-algebraic in z (see again the proof of Proposition [B.10).

We complete the proof of this theorem later in this section, starting with Theorem [£.14]
which shows that the equivalent conditions |[(vii)] <= [ (viil)| imply the equivalent conditions
— | (1)| <=| ()| < |(iv)| <=|(v)| <[ (vi)| then we show the reverse implication in
Theorem

Although the theorems above describe the nature of C(x,y;t) as a function of z and y for
fixed ¢, this implies its nature as a series in R[z, y|[[t]] due to the following Lemma:

Lemma 4.4. Let G(z,y;t) € Rz, 1.y, i][[t]] be a series which converges for |z|,|y| =1 and t €
(0, ﬁ) The series G(z,y;t) is algebraic (resp. D-finite, D-algebraic) in x if and only if the
function G(z,y;t) of x and y is algebraic (resp. D-finite, D-algebraic) in x for allt € (0, ﬁ)

Proof. Let Aqi(x,y,t),Aa(z,y,t), A3(z,y,t),... be an ordering of the set {27G(z,y;t)*}; ken,-
Then the function G(z,y;t) is algebraic in z if and only if for each ¢, there is some integer n > 0
and functions Sy (y;t) for 0 < k <n and S(y,t) of y satisfying

n
> Skly;)Ak(z,,t) = S(y, 1),
k=0
with S, (y;t) # 0. A priori, n depends on ¢, however, as there are uncountably many possible
values of ¢ and only countably many for n, we can chose some n = N for which an equation of
the form above holds for uncountably many values of t. For a given value of ¢, this happens if

and only if for every fixed zo, ..., x,4+1, the matrix
1 AO(anyat) Al(xO’yat) An(x0>y7 )
1 Ao(z1,y,1) Ai(z1,y,t) o An(z1,9,1)
A

1 AO(xZay7t) Al(x27y7t) n(x%ya )

1 Ao(@ns1,y,t) A(@pg1,y.t) - Ap(Tpgr,y,t)
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has determinant 0. Since each G(xy,y;t) can be considered to be a series in C[y][[t]], this
determinant, which we denote by T'(y;t) is in general a series in Cly][[t]]. Moreover, for any
value of t and y for which all of the series Aj(xk,y,t) converge absolutely, the series T'(y;t) will
also converge absolutely to the determinant of these values.

Now, Assume that the function G(z,y;t) is algebraic in z for all ¢. For all sufficiently small ¢,
and all y satisfying |y| = 1, the series A;(z,y,t) converge absolutely, so there are uncountably
many values ¢ such that the series T'(y;t) converges to 0 when |y| = 1. But this is only possible
if T(y;t) = 0 as a series. Now, since this determinant is 0, an equation of the form

> Se(yst)Ak(x,y,t) = S(y, 1),
k=0
must hold with each S (y;t) and S(y,t) a series in Cly][[t]], so the series G(x,y;t) is algebraic
in z.
For the converse, assume that the series G(z, y;t) is algebraic in 2. Then for some n, and any
2oy ..., Tnt1 € C, the determinant T'(y;t) = 0. Hence for each fixed ¢ the determinant is still 0,
so the function G(z,y;t) is algebraic.

For the property D-finite, the same proof works after changing the definition of Ay (z,y,t), Aa(z,y, 1), . ..

. ; k .
to be the functions z’ (a%) G(z,y;t) in some order.

Similarly, for the property D-algebraic, we just have to define Ag(z,y,t) so that the sequence
Ao(z,y,t), A1 (z,y,t),. .. contains each product z7 [T%_, (%)ki F(z,y;t) withp > 0and 0 < k; <
-+ < k, exactly once. -

We now use this lemma to rewrite the theorems above to characterise the complexity of the
series C(x,y;t) € Rlz, yl[[t]]:
Theorem 4.5. The following are equivalent
(i) The series C(x,y;t) € Rlz, y][[t] is D-finite in x,
(ii) The series C(z,y;t) € Rz, y][[t]] is D-finite in y,
(iii) The equivalent conditions of Theorem hold for all t € (0, 1 ),
(iv) The group of the walk is finite.

Theorem 4.6. The following are equivalent
(i) The series C(z,y;t) € Rz, y][[t] is algebraic in x,
(ii) The series C(z,y;t) € Rz, y][[t]] is algebraic in y,

(iii) The equivalent conditions of Theorem hold for all t € (0, ﬁ)

Theorem 4.7. Assume that the group of the walk is infinite. The following are equivalent
(i) The series C(x,y;t) € Rlz,y][[t]] is D-algebraic in z,
(ii) The series C(x,y;t) € Rlz, y][[t] is D-algebraic in y,
(ili) The equivalent conditions of Theorem hold for all t € (0 1 )

' P(1,1)

Proof of Theorems[{.3{].7} For each of these theorems, the equivalences < | (iii)| and
(ii)] <= | (iii)| are both direct results of Lemma with F(z,y;t) = C(z,y;t). Finally, the
equivalence [(iii)] <=[(iv)|in Theorem [£.5|is due to Proposition -

4.1. FINITE GROUP CASES

In this section, we consider the cases in which -L € Q. We will show that this occurs for
fixed t if and only if C(z,y;t) is D-finite in x. As explained in Appendix |C| this occurs for all
t if and only if the group of the walk is finite. This is an algebraic property of the single-step
generating function P(x,y), which was shown to be equivalent to D-finiteness for walks in the
quarter plane. Hence in this section we are showing that if the generating function Q(z,y;t) is
D-finite in = then the generating function C(z,y;t) is also D-finite in z. In the following section
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we will show that the converse of this statement also holds. Note that by symmetry between x
and y, the analogous statements with respect to y also hold. We also show that C(z, y;t) has the
more restricted property that it is algebraic in z precisely when X (2)PY (2)? decouples, which
we make precise below. Again this coincides with the nature of Q(z,y;t).

Definition 4.8. For fized t, we say that an elliptic function U(z), with periods m and w7 de-
couples if there is a pair of rational functions Ry and Ry satisfying

U(z) = B1(X(2)) + Ra(Y (2)).
We say that the model decouples if X (z)PY (2)? decouples.

It is often alternatively stated that the algebraic cases are those in which the orbit sum is 0,
which we make precise in the following definition.

Definition 4.9. For fized t satisfying 22 = 2 for integers M, N > 0, the orbit sum E(z) of

T N’
an elliptic function U(z), with periods © and 77, is given by
N-1
E(z):= > U((2k+ 1)y —2) = U(2ky + 2).
k=0

We say that the orbit sum of the model is the orbit sum of X (2)PY (2)?.

In the following Proposition we show that the orbit sum of a function U(z) is 0 if and only if
U(z) decouples. This was proven in an algebraic setting in [2] Theorem 4.11], where decoupling
functions were introduced, and essentially the same proof works here:

Proposition 4.10. Let U(z) be an elliptic function with periods = and w7, and assume that
727—: = %, with M, N € Z, N > 0. The function U(z) decouples if and only if the orbit sum E(z)
of U(z) is equal to 0.

Proof. In the case that U(z) decouples, let U(z) = R1(X (2)) + R2(Y (2)), where Ry and Ry are
rational functions. Then we can write the orbit sum as

N-1
E(z) = ) Ru(X((2k+ 1)y = 2)) + Rao(Y((2k + 1)y — 2)) — Ra(X (2ky + 2)) — Rao(Y (2ky + 2))
k=0
N-1
= Ri(X(=2(k + 1)y +2)) + Ra(Y (=2kvy + 2)) — R (X (2ky + 2)) — Ro(Y (2k7y + 2)).
k=0

Now, the terms Ry (X (2kvy+2)) in the sum are a permutation of the terms Ry (X (—2(k+1)v+2)),
because

Ry(X(2ky + 2)) = Ra(X(=2(j + 1)v + 2)),
when j = N —k—1. Hence these terms cancel out in the sum. The same holds for the remaining
terms in the sum as Ro(Y (2ky+2)) = Ra(Y(—2jv+2)) for j = N —k or j = k = 0, so we have
E(z) =0, as required.
We will now prove the converse, that is that if E(z) = 0 then U(z) decouples. Define

N

Ar(z) = 2’;]; L U@y + 2) + U2k = 1)y - 2))
v,

Ag(z) ==Y — 5 U@ky+2) + U((2k + 1)y - 2)).
k=0

The summand U (2ky + z) + U((2k — 1)y — z) is fixed under the transformation z — —v — z for
any k, so we have A;(—v—z) = A1(z). Similarly we have As(y—z) = Aa(z). So by Proposition
there are rational functions R; and Ry satisfying A;(z) = Ry (X (2)) and As(2) = Ra(Y (2)),
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so it suffices to show that if E(z) =0, then U(z) = A1(z) + A2(z). Indeed this follows from the
equation

A1(2) + Aa(2) = Uz +2N7) + 5B (z),

which follows directly from the definitions of A;, A5 and F. n

Theorem 4.11. If % = % € Q, then C(x,y) is D-finite in x. Moreover, under this assumption

C(x,y) is algebraic in x if and only if the orbit sum
N-1
E(z):= ) X((2j+1)v—2)PY((2) + 1)y — 2)* = X(2jv + 2)’Y (2jy + 2)*
§=0
of X(2)PY (2)7 is equal to 0.

Proof. Assume that 2y = 77 for some positive M, N € Z. Now consider (24):

B (QNJ;MM + z) ~B(2) = J(=).

Taking a telescoping sum of N copies of this equation yields
N-1
B((2N — M)ar +2) — B(2) = »_ J(2jnr — 2j7 + 2),
3=0
which we claim is equal to the orbit sum E(z). Indeed, since 7 is a period of J(z), we have
J(2jrT — 2jv+ 2) = J(—2j7+ 2) = J(2(N — j)v + 2), so the sum rearranges to
N—

Ju

J(2j7 + 2),
3=0
which is equal to E(z). Hence
B((2N — M)nt + z) — B(z) = E(2). (30)

We will now consider the cases E(z) = 0 and E(z) # 0 separately. In the case that E(z) = 0,
we have

B((2N — M)7nT + z) = B(z).
Hence we have condition of Theorem so the equivalent conditions are satisfied, including

that C(z,y) is algebraic in x.
Finally we consider the case F(z) # 0. Then from , we have

B((2N —M)nr+z2) B(z) B(2N-M)rt+2z2) B(z)

B(eN—M)rr+2)  E(z) E(z) TEBE " (31)
so the function - |
FO) = 50 = prap B EG) - BEE:) (52)

satisfies
F((2N — M)nT 4+ z) — F(z) = 0.

Hence, B(z) = B (%) is weakly X-D-finite (see Definition , so by Proposition the
function B(2) is D-finite in . Therefore the generating function C(z,y) is also D-finite in z.

Finally we show that in this F(z) # 0 case, C(x, y) is not algebraic in z. Suppose the contrary,
then condition [(v)| of Theorem [£.3|holds, that is m is a period of B(z) for some positive integer
m. But this is impossible as by (31)),

B(m(2N — M)r1 +2) — B(2) _ B(m(2N — M)rT+2) B(z)

E(2) T E(mEN - Mrr+2) E(z) 7 0.
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Remark: Note that this Theorem holds for any fixed ¢ for which = € Q, which can occur
either in the finite group case, where this occurs for all ¢, or in infinite group cases for specific
values of t. We require that the above statement hold for all ¢ to say that the function C(x, y;t)
is D-finite in 2. See Appendix [C]for a discussion of the group of the walk.

4.2. INFINITE GROUP CASES

In this section we consider the case = ¢ Q. the first part of this section is dedicated to
showing that C(x,y;t) is not D-finite in = in these cases, and we will subsequently analyse the
D-algebraicity of C(x, y;t). We start with a lemma which essentially proves B(%; t) is not rational
in z, as this turns out to be a case which needs to be treated separately. Surprisingly this seems
to be the most difficult result of this section, in the sense that it is the only result for which our
proof does not apply systematically to walks in an M-quadrant cone for any M. In particular,
for walks in the quadrant we have only able to prove the result when ¢ is sufficiently small (See

Lemma [6.16)).

Lemma 4.12. Assume that = ¢ Q. Then B(z) is not a rational function of X (z).

Proof. Assume that B(z) is a rational function of X (z). Then for z € Q_5, we have z +77 € g,

so, by (L3)
1

Now since 77 is a period of both X and B, this implies that

B(z)=B (X}Z)t>

an equation that would normally only hold for z € Qo U Q1 UQ,. By (12), we have

A(z) = A (Y;Z)t)

We will show that this is a contradiction as the sum of these cannot be sufficiently large in
absolute value to satisfy (19).

Recall that by our choice t € (0, ﬁ), the series C(z,y;t), B(%; t) and A(%;t) all converge
when |z|, |y| = 1. In particular, we can substitute x = y = 1 into , which yields

(1 —-tP(1,1))C(1,1;t) =1 — F(t) — A(1;t) — B(1;¢).
Since the left hand side of this equation in positive, we must have
F(t) + A(1;t) + B(1;1) < 1.
It follows that for z,y satisfying |z|, |y| > 1 we have

'F(t) +A (1;15) +B <1;t>‘ <1.
y T
In particular, for z € _5, we have | X (2)|,|Y(2)| > 1, so
1 1

F+B A =|F{t)+B | ——;t A it 1.

86+ A = 7+ (5t) +4 (750) <
However this is a contradiction as, by (19)), we have

[F + B(2) + A(z)| = [ X ()Y (2)!| = [ X (2)"[Y (2)[*,

and | X (2)],|Y(2)| > 1 because z € Q_s. -

Now we are ready to prove that B(L;¢) is not D-finite in « in the case that - ¢ Q. The idea
of the proof is that if B(%; t) is D-finite in z, then the poles of B(z) must be well-behaved, as
described in Lemma whereas if - ¢ QQ, we can prove that its poles are not well behaved in
this way.
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Theorem 4.13. Assume that 1 ¢ Q. Then B(L;t) is not D-finite in .

Proof. Suppose the contrary. Then B(%;t) is D-finite in z. Moreover, recall that B(z) =
B(ﬁ;t) for z € Q2 Uy, so by Lemma the poles z. of B(z) fall into only finitely many

classes z. + 7Z + w7Z. Hence B(wT + z) — B(z) has the same property.
Now, from (24), we have

B@2rr—2y+4+2)—B(2) =J(2) =J(z +77) = B(37rT — 2y + 2) — B(n7 + 2),
and rearranging yields
B3nT —2y+z) — B(2nT — 2y + 2) = B(n7 + z) — B(2).

This implies that B(n7 4 z) — B(z) is an elliptic function with periods 7 and 277 — 2. If this
function has a pole zg, then for every k € Z, the value Z, = zo + k(277 — 2v) is a pole. This is
a contradiction as these points all define different classes zy +n7Z + 7Z, since = € R\ Q. The
only remaining case to consider is when B(n7 + z) — B(z) has no poles, in which case it must
be constant:
B(rm 4+ z) — B(z) =c.
In fact combining this with (20), we see that ¢ = 0, as
c=B(nr+2)—B(z)=B(—y—2)—B(nt —y—2) = —c

Hence by Proposition the function B(z) must be a rational function of X(z) since we have
B(z+77) = B(z) and B(z) = B(—nT +v —z) = B(y — z). But this contradicts Lemma n

4.2.1. Decoupling cases. Recall from Definition [£.8|that we say that X (2)Y (2)? is decoupling
if there is a pair of rational functions R; and R satisfying

X(2)PY ()" = R (X (2)) + Ra(Y (2))-

As we will show in the following theorem, this implies that C(x,y;t) is D-algebraic in z and y.
The analogous result was proven in the quarter plane by Bernardi, Bousquet-Mélou and Raschel
[2], and more precisely they proved that C(x,y;t) is D-algebraic in ¢ under the same condition.
This results from the fact that all of the parameters that depend on ¢ and all of the functions
involved in the solution depend on ¢ in a D-algebraic way. We believe that the same argument
applies here, although a rigorous proof of this is outside the scope of this article.

Theorem 4.14. Assume that
X(2)PY ()" = Ri(X(2)) + Ra(Y (2))
holds for some rational functions Ry and Ry. Then C(x,y;t) is D-algebraic in x and y.
Proof. Under the assumption, can be written as
T(z) := R1(X(2)) — B(2) = A(2) + C(t) — Ra(Y(2)), (33)

which implies that T'(z) satisfies T'(z) = T(n7 —vy—2) = T(—n7+~v—2) = T(2+m). Combining
these shows that 7'(z) is an elliptic function with periods = and 277 — 2v. This means T”(z) is
an elliptic function with the same periods so it is related to T'(z) by some non-trivial algebraic
equation, implying that T'(z) is a D-algebraic function of z. Indeed, any elliptic functions are
D-algebraic for this reason. Now, since X (z) is also D-algebraic, it follows from that B(z)
is also D-algebraic in z. This is precisely condition of Theorem [4.3] which we showed to be
equivalent to conditions and that C(x,y;t) is D-algebraic in x and y. =

Remark: Using it can be proven that T'(z) is a rational function of W (z) (see Definition

using the same idea as Proposition
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4.2.2. Non-decoupling cases. In this section we show that if there is no decoupling function,
then the generating function is not D-algebraic in x. The proof works along the same lines
as [13] 22] for the quarter plane case, which relies on Galois theory of g-difference equations.
Rather than essentially rewriting these entire proofs, in Appendix |§| we use results from [I3] to
deduce Corollary which avoids Galois theory language in its statement, and can be readily
applied to show the main result of this section. For the following theorem, recall that for fixed

te (O7 ﬁ), the series C(z, y; t) converges for |z|, |y| < 1, so we can consider it to be a function
of z and y.

