N

N

ENUMERATION OF THREE QUADRANT WALKS
WITH SMALL STEPS AND WALKS ON OTHER

M-QUADRANT CONES
Andrew Elvey Price

» To cite this version:

Andrew Elvey Price. ENUMERATION OF THREE QUADRANT WALKS WITH SMALL STEPS
AND WALKS ON OTHER M-QUADRANT CONES. 2022. hal-03880889

HAL Id: hal-03880889
https://hal.science/hal-03880889v1

Preprint submitted on 1 Dec 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03880889v1
https://hal.archives-ouvertes.fr

ENUMERATION OF THREE QUADRANT WALKS WITH SMALL STEPS
AND WALKS ON OTHER M-QUADRANT CONES

ANDREW ELVEY PRICE

CNRS, Institut Denis Poisson, Université de Tours, France

ABsTrRACT. We address the enumeration of walks with small steps confined to a two-dimensional
cone, for example the quarter plane, three-quarter plane or the slit plane. In the quarter plane
case, the solutions for unweighted step-sets are already well understood, in the sense that it is
known precisely for which cases the generating function is algebraic, D-finite or D-algebraic,
and exact integral expressions are known in all cases. We derive similar results in a much more
general setting: we enumerate walks on an M-quadrant cone for any positive integer M, with
weighted steps starting at any point. The main breakthrough in this work is the derivation
of an analytic functional equation which characterises the generating function of these walks,
which is analogous to one now used widely for quarter-plane walks. In the case M = 3, which
corresponds to walks avoiding a quadrant, we provide exact integral-expression solutions for
walks with weighted small steps which determine the generating function C(z,y;t) counting
these walks. Moreover, for each step-set and starting point of the walk we determine whether
the generating function C(z,y;t) is algebraic, D-finite or D-algebraic as a function of x and
y. In fact we provide results of this type for any M-quadrant cone, showing that this nature
is the same for any odd M. For M even we find that the generating functions counting these
walks are D-finite in  and y, and algebraic if and only if the starting point of the walk is on
the same axis as the boundaries of the cone.

1. INTRODUCTION

The systematic study of walks with small steps in the quarter plane was initiated by Bousquet-
Mélou and Mishna in 2010 [7], and since then there has been great progress on the model
[3, 21, 29], 26, 25], 2], 23, 13|, [14]. The model is defined as follows: given a step set S C {—1,0,1}2\
{(0,0)}, determine the generating function

oo
Qla,yit) =Y Y qli,jin)t"a"y/,

n=017,7>1
where ¢(i, j;n) is the number of walks of length n, starting at (1,1), and ending at (4, j) using
steps in S and staying in the strictly positive quadrantE] A priori, there are 256 distinct step sets
S, but after removing duplicates and cases that are equivalent to half-plane models, Bousquet-
Mélou and Mishna identified 79 non-trivial and combinatorially distinct models. The study
of these models is now in some sense complete as it is known for each S precisely where the
generating function fits into the hierarchy

Algebraic C D-finite C D-Algebraic.

Recall that a generating function is called Algebraic with respect to a certain variable if it is
related to that variable by a non-trivial polynomial equation with coefficients only depending
on the other variables, and it is called D-finite (resp. D-algebraic) if it satisfies a linear (resp.
polynomial) differential equation with respect to that variable whose coefficients are polynomial

E-mail address: andrew.elveyQuniv-tours.fr.
IIn most of the literature, walks start at (0,0) and stay in the non-strictly positive quadrant, for which the
resulting generating function is ﬁQ(as7 y;t).
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in that variable. For a multivariate series to be algebraic (resp. D-finite, D-algebraic) it must
be algebraic (resp. D-finite, D-algebraic) with respect to each variable.