Theorem 4.15. Fizt € (O, ﬁ) Assume that there are no rational functions Ry, Ry € C(x)
satisfying

X(2)"Y (2)7 = R1(X(2)) + Ra(Y (2)).
Then the function C(z,y;t) is not D-algebraic in x or y.

Proof. Tt suffices to prove that B(z) is not D-algebraic, as we showed below the statement of
Theorem that this is equivalent to C(z, y;t) being D-algebraic in x or y. Assume for the sake
of contradiction that condition that B(z) is D-algebraic in z. We will show that this implies
that there are rational functions R; and R, satisfying the equation in the theorem.

By Theorem the functions h(z) := X (2)PY (2)?, fi(z) := A(z) + F and f2(z) := B(z)
satisfy the conditions of Corollary with 74 = —77 + v and v = 77 — 7. Hence, there are
meromorphic functions aj,as : C = CU {oo} satisfying

X (2)PY (2)? = a1(z) + az(z),
a1(z)=a1(z+7)=a1(z+77) = a1 (-7 + v —2) = a1(y — 2),
az(z) = ag(z +7) = ag(z + 77) = as(—vy — 2) = ao(77 — v — 2).

Finally, by Proposition this implies that a1(z) is a rational function of Y (2), while ay(z) is
a rational function of X(z). Hence we can write

X(2)"Y (2)7 = Ri(X(2)) + Ra(Y (2)),
as required. =

4.3. WALKS STARTING ON AN AXIS

We will now discuss a question suggested by Kilian Raschel where the walk starts at some
point (p,0) for p > 0 (or equivalently (0,q)) rather than the traditional starting point (1,1).
Trotignon and Raschel conjectured that with this starting point all finite group models admit
algebraic generating functions [30]. This follows immediately from Theorem as these cases
decouple for any step set (by setting R;(x) = 2P and Ra(y) = 0). Moreover, using Theorem
the same argument proves that for any step set .S, the walks starting at such a point have
a generating function which is differentially algebraic in x. In this section we go further than
these results by finding an explicit, general formula for the counting function of walks starting
at a point (p,0). This formula will use the function W (z) defined in Definition

Theorem 4.16. Forp > 1, let A,, B, and F,, denote the functions A, B and F arising in the
case that the starting point of the walks is (p,0). Then for each p, there is a degree p polynomial
H,, satisfying

Ap(z) = Hp(W (2)) — Hp(0), (34)
Fy(t) = Hp(0), (35)
By(2) = X(2)" — Hp(W(2)). (36)

Moreover, H, is uniquely determined by the fact that the right hand side of has a root at
z = 0. Furthermore, the leading coefficient of Hy is 1.
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Proof. We will start by proving that the polynomial H is uniquely defined by the fact that
the right hand side of has a root at z = §. In the case that § # nt — v — 4, both
X(z) and W (z) have a simple pole at z = §. Taking a series expansion X (2)? — H,(W(z)) =
gp(x —8) P+ gp_1(x —6) P+ .- 4 go + O(x — §), around z = §, for an arbitrary polynomial
H, the polynomial

H,(w) = hpw? + hp_lu)p*1 + -+ hiw+ ho

is uniquely defined by the fact that g, = g,—1 = --- = go = 0, as h,, is determined by the fact that
gp =0, then h,_; is determined by the fact that g,_; = 0 as so on until hy is determined by the
fact that go = 0. Moreover, by these definitions, the expression X (z)? — H,(W(z)) does indeed
have a root at z = 0. We also note that h, = 1 as X(z) — W (z) does not have a pole at z = §, so
setting h, = 1 causes g, = 0. In the remaining case, where 6 = 77—~ — ¢, both X (z) and W (z)
have a double pole at z = § and are fixed under the transformation z —+ 20 —z =an7—v—=z2. In
this case we can write

X(2) = Hy(W(2)) = gp(a = 0) 7 + gpa(w = 8)7F 4+ + go + O((z — 9)*),

then as in the previous case each hj, starting with j = p, is determined by the fact that g; = 0.

Now we have determined the unique polynomial H such that the right hand side of has
a root at z = §. We will now show that the functions A,(z), F}, and Bp(z) thus defined are
the unique functions satisfying the conditions of Theorem For the equations, holds
as it is the sum of (34), and (since ¢ = 0 in this case), and hold because
W(z) and X (z) are also fixed by these transformations while and hold because W (z)
is fixed by these transformations. For (iii) and (iv): poles of B,(z) could only occur at poles of
either X (z) or W(z), and the only poles of these functions in the region g U2y U Qg are § and
—7T + 7 —§. But we know that § is a root of B, and since B,(z) = n7 —~y — z, this means that
wT — — 4 is also a root of B,. So (iii) and (iv) hold as B,(z) has no poles in £y U ; Uy, and
it has roots at the poles of X (z) in this region. Finally (i) holds because W (z) has no poles in
Qo UQ_1 UQ_o, moreover, (ii) holds because the poles of Y (2) in Q_; UQ_5 are roots of W(z),
and when W(z) = 0, we clearly have A,(z) = 0. this completes the proof that the functions B,
and A, determined by this theorem are the unique functions characterised by Theorem =

For p > 1, let Ap(%;t), B,(L;¢) and F,(t) denote the series A(%;t), B(L;¢) and F(t) arising in
the case that the starting point is (p,0). We can convert the formulae for A, and B, above to
formulae for A, B, using series defined by the following lemma:

Lemma 4.17. There are unique series Wp (1;t) € aR[2][[t] and W4 (%;t) € %R[%][[t]] sat-
isfying Wg (ﬁ;t) = W(z) for z € Q1 U Qs and W4 (ﬁ;t) = W(z) for z € Q_1 UQ_».
Moreover, these series are related to Ay and By by W4 (%;t) = A (%;t) and Wpg (%;t) =

xr — Fl(t) — Bl (%,t)

Proof. We define the series W and W 4 by the equations
1 1
(i) -+ (i)
Y Yy
1 1
Wp (;t> =z —Fi(t) - By <;t> ;
T T

and we will prove that these are related to W (z) as described. The reason for defining them in
this way is that it is now clear from the definition that Wp (1;t) € 2R[2][[t]] and W4 (%, t) €

%R[%][[t]] For fixed ¢t and z € Q; U g, define Wy(z) = Wp ( 1 't> and for z € Q_1 UQ_g,

X(z)
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define Wo(2) = W4 (ﬁ, t). Then from the definitions of Wg and W4, we have

Wi(z) = X(2) — Fy — B; (2)
Wy(z) = Aq(2).
Combining this with Theorem expanding the functions of H; using Hq(w) = w + hg yields
Wi(z) = W(z), for z € Q1 U Qy,
Wa(z) = W(z2), for € Q1 UQ_s.

Finally the fact that the series Wg and W4 are unique is clear, as it would be impossible for
two different series applied to X (z) or Y(z) in the same region to have the same result. n

We can now rewrite Theorem [1.16] as the following theorem:

Theorem 4.18. For each p > 1, then there is a degree p polynomial H, (with coefficients

depending on t) satisfying
1 1
() = (s (54)) -0 o

F(t) = Hp(0), (38)

6, (1) <o, (i (1)), o

Moreover, this polynomial is uniquely determined by the fact that the right hand side of s
a series in LR[2][[t]].

Proof. We define H, to be the polynomial from Theorem Substituting y — Y (z) for
z € Q_1UN_5 into yields (34)), so we know that holds for y = Y'(z) where z € Q_1UQ_5.
This region includes poles of Y (z), so holds for 1/y in a neighbourhood of 0, therefore it

must hold as an equation of formal series of % for any fixed t € (0, ﬁ), and hence it holds as

an equation of series of ¢ and %, as required. Similarly, substituting © — X (z) for z € Q; Uy
into yields , so we know that holds.

Finally the fact that the right hand side of lies in LR[2][[¢]] is equivalent to the fact that
the right hand side of has a root at d, so it uniquely defines the polynomial H,,. -

Theorem [I.1§] is a purely combinatorial statement, yet our proof used analytic analysis of
elliptic functions.It would be nice to understand why this Theorem is true from a purely combi-
natorial perspective. Indeed the following corollary is even more striking in its simplicity, given
that we have no purely combinatorial proof.

Corollary 4.19. Fiz a (weighted) step-set S. Amongst the (weighted) walks w from (2,0) to
(=1,0) of length n using steps in S which only touch the set D = {(x,0) : x < 0}U{(0,y) : y < 0}
at their end-point, ezxactly half touch the ray T = {(1,y) : y < 0}.

Proof. The walks from (2, 0) which only touch D at their end-point are exactly the walks counted

by
1 1
BQ (,t) +A2 (,t) + Fg(t),
4 Y

so the walks from (2,0) to (—1,0) are counted by [z7]By (1;¢). For the walks from (2,0) to
(—1,0) which do not touch T, shifting these walks to the left one space yields exactly the walks
from (1,0) to (—2,0), that is the walks counted by [z2]By (;¢). So it suffices to prove that

1B, (;;t) —2l2B, (;;t) .
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FIGURE 7. Two paths from (2,0) to (—1,0) using the same steps in a different
order and only visiting (—1,0) at their end-point. By corollary [4.19] exactly
half of all such paths pass through a blue triangle.

From Theorem and Lemma [4.17] we have

B (i) =22 — H, (ac —F(t) — By (;t)) ; (40)

Where H; is the unique polynomial of degree 2, with coefficients depending on ¢, such that the
right hand side is a series in 2R[2][[¢]]. This is precisely the polynomial

Ha) = (0 F0) + 26~ e (13t

B, (;) = 2zB; (;;t) — [2"] 22B, (i;t) - B (i;t)Q.

Taking the coefficient of [z~!] on both sides of this equation yields the desired result. n

SO becomes

We also give a Second corollary which is perhaps a more explicit version of Theorem

Corollary 4.20. Let l(w;t) € w+Z [ ] [[t]] be the inverse of Wp(L;t) =z — F(t) — B1(%;¢) in
the sense that

(o (L)) = a

= [w=<°)(w; t)p|

Then
w=W1( % it)

w:WA(i;t)

and |(W(2)) = X (2) for z ~ 6.
Proof. Define
Hy(w;t) == w2l (w; t)?.
We will show that The series A,, B, and F,, as defined above along with H,, satisfy the conditions
of Theorem and therefore are the series defined previously. Since l(w;t) € w + Z [ ] [[t]],

1
w
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we have I(w; )P € w? +wP~'Z [ L] [[t]], so Hp(w;t) = [w=]l(w; )P lies in R[[¢]][w] and has degree
pas a polynomial in w. Hence

H,(0;t) € R[[1]] and

( ) ( (i“)”)‘Hp(O%ﬂE;ZB]utn,

Because W 4 ( ) %Z { } [[#]]. So (87) and (38) hold. Moreover, [w<)I(w;t)? € +Z L] [[¢]],
so B, (1;¢) € 2Z [1] [[¢]]. Finally, (39 . holds because

(1)1 o (1)) (o () ) =

This implies that H,, is the unique polynomial defined by Theorem such that

o~ H, <WB <;t>> € %Z E] [[¢1],

Which implies that A,, B, and F, are the desired series as well.
Finally, for ¢ fixed, if z € Q1 U Qs and % is within the radius of convergence of |(wj;t)

as a function of 1, then we can substitute 2 — X(z) into yielding (W (z)) = X(z). In
particular, this will happen in a neighbourhood of § as § € 21 UQs and 0 is a pole of W (z) (see

definition [3.1)). -
4.4. FORBIDDING THE STEPS BETWEEN (0,1) AND (1,0)

In this section we prove that in most cases the nature of the generating function C(z,y;t)
does not change if we forbid either or both of the steps between (0,1) and (1,0). To see this,
let L(z,y;t) be the generating function counting walks starting at the same point (p,q), but
for which it is forbidden to step directly from (0,1) to (1,0). Let M(z,y;t) be the generating
function for walks which are forbidden to step in either direction between (1,0) and (0,1). We
will show that C(z,y;t), L(x,y;t) and M(x,y;t) have the same nature as functions of z, except
possibly in the case that C(z,y;t) is D-algebraic but not D-finite, where we do not rule out the
possibility that either or both of L(z,y;t) and M(z,y;t) are D-finite.

Proposition 4.21. Let C(x,y;t) count walks with the same step-set starting at (1,0), let C (t)
denote the generating function counting walks ending at (0,1) and let él(t) walks starting at
(1,0) and ending at (0,1). Let Ly(t), L(z,y;t) and Li(t) denote the analogous series counting
walks where the step from (0,1) to (1,0) is forbidden. Then these are related by

L(mvy;t) = C((E,y,t) - w(l,—l)tl—l(t)é(xvy;t)' (42)

Proof. Consider the walks counted by C(x,y;t) — L(x,y;t), that is, walks that do use the step
from (0, 1) to (1,0) at least once. The section prior to the first of these steps is any walk counted
by Li(¢), as it must end at (0,1) and must not use the step from (0,1) to (1,0). The step itself
contributes the weight w _1)t, then the rest of the walk can be any walk starting at (1,0),

which are counted by C(z,y; t). Hence, we have

Clx,y;t) — Lz, 43 1) = wa,—1tli (1) Cla, y; 1)
Rearranging this yields the desired equation. =

Proposition 4.22. If C(x,y;t) is D-finite with respect to x, then L(z,y;t) is also D-finite with
respect to x. Moreover, in this case, C(x,y;t) is algebraic if and only if L(x,y;t) is algebraic as
functions of x.

Proof. Assuming that C(z,y;t) is D-finite in z, we have - € Q. Since the walks counted by

- - T
C(z,y;t) start on an axis, C(x,y;t) is algebraic in x. Hence by the , L(z,y;t) is D-finite in
2. moreover, L(z,y;t) is algebraic in « if and only if C(x,y;t) is algebraic in x. =



29

Proposition 4.23. C(z,y;t) is D-algebraic with respect to x if and only if L(x,y; t) is D-algebraic
with respect to x.

Proof. The case where C(z,y;t) is D-finite with respect to z is covered by
So we are left with the case where C(x,y;t) is not D-finite in x, that is - ¢ Q. Since the

walks counted by C(m,y;t) start on an axis, C(x,y;t) is D-algebraic in 2. Hence by the (42},
L(z,y;t) is D-algebraic in  if and only if C(z,y;t) is D-algebraic in x. -

Proposition 4.24. If C(x,y;t) is D-finite with respect to x, then M(x,y;t) is also D-finite with
respect to x. Moreover, in this case, C(x,y;t) is algebraic if and only if M(x,y;t) is algebraic as
functions of x.

Proof. Using we know that L(z,y;t) is D-finite, and that it is algebraic if an only if C(z, y;t)
is algebraic. Then using the same argument starting with L(x, y;¢) and forbidding the step from
(1,0) to (0,1), we can prove that M(x,y;t) is D-finite and that it is algebraic if and only if
L(z,y;t) is algebraic. -

Proposition 4.25. C(x,y;t) is D-algebraic with respect to x if and only if M(x,y;t) is D-
algebraic with respect to x.

Proof. Using [4.23] we know that L(x,y;t) is D-algebraic if and only if M(z,y;t) is D-algebraic.
Then using the same argument starting with L(z,y;t) and forbidding the step from (1,0) to
(0,1), we can prove that M(x,y;t) is D-algebraic if and only if L(z,y;t) is D-algebraic. -

5. WALKS IN AN M-QUADRANT CONE

In this section we consider the enumeration of walks in more general cones formed by gluing
together quarters of the plane along their boundaries. The quadrants Qg and Qg are defined by:

QO = {(7’7]) : 7’7] > 0}7
Qo = {(i,5) :i > 0;5 > 0}.
To define the rest of the quadrants that we will glue together, we consider the function r : Z? —

72, which rotates the plane by 7/2 anticlockwise, that is r((a,b)) = (—b,a). This allows us to
define quadrants Q, and Q; for all other s € Z recursively using the equations:

Qst1 =1(Qs) and Q5+1 = T(QS) for s € Z.

So Qs+4 = Qs and Qs+4 = Qs-

The 3-quadrant cone considered in the previous section is simply the union of three quadrants
Q_1, Qpand Q1. For M =1, M = 2 and M = 4, an M-quadrant cone can be similarly defined
as a union of M of these quadrants, a 4-quadrant cone being alternatively called the slit plane
(see Figure [8).

7\ {(n,0) :n € Z, n < 0}.

For M > 4, we have to be more careful in our definition, as the quadrants are not, a-priori,
disjoint. To define an M-quadrant cone, we start by defining the spiral quadrants

Do={(s,2):2€ Q} CTy={(s5,2): 2 € Qs}.

I, is then isomorphic to Q,, but, importantly, it is disjoint from I, for r # s. Now, rather than
considering walks in the whole plane (restricted to some subspace), we will consider walks in the
spiral space I := Ugezls. Recall that walks in the plane are permitted to have steps coming
from some fixed step-set S. In the spiral space II, a step is allowed from 7 = (s1, (a1,b1)) to
my = (82, (az2,b2)) if and only if (as — a1,bs —b1) € S and |57 — s2| < 1. In Lemma we will
show that these naturally correspond to walks in Z2\ {(0,0)} by projecting each point (s, (a, b))
onto (a,b). The additional value s keeps track of what is called the winding angle of the walk
around (0,0).
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FIGURE 8. The slit plane Z2\ {(n,0):n € Z, n <0} = Q1 UQoUQ_, UQ_os.

Lemma 5.1. Assume p’ is adjacent to a point p € Q,. Then p’ lies in exactly one of the sets

Qs—l; QS) Qs+1 and {(an)}

Proof. Applying the transformation r—* yields a point »—*(p’) adjacent to r—*(p) € Q,, and
it suffices to show that 7—%(p') lies in exactly one of the sets Q_; = {(i,5) : i > 0 > j},
Qo = {(i,7) i > 0;5 >0}, Q1 = {(4,4) : i <0 < 5} and {(0,0)}. These sets are disjoint, so
r~*(p’) cannot lie in more than one of these sets. Indeed, the points adjacent to Qo which lie
outside Qg are on the ray {(i,—1) : i > 0}, which lies in Q_; or the ray {(0,;) : j > 0} of which
all but the point (0,0) lies in Q. -

Lemma 5.2. If p € Q, C Z2, then there is a bijection between walks in Z2\ {(0,0)} starting at
p and walks in the spiral space 11 starting at (s,p) with the same sequence of steps.

Proof. for any walk (s, po), (S1,P1), - - - (8n, pn) in II, with (sg, po) = (s, p) there is a correspond-
ing walk pg, p1, . . ., pn in Z2\{(0,0)} using the same step set S. To show that this correspondence
forms a bijection, it suffices to show that there is exactly one choice of the letters s; for any walk
D0, P1,-- -, Pn With sg = s fixed. We will show this inductively. Assume that there is a unique
choice of s, and consider the possible values of si;1. Since s, has been chosen, we must have
(sk,pr) € 11, that is py € st_. Since pg41 is adjacent to py and pgy1 # (0,0), from Lemma
we must have pyy1 € st_l or pr+1 € st Or pr+1 € QSH_l, and pry1 can only be in one of
these sets as they are disjoint. Since sp41 must satisfy |si11 — sg| < 1, this implies that there is
a unique choice of sy satisfying pyy1 € Q5k+1' This completes the induction. -

Definition 5.3. An M-quadrant cone is a subspace 11 x of 11 defined by
HL,K =IT_5 Uf_L+1 Uf_L+2 U"'Uf[{,
where 0 < LK and L+ K+ 1= M.

Note that simultaneously decreasing L by 1 and increasing K by 1 simply rotates the cone
anticlockwise, so all M-quadrant cones are congruent. Hence, we could consider all possible
walks in an M-quadrant cone while fixing L = 0. We will not do this, however, as it is more
convenient to allow any value of L, but insist that the starting point of the walk is in L.

In subsection we define generating function Q;(z,y;t) counting walks in the M-quadrant
cone I, 57, and we derive functional equations characterising these series, then in subsection
we use these to determine an analytic functional equation, generalising Theorem Finally in
Section [6] we use this analytic functional equation to determine the complexity of the generating
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functions Q;(x,y;t). In a forthcoming paper we will consider walks in the complete spiral space

IT and walks restricted to the half spiral space II;, =T"_, U U f‘s.
s>—L

5.1. FUNCTIONAL EQUATIONS FOR WALKS IN AN M-QUADRANT CONE

In this section we consider walks restricted to the M-quadrant cone IIy s starting at some
point (0, (p,q)) € Ty using (weighted) steps in S.

We will now define the generating functions that we use to count these walks. We define
generating functions Qq(z,y;t) for —L < s < K as follows: Let ¢;(i,j;n) be the weighted
number of walks of length n starting at (0, (p,q)) and ending at the point (s, (4,4)). We define
the generating function Qs(z,y;t) by

Qu(,y;t) =D > quli, jin)a'y’t".
n>014,j€Z

Note that for j € Z we have

o Quj(x,yt) € 2Rz, y[[t]]

L Q4j+1(xa Y; t) € yR[ ! ) y][[t]]

o Qujya(z,y5t) € SRS, J][[¢]

* Qujia(z,y;t) € SRz, L[]
We can write this more concisely by defining zs and y; to be rotated versions of z and y for each
s. precisely, for k € Z, we define

8|

|

Tak = Yak—1 =

Tak+1 = Y4 =

Tak+2 = Yak+1 —

T
1
x
1
T4k+3 = Yak+2 —.
Y

Using these variables, we have
Qj(x, y;t) € xRz, y;][[t]].
Moreover, since walks counted by Q_p (z,y;t) finish in T'_ 1, we must have
Q-r(z,y;t) € x—ry- LRz, y-r][[t]-
We will now derive a system of functional equations characterising the series Qs(x,y;t). In

order to write these functional equations we define, for —L < 4,5 < K, the series S; ;(x,y;t)
to be the generating function for walks in the spiral plane II, whose last step is from I; to f‘j.
So S;; = 0 unless |i — j| < 1. Furthermore, for —L < j < K, we define T;(z,y;t) to be the
generating function for walks which do not end in Il »s, but for which the removal of the final
step yields a walk in II7 »s ending in f‘j. In the following two lemmas we describe spaces in
which the series S; ;(z,y;t) and T,(z,y;t) lie

Lemma 5.4. The series S; j(x,y;t) lie in

o Sjj+1(m,y;t) € y;R[y;][[t]]

* Siv1i(@,y3t) € ;R [y;[[t]]
Proof. Let w be a walk counted by S; j+1(z,y;t) and let w’ be the same walk with the final step
removed. Then w is also counted by Q;i1(z,y;t) € ;1R 41, y41][[t]] = y;R [yj, %} [[t]],

while w’ is counted by Q;(z,y;t) € x;R[z;,y,][[t]]. Since the contributions from w’ and w
can only differ by a factor of z*y°t, where —1 < a, 3 < 1, the contribution from w must lie
in y;R[y,][[t]], so the sum S; j11(x,y;t) of the contributions from all such walks also lies in

yi Ry ][[]]-
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Similarly, if we let w’ be a walk counted by S; j11(z,y;t) and let w be the same walk with
the final step removed, we can deduce that w and w’ are in the same sets as in the previous
case. This implies that the contribution from w’ lies in x;R[y;]([t]], so the sum S; ;1 ;(x,y;t) of
the contributions from all such walks also lies in z;R[y;][[t]]. n

Lemma 5.5. The series T;(x,y;t) lie in

o To(w,y;t) € Rlz][[t]] + R[y][[t]], sz =1,

o T_p(x,y;t) € R[:I: L, f M >

o Tir(z,y;t) €ypt L Ry, r][[t]], Zf]W =2,
o Ti_r(z,y5t) € yi ' R[] + R[], if M >3,
o Tx(z,yit) € Rlyk|[[t]], if M > 3,

o Ti(z,y;t) eR[[t]], for1-L<j<K.

Proof. Let w be a walk counted by T,(x,y;t) and let w’ be the same walk with the final step
removed. Let uz? ybt” be the contribution from w, where u is the weight of the walk (i.e., the
product of the Welghts of the steps). then w := r=7(w) ends at (a, b) while the walk &’ := r =7 (w’)
ends at some point (a — a,b— ), where «, § € {—1,0,1}. Moreover, the endpoint (a — a, b — 3)
of W' lies in r’j(QJ—) = Qo, and more precisely in 77(Q_1) = Qp in the case that j = —L. We
will now separately consider the six cases in the statement of this lemma, and show that in each
case the contribution uz§ ybt” to T,(z,y;t) from w lies in the claimed ring. This implies the
desired result as T;(z,y; t) is a sum of these contributions over all possible w, and there are only
finitely many terms in this sum for each length n.

Case 1: M = 1.

In this case we necessarily have j = L = 0. Hence (a — a,b— 3) € Qo = {(k,£) : k, £ > 1},
but (a,b) ¢ Qp. This is only possible if either a = 0 and b > 0 or b = 0 and a > 0. Hence the
contribution uzfybt" = xy"t" to To(z,y;t) from w lies in R[z][[t]] + R[y][[¢]]-

Case 2: M > 2 and j = —L.

In this case (a—a,b—fB) € Qo = {(k,£) : k,£ > 1}, but (a,b) ¢ Qo and (a,b) ¢ r7(Qy_1) = Q1.
As in the last case a = 0 and b > 0 or b = 0 and a > 0, except that the case a = 0 and b > 0
does not occur because then (a,b) would lie in Q. Hence the only possibility is that b = 0 and
a >0, so the contribution ux?® ; y® ;" to T_p(x,y;t) from w lies in R[z_][[#]].

Case 3: M =2and j=K=1-L.

In this case (a —a,b— ) € Qp = {(k,£) : k > 1;£ > 0}, but (a,b) ¢ Qg and (a,b) ¢ r—7(Q_) =
Q 1. The union Qo U Q_; = {(i,4) : i > 1}, so for (a,b) to be adjacent to this set but not in
this set, we must have a = 0. Moreover, since (a —a,b— ) € 9y, we must have b > —1. Hence,
the contribution uz_;y? " to Ti_r(z,y;t) from w lies in y; ', Rlyi—][[t]]-

Case 4: M >3 and j=1—L.

In this case (a —a,b— ) € Qo = {(k,£) : k > 1;£> 0}, but (a,b) ¢ Qo and (a,b) ¢ r~7(Q_1) =
Q1 and (a,b) ¢ r j(Qg L) = Q1. The only points adjacent to Qp which do not lie in @1 or
Q_; are (0,0) and (0,—1), so (a, b) is one of these points. Hence, the contribution uz$_,yb ;"
to T1_z(x,y;t) from w lies in y; ', R[[t]] + R[[¢]].

Case 5: M >3 and j =K

In this case (a—a,b— ) € Qo = {(k,£) : k > 1;£ > 0}, but (a,b) ¢ Qo and (a,b) ¢ 7 (Qx_1) =
Q,l. The only points adjacent to QO which do not lie in Q,l are the points (0,b) for b > 0.
Hence, the contribution uz%y%t" to T (x,y;t) from w lies in Rlyg][[t]].

Case 6: 1 - L<j<K.

In this case (a—a,b—f) € Qo = {(k,£) : k > 1;£ > 0}, but (a,b) ¢ Qo and (a,b) ¢ r7(Q;_1) =
Q 1 and (a,b) ¢ 77(Q;41) = Q1. The only point adjacent to Qp which does not lie in any of
these sets is the point (0, 0). Hence, the contribution uxzfy5t" to T;(x,y;t) from w lies in R[[]].
|
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It will be convenient to write the series T;(z, y;t), S; j+1(z, y;t) and S;41 ;(z, y;t) in terms
of series involving only 1 or none of the variables z, y. To do this we define

Fj(t) = [y 1Ty (2, y; 1), for j € [-L, K],
Uo(w—r;t) = [w= 1y )T L (2, 3 1),
Ur(t) = [#L o2 )T 1, 3 8),
Uz (yi;t) =[ %yK [Tk (2, y:t),
Rj(zjit) = 2 Sj-1,(z, 45), for j € [-L+1,K], (43)
Li(y;;t) = xj 'Sz, yst) + 65U (t), forje[-L,K —1]. (44)
Then from Lemma [5.5] we have in all cases
Tj(@,y;t) = F;(t) + 0j,—LVo(x-L;t) + 0j1—rx—rU1(t) + 05,k U2(yx; t) (45)

and Fj(t) € R[[t]], Uo(z-r;t) € o rRlz_r][[t]], U1(t) € R[] and Us(yr:t) € yxRlyr][[t]]-
Moreover, R;(x;;t) € Rlz;][[t]] and L;(y;;t) € Rly;][[]].

Lemma 5.6. The series Q;j(x,y;t) and T;(z,y;t) satisfy the equations
Kz, y;)Q; (w55 t) = —00,;2"y* = Sj11,(x, y5t) + S5 541 (2, y31)

46
Sy @y t) + Sy (i) + T (@ ), (46)

Proof. All non-trivial walks ending in T'; are counted by exactly one of S;_1 ;(x,y;t), S;.;(,y;t)
and S;41 ;(z,y;t), depending on the position of the point before the final step. the contribution
of the trivial walk is zPy?, and this only contributes if j = 0. Hence we have

Qj(x, y;t) = b0, ;2Py? +S;j_1,5(w, y;t) + Sj;(x,y5 1) + Sjp1,5(2, y3 t).

Now we consider non-trivial walks whose last step starts within T';. These can be counted using
the generating function Q;(z,y;t) and multiplying by ¢P(z,y) to account for the addition of
a single arbitrary step. Alternatively we can observe that each of these walks contributes to
exactly one of S; ;_1(z,y;t), S;j,;(x,y;t), Sjj+1(z,y;t) and T;(x,y;t). This yields the equation

tP(z,y)Q;(z,y;t) =S; —1(x,y; t) + S, (z,y;t) + Sj 11 (z, ys t) + T (x, y; t).
Taking the difference between these to cancel the term S; ; yields (46]). n
Lemma 5.7. Define the series A(x_r;t) and B(yk;t) by
A(z_r;t) == Up(z_r;t) + U1 (2), (47)
B(yr;t) := Ua(yx;t). (48)
If M > 2 then the series A(x_r) and B(yk) satisfy the equations
K(z,y)Q;(x,y) = =602 y? — x;L;(y;) + yiR;41(y;)
— 2R (2;) +y; Ly (wy) + F;
K(z,y)Q-r(z,y) = —6-p,0a"y? —2w—rL_r(y-1) + y-LR-r11(y-2) + Alz—r) + F, (50)

for1—L<j<K-1, (49)

K(2,y)Qx (z,y) = —0x,02"y? — vxRi(2x) + yx Lx—1(2x) + B(yx) + Fk. (51)
If M =1 the series A(xo) and B(yo) satisfy the equation
K(z,y)Qo(z,y) = —2"y? + A(zo) + B(zo) + Fo, (52)

Moreover, in either case, A(x_r;t) € Rlx_L][[t]] and B(yK;t) € yxRyx][[t]]-

Proof. First , (50 ) and (| result from expanding (46) for different Values of j using (45),
1 D an (46)

and using d 44) to erte S in terms of R and L. The equation follows from (46
at j = 0, as in this case there is only one quadrant so the series S;; = O (since j,k are not
both 0) and we have To(z,y;t) = A(zo;t) + B(zo;t) + Fo(t). As stated just below (45), we
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have Up(z_p;t) € x_rRlz_][[t]], U1(t) € R[[¢]] and Us(yk;t) € yxRlyk][[t]], hence from the
definitions and (48), we have A(z_r;t) € Rlz_][[t]] and B(yk;t) € yxRyx][[t]]- n

5.2. ANALYTIC REFORMULATION OF FUNCTIONAL EQUATIONS

As in the 3/4-plane case, we fix t < 1/|5], substitute + = X (z), y = Y(z) and rewrite the
equations in terms of z.

Moreover, analogously to our definitions of z; and y;, we define X;(z) and Y;(z) to be the
functions such that (z,y) = (X(2),Y (2)) if and only if (z;,y,) = (X;(z ),Y7( ))- That is

Xak13(2) = Yapi2(2) = o=

Furthermore, we define similarly shifted versions of v and the roots o and 8 of X (z) and Y (2):

Definition 5.8. For k € Z, define By, = B+ k77, Bak+1 = 6 + k77, Byp—1 = a + kot and
Bak—2 = e+knt. Moreover, define yor, = v+ knT and yor—1 = —y+ k77, and defined ax, = Pr—1-

The reason for these definitions is so that the following simple Proposition holds for all j.

Proposition 5.9. The functions X;(z),Y;(z), the spaces Q; and the constants o, 5;,7; satisfy
the following properties

(i) [Y(2)| <1 for z € Q; UQjq,

(i) |X;(2)| <1 forz € Q; UQ;_q,

(i) Yj(v; —2) =Y;(2),
(iv) 7 = QU Qi = Q; U4,

Bj and v; — B; are the roots of Y; in €2; U Qj4q,

D o

)
v)
(vi) a; and vj—1 — «; are the roots of X; in Q; UQ;_4.

Proof. Since X; = Y;_; and «o; = 3;_1, Conditions and are equivalent, while Conditions

(v)] and [(vi)] are also equivalent, so it suffices to prove [(1)} [(iii)] and First, [()] and

follow frorn Lemma [2.5] For j even, [(iii)| follows from
Y(2)=Y(z+77)=Y(y—2) =Y(y; — 2),
while for j odd it follows from
X)) =Xz+7r1)=X(—y—2)=X(v; — 2).