Of the 79 models proposed by Bousquet-Mélou and Mishna, 4 models admit an algebraic
generating function [7, B], 19 further models admit a D-finite generating function [7, 21], 9
further models admit a D-algebraic generating function [2 23] and the remaining 47 models
admit a generating function which is not D-algebraic [13|, 14], in which case we say that the
generating function is D-transcendental. Moreover, in the 74 cases known as non-singular, an
exact integral expression is known for the generating function [29], while other exact expressions
are known in the 5 singular cases |26, [25]. In recent years a number of articles have focused on
the equivalent question for walks in the three-quadrant cone

C=A{(,7):i>0o0rj>0},
Shown in Figure Il That is determining the generating function
Cla,yst) =Y Y cli,jin)t"a'y’,
n=0 (i,j)€C

where ¢(i, j;n) is the number of walks of length n, starting at (1,1), and ending at (7, ) using
steps in S and staying in C.

/.

FiGure 1. Walks in the three-quadrant cone C. Left: A walk starting at the
standard starting point (1,1) using step set #12 from Table 1} Right: A walk
starting at (4,0) using step set #10. Even though the generating function for
walks with step set #10 starting at (1, 1) is D-transcendental, we will show that
the generating function for walks starting at (4,0) is D-algebraic in x.

The study of walks in the three-quadrant cone was initiated by Bousquet-Mélou in [5], where
she enumerated walks with two step sets (#1 and #2 in Table , showing that the associated
generating function is D-finite. Raschel and Trotignon [30] then found a transformation relating
walks with any of the step sets #4-#10 to walks in the quarter plane - allowing them to deduce
integral expression solutions in these cases. Building on this work Dreyfus and Trotignon [16]
showed that the last three of these step sets (#8 - #10) admit non-D-algebraic generating
functions, while step set #7 admits a D-algebraic generating function. Subsequently, using
algebraic methods, Bousquet-Mélou and Wallner [9] adapted the method of [5] to enumerate
walks with step set #3, again showing that these admit a D-finite generating function. Finally,
in a very recent article [6], Bousquet-Mélou used invariants to show that three cases known as the
Kreweras cases (#4-#6) admit algebraic generating functions. Together these classify 10 models
into the complexity hierarchy (algebraic, D-finite, D-algebraic). Walks with specified endpoints
have been enumerated for 2 further models (#11-#12) by Budd [10] and 2 further models by the
current author (#13-#14) [17], both of these results by relating the model to walks counted by
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winding angle. Moreover, in [27], Mustapha used asymptotic properties to show that C(x,y;t)
is not D-finite in ¢ for any of the 51 non-singular step sets S admitting an infinite group, that
is, precisely the models which are not D-finite in the quarter plane. Remarkably, in all of the
cases (#1-#10) shown in Table |1} the generating function has the same nature as in the quarter
plane. Dreyfus and Trotignon were the first to conjecture that this holds more generally - that
the nature is the same for any of the 74 non-singular step-sets .S [I4]. We note that for models
(#10-#13), the (single variable) generating functions considered in [10, [17] were found to be
algebraic in t, which only coincides with the general quarter-plane case for model #10. For
models #11-#13, the generating function Q(z,y;t) is D-finite but not algebraic [7]. This is
perhaps explained by the fact that the walks considered in [10, [I7] for models #11-#13 start at
(1,0) rather than the standard starting point (1, 1).

Model #1 #2 #3 #4 #5 #6 #7
Nature of C(z,y;t) || DF [5] | DF [5] | DF [9] | alg. [6] | alg. [6] | alg. [6] | D-alg. [14]
Model 7#{8( '#%9 #10 iz il; #13 ﬁf;
Nature of C(z,y;t) || D-trans [14] | D-trans [14] | D-trans [14] | [10] | [1O] | [17] | [17]

TABLE 1. Previously solved models on the 3-quadrant cone for walks starting
at (1,1). Models #11-#14 only solved for specified end-points.

Main Results. For each of the 74 distinct non-singular step-sets S, we relate the generating
function C(z,y;t) to the solution of a simple analytic functional equation (Theorem , anal-
ogous to one found by Raschel for the enumeration of walks in the quadrant [29]. Our method
is also a direct generalisation of that of Raschel, which in turn is based on a method of Fayolle,
Tasnogorodski and Malyshev [19] 20], which they used in a probabilistic context.