Finally from Proposition we have

o a,—y—a € QyUQ_; are roots of X (z), s0 Bap—1, Vak—1 — Bak—1 € Qar—1 Uy are roots
of Yap—1(z) = X(2),

e B,y — B € QyUQ; are roots of Y(z), so Bak,Var — Bar € Qar U Qup41 are roots of
Yirlz) = Y (2),

[ 5, T — 7Y — 6 € QU are poles of X(Z), S0 B4k+1774k+1 — ﬁ4k+1 S Q4k+1 U Q4k+2 are
roots of Yyp41(2) = ﬁ,

o c,y—7mT—€c €N 2UN_ are poles of Y(2), 80 Bar—2,Vak—2 — Bar—2 € Qap—2 U Qg1

are roots of Yy, _o(2) = Y(lz)'




35

Proposition 5.10. Define the functions V;(z), A(z), B(z) and constants F; by

Vj(2) == X;(2)L;(Y;(2);1) = Yj(2)R;41(Yj(2)3 1), for z € Q;UQ; 4, (53)
A(z) :=A(X_L(2);1), forzeQ_ 1UQ_p, (54)
B(z) := B(Yk(2);t), for 2 € Qg UQky1, (55)

Fy = F;(0). (56)

These functions are well defined. Moreover, they satisfy the equations

0=10,0X2)PY(2)! +V;(2) — Vj_1(2) — F} forze€Q;, for—L<j<K, (57)
0=0_0X(2)PY(2)!+V_L(2) — A(z) — F_ forzeQ_p if M >2 (58)
0=10koX(2)PY(2)? = Vk_1(2) — B(2) — Fx for 2z € Qg if M > 2 (59)
0=X(2)?PY(2)! — A(z) — B(z) — Fo forzeQoif M =1 (60)
A(z) = A(y—p-1 — 2), forzeQ__,UQ_ (61)
B(z) = B(yk — 2), for z € Qg U QK11 (62)

Proof. We start by showing that the functions are well defined and meromorphic on the domains
on which they are defined. It suffices to show that the series defining the functions convergent
absolutely. The series x;L;(y;;t), z;R;(z;;t), A(xz_r;t), Blyk;t) and F;(¢) all count some subset
of (weighted) walks in the plane starting a certain point (p, ¢). Since the total weighted number
of walks of length ¢ is P(1,1)™, all series must converge absolutely when |z| = |y| = 1 and

te (O, ﬁ) Hence the series defining and converge absolutely, as |Y;(z)] < 1 for

)| <
z € ; UQ,4q, while the series defining also converges absolutely because |X;(z)| < 1 for
2 e QU0 1. Now (558 and (59) follow from from substituting (z,y) — (X(z), Y (2)) into
, . and ( ) respectively. (60) follows from from substituting (z,y) — (X(2),Y(2)) into
. Finally, (61) holds because, by Proposition (3.2 v_r—1 — (Q_p,_1UQ_1)=Q_,_1UQ_
and for z2€ 0 1UQ_p, we have X_1(2) = Xp(v—r—1 — 2z). Similarly, holds because
YK — (QK @] QK+1) =QxgU QKJrl and for z € Qg U QK+1, we have YK(Z) = YK(VK — Z) ™

Theorem 5.11. The functions A(z), B(z) extend to meromorphic functions on C which, along
with the constant

Fi= " Fj(t),

j=-L

are characterised by the equations

X(2)PY(2)! = F + A(2) + B(z), (63)
A(z) = A(y-L-1 — 2), (64)
B(z) = B(vk — 2), (65)
A(z) = A(z + ), (66)
B(z) = B(z + ), (67)

along with the conditions

(i) A(z) has no poles in Q; for0>j>—L—1,

(il) A(z) has roots at the roots oy, and y_1 —a_r of X_r(2) in Q_p_1UQ_p.
(iii) B(z) has no poles in Q; for 0 < j < K +1,
(iv) B(z) has roots at the roots Bk and vk — Br of Yk (2) in Qx UQk11,
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Proof. We start by defining A(z) at all points z € ; for —L < j < K + 1.

J
A(z) =V(2) + > (00X (2)PY(2)? — Fy), forz€ Q;UQp, for —-L<j<K, (68)
k=—L
A(z) := —B(2) + X(2)?Y ()9 — F, for z € Qg UQg41. (69)

We now have two definitions of A(z) in each Q; for —L < j < K, noting that A(z) was previously
define only on Q_;_1 UQ_1. So, we need to show that these definitions are equivalent in each
case. For z € Q_y and M > 2, the definition (for j = —L) coincides with A(z) (as previously
defined) due to (58). For z € €, where —L < s < K, and M > 2, the function A(z) is defined
by for j = s and j = s — 1, and these definitions are equivalent due to at j = s. For
z € Qi and M > 2 the definitions (for j = K — 1) and are equivalent due to ([59).
Finally, for M = 1, the only case to check is z € Qg, where holds due to (60). Hence A(z) is
well defined for 2 € Q_p_1UQ_pU---UQx UQk 1. Moreover, each expression defining A(z) on
a set Q;UQ; 44 is meromorphic, so A(z) is meromorphicon Q_p_1UQ_pU---UQrgUQgq. We
can then define A(z) on y_y,1 —Q_ 1 UQ_pU---UQg UQk11 using A(z) := A(y—r—1 — 2),
as this is consistent on the overlapping region Q_; 1 UQ_p =~v_11—Q_r_1UQ_g by .
Now, for z € Qg U Qg 1, using yields
—A(z) + X(2)PY (2)" = —A(yk — 2) + X (v — 2)"Y (7K — 2)7,

so by our extended definition,

A(y-r—1 =7k +2) = A2) = X(2)*Y(2)" + X(vx — 2)"Y (v — 2)%,
And we can use this to extend our definition of A to all of C.

We then define B(z) on C by B(z) = —A(z) + X (2)PY (2)4 — F, as, by (69), this is consistent
with the value of B(z) in the region Qi UQ k11 where it was already defined. From this definition
of B(z), we have immediately (63). Moreover, we know that (64), (65), and hold on
the subsets where A(z) and B(z) were originally defined, so they must hold on all of C due to
the meromorphic extension.

Now we will show that conditions (i)-(iv) hold. First, consider the definition for j €
[-L, K —1]. We know that for z € Q; UQ; 1, the series L; and R;; defining V; converge, so V;
can only have a pole in this region at poles of X;(z) and Yj(z). In particular, V;(z) has no poles
in Q; because | X;(z),|Y;(2)| <1 in this region. Now, to prove (i), assume j € [-L +1,0] is an
integer and recall that for z € Q;, the function A(z) satisfies (68). Since j < 0, we can rewrite
this as

j
A(z) = V;(2) + 00X (2)PY (2) = Y Fx.
k=L

Now, as discussed, V;(z) does not have a pole here. Moreover, §;0X (2)?Y (2)? cannot have a
pole either, as either j # 0 and so this term vanishes or j = 0 and neither X (z) nor Y (z) has a
pole in Q; = Q. Hence A(z) does not a any poles in Q; for j € [-L+1,0]. If j € {—L—1,—L},
then A(z) is defined by (54)), which converges for z € Q_;, UQ_1_1, so A(z) has no poles in this
region either. In fact, by Lemma the series A has no constant term, so any root of X_(2)
in Q_p UQ_r_1 must be a root of A(z), proving (ii).

Conditions (iii) and (iv) can be proven similarly. For (iii), we consider j € [0, K — 1] and

compare to (63), which yields

j
F+B(2)=-Vi(2)+ > Fi,
k=—L
so the fact that V;(z) has no poles in Q; implies that B(z) also has no poles in ;. For
z € Qi UQk41, the function B(z) is defined by , which converges for z € Qx U Qg 41, S0
B(z) has no poles in this region either, proving (iii). In fact, by Lemma (5.7, the series B has no
constant term, so any root of Y (2) in Qx U Q k11 must be a root of B(z), proving (iv).
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Finally it remains to show that these conditions uniquely define the functions A(z), B(z)
and the constant F'. Suppose that fl(z), B(z) and F is an arbitrary triple satisfying the same
conditions. Then it suffices to show that A(z) = A(z) and B(z) = B(z). Then implies that
the difference

A(z):= B(2) — B(z) = A(z) — A(z) + F — F,
satisfies A(z) = A(nr —v—2) = A(—77+ v — 2) = A(z + 7). Moreover, the four conditions on
A(z) and B(z) imply, respectively, that
(i) A(z) has no poles in Q; for 0 > j > —L —1,
(ii) The roots of X_(z) in Q_7_; UQ_y, are roots of A(z) + F — F.

(iii) A(z) has no polesin Q,; for 0 < j < K +1,

(iv) The roots of Y (z) in Qx UQ k11 are roots of A(z),
together with A(z) = A(nm — v — 2) = A(—77 + v — 2), the conditions (i) and (iii) imply that
A(z) is an elliptic function with no poles, so it is constant. Moreover, condition (iv) implies
that A(z) does have roots, so A(z) is the 0 function. Condition (ii) then implies that F = F.

Together with the definition of A we have B(z) = B(z) and A(z) = A(2), as required. =
For convenience we will define 7 = yx —v_r_1. Note that combining , , yields
B(n7 4 z) — B(z) = J(2), (70)

where .J(z) is an elliptic function with periods = and 77 given by
J(2) = X(von1 = 2)PY (r 1 — 2)1 — X(2)PY ()1, (71)

To complete this section, we show that the series L;(y;;t) and R;(z;;t) are uniquely deter-
mined by A(z) and B(z). Then the generating functions Q;(z,y;t) are determined by (49),
and . This justifies our claim that Theorem is a restatement of the problem, and it will
allow us to determine the nature of the series Q;(x,y;t) in « and y in each case.

Proposition 5.12. Define s; = 1 for j > 0 and s; = 0 for j < 0. The series L;(y;) and
Ri+1(y;) € R([y,]] are determined from A(z) using the following equations

Vi(z) = A(z) — 5; X (2)PY (2) + ¢; (72)
056 = G =
(

unl(e) = e O ™

(73)

where ‘
J
= Z Fy (75)
k=—L
s an explicit constant.

Proof. Combining and yields (72). Furthermore, we know that
Vi(2) = X;(2)L;(Y;(2)) + Y;(2)R; 1 (Yj(2))  for 2 € U050,
Now, from Proposition we have Q; U Q11 = v, — Q; U Q41 and Y;(vy; — 2) = Y;(2), so
substituting z — v; — 2 into the equation above yields
Vily —2) = X; (75 = 2)L;(Y;(2)) + Y ()R (Yj(2))  for 2 € ;U 40.

Combining these two equations to solve for L;(Y;(2)) and R;41(Y;(2)) yields and (74).
Finally, it remains to determine the constant ¢;. We note that R;1(Y;(z)) must converge for
z € Q; UQ41, in particular at z = ;. But Y;(83;) = 0, so the numerator of must also be
0, that is,
Xi(vy = BiVi(Bi) — X;(8;)Vi(v; — B;) =
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SO
X (v = B5) (AB;) — ;X (B;)PY (B;)?) — X;(55) (Al — By) — 85X (5 — Bj)"Y (35 — Bj)*).
X;(85) — X5(v; — Bj)

This formula determines the constant for 8; # %] In the case 3; = %, the denominator of

has a double root at z = 3; = %, so the numerator of must also have a double root at this
point. Hence, we have

Cj =

0 =2X;(8;)V;(B;) = 2X;(8;)V;(55),
" _X(8)
X1 (55)

¢

(A'(Bj) = (s; X (2)PY (2)T)']._g,) + 8: X (B;)PY (B;)? — A(B;)-

6. SOLUTION TO FUNCTIONAL EQUATIONS IN AN M-QUADRANT CONE

In this section we use the same methods as we used in Section [4 to analyse the generating
function of walks in the 3-quadrant cone. In particular we characterise the nature of the series
Qj(z,y;t). As we will show, for M odd this nature is exactly the same as the nature of C(x,y;t)
which counts walks in the three-quadrant cone. For M even the situation is different: the
generating function is always D-finite, and it is algebraic if and only if ¢ = 0 and L is even or,
if we allow starting points outside the first quadrant, p = 0 and L is odd. These results are
summarised in Figure [9]

In the previous section we reduced the problem to finding the unique meromorphic functions
A,B: C — CU{oco} and constant F(t) characterised by Theorem (for each t). This is a
generalisation of Theorem as well as an analogous Theorem found by Raschel for walks in
the quarter plane [29], which corresponds to M = 1.

Start
]”W Check parity of M Wid
[ Check parity of L | C}iizll{kifsg;iililii of
/even kodd Finite / \é}nﬁnite
group roup
Check if g =0 Check if p=0 Check if model Check if model
decouples decouples
=0
q#0 0 :
7 ecoupling Not . Decoypling Not
¢=0 decoupling decoupling
Algebraic D-finite ) D-algebraic D-transcendental
Not algebraic Not D-finite i.c., not D-algebraic

F1GURE 9. A chart showing how to determine the complexity of the series
Q;(z,y;t) counting walks starting at (p, ¢) confined to an M-quadrant cone as
a series in z (or y) as proven by Theorems [6.26.91 Recall that L determines
which M quadrants are used to define the M-quadrant cone.

A first general result relates the complexity of Q;(z,y;t) to that of the function A(z) and
B(z) using the properties X-algebraic, X-D-finite and X-D-algebraic defined in appendix
Lemma 6.1. Assume P is one of the properties algebraic, D-finite or D-algebraic and t €

(0, ﬁ) is fixed. The following are equivalent:

(i) The function Q;(x,y;t) has property P as a function of x,
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(ii) The function Q;(x,y;t) has property P as a function of y,
(iii) A(z) has property X-P, (see Appendia:@)
(iv) B(z) has property X-P.

Proof. The equivalence (iii)] <=>[(iv)|follows from (63)), since by Propositio the property
X-P is closed under addition. To show that these are equivalent to|(i)| and |(ii), we will start by
considering two further equivalent properties, thinking of Q;(z,y;t) as a function of z; and y;
rather than x and y:

(I’) The function Q;(z,y;t) has property P as a function of z;,
(ii") The function Q;(z,y;t) has property P as a function of y;.

Indeed if j is even then z; € {z,2} and y; € {y, 1} so < |(i)| and — If j is
odd then z; € {y, %} and y; € {z, 1} so|{)| <= and |(ii")| <= In either case it suffices
to prove that the equivalent properties and are also equivalent to [[7)] and In fact
we will just prove that is equivalent to |(iv)| as the proof that is equivalent to is
essentially the same.

For j < K, it follows from and that holds if and only if ;L;(y;) + y; R;+1(y;)
has property P as a function of y; since all other terms are linear in y;. Moreover, this occurs
if and only if L;(y;) and Rj41(y;) both have property P in y;. If y; € {x,1}, then they
have this property with respect to x, while if y; € {y, i}, then they have this property with
respect to y. Either way, by Proposition this occurs if and only if the expressions and
determining L;(Y;(z)) and R;41(Y;(z)) each have property X-P. From these equations,
combined with Proposition this occurs if and only if V}(z) has this property. Finally, by
, V;(z) has property X-P if and only if A(z) has this property, which is equivalent to
So we have proven that for j < K,[(ii")|holds if and only if[(iii)| holds. For j = K, shows that
(ii’)| holds if and only if B(yx;t) has property P in yx. By Proposition this is equivalent
to|(iv)l So we have proven <= | (iii)| <[ (iv)} Finally, proving t is equivalent to
(ii1)| and is similar (noting that X-P and Y-P are equivalent). =

For M even the situation is relatively simple, as described by the following theorems. In
this case the M-quadrant cone on which the walks occur could alternatively be understood as a
cone constructed from M /2 half planes, perhaps partially explaining why the complexity should
match the complexity of half-plane walks.

Theorem 6.2. Assume M > 2 is even. For any integer j € (—L, K|, the series Q;j(x,y;t) is
D-finite in x and y.

For fixed t € (O, ﬁ), this theorem is proven in Theorem |6.10| and Lemma [6.12] Lemma

then implies that the series Q;(z,y;t) € Rlz, 3y, ;][[t]] is D-finite in z and y.

T

Theorem 6.3. Assume M > 2 is even. For any integer j € [—L, K| and fized t. € (0, ﬁ),
the following are equivalent:
(i) The series Q;(x,y;t) is algebraic in x;

(ii) The series Q;(x,y;t) is algebraic in y;

(i) The function Q;(x,y;t.) is algebraic in x;

(iv) The function Q;(x,y;t.) is algebraic in y;

(v) L is even (so K is odd) and q = 0, that is, the walks start on the x-axis.

Proof. The equivalences <= |(v)|and = follow from Theorem and Lemma
6.14} So and each hold for some ¢, is and only if they hold for all ¢.. Finally by Lemma

4.4] this is equivalent to|(i)| and =
Remark: One could alternatively consider the nature of the complete generating function

Zfsz Q;(z,y;t) rather than the individual generating functions Q;, although for M > 4 this
introduces some ambiguity as to how many paths end at each point in the cone. While it is
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clear that if each Q;(x,y;t) is algebraic then the complete generating function is algebraic, the
converse does not hold, as our result implies that even for M = 2 the generating functions Q; are
not algebraic, even though the complete generating function in this case is a generating function
for half-plane walks, which is therefore algebraic.

Remark: The only reason why this theorem does not include the possibility that p = 0 is
that we assumed that the walks start in the quadrant QO, where p > 0. More generally, if the
walk is allowed to start at any point (s, (p,q)) € I k, this theorem states the following for
s = 0: the generating function is algebraic if and only if (p, q) lies on the same axis as the two
boundaries of the cone. But this statement is equivalent for any s as the cone and starting point
can simply be rotated sending each point (k, (a,b)) — (k + 1,(=b,a)) (or the inverse of this
transformation) until the starting point lies in I'g. So it is true for any starting point (s, (p, q)).
Hence, the generating function Q;(z,y;t) is algebraic if and only if (p, ¢) lies on the same axis
as the two boundaries of the cone, that is, if and only if either ¢ is 0 and L is even or p is 0 and
L is odd.

Theorem 6.4. Assume M > 3 is odd. For fized t € (0, ﬁ) and any integer j € [—L, K|,
the following are equivalent
(i) The function Q;(x,y;t) is D-finite in x,
(ii) The function Q;(z,y;t) is D-finite in y,
(i) A(z) satisfies a linear differential equation whose coefficients are elliptic functions with
periods ™ and 7T,
(iv) B(z) satisfies a linear differential equation whose coefficients are elliptic functions with
pertods ™ and T,
(v) the ratio L € Q,

(vi) the orbit of each point (z,y) € E; under the group of the walk is finite.

The equivalence < | (ii)| <] (iii)] < | (iv)|is precisely the statement of Lemma
where P is the property D-finite. Later in this section we complete the proof of the theorem by
showing that the first 4 conditions are equivalent to and We define the group of the
walk in Appendix[C] the equivalence of [[v)] and is shown there in Proposition We show
that these equivalent conditions imply the conditions [())H(iv)|in a combination of Theorem
and Lemma [6.11] while we show the converse in Corollary

We have not been able to show the theorem above for M = 1, meaning our classification of
the complexity of Q;(x,y;t) for ¢ fixed is incomplete. Nonetheless, in Theorem [6.7, we are able
to fully classify the complexity of the series Q;(z,y;t) € Rlz;, y;][[t]].

Theorem 6.5. Assume that M > 1 is odd and = € Q. For fired t € (0, ﬁ) and any integer
j € [-L, K], the following are equivalent
(i) The function Q;(x,y;t) is algebraic in x;,
(i) The function Q;(x,y;t) is algebraic in y;,
(iii) A(z) has mnT as a period for some positive integer m,
) B
)

(iv) B(z) has mz7 as a period for some positive integer m,

(v) There are rational functions Ry and Rs satisfying xPy? = Ry(x) + Ra(y) for all (z,y) €
E,

(vi) There are rational functions Ry and Rsy satisfying X (2)PY (2)? = R1(X (2)) + R2(Y (2))
for all z € C,

(vil) The orbit sum of the model is 0.

The equivalence <[ (1)) <= | (iii)|] <= (iv)|is precisely the statement of Lemma
6.1| where P is the property algebraic. Moreover, we already proved the equivalence |(v)| <
vi)| <= [(vil)]in Theorem To complete the proof of this Theorem, we show that equivalent

conditions |(i)]{ (iv)| are equivalent to in Theorem
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Theorem 6.6. Assume that M > 1 is odd. Fizt € (O, ﬁ) and assume that .- ¢ Q. For
any integer j € [—L, K|, the following are equivalent
(i) The function Q;(x,y;t) is D-algebraic in x;
(ii) The function Q;(x,y;t) is D-algebraic in y;
(iii) A(z) is D-algebraic in z
iv) B(z) is D-algebraic in z
(v)

v) There are rational functions Ry and Ry satisfying xPy? = Ry (x) + Ra(y) for all (z,y) €
E,
(vi) There are rational functions Ry and Rs satisfying X (2)PY (2)? = R1(X (2)) + R2(Y (2))
forall z€ C

The equivalence <[ (1)) <=[(ii})| <= | (iv)is precisely the statement of Lemma
where P is the property D-algebraic. Moreover, we showed that - <[ (vi)|in Theorem
We complete the proof of this theorem later in thls section, starting with Theorem [6 Wthh
shows that the equivalent conditions|(v)| <= (vi)|imply the equivalent conditions [0] lV ), then
we show the reverse implication in Theorem [6.21

Finally, the following three Theorems characterise the nature of the series Q(z,y;t) for M
odd.

Theorem 6.7. Assume that M > 1 is odd. For any integer j € [—L, K|, the following are
equivalent

(i) The series Q;(x,y;t) € Rz, y][[t] is D-finite in x,

(i) The series Qj(x,y;t) € Rz, y][[t] is D-finite in y,

(iii) Fach of the conditions of Theorem hold for all t € (0, ﬁ),

(iv) The group of the walk is finite.
Proof. By Lemma Condition [(i)] of Theorem [6.4] holds for all ¢ if and only if [(i)] holds.
Similarly condition [] of Theorem [6.4] holds for all ¢ if and only if [(ii)] holds. Moreover, by
Proposition [C.3] Condition [(vi)| of Theorem [6.4] holds for all ¢ if and only if[(iv)| holds. Hence, it
suffices to show that any given condition of Theorem [6.4] holds for all ¢ if and only if any other
given condition of Theorem [6.4] holds for all ¢£. For M > 3 this is true because Theorem [6.4]
itself holds. So, we will assume for the remainder of this proof that M = 1. In this case the
conditions (i)} [(i1)} |(iii)| and of Theorem [6.4] are still equivalent due to Lemma Moreover,
Conditions [(v)|and [(vi)| are equivalent by Proposition We show that [(v)] and [(vi)|imply the
conditions [(i){(iv)] in a combination of Theorem and Lemma [6.11] so it remains to prove
that if the conditions [()H(iv)| of Theorem [6.4] hold for all ¢ then condition [(v)| of Theorem
holds for all ¢. This is equivalent to the statement of Corollary [6.19] -

Theorem 6.8. Assume that M > 1 is odd. For any integer j € [—L, K], the following are
equivalent
(i) The series Q;(z,y;t) € Rz, y][[t] is algebraic in x,
(ii) The series Q;(x,y;t) € Rlz, y[[t] is algebraic in y,
(iii) The equivalent conditions of Theorem hold for all t € (O, ﬁ)

Theorem 6.9. Assume that M > 1 is and the group of the walks is infinite. For any integer
€ [-L, K], the following are equivalent
(1) The series Q;(x,y;t) € Rlz, y[[t] is D-algebraic in x,
(ii) The series Q;(x,y;t) € Rlz, y][[t] is D-algebraic in y,
)

(iii) The equivalent conditions of Theorem hold for all t € (0, P(11 1)).

For each of these theorems, the equivalences (i) <= (iii) and (ii) <= (iii) are both due to
Lemma 4.4
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6.1. FINITE GROUP CASES
Define 7 := XX=7=L=1 Tp this section, we consider the cases in which ; € Q. We will show
that this occurs for fixed ¢ if and only if Q;(z,y;t) is D-finite in 2. We will also show that the
nature of this restriction depends on the parity of M: If M is even then we always have % €Q,
while if M is odd then E € Q if and only if -L € Q. We also describe precisely in which cases
Q,(z,y;t) is algebraic in z.

Theorem 6.10. If% = % € Q, then Q;(z,y) is D-finite in x. Moreover, under this assumption
Q;(z,y) is algebraic in x if and only if the function

No—1

E(z) =Y J(jnt+2)
j=0

is equal to 0.

Proof. Assume that vg —vy_p_1 = %TI'T for some positive Ny, Ny € Z. Now consider ([70):

B (xlm + z> — B(z) = J(2).

2
Taking a telescoping sum of Ns copies of this equation yields

Nz—1
./ N .
B(rTNy + 2) — B(z) = Z J(jlm-Jrz) = E(z). (76)
i=0 Nz
We will now consider the cases E(z) = 0 and E(z) # 0 separately. In the case that E(z) = 0,
we have
B(nTNy + z) = B(2).
Hence condition of Theorem holds, so the equivalent conditions are satisfied, including
that C(z,y) is algebraic in z.
Finally we consider the case F(z) # 0. Then from (76]), we have
B(rTNy+2) B(z) B@2arNi+2z) B(2)

- - == = - = =1, (77)
E(rTNy1+2) E(z) E(z) E(z)

so the function 9 B(2) .
F(z):= aE(z) = E(z)2 (B'(2)E(z) — B(2)FE'(2)) (78)

satisfies

F(2nTNy +2)— F(z) =0.
Hence, B(z) = B(ﬁz)) is weakly X-D-finite (see Definition , so by proposition [B.8] it is
X-D-finite and B(%) is D-finite in 2, which is equivalent to conditions of Theorem
(most clearly [(iv)). Therefore the generating function Q;(x,y) is D-finite in .

Finally we show that in this E(z) # 0 case, C(z, %) is not algebraic in 2. Suppose the contrary,
then conditionof Theorem lds, that is mn7 is a period of B(z) for some positive integer
m. But this is impossible as by (|77),

B(mnTNy +2) — B(2)  B(mntNi+2) B(z)

= = — - = =m # 0.
E(2) E(mrtNy +2) E(z) #

To finish the proof of Theorem [6.4] we need the following Lemma, which specifically relates
to the case when M is odd. We note that the Lemma below implies that for M odd, the value
of Ny in this section is the same as the value N used in Section

Lemma 6.11. If M > 1 is odd, then % € Q if and only if .- € Q. Moreover, for an integer
Ny, we have Ng% € 7 if and only if Ng% SYA
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Proof. As we will show, this follows easily from the definition of -y, (see Deﬁnition. Assuming
M = K+ L+1is odd, K and L must have the same parity. If they are both even, then
Yopo1=—-y—n7% and vk =y +77%, s0

_ UK —Y-L-1 _21+K+L

S

T T 2

Z € Qif and only if -L € Q and NQ* eZif and only if Ng L eZ.
If L and K are both odd then v_;,_ 1 =v— WT— and yg = —v + WT%, SO

i_’yK_’nyfl __21+K+L+2
T T T 2 ’

T € Qif and only if -L € Q and NQ* € Z if and only if Ng L eZ. -

To finish the proof of Theorem [6.2] we use the following Lemma
Lemma 6.12. If M > 2 is even then f = % €.

Proof. From the definition of +; (Definition , we always have v;12 = v; + 5. Hence, if

M = K + L+11is even, then yx =v_p_1 + & n7. Hence £ = 250221 — M 55 required. g

To finish the proof of Theorem [6.5] we use the following lemma

Lemma 6.13. Define F(z) := X(2)PY (2)9. If M > 1 is odd, then E(z) is equal to the orbit
sum
Ny—1

E(z):= Y F((2j+1)y—2) — F(2jv+2)
§=0

defined in Theorem [[.11] and used throughout Section [}

Proof. Recall from that .J(z) that they can be written as J(z) = F(y — z) — F(z). Hence
E(z) can be written in terms of F'(z) as

No—1
E(z) = Z F((+ Dy-2—1 —jvx — 2) = F(i(vg = y-1-1) + 2)-

§=0

We will now consider two cases.
Case 1: L is even.
In this case K = M — L — 1 is also even, so by Definition YK =7+ 777' while v__1 =

e %m—. Since 77 is a period of F'(z), this implies that

Nz*l
E(z)= Y F(=(2j+1)y—2) = F(2jy+2) = E(2).
=0

Case 2: L is odd.
In this case K = M — L — 1 is also odd, so by Definition YK = —7 + K+17TT while

Y-L-1=7— L+17r7' Since 77 is a period of F(z), this implies that
No—1
B(z)= ) F((2j+ 1)y —2) = F(=2j7+2).
§=0

Now, since 2yNs € w7Z, we can rewrite this as

Nao—1

No—1
E() =Y FRG-N)+Dy—2)|—| D FQIN—j)y+2)
=0 =0
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Replacing j by N — 1 — j in the first sum and N — j in the second sum yields

No—1 N2
E(z) = Z F((—2j — 1)y — [ Do F@jv+2) | =E().
j=1

Lemma 6.14. If M > 2 is even, then E(z) is the zero function if and only if ¢ = 0 and L is
even.

Proof. Assume M is even. From Lemma|6.12] we know that £ = 4L € Z, so

N2—1 B N2 1
=Y J(nr+2) = Z J(2) = NoJ(z),
j=0

so E(z) = 0 if and only if J(z) = 0. Now by deﬁnition,
J(2) = X(v-p-1 = 2)"Y (y-£-1 — 2)* = X (2)"Y (2)".
In the case that L is even, we have yv_;_1 = —y — %777', SO
J(2) = X(=v = 2)PY (=7 = 2)? = X(2)PY (2)7 = X (2) (Y (=7 = 2)? = Y (2)9).
So we see immediately that if ¢ = 0, then j(z)~ = 0. It remains to prove the converse. So, assume
for the sake of contradiction that ¢ # 0 but J(z) = 0 for all z. then we have
Y(—y = 2) = Y(2)°

for all z. Hence Y= Yz ) ) is a qth root of unity for each z, so in fact it must be a constant c. So

Y(z) =cY(—y—2) for all z and substituting z — —v — z yields Y (—v — z) = ¢Y (2), so ¢? = 1,
that is either Y(z) =Y(—y—-2)=Y2y+2)or Y(z) = =Y (- — z) = -Y(2y + 2). In the
first case 27 is a period of Y which is impossible because 0 < $(2v) < &(77) by Lemma
So we are left with the case Y (z) = =Y (—y — 2). Now, to compare Y (z) and Y (—y — 2) in a
different way, we consider the equation yP(X(2),y) — ¥ = 0, which is a quadratic equation in y
with solutions y = Y(2) and y = Y(—v — z). So, defining

A_1(z) + yAo(z) + y* A1 (z) := P(z,y),

we have

LX)y (AKX ) — 1 ) +PA X)) = P00~ = XY ()-Y (-

SO

o+ | =

Ao(X(2)) = - = —A(X(2))(Y(2) + Y (=7 = 2)),
A (X(2) = A(X(2)Y ()Y (=7 — 2).

But in this case Y (2) = =Y (—y—z), so Ag(X(z))—+ = 0 for all z, or equivalently Ay(z)—1 =0,
which is impossible because Ag(z) has no constant term
Finally we consider the remaining case where L is odd, so y_;_; =y — &

(
(

~—

+1’/TT It remains to

prove that J(z) is not the zero function in this case. We have
J(2) = X (g1 — 2PV (111 — 2) = X()PY ()0 = Y (2)9(X (7 — 2 — X(2)?),

so J(z) = 0 if and only if X (y — 2)? = X(z)?. Now, recall that in our model the starting point
(p, ¢) must satisfy p > 0, so similarly to the previous case for Y (z), it follows that X (y—z) = X (z)

or X(v—z) = —X(z). In the former case 2v is a period of X, which is a contradiction since
T

0 <2y < 77. and in the latter case we get a similar contradiction to before: xP(z,Y (2)) — § =

(r—X(2)(x—X(y—2)) = (r—X(2))(x+ X(2)) = 22 — X (2)?, which is a contradiction because
the left hand side of P(x,Y (2)) — £ has a linear term equal to w,1)Y (2) + w(o,—1)Y (2) ™' — 1,
which cannot be identically 0, whereas the right hand side has no linear term. =
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6.2. INFINITE GROUP CASES

In this entire section we assume that M is odd, as the cases for M even were all handled in
the previous section.

In this section we consider the case = ¢ Q. the first part of this section is dedicated to
showing that C(x,y;t) is not D-finite in = in these cases, and we will subsequently analyse the
D-algebraicity of C(z,y;t). We start with a lemma which essentially proves AH(%;t) is not
rational in z, as this turns out to be a case which needs to be treated separately. Surprising
this seems to be the most difficult result of this section, in the sense that it is the only result for
which our proof does not apply systematically to walks in an M-quadrant cone for any M. In
particular, for walks in the quadrant we have only able to prove the result when ¢ is sufficiently

small (See Lemma [6.16)).

Lemma 6.15. Assume that .- ¢ Q and M > 3 is odd. Then w7 is not a period of A(z) or
B(z).

Proof. By , if either A(z) or B(z) has w7 as a period, then the other does as well. If L > 2,
then by Theorem A(z) has no poles in Q_3UQ_oUQ_1 UQy. Together with the fact that
77 is a period of A(z), this implies that A has no poles at all, so it is a constant function, which
will quickly lead to a contradiction. Indeed, using Theorem this implies that X (2)PY (2)¢
is fixed under the shift z — vx — z, which also fixes either X (z) or Y (z), depending on the value
of yk. So, either X(2)P = X(y —2)P = X(—y—2)Por Y(2)! =Y (y—2)? =Y (—y — 2)9. We
will assume the former as the two cases can be handled similarly. Then |X ()| > 1 if and only
if | X (v — z)| > 1. But this is impossible as the border between €1 and s is sent to the border
between 2_; and g by the transformation z — v — z, and | X (z)| > 1 on the first of these lines
while | X (2)] < 1 on the other line.

Similarly, if K > 2 then B(z) has no poles in Q¢ Uy Uy U Q3, so it is constant and we get
a similar contradiction.

Finally we are left with the cases where K <1 and L < 1. Since K + L+ 1= M > 3, the
only remaining case is K = L = 1 and M = 3. This is exactly the three-quadrant cone case
covered by so this completes the proof. -

In the following lemma we prove a slightly weaker result for M = 1. We suspect that the
more general result above applies for M = 1, but we have not been able to prove it.

Lemma 6.16. Assume that the group is not finite and that M = 1 (the quadrant case). For all
sufficiently small t satisfying = ¢ Q, the function A(z) does not have w7 as a period.

Proof. Assume for the sake of contradiction that A(z) has w7 as a period. Then by (63), B(z)
also has w7 as a period. Moreover, since we are in the case M = 1, there is only one quadrant
which does not include the axes, so the starting point (p,q) of the walk cannot be on either
axis. Hence p,q > 1. Moreover, K = L = 0, so from Theorem A(z) = A(—v — z) and
B(z) = B(y — 2).

Claim 1: Let D, = {z eC:lzl < 1/ﬁ}. If X(z0) € Dy then A(z9) = A(X(20);t). In
particular A(z) does not have a pole at z = zy.
Proof of Claim 1: For zg € Q_1 U Qq, we know that this result holds as it is the definition of
A(z) in this region. Moreover, this extends analytically to the connected component of X ~1(D;)
containing Qy U Q_ as we know from Lemma [2.4] that A(X (z9);t) converges for X (z9) € D;. If
Zp is in the connected component of Xfl(Dt) containing 4., U Q4y,—1, then we have

A(zo) = A(zog — mrr) = A(X (20 — mmr);t) = A(X (20);8),

since 29 — mn7 is in the connected component of X ~1(D;) containing Qo U Q_;. Hence to
complete the proof of claim 1 it suffices to prove that every connected component I' of X ~1(D;)
contains one of the sets Qy4,, U Q4,—1. Assume I' is such a connected component. Then, since
D; is an open set, I’ must also be an open set, so by the open mapping theorem X (T') is an open
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set, so the boundary of X (I') is X (9T'), where 0T is the boundary of I'. Moreover, since T is a
connected component of X ~(D;), we have X (9T') C dD;. So X (I') is a non-empty, open subset
of the connected set D; and its boundary is a subset of the boundary of D;, which is only possible
if X(T") = D;. In particular, there is some zg € T satisfying X (z9) = 0, 80 29 € Q4 U Qygpm—1 for
some m, which implies that I" contains 24,, U Q4,,_1. This completes the proof of claim 1.