Using our analytic functional equation, we derive an exact integral expression solution for
C(z,y;t) (Theorem , analogous to those of Raschel in the quarter-plane [29]. We then prove
that the nature of C(z,y;t) as a function of x (or y) is the same as that of Q(z,y;t), and we
conjecture that these series also have the same nature as functions of . In fact we determine
the nature of the generating function C(z,y;t) with respect to = in the more general setting of
walks with weighted small steps starting at any point in the cone C.

We then define M-quadrant cones for any positive integer M and consider generating functions
Q;(z,y;t) counting walks on these spaces that finish within a quadrant determined by j. For
M < 4 the space is already familiar: The 1-quadrant cone is the quarter plane, the 2-quadrant
cone is the half plane, we already discussed the 3-quadrant cone, and the 4-quadrant cone is
the slit plane studied in [4], [8] and [3I]. For each M, each step-set S, each value j and each
starting point, we determine whether the generating function Q;(z,y;t) is algebraic, D-finite
or D-algebraic as a function of x and y. We find that the nature of these generating functions
depends on the parity of M, but otherwise does not depend on its value. That is, for all odd
M (and all j) we prove that Q;(z,y;t) has the same nature as C(z,y;t), whereas for M even,
we find that the generating function is always D-finite, and that it is algebraic if and only if the
starting point is on the same axis as the boundaries of the cone. For M > 2, we even determine
the nature of the generating functions for fixed ¢, showing that this nature still doesn’t depend
on the exact value of M, only its parity.

Note that by our definition of walks in the 3-quadrant cone, steps directly between (1,0) and
(0,1) are allowed, whereas they are forbidden in [9], for example. We do not expect this to
affect the nature of the generating function, in fact in Section [£.4] we show that in most cases



the nature is the same.

Outline of the paper. In Sections and 4] we address the enumeration of walks in the
three-quadrant cone. First, in Section [2] we relate the generating function C(z,y;t) counting
these walks to meromorphic functions A(z) and B(z) on C, then in Theorem [2.8] we charac-
terise these functions using a simple functional equation. In Section [3| we use this functional
equation to derive explicit integral expressions determining A(z) and B(z), and hence implicitly
determining C(z,y;t). In Section [4] we use the functional equation to determine the nature of
C(z,y;t) as a function of z, that is, when it is algebraic, D-finite or D-algebraic. As an example,
in Subsection [4.3| we give a more explicit solution for the case that the walk starts on the z-axis.

In Sections [5] and [6] we address the enumeration of walks on an M-quadrant cone for any
positive integer M. For M = 1 this is the familiar quarter plane case, while for M = 3 this
is precisely the case studied in Sections and 4] In Section [5] we define the model precisely
and derive analytic functional equations characterising the series involved, as in Section [2| In
Section [] we use these functional equations to determine the nature of the series involved as
functions of x. To our knowledge this was not previously completed even in the quarter plane
case in the full generality we consider.

Finally in Section [7} we pose a variety of questions left open by this work.

We have a number of appendices in which we prove technical results that we use throughout
the article. In Appendix [A] we use results from [15] to prove Lemmas [2.3] and 2.5 which allow
us to relate the generating function C(z,y;t) to the meromorphic functions A(z) and B(z). In
Appendix we describe how the nature of the generating functions such as C(x, y; t) relates to
the nature of the related analytic functions, such as A(z) and B(z). In appendix |[C| we define
and discuss the group of the walk. Finally in Appendix [D] we discuss results coming from the
Galois theory of g-difference equations that we use in the D-transcendental cases.

2. FUNCTIONAL EQUATIONS FOR WALKS IN THE THREE-QUADRANT CONE

We start with a step-set S C {—1,0,1}2\ {(0,0)}, a weight ws > 0 for each s € S and a
starting point (p,q) with p > 0, ¢ > 0. Throughout this article, we assume that S is a non-
singular step-set. That is, for any line ¢ through the origin, at least one element of .S lies on each
side of £. As explained by Bousquet-Mélou and Wallner, [9], Section 2.2], the generating function
C(z,y;t) is algebraic if S is singular, as then the model can be written in terms of half-plane
models.