We will reach a contradiction using this claim along with the equation

X(2)PY (2)? = F + A(z) + B(=2), (79)
and the related equation
X(2)P(Y(2)! =Y (=7 —2)?) = B(z) = B(—=y — 2), (80)

by comparing the possible positions of poles of X, Y, A and B for varying ¢t. To analyse the
relationship between X(z), Y (z) and ¢, we need to use the definition of P(x,y) and define

1
Ps(z) == Z Wa,3)T",

a=—1
for —1 < 8 <1, so that
P(z,y) =y~ 'P_1(2) + Po(z) + yP1(x). (81)
Now, for general z € C, we have P(X(z),Y(2)) — 3 = 0 so the polynomial yP(X(z),y) — ¥ has
roots at y = Y (z) and y = Y(—v — z). Hence it’s coeflicients are related by

Po(X(2)) — 7 = —PL XNV (2) + Y (=7~ 2)), (52)
PL(X(2)) = PUX ()Y ()Y (7 2). (83)

The second consequence of is the following claim:
Claim 2: There are values g, 21,%0,y1 € CU {co} which do not depend on ¢ such that, for
any ¢, if € is a pole of Y'(z), then {X(¢), X(—y — €)} = {xo, 21} and if § is a pole of X (z), then
V()Y (v — 8)} = {o, -
Proof of Claim 2: We will prove the claim for zy and z; as the other part of this claim is
equivalent. In general, X (z) and X (—v — z) are the two roots for « of the quadratic polynomial
%P(m,}’(z)) - % As z — ¢, this converges to xP;(x), so we can simply define {xg,z1} to
be the roots of xP; (), which do not depend on ¢. In the case the w(,1) = 0 but w1y # 0, the
polynomial xP1(x) is linear, so it only has one root, however one of the roots of ﬁP(x, Y(z))—
% converges to oo as z — d, so we can let xg = oo and z; be the unique root of zP;(z).
Finally if w(;,1) = w(o,1) = 0, we can set xg = x1 = co. This completes the proof of Claim 2.
Now, assume that ¢ is sufficiently small that the values xg, 1, yo,y1 that are not oo lie in D;.
Claim 3: If § is a pole of X (z) but not of Y (z), then it is not a pole of B(z). Similarly, if ¢ is
a pole of Y(z) but not of X(z), then it is not a pole of A(z).
Proof of Claim 3: Assume ¢ is a pole of Y(z) but not of X(z). Then by our assumption,
X(e) =29 € Dy or X(g) = 21 € D;. Hence by Claim 1, A(z) does not have a pole at . The
other part of the claim is equivalent, so this completes the proof of the claim.
We will now consider a number of cases separately regarding the nature of X and Y around
a pole ¢ of X (z).
Case 1: w(; 1) = w(1,0) = 0, so § is a double pole of X (z) and a simple pole of Y (2).
In this case the second pole —y — ¢ of X (z) must in fact be equal to (a possibly shifted version
of) ¢, that is, —y —d € § + 7Z + n7Z. Hence, X(z2) = X(—y —2) = X(20 — z) and Y (z) =
Y(y—2) =Y(—2§ — z). Now, since Y (z) has a pole at ¢, it must have a pole at v — §, but
X (z) cannot have a pole at this point, so by Claim 3, A(z) does not have a pole at z = v — .
Moreover, since A(z) = A(—v — z), this means that A(z) does not have a pole at z = -2y + ¢
either. Now taking successive differences of yields

X(=20—2)PY (—20—2)1=X (2)PY (2)1+ X (20—2)PY (20—2)1— X (—40+2)PY (—40+2)? = A(y—2)—A(2v+2),
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and as we have shown the right hand side of this equation does not a have a pole at z = 4.
Now we will reach a contradiction by analysing the left hand side near z = . Since Y'(z) has a
simple pole at this point, while X (z) has a double pole and X (6 — z) = X (§ + z), we may write
X(z)=ci(x—8)7"2+0(1) and Y(2) = ca(y — )" + c3 + O(y — §), where ¢, ¢z # 0. Then the
left hand side of the equation above behaves as

31— (=)0 (x — 8) 727+ Fed es(1+ (—1)9)(x — )" 4 O ((x — §)"7IH2)

Since we know that the expression must not have a pole at §, the two leading terms must be 0,
which is only possible if ¢ is even and ¢z = 0. But then Y (2) + Y (—v — 2) = 2¢p =0 as z — 0.
Comparing to , this implies that
1 — Po(z)
Pl(l')

But since wy,1) = w(1,0) = 0, we must have

— 0 as x — o0.

1 Po(x) N ].
Pi(x) tw(o,1)

#0 as T — oo,

a contradiction.
Case 2: w(; 1) = w(o,1) = 0.
This is symmetric to the previous case so the same proof applies.
For the remaining cases we assume that p > ¢, as the ¢ > p case is equivalent.
Case 3: w(; 1) = 0 # w(o,1), W(1,0), 50 X (2) and Y () share a simple pole § € Q; U Q.
In this case v — § is a pole of Y(z) but not X(z) while —y — 4 is a pole of X(z) but not Y (z).
Using (79), we have

XEPY ()1 = X(y = 2PPY (7 = 2)7 = X (=7 = 2P'Y (=7 = 2)1 = =F = Aly = 2) = B(~y - 2).

Analysing this around z = ¢ yields a contradiction: The right hand side has no pole at z = 9,
while the terms X (2)PY (2)?, X (y—2)PY (y—2)? and X (—y —z)PY (—y— 2)? have poles of orders
p + ¢, ¢ and p, respectively, so the left hand side has a pole of order p + q.

Case 4: w(; 1) # 0, so X(z) and Y (z) do not share any poles.

Both § and —v — ¢ are poles of X (z), so they are not poles of Y (z). Hence by Claim 3, these
must also not be poles of B(z). In particular, this implies that the right hand side of does
not have a pole at z = §, so the left hand side

XY () =Y (= —2)9)

is also analytic at z = §. Hence, (Y (2)?—Y (—y—2)?) must have a root of order at least p at z = 4.
Moreover, in the case that X (z) has a double pole at z = §, the function (Y (2)? — Y (—v — 2)9)
must have a root of order at least 2p at z = §. We will now consider different values of ¢ in
separate cases.

Case 4a: ¢ =1

In this case Y (z) — Y(—v — 2z) has a root of order at least p > 1 at z = 4, so, in particular
Y (6) = Y(—v—9), which implies that —y— 3§ € {0,y —d} +7Z+ 7n7Z. But since -t € R\ Q, we
do not have —2v € 7nZ+77Z, so we are left with the case —y—9 € é+nZ+n7Z. thls implies that
X(0+2)=X(—y—0—2)=X(d—2), so X(z) must have a double pole at z = §. The function
Y (2) — Y (—~ — z) has at most 4 poles in each fundamental domain (counting with multiplicity),
so it must have at most 4 roots (counting with multiplicity). Since Y (z) has both 7 and 77 as
periods, it is clear that =Y, =LtT =ITT - Z3ETEAT ype a]] distinet roots of Y(z) — Y (—y — 2),
so they must be the only roots and they must all be simple roots. In particular, this implies that
d cannot be a double root of Y (2) — Y (—v — z), so it must be a pole of X (2)(Y(2) =Y (—vy—2)),
and hence X (2)P(Y(2)? — Y (—v — 2)9), a contradiction.
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Case 4b: ¢ > 2 and Y (§) = 0.
By our assumption that p > ¢, we also have p > 2. We will use the product

q—1
mim

Y()7 =Y (—y—2)" = [[(¥(z) = " V(=7 = 2)).

m=0
Since this has a root at z = § we must have Y(—y — §) = 0. As in the previous case —y — § €
0+ nZ+77Z and so X has a double pole at §. If Y'(z) has a double root at § then it must be the
only root of Y(2), so v —0 € § + n7Z + ©Z, which is impossible since —y — 0 € § + 7Z + w7Z but
L ¢ Q. So Y(z) does not have a double pole at §. Now, each function Y'(z) — e Y (—y — 2)
has a pole at z = ¢, since Y (§) = Y (—y — 6) = 0. However, the derivative of this function at

mim

z=018Y'(0)+e a Y (—y—0)=Y'(0) (1 + e$>, so the function has a double pole if and
only if e = 1 i.e., m = . Moreover, from , the function

Lopy(X() 1
P1(X(2)) tw,1X(2)

Y(2)+Y(=y-2) =

which has a double root but not a triple root at z = §. Note that the expression above uses the
fact that w(;,0) = 0 - if this was not the case then Y'(z) + Y (—v — z) would not have a root at

z = 4. So finally, the function Y (z) — e%Y(—’y — z) has a simple root at z = ¢ if m # 4, while
it has a double root if m = Z. This implies that in the case that ¢ is odd, Y (2)? — Y (—v — 2)9
has a root of order exactly g at z = 4, while in the case that ¢ is even Y (2)? =Y (—y —2)? has a
root of order exactly ¢ + 1 at this point. In either case, X (2)P(Y(2)? — Y (—v — 2)?) has a pole
of order at least 2p —q¢—1>p—1 > 0, a contradiction.

Case 4c: ¢ > 2 and Y (0) # 0.

In this case at most one function Y (z) —e ¢« Y (—v — 2) in the product

q—1

[[(V(z) = e V(= -2)

m=0
can have a root at z = ¢. Since we know that the product has a root at d, there must be some
such value of m, so we define u := e”@ for this m. Then X (2)?(Y(z) — uY (—v — z)) has no
pole at z = §. For m = 0 (i.e., u = 1), this is equivalent to the ¢ = 0 case, which we showed was
impossible, so we are left with the case m # 0. In the case that u = —1, using , we have

Po(X(2) — 1

P1(X(2))
For sufficiently small ¢, the numerator lies in (1) while the denominator is in O((z — §)~!), so
Y(z) —uY (—y —2) = Q(z — 0) around z = ¢. This implies that X (2)?(Y(z) —uY (—y — 2)) has
a pole of order at least p — 1 > 0, a contradiction.

If uw # —1, then we must have ¢ > 3, as for ¢ = 2 the only possibilities are v = 1 and u = —1.
The function H(z) defined by

H(z) = (Y(z) —uY (=7 — 2))(uY (2) = Y (=7 — 2))

Y(z) —uY(—y—2)=—

can be written as

(o) = MR G)) = D — (11 1P (X ()
P1(X(2))?
The numerator of this equation lies in Q(1) (for sufficiently small ¢), while the denominator is
in O((z—9)72), So H(z) = Q((z — 6)?) and so Y (2) — uY (—v — z) = Q((z — §)?). This implies
that X (2)P(Y(z) —uY (—y — z)) has a pole of order at least p—2 > ¢ —2 > 0, a contradiction. g

Theorem 6.17. Assume that = ¢ Q and B(z) does not have ©7 as a period. Then Q;(z,y;t)
is not D-finite in x or y.
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Proof. Suppose the contrary. Then Q;(z,y;t) is D-finite, so by Lemma B(z) is X-D-finite
in z (see Definition [B.3)). Then by Lemma the poles z. of B(z) fall into only finitely many

classes z. + 7Z + w7Z. Hence B(wT + z) — B(z) has the same property.
Now, from ([70), we have

B(r7 +2) — B(2) = J(2) = J(z + 77) = B(nr + 77 + 2) — B(n7 + 2),
and rearranging yields
B(rm+ 77+ 2) — B(r7 4 2z) = B(nm + 2z) — B(2).
This implies that B(n7 + z) — B(z) is an elliptic function with periods 7 and «7. If this function

has a pole zg, then for every k € Z, the value Z; = zo + kn7 is a pole. This is a contradiction as

these points all define different classes zj, +-77Z 4 7Z, since = € R\ Q. The only remaining case
to consider is when B(w7 4 z) — B(z) has no poles, in which case it must be constant:

B(rT+z) — B(z) = c.
In fact combining this with , we see that ¢ = 0, as
c=B(rr+2)—B(z)=B(—y—2) - B(nt—7—2) = —c.
But this contradicts the assumption that 77 is not a period of B(z). =
Corollary 6.18. If M > 3 is odd and = ¢ Q, then Q;(x,y;t) is not D-finite in x.
Proof. By Lemma 77 cannot be a period of B(z) for M > 3. Moreover, if -= ¢ Q, then
by Lemma £ ¢ Q so by Theorem Q;(z,y;t) is not D-finite in x. -

Corollary 6.19. If M = 1, and the group of the walk is not finite, then there are values of t
for which Q;(z,y;t) is not D-finite in x.

Proof. Since the group of the walk is not finite, there are arbitrarily small values of ¢ satisfying
L ¢ Q. Hence, for sufficiently small such ¢, Lemma implies that 77 is not a period of B(z).
Therefore, by Theorem these are values of ¢ for which Q;(z,y;t) is not D-finite in . -

6.2.1. Decoupling cases. Recall from Definition [£.8]that we say that X (2)PY (2)? is decoupling
if there is a pair of rational functions R; and R satisfying

X(2)"Y (2)7 = B (X(2)) + Ra (Y (2))-

As we will show in the following theorem, this implies that Q;(z,y;t) is D-algebraic in = and y.
The analogous result was proven in the quarter plane by Bernardi, Bousquet-Mélou and Raschel
[2], and more precisely they proved that Q;(z,y;t) is D-algebraic in ¢ under the same condition.
This results from the fact that all of the parameters that depend on ¢ and all of the functions
involved in the solution depend on ¢ in a D-algebraic way. We believe that the same argument
applies here, although a rigorous proof of this is outside the scope of this article.

Theorem 6.20. Assume that
X(2)PY (2) = R (X (2)) + Ra(Y (2))
holds for some rational functions Ry and Ry. Then Q;(z,y;t) is D-algebraic in x and y.

Proof. Since M = L+ K + 1 is odd, L and K have the same parity. If they are both even then
X_r(2) € {X(2), 5y} and Yk (2) € {Y(2), g5}, while if they are both odd then X_r(2) €

{Y(2), yz5} and Y (2) € {Y(2), 35}, so either way we can write
Ri(X(2)) + Ra(Y (2)) = Ri(X_1(2)) + Ra(Yk (),
where Ry and R, are rational functions. Under the assumption, can be written as

T(z) := R (Yk(2)) — B(2) = A(z) + F — Ry(X_1(2)), (84)
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which implies that T'(z) satisfies T(z) = T'(yx — 2) = T(y-r-1 — 2) = T(2 + 7). Combining
these shows that 7'(z) is an elliptic function with periods = and 77 = vk —y—,—1, S0 it must be
D-algebraic (since T"(z) and T'(z) must be related by a non-trivial polynomial equation). Now,
since X (z) is also D-algebraic, it follows from that B(z) is also D-algebraic in z. This is
precisely condition [(v)] of Theorem which we showed to be equivalent to conditions [(1)] and
that Q;(z,y;t) is D-algebraic in = and y. -

6.2.2. Non-decoupling cases. In this section we show that if there is no decoupling function,
then the generating function is not D-algebraic in x, as in Subsection for the 3-quadrant
cone. The proof works along the same lines as [13] 22] for the quarter plane case, which relies
on Galois theory of g-difference equations. Rather than essentially rewriting these entire proofs,
in Appendix |§| we use results from [I3] to deduce Corollary which avoids Galois theory
language in its statement, and can be readily applied to show the main result of this section.

Theorem 6.21. Fizt ¢ (0, ﬁ) Assume that there are no rational functions Ry, Ry € C(z)
satisfying

X(2)PY(2)? = Ri(X(2)) + Ra(Y(2))-
Then the function Q;(z,y;t) is not D-algebraic in x ory.

Proof. 1t suffices to prove that B(z) is not D-algebraic, as we showed below the statement of
Theorem that this is equivalent to Q;(z,y;t) being D-algebraic in = or y. Now assume for
the sake of contradiction that B(z) is D-algebraic in 2. We will show that this implies that there
are rational functions R; and R, satisfying the equation in the theorem.

Now, by (63), the functions h(z) := X (2)PY ()4, fi(z) := A(z) + F and fo(z) := B(2) satisfy
the conditions of Corollary [D.2] with 3 = ~v_1_1 and 72 = k. Hence, there are meromorphic
functions a1, as : C — C U {oo} satisfying

X(2)PY ()" = a1(2) + aa(2),

a(z)=a1(z+7m)=a1(z+77) = a1(y-r-1 — 2),

asz(z) = az(z + ) = az(z + 77) = az(yx — 2).
Recall that M = K+ L+ 1is odd, so K and L have the same parity. If K and L are both even
then vx = v+ &n7 and y_p_1 = —y — 577, 50 a1(2) = a1(—7 — 2) and az(2) = az(y — 2).
Hence by Proposition a1(z) is a rational function of X (z), while ay(2) is a rational function
of Y(z). Hence we can write

X(2)PY ()" = Ri(X(2)) + Ra(Y (2)),

as required. Similarly, in the case that K and L are both odd a;(z) = a1(y — 2) and aa(z) =
as(—v — z), so by Proposition a1(2) is a rational function of Y (z), while ay(z) is a rational
function of X (z). Hence in this case we can still write

X(2)PY(2)" = Ri(X(2)) + Ra(Y(2))-

7. CONCLUSION AND FURTHER QUESTIONS

In this article we deduced a complex analytic functional equation characterising the generating
function C(z,y;t) counting three quarter plane walks, and subsequently we generalised this to
count walks in the M-quadrant cone. We deduced several results using this functional equation,
although there are also several questions that we have left open, which we pose below.

The most conspicuous unanswered question relates to the nature of the generating function
with respect to the third variable ¢:

Question 1. Is the nature of the generating function C(x,y;t) always the same with respect to
t as with respect to x and y?
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Indeed from a combinatorial perspective series in ¢ are the most natural as for example, the
series C(1,1;¢) is the generating function for all walks in the three quarter plane, whereas, while
fixing t is convenient for the complex analytic methods used in this article, it has little interest
from a combinatorial perspective. We believe that at least certain aspects of this question can
be answered using the results of this article: for example proving that C(x,y;t) is D-algebraic
in ¢ exactly when it is D-algebraic in  may be provable in the same way as it was proven in the
quarter plane [12} 22] [TT]. Moreover, it may be possible to prove that certain cases are algebraic
or D-finite using modular properties of the solutions as functions of 7, as in [17] and [18].

Our next two questions relate to the nature of the generating functions for fixed ¢:

Question 2. Are there any models along with fized values of t for which = ¢ Q but Q(z,y;t)
is a rational function of x?

This is the only missing ingredient from a complete characterisation of the nature of the
generating functions Q;(z,y;t) with respect to , as for all M-quadrant cones with A > 3 odd,
we showed that no such model exists (see Theorem [6.4).

Another unanswered question is the following:

Question 3. Are there any models for which the presence of a decoupling function depends on
the value of t?

Equivalently we could ask whether it is possible that C(x,y;t) is D-algebraic with respect to
x for some values of ¢ but not others. The analogous question of whether the group is finite is
clearly yes, as it only depends on whether the parameter = € Q. It seems that in most cases =
varies as a function of ¢ (perhaps in all non-D-finite cases), and so this parameter will typically

be rational for ¢ in a dense subset of its range (O, ﬁ) Despite this we do not know of an
example where the existence of a decoupling function depends on t.
Another natural question is whether the results in this article also hold on subtly different

spaces, which could also be called M-quadrant cones. We make this precise below:
Definition 7.1. Partition Z? into four quadrants

Qo = {(m,n) € Z* : m,n > 0},

Q1 ={(m,n) €Z*:n>0>m},
) € Z%:0>m,n},
)EZ?:m>0>n},

and define the alternative M-quadrant cone to be the gluing of M copies of these quadrants in a
spiral. Say a walk in an alternative M -quadrant cone can only step between adjacent quadrants.
More precisely, we extend the definitions of Q. to any k € Z by Qi = Qk_4, then the alternative
M-quadrant cone is the set of points (k, (m,n)) where (m,n) € Qx, and steps are only allowed
fmm (kl, (ml,nl)) to (kg, (m27n2)) Zf ]{31 —1 S kg S kl + 1.

Question 4. Is the nature of the series the same for walks in the alternative k-quadrant cone
as in the k-quadrant cone?

For the case k = 3 this is equivalent to the question discussed in Subsection [4.4}

Question 5. For walks in the three-quadrant cone, does the nature of the walk change if the
steps between (0,1) and (1,0) are forbidden?

Finally, perhaps the most mysterious result of this article is Corollary [f.19} relating to walks
starting on an axis. The statement of this Corollary is purely combinatorial, yet it’s proof in
this article is far from combinatorial. this leads to the natural question of finding a bijection:

Question 6. Find a bijective proof of Corollary [{-19 If this can be done, is there a directly
combinatorial way to prove Theorem [].18?
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APPENDIX A. PARAMETERISATION OF THE KERNEL CURVE

In this appendix, we describe a parameterisation of the Kernel curve, which we transform to
prove Lemmas and the parameterisation was first given by Raschel in [29] but we follow
[15 Section 2] as they prove more results relevant to us. In this section they work under the
same assumption on the step set as us - that the step-set is non-singular. They also assume that
the sum of the weights w; ; is 1 and that ¢ < 1, but by linearly rescaling ¢ and the weights w; ;
(and hence K(z,y)), this becomes equivalent to our assumption

t < P(].,].) = Z Wi, j,
(i,5)€S
without changing the set
E; = {(z,y) € P'(C)* : K(x,y) = 0}.
We start with the parameterisation of E; given by Dreyfus and Raschel [I5, Proposition 2.1]
for x and (2.16) of the same article for y. These parameterisations involve the Weierstrass g
function

( ) 1 n Z 1 1
PW,W1,wWa) 1= - 3 5"
w (a1 m2) €2\ {(0.0)} (w+ miwy + mows) (mywy + maows)

To define the parameterisation, they start by defining rational functions A_;(z), Ap(x) and
Ai(z) by

P(z,y) = iA_lm + Ao(z) + yAs (z)

and the degree 4 (or 3) polynomial D(z) = 22 ((Ao(x) - %)2 - 4A_1(x)A1(x)) = Z?:O a;al
(see (1.1),(1.8) and (1.10)). By Theorem 1.11, the polynomial D(z) has 3 real roots ay, as,
ag satisfying —1 < a1 < as < 1 < ag < oo. If D(z) has degree 4, it has a fourth root
ay € (az,00) U (—00, —1), while in the case that D(x) only has degree 3 we take a4y = oco. The
polynomial E(y) = E?:o B;y? and its roots by, b, by and by are defined similarly by swapping
the roles of = and y.

The following is proposition 2.1 in [I5], using the expression (2.16) for y(w).

Proposition A.1. The curve E, admits a uniformisation of the form
B = {(2(w),y(Ww)) : w € C/(Zwr + Zw2)},
where x(w) is given by
D'(a4)

x(UJ) = “ - p(w7w17w2) - %DN(UA)? Zf a4 7& o0,
3@(&),&)1,&)2) — (2 ) B
’ if ag = oo,
30[3
and y(w) is given by
E'(ba) .

bt , by # 0,
y(w) = ) p(w — w3 /2,wr,ws) — 2" (by) if by # 00
S3p(w — ws/2, w1, wa) — 52, if by = o0,

303

where wy € 1R and wa,ws € R are given by

: / Ly / Ll / Ly
wi =1 —dz, wy= —dzr, w3= x,
az  \/ _D($> ay D(x) aq D(m)
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where K(x4,bs) = 0. when the integrals above take the form f; with a > b, they are defined as
') b
fa +ffoo
This is related to the parameterisation in Lemma [2.3] by

X(z)zx(%—i—tf wlz)

™
w2 w3 w1
ve) =y (3 +7-57)
w2
T=—-——
w1
- w3
o 2(4)1

Under these transformations, and writing w = % + “¢ — “*2, Lemma is equivalent to the
following lemma

Lemma A.2. The numbers w1 € iR and ws,ws € R satisfy S(—wa/wi) > S(—ws/wy1) > 0.
Moreover, the meromorphic functions z(w),y(w) : C — CU {oo} satisfy

(1) K(z(w),y(w)) =0

25y + 5] <1
Counting with multiplicity, the functions x(w) and y(w) each contain two poles and two
roots in each fundamental domain {z. — riwy + rows : 11,72 € [0,1)}.

(ii)
(iiig Y(w) = y(w —w1) =y(w+w2) = y(wa + w3 — w)
(v)

Moreover, x(w) and y(w) are differentially algebraic with respect to w and t, while & and &

are differentially algebraic as functions of t.

Proof. The fact that (—wz/w1) > I(—ws/wi) > 0 follows immediately from “ > 0 and
0 < wsg < wa, which is proven in Lemma 2.6 in [I5].

The condition (i) is part of the statement of Proposition The claims (ii) and (iii) follow
from the definitions of z(w) and y(w) and the fact that

p(w7wl7w2) = @(W - wl;w17w2) = @(W +w27w17w2) = p(_W,WhWQ).

From Lemma 2.3 in [I5], we have z(2) = a; and y(¥252) = by, proving (iv), as |as],|b1] < 1.

Finally, (v) follows from the definitions of z(w) and y(w) as it is a well known property of the
Weierstrass function g that it takes each value in CUoo exactly twice (counting with multiplicity)
in each fundamental domain.

finally we will show that all terms in the expression are D-algebraic both as functions of w and
t. This follows from results of [2], in particular their Proposition 6.7 shows that p is D-algebraic
in all of it’s variables, while their Lemma 6.10 shows that w, ws and w3 are even D-finite in . g

So, we have now proven Lemma[2.3] Similarly, Lemma[2.5]is equivalent to the Lemma below,
with Qg := Z (ﬂ - DS)

wy \'4

Lemma A.3. The complex plane can be partitioned into simply connected regions {Ds}scz
satisfying

U Pas UDsei1 = {w e C: Jy(w)| < 1}, (85)
SEZL
U Pas—2UDse1 ={w e C: y(w)| > 1}, (86)
SEZL
U Pasc1 UDss = fw e C: |z(w)| < 1}, (87)
SEZL
U D4S+1 UD4S+2 = {w S C . |x(w)| Z 1} (88)

SEZ
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and for s € Z,
w1 + DS = DS, (89)
1 .
(s + Dwa + w3 — Dos UDogi1 = Do UDogi1 D (s—&—)++w3 + iR, (90)
1
(S + 1)&)2 —Dos UDgs_1 =Dos UDoy_1 D w + iR. (91)

Proof. In [15], the Authors define D, = {(z,y) € E; : |z| < 1}, D, = {(2,y) € E; : ly| < 1} and
D =D, UD,. Moreover in Lemma 2.8 they show that these sets are connected.

Next, writing A(w) := (2(w),y(w)), as the homeomorphism from C/(Zw; + Zws) to E; and
A being the corresponding function with domain C, they define D to be a connected compo-
nent of the set A=1(D). Their only other condition on D is that it intersects the fundamental
parallelogram w[0,1) 4+ w2[0,1). Since we know “2 is in this parallelogram and [z(%?)| < 1,
we may assume that D is the connected component containing “*. They also define connected

components D, and @y of A*I(Dm) and /~\*1(Dy), respectively, satisfying

D=D,UD,.
Finally they define non-intersecting infinite paths I't', T, f;, fz‘/", and they prove the following
in and above Lemma 2.9:

e For w € T}, we have |z(w)| = 1 and |y(w)| > 1 while for w € T, we have |z(w)| = 1
and [y(w)| <1 )
e For w € T'f, we have |y(w)| = 1 and |z(w)| > 1 while for w € T, we have |y(w)| = 1
and [z(w)| <1 .
e The paths I'f and I'; are wi-periodic and do not cross the vertical line through %2.
e The paths f; and f‘; are w-periodic and do not cross the vertical line through «2F<s.
e The domain D is delimited by a left boundary '} and a right boundary I‘;r and it
contains I';1 and I';1.
e The domain D, is delimited by '} and I, while the domain D, is delimited by I, and
I‘; .
We know that D and D + wo do not intersect, as this would contradict the claim that Dis a
connected component of A~!(D). This implies that '} + ws is to the right of ') Moreover, the
fact that D is connected implies that I'; is to the right of I', . So the lines T}, I',, T, I’} and
'} + wo are in that order from left to right. finally we can define the sets Ds. For s € Z, we
define
e Dy 1=D, \f)y + sws, which is delimited by a left boundary f‘;f + swsy (not included
in Dys—1) and a right boundary L'y, + swo (included in Dys_1),
® Dys = D, N Dy + swa, which is delimited by a left boundary I + swz and a right
boundary I} + swo, ~
® Dysy1 = Dy \ Dy + swa, which is delimited by a left boundary I'; + swy (included in
Dys41) and a right boundary '} + swo,
® Dy,io is the closed set delimited by a left boundary 1"; + swo and a right boundary
TF+ (s + 1)ws.
It is clear from these definitions that these sets partition C. Moreover, since the paths F;t and
F;‘E are wi-periodic, we know that ﬁy is also wi-periodic, that is, holds.
Now, to prove equations —, note that since D, is connected, we must have ]\(f?y) =Dy,
SO

AY(Dy) = Dy + Zw + Zuws,
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since A is a bijection from C/(Zw; + Zw,) to E;. Hence, using (89), we have
AY(D,) = D, + Zw,.

This equation is equivalent to . Moreover, follows by taking the complement of both
sides in (85). The equations and follow similarly from considering A~1(D,).

The only remaining equations to prove are and (0I). Recall that D, = D_; UDy is a
connected component of A=1(D,) = {w € C : |z(w)| < 1}. Then since z(w) = z(—w) = z(wy—w),
the set wo — D, is also a connected component of A’l(Dz). Moreover, D, and ws — D, both
contain “2, so they must be the same set, that is D, = wy — Dy, 50 f;” = Wy — f‘;. This implies
that the transformation w — (25 + 1)wy — w swaps the boundaries T} + swy and T, 4 swy of
Dys UDys_1, while the transformation w — 2sws — w swaps the boundaries f‘; + (s — 1)wy and
f‘j + swa of Dys U Dys—1. Together these imply the first part of . Now we will show that
Dos UDos_1 contains the line % 4+ ¢R. Consider the reflection in this line, which is given by
w i (s + 1wy —w. We know that the transformation w +— (s + 1)wz — w swaps the boundaries
of Das U Das_1, so by symmetry in the real line, the reflection w +— (s + 1)ws — W also swaps
the boundaries of Doy U Dys_1. Hence the line % + iR at the centre of this reflection must
be contained in Doy U D25_1.~This completes the proof of . To prove similarly, we just
need to show that % € Dy,. Note that 2 < % < wa. We know that %> € D_; UDj.
Moreover, 2wy — ', = (wo + I'}), hence wy must lie between the lines ', = (wy + I'}). So,
both %2 and w, lie between I'J” and I'} + wo, hence “2F544 also lies between these lines, that
is «22 ¢ D_; UDyU Dy UD,. Now, we know from Lemma that |y(22E43)| < 1, so

@249 ¢ Dy U Dy = Dy, as required. -

APPENDIX B. NATURE OF ANALYTIC FUNCTIONS OF X (2)

In this appendix we assume that f : C — C U {co} is a meromorphic function, with 7 as a
period, A C C is a set with non-empty interior and A : X(A) — C U {oo} is a meromorphic
function satisfying A(X(z)) = f(z) for z € A. We define properties X-rational, X-algebraic,
X-D-finite and X-D-algebraic and in each of the four cases we show that the function f(z) has
the property X-P if and only if A(x) has the property P. Importantly, the properties X-P do
not depend on the set A. Similarly, we assume g : C — C U {00} is a meromorphic function
with period 7 and B : Y (A) — C U {oo} is a meromorphic function satisfying B(Y (z)) = g(z)
for z € A. We then define properties Y-P such that g(z) has the property Y-P if and only if
B(y) has the property P. In fact, as we will see if P is one of the properties algebraic, D-finite
or D-algebraic then the properties X-P and Y-P are the same. The results in this appendix are
usually applied in the article in cases where A = €2, for some j, in which case f(z) and g(z)
automatically have m as a period, as this property is inherited from X and Y.

Definition B.1. We say that the function f : C — C U {oco} with period 7 is X-rational if it
satisfies

[(2)=flz+77r) = f(=—2),
for all z € C. We say that the function g : C — CU {oo} is Y-rational if it satisfies
f(2) = fz+77) = fly —2),

Definition B.2. We say that the function f : C — C U {oo} with period 7 is X-algebraic or
equivalently Y-algebraic if it has mnT as a period for some positive integer m.

Definition B.3. We say that the function f : C — C U {oo} with period = is X-D-finite or
equivalently Y-D-finite if it satisfies an equation of the form

S(z)+ Y fP(=)85(2) =0,

=0
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where S(z) and each S;j(z) is an elliptic function with periods = and 77, and S;(z) is not the
zero function.

We will show that this is also equivalent to the following, seemingly weaker property:

Definition B.4. We say that the function f : C — CU {oo} is weakly X-D-finite if it satisfies
an equation of the form

S(2)+ > f9(2)85(2) =0,
j=0

where S(z) and each S;j(z) is an elliptic function with periods m and mn, for some m € Z\ {0}
and S;(z) is not the zero function.

Definition B.5. We say that the function f : C — C U {oo} is X-D-algebraic or equivalently
Y-D-algebraic if it is D-algebraic.

Proposition B.6. The function A(x) is rational if and only if f(z) = A(X(2)) is X-rational.
Similarly, B(y) is rational if and only if g(z) = B(Y (z)) is Y -rational.

Proof. If A is a rational function then by meromorphic extension we must have f(z) = A(X(z))
for all z € C, so f(z) is X-rational due to the fact that

X(z)=X(z+7m)=Xz+7n7)=X(—7—2).

For the converse, consider the transformation of p that defines X (z) and Y'(z) given in Ap-
pendix [A] Under this transformation, this Proposition is equivalent to the classical result that
any even elliptic function is a rational function of the Weierstrass function p with the same
periods (see e.g., [, page 44]). Alternatively one could prove this directly by constructing a
rational function of X (z) with poles at the same points and of the same nature as those of f(z),
thereby proving that f(z) is this rational function of X (z2). -

Remark: An equivalent argument shows that a function h(z) is a rational function of W (z
(see Definition if and only if

h(z)=h(z+7)=h(nr —v—2) = h(2(xT — 7) + 2).
Proposition B.7. The function A(x) is algebraic if f(z) = A(X(z)) is X-algebraic.

Proof. If f(z) is X-algebraic then there is a positive integer m, such that f(z) and X (z) share
the periods m and mz7r. Hence A(x) is algebraic due to the classical result that any two
elliptic functions with the same periods are related by some non-trivial polynomial equation
P(f(2), X (2)) = 0.