We will determine the generating function C(x,y;t) counting walks starting at (p, q), taking
steps from .S with all intermediate points lying in the three-quadrant cone C and with the weight
of the walk being the product of the weights wg of the steps. Note that the standard starting
point is (p,q) = (1,1) and in the unweighted case ws, = 1 for each s € S.

The following lemma results from considering the final step of a walk counted by C(z,y;t):

Lemma 2.1. Define the single step generating function P(x,y) by

P(l‘,y) = Z w(a,B)IayB
(a,B)ES
Then there are series A (%;t) € éR [ﬂ [[1]], B(2:t) € LR[L][[t] and F(t) € tR[[t] which
satisfy
1 1
Cla,y;t) = aPy? + tP(x, y)Clz, y;t) — F(t) — B <;t> —A (;t) - (1)
T Y
Moreover, this equation together with the fact that c(i,j;n) = 0 for i,j < 0, characterises the

generating function
Cla,yst) =D > eli, jim)a'y’t",
t>0i,5€R
as well as the series A, B and F.
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Proof. We start by proving combinatorially that the equation holds for some series A, B and F.
Note that C(x,y;t) is the generating function counting walks restricted to C, so tP(z,y)C(z, y;1)
is the generating function counting these walks with an additional step added at the end (possibly
not restricted to C). To get the generating function C(z,y;t) we need to add the contribution
2Py? for the empty walk and subtract the contribution H(x,y;t) to tP(z,y)C(z,y;t) from walks
not ending in C. So

Clz,y;t) = 2Py? + tP(2,y)C(z, y; 1) — H(z,y31).
Since the walks counted by H(xz,y;t) finish outside C, and have at least one step, we must have
H(z,y;t) € tR [%, ﬂ [[t]]- Moreover, since only the final step lies outside C, the endpoint must

be at some (0, k) or (k,0) for k& < 0. Hence, we can write H as

H(x,y;t):F(t)—i—A(;;t) +B<;;t>, )

completing the proof that such an equation holds.

Now we will show that uniquely determines the series involved. Taking the 2'y7t" coeffi-
cient on both sides of the equation yields the initial condition (i, j;0) = d(; ;),(p,q), While taking
the ziy’t" coefficient for n > 1 and (i,j) € C yields

c(i,jin) = > wape(i—a,j—pfin—1),
(a,B)ES

which determines every value c¢(i, j;n) inductively. Finally the series H and therefore the series
A, B and F are determined by

H(x,y;t) = aPy? + tP(x,y)C(z,y; t) — C(x, 3 t).

FIGURE 2. Left: a walk counted by A <%;t) in the case where (p,q) = (1,1)

and S is the step-set shown. Right: a walk counted by B (£;t) in the case where
(p,q) = (3,2) and S is the step-set shown.

The equation reveals a combinatorial interpretation of the series A, B and F: While H
counts walks starting at (p, ¢) and ending just outside C whose intermediate points all lie within

C, the series A, B and F each count a subset of those walks. In particular, the series A (%;t)

counts those walks ending on the negative y-axis A := {(0, ) : j < 0}, the series B (1;¢) counts
those walks ending on the negative z-axis B := {(¢,0) : ¢ < 0}, and F(¢) counts those walks
ending at (0,0) (see Figure [2)).
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FIGURE 3. The three-quadrant cone C partitioned into three quadrants Ql, 9
and Q—l .

The unusual condition that the coefficients c(i,j;n) of C(x,y;t) vanish for ¢,j < 0 makes
this equation difficult to solve directly, so we follow [5, @] and partition C into three quadrants
Q_1,Qp, 91, defined as follows (see Figure )

Q—l = {(7’7.]) 11> O?.] < O}a
QO = {(Zaj) 1> Oa] > O}a
Q1 = {(i,j) : i < 0;5 > 0}.