For the converse, assume that A(z) is algebraic. Then there is some non-polynomial P
satisfying P(A(x),z) = 0, and hence P(f(z), X (%)) = 0 for z € A, and by meromorphic extension
we must have P(f(z),X(z)) =0 for all z € C. There can only be finitely many values z. € [0,7)
satisfying P(a, X (z.)) = 0 for all a, and for all the rest, there can only be finitely many values
of a satisfying P(a, X(2.)) = 0, so f(z) takes only finitely many values for z € z. + 77Z. Hence
for each z. there are some my, mg € Z with my # mq satisfying f(z. + mi77) = f(2c + man7).
Moreover, since there are only countably many choices for mq, mo, there must be infinitely many
values z. corresponding to the same pair mq,ms. Hence f(z + min7) — f(2 + man7r) = 0 for
infinitely many values z € [0,7), and hence infinitely many different values X (z). Moreover,
both f(z+my77) and f(z+ maonT) are algebraic functions of X (z) (as the both satisfy P(f(z+
m;n7), X (2)) =0), 50 f(z+mimT)— f(2+menT) is an algebraic function of X (z) with infinitely
many roots, so it must be the 0 function. Hence f(z + min7) = f(z + menT), so setting
m = my — my yields the desired result. =

Remark: Similarly B(y) is algebraic if and only if g(z) = B(Y (z)) satisfies the exact same
condition.

Proposition B.8. The following are equivalent:
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e The function A(z) is D-finite

o The function f(z) satisfying f(z) = A(X(z)) is X-D-finite

e The function f(z) satisfying f(z) = A(X(z)) is weakly X-D-finite
Proof. Clearly if f(z) is X-D-finite then it is weakly X-D-finite. We will now assume that f(z)
is weakly X-D-finite and prove that A(z) is D-finite. We have

S(z)+ > fV(2)8,(2) = 0.
3=0
Considering this equation for z € A, where f(z) = A(X(z)), we can apply the chain rule to write

d\" L
196) = () AXE) = L AN KT
7=0

where each T}(z) is a rational function of X (z) and its derivatives, with T;(z) = X'(2)* # 0. In
particular, each Tj(z) is an elliptic function with periods 7 and 77, so we have a new equation

S(z) + Y AV (X (2)U;(2) =0,
j=0

where S(z) and each U;(z) is an elliptic function with periods 7 and mn7, and Uyp(z) =
Sn(2)Ta(2) # 0.

Now, consider a neighborhood A C A on which X : A — C is injective, so X1 : X(A) — A
is well defined. Then for z € X(A), define U;(z) := U;(X~(z)) and S(z) := S(X~(z)).
Moreover since U; and S have m and mnt as periods, the functions S(z) and U;(x) are algebraic
by Proposition Now for z € A, we have

S(z) + Zn: AV (2)U;(2) =0,
§=0

So A(x) satisfies a non-trivial linear differential equation with coefficients algebraic in . It is a
classical result that the existence of such an equation implies the existence of a linear differential
equation (see, for example, [28] [32]), so A(z) is D-finite.

For the final implication, we assume that A(x) is D-finite and we will show that f(z) is

X-D-finite. We can write
>uste) (1) A =0,
7=0

where each U;(z) is a polynomial, with U,, non-zero. Substituting  — X (z) for z € A yields

U (X(2)) (Xl()dd) 1) =0,

J=0

Moreover, since the expression on the left hand side is meromorphic on C, the equation must
hold on all of C. Using the product rule yields an equation of the form described in Definition

so f(z) is X-D-finite. ]

Remark: Similarly B(y) is D-finite if and only if g(z) = B(Y(z)) is Y-D-finite.
Below we prove a simple consequence of the Lemma above regarding the possible positions of
poles of such a function f(z). This will be useful for proving that certain series are not D-finite.

Lemma B.9. If f(z) is X-D-finite, then its poles fall into only finitely many classes z. + 77 +
TTL.
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Proof. From Proposition [B.§ we can write
n
S(2)+ ) fP(2)85() =0,
j=0

where S(z) and each S;(z) is an elliptic function with periods 7 and 77, and S;(2) is not the
zero function.

We will start by showing that any pole z. of f(z) is either a root of S, (z) or a pole of one
of the functions S;(z) or S(z). Let z. be a pole of f(z) and let k be the order of the pole z. of
f(2). If 2. is not a root or pole of S,,(z) then f((2)S,(z) has a pole at z = z. of order k + n.
If, in addition, 2. is not a pole of any of the functions S;(z), then each term f)(2)S;(z) for
j < n has a pole at z = z. of order at most k + j < k + n. Hence the entire sum has a pole of
order k + n at z = z., which is impossible as the sum is 0.

Hence, any pole z. of f(z) is either a root of S, (z) or a pole of one of the functions S;(z) or
S(z). But each of these functions is an elliptic function with periods 7 and 77, so the poles and
roots fall into finitely many classes z. + 7Z + 7n7Z. Hence, the poles of f(z) fall into only finitely
many classes. =

Proposition B.10. The function A(x) is D-algebraic if and only if f(z) = A(X(2)) is a D-
algebraic function of z, that is, if and only if f(z) is X-D-algebraic.

Proof. Since D-algebraic functions are closed under function composition and taking inverses,
it suffices to prove that X(z) is a D-algebraic function. Indeed X'(z) and X(z) are elliptic
functions with the same periods, so they are related by some non-trivial polynomial equation
P(X(z),X'(z)) = 0. This is a non-trivial differential algebraic equation satisfied by X(z). g

Remark: Similarly B(y) is D-algebraic if and only if g(z) = B(Y (z)) is differentially alge-
braic.
Finally we have the main result of this appendix:

Proposition B.11. If P is one of the properties rational, algebraic, D-finite or D-algebraic,
then A(x) satisfies the property P if and only if f(z) = A(X(z)) satisfies the property X-P.

Proof. The result is a combination of Propositions B and -

Proposition B.12. Let P be one of the properties Algebraic, D-finite or D-Algebraic. If f, g :
C — CU{oo} are functions, each with 7 as a period, which have the property X-P then the
functions f(2)g(z), f(2) + g(2) and f(c— z) also have the property X-P for any c € C.

Proof. We first prove that X-P is closed under addition and multiplication, that is that f(z)g(z)
and f(z)+g(z) satisfy the property X-P. As we will show this is due to the fact that the property
P is closed under addition and multiplication.

Let A € C be a non-empty open set on which X is injective, then define f, g1 : X(A) —» CUco
by fi(z) = f(X~!(z)) and g1(z) = g(X~(x)), where we take the inverse X ~1(z) € A. Then
from Proposition our assumption that f and g satisfy X-P implies that f; and g; satisfy
P. Then since P is closed under addition and multiplication of functions, this implies that
fi(2) + g1(2) and fi(2)gi(x) satisty P. Then since f(z) + g(2) = fi(X()) + g1(X(2)) and
f(2)g9(z) = f1(X(2))g1(X (2)) for z € A, it follows from Proposition that these functions
satisfy X-P.

Finally we will show that f(c — z) satisfies X-P. This follows directly from the definition of
X-P, so we do it separately for each property P. If f(z) is X-algebraic it has mn7 as a period
for some integer m, so f(c — z) also has mn7 as a period, which means it is X-algebraic, as
required. If f(z) is X-D-algebraic then it is D-algebraic, so f(c — z) is also D-algebraic, which
means it is X-D-algebraic, as required. finally, if f(z) is X-D-finite, then it satisfies an equation
of the form

S(z)+ Y fP(=)85(2) =0,

=0
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which means f(z) = f(c — z) satisfies

S(c— =z +Z 1)7 f9(z2) Si(c—2)=0,

7=0

which has the same form. So f(c¢ — z) is X-D-finite, as required. =

APPENDIX C. GROUP OF THE WALK

In this appendix we will discuss the group of the walk, which was introduced in [7] and is a
variant on a group defined on analytic functions, previously introduced in the study of random
walks in the quadrant [20, 24]. In fact the original analytic version of this group is closer to the
version we use in Section [£.]

As in Appendix [A] we define Laurent polynomials A_;(z), Ag(x), A1(z), B_1(z), Bo(x),
Bi(x). by

P(z,y) = iA,l(x) + Ag(x) + y A (z) = %B,l(x) + By(z) + 2By ().

Then we define transformations ¢ and ¢ by

o= ) = (B

as then
P(z,y) = P(¥(,y)) = P(p(z,y)),

so the Kernel K(x,y) = tP(z,y) — 1 satisfies similar equations

K(z,y) = K((z,y)) = K(p(z,y)).
Definition C.1. The group of the walk is defined as the group generated by the transformations
Y and .

It has been shown that for unweighted walks in the quarter plane, the group is finite if and
only if the generating function Q(z,y;t) is D-finite [7, B]. Under the parametrisation (z,y) —
(X(2),Y(z)), the transformations ¢ and ¢ are equivalent to z - —y —z and 2z — v — 2
respectively, in the sense that

V(X (2),Y(2)) = (X(=y = 2), V(=7 — 2)), (92)
P(X(2),Y(2)) = (X (v —2), Y (v —2)). (93)
To prove, for example, the first of these equations, it suffices to observe that Y (—vy — z) is the
unique point other than Y(z) satisfying K(X(2),Y(—y — z)) = 0, noting that the only cases
where Y(—y — z) = Y(z) are those in which y = Y(z) is a double root of K(X(z),y) and
y— 2 = 2, in which case $(X(2), Y (2)) = (X(2), Y (2)) = (X(y— 2), Y (3 — 2)).
This allows us to prove the following proposition:
Proposition C.2. For n € N, we have 2”" € Z if and only if the transformation (1 o )™ fizes
every element (z,y) € Ey.

Proof. Applying equations and (93), we see that
(¢ 0 @)"(X(2),Y(2)) = (X(z = 2n7), Y (2 — 2n7)).
Hence, if 2:—: € Z, then (1) o p)" fixes every element (X (z),Y (z)), and hence every element of

E,={(X(2),Y(2)):z€C}. o

Conversely, if (1 o p)™ fixes every point (X (z),Y(z)) in E;, then X (z) = X(z — 2ny) for all
z, 80 2n7y is a period of X. Hence 2nvy € n7Z + wZ. More precisely, since 77 and « are both
purely imaginary, this implies 2ny € w7Z. =

Proposition C.3. The group of the walk is finite if and only if - € Q for all t € (0 (} 1)>.
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Proof. If the group of the walk is finite, then let n be the order of the element (i) o ). By
Proposition this implies that 2:—: € Z for all t, so = € Q for all ¢.

Conversely, if .- € Q for all t € (0, ﬁ), then there is some integer n; for each t satisfying
2::—;7 € 7. So by Proposition we have (¢ o p)™(z,y) = (z,y) for (z,y) € E;. Now, since
There is an integer n; for each of uncountably many values t, there must be some integer N
such that N = n; for infinitely many different values ¢. This implies that for each y, we have
(Yop)N(x,y) = (x,y) for infinitely many values . But, for fixed y, the equation (o) (z,y) =
(z,y) is two polynomial equations of z, so if it holds for infinitely many values of x it must hold
for all z. Hence (¢ o ¢)™(x,7y) = (x,y) for all z,y € C, so the group is finite. -

APPENDIX D. DIFFERENTIAL TRANSCENDENCE CRITERIA

The purpose of this appendix is to present the following proposition, which is a restatement of
results in [I3]. We will use this to prove that Certain generating functions are not differentially
algebraic in the cases where the group of the walk is infinite and there is not a decoupling
function.

Proposition D.1. Let wy,ws,ws € C be linearly independent (over Z) and let f,b: C — CU{o0}
be meromorphic functions satisfying b(w + w1) = b(w), b(w 4+ w2) = b(w) and f(w+ws) — f(w) =
b(w). If f is differentially algebraic then for any pole qo of b, the function

k

Z b(w + nws)

i=1
does not have a pole at qo, where qo+niws, Qo +nows, ..., qo+nrws are the poles of g in qy+wsZ.

Proof. We will describe how this follows from Proposition 3.6 and Proposition B.2 from [13].
We start by describing the application of [I3| Proposition 3.6]. In this proposition, the authors
consider the triple (C(E}),d,7), as a sub-field of (M(C), 4,7 : w — w + w3), where Ey is
an arbitrary elliptic curve and M(C) denotes the meromorphic functions on C. In particular,
C(E;) corresponds to the elements of M(C) that are fixed by two specified independent periods
- we take these to be wy and we. With this specification, [13, Proposition 3.6] states that
under precisely the conditions of this Proposition, there is a function g € M(C) satisfying
g(w) = g(w+ w1) = g(w + ws), an integer n > 0 and cg, ¢1,...,c,—1 € C satisfying

(i) ) +ens (di) b v 1 () o) + cobles) = g+ ) — g

In other words, there is a non-zero linear operator L € C[-L] satisfying L(b) = 7(g) — g. This
means that b and g satisfy condition (1) of [13, Proposition B.2], and so they also satisfy condition
(2), which is equivalent to the following: For any pole go of b, the function

k

Z b(w + nws)

i=1
does not have a pole at gg, where go+niws, go+nows, . - ., go+nrws are the poles of g in gy +wsZ.

We transform this into the following corollary, which allows us to quickly prove that when
certain functions are D-algebraic in infinite group cases there must be a decoupling function.
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Corollary D.2. Let 7,71,7v2 € C such that w, 771,72 — Y1 are linearly independent (over Z) and
let f1, fo,h : C — CU{oo} be meromorphic functions satisfying

h(z) = fi(2) + f2(2)
h(z) =h(z+7) = h(z+77)
fi(z)=filz+7) = fi(n — 2)
f2(2) = fa(z + ) = fa(r2 — 2).
If fo is differentially algebraic there are meromorphic functions ay,as : C — CU {o0} satisfying
h(z) = a1(z) + az(2)
a1(z) =a1(z+7) =a1(z+77) = a1(y1 — 2)
as(z) = as(z+ ) = as(z + 77) = az(y2 — 2).
Proof. Define b(z) = h(z) — h(y — z). Then

b(2) = fi1(2) = fa(2) = fi(y1 — 2) + fa(y1 — 2) = fa(ye — 11 + 2) — fa(2).

Hence setting f := f2, we have exactly the conditions of Proposition with w; =7, wo = 77
and w3 = 2 — 1. Hence, we have the result that for any pole go of b(z), the function

k
Z b(z + n;ws)
i=1

does not have a pole at gy, where the sum includes all integers n; such that gy + n;ws is a pole
of b (including n; = 0). In fact, this implies that for % sufficiently large the sum

N
Z b(z + nws)
n=—N

does not have a pole at gg. In order to construct functions a; and as, we will determine an
explicit, general form of b using the Jacobi theta function ¥(z, 7). In fact, it will be convenient
to write it in terms of the function

Ai(z) = A(z) == ?199/((57:))7

which satisfies A(z) = A(z + 7) = A(z + n7) + 2i and the only poles of A(z) are the points of
the lattice nZ + w7Z, and at each such point g we have
1

z2—q

A(z) ~

Now for k£ > 1, we define
_ k-1
()4 (d
A =t — A
G =T \ @ (2),
which satisfies Ay (z) = Ar(z2+7) = Ar(2+77), and it’s only poles are the points ¢ € 7Z+77Z,
where it satisfies
Ap(2) ~ (z =) ~F + 0(1).
Since b is an elliptic function (with periods 7 and #7) it must have only finitely many poles in
any fundamental domain. Hence, there are only finitely many sets ¢+ nZ+ n7Z+ wsZ, where q is

apole of b. Let {qo,q1,-..,qx } be a maximal set of poles of b such that each g +7Z+piTZ+wsZ
is a different set, and let k£ be sufficiently large that

N
Z b(z + nws)
n=—N
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does not have a pole at any of the K + 1 points ¢; (a priori there is a different N for each g,
but we take the maximum of these). Now for each k¥ < K and n € [-N, N, let

b(2) = sppg(z—qr —nws) ™ Fspr g 1(z—qp—nws) " T H s, (2 — g —nws) T+ O(1)

as z — qr + nws. As for N, we choose J sufficiently large for all k, n. Then the result of
Proposition is that for each fixed & and j, we have

N
E Sn,k,j = 0.
n=—N

Now, by our construction, the function
K N J
S D D R HEEP,
k=0n=—N j=1

has poles at exactly the same points as g, and they are of the same nature, so b(z) — b(z) has no
poles. Moreover b(z + 77) = b( ) and

K N
b(Z-‘rﬂ'T Z Z Z Snkyj (Aj(z + 77 — q — nws) — Aj(2 — qr — nws)) = Z Z —2i8p 1,1 = 0.

k=0n=—N j=1 k=0n=—N

Hence b(z) — b(z) is an elliptic function with no poles, so it must be constant. Hence for some
¢ € C we have b(z) = b(z) + ¢. Now that we have a explicit form for b(z), we are almost ready
to construct a; and as. First we define an auxiliary function

S Y A g ),

k=0n=—N j=1 m=—N

as then
K N
(z+w3) p(z)zz Z Z<Z S"’W Z_q’f_( —1w3 Z snk,] z—Qk—mw3)>
k=0n=—N j=1
K N J
=D > D (snpgAi(z = an+ (N + Dws) = sugejdy(z — g — nws))
k=0n=—N j=1
K N J )
== D D sawgdilz—an —nwy) = —b(z2).
k=0n=—N j=1
Moreover, by the construction, p(z + m) — p(z) = 0 and p(z + n7) — p(z) = —2id for some

constant d € C .Finally, we define as(z) = w and a1(z) = h(z) — aza(z). Then as(z) =
as(y2—z) = az(z+7m) = ag(z+77) and h(z) = a1(z) +az(z), so a1(z) = a1(z+7) = a1(z +77).
Hence, it suffices to show that a1(z) = a;(y1 — 2z). Indeed

ar(m = 2) —a1(2) = h(n = 2) — az(n — 2) = h(2) + az(2)
p(z) +p(e —2) —p(n = 2) —p(r2 =N +2)

= —b(:) + :

= —b(2) + p(z) + p(ws +711 — 2) ;p(% —2) — p(ws + 2)

— b(2) + w

_ e mbn—z)  zh(z) Fhln —2) —h(n —2) +h(z) _
2 2
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