In fact we have shifted the quadrants Q_1, Qo down one space compared to those considered in
[5] so that it is impossible to step directly between Q_; and Q; and so that our condition on
the starting point (p, q) is now that (p,q) € Q. Note that we have Qj rather than Q; when the
quadrant includes points on either the z-axis or y-axis.

Now, we define Q_; (:v, i; t), Qo(,y;t) and Qq (2,y;t) to be the generating functions count-
ing walks in C, starting at (p, q) and ending in Q_;, Qg and Q, respectively. So

1 1
Clz,y;t) = Q1 (x y;t> + Qo(z, y3t) + Qu <$7y;t> ;
and Q1 € IR [ac,ﬂ (1], Qo € 2R [z, y][[t]] and Q; € yR[L,y][[t]]. The following lemma
rewrites (1)) as three equations characterising Q_; (a:, %;t), Qo(z,y;t) and Qi (L, y;1).

Lemma 2.2. Define the kernel K(z,y;t) by
K(z,y;t) = tP(z,y) — 1.

There are series V1(y;t), Va(y;t) € Rly][[t]] and Hi(x;t), Ha(z;t) € R[z][[t]] satisfying the three
equations

K(z,y;t)Q-1 <x, ;;t) =A (;;t) + Hy(x;t) + ng(l‘;t) (3)
K(z,y;1)Qo(w, y; 1) = —aPy? + F (t) — Vi(y;t) — 2Va(y;t) — Hi(ast) — in(x;t) (4)

K(z, y;1)Qu (iyt> =B (;w) + Vi(yt) + aVa(y; b). (5)



T, 5 ) Qo(z,y3t), Q1 (L,y:1),

Moreover, these three equations characterise the series Q_1 (
Vi(y;t), Va(y;t), Hi(z;t), Ha(x;t), A (%t) B (3:t) and F(t).
Proof. We can rewrite (1)) as

K(z,y;t) (Q_1 <x 1;t> + Qo(z,y:t) + Qu <1,y;t>> = —aPy? +F(t) +A <1;t> +B (1;15) ,
Y x Y T

which is precisely the sum of , and . Rearranging yields

K(z,y;t)Q1 (i,y;t)—B (i;t> = —aPy?+F(t)+A (;;t>—K(I,y;t) (Qo(x,y;t) +Q_1 (x ;;t» .

The left hand side of this equation lies in #R [L,y] [[¢]] while the right hand side lies in R [m, v, ﬂ [[t]],

so, since the sides are equal, they must lie in the intersection

R | 20] 1R [ovys | 1] = R + <R,

which means there are series V1 (y;t), Va(y; t) € Ry][[t]] satisfying (5). Similarly, in the equation

Kz, y:t) (Qo(x,y;t)+Q1 (;,y;t>>—B (i;t)—l—aﬁpyq—F(t) :A(;;t> K(z,y:)Q_ 1( ; t),

The left hand side lies in %R [1,2,y] [[t]] while the right hand side lies in R {x, H [[t]], so they

both lie in the intersection R[z][[¢]]+ %R[x] [[t]]. Hence there are series Hy(x;t), Ha(z; t) € Rx][[t]]
satisfying . Finally follows from subtracting and from . n

We also note that there are combinatorial interpretations of the series Vi,Vs,Hp, Ho: they
each count walks starting at (p, ¢) and ending either in C or just outside C with a restriction on
the final step. In particular:

V1(0;t) — V1 (y;t) counts walks whose final step is from 9y to 9y,
V1(0; ) counts walks whose final step is from Q; to (0,0),

2Vy(y;t) counts walks whose final step is from Q; to Qp ,

H, (z;t) counts walks whose final step is from Q_; to Qq or (0,0),

. —ng(x;t) counts walks whose final step is from Qg to Q_; or (0, —1).

In section [5} we will use combinatorial interpretations of this form to generalise this section to
M-quadrant cones for any positive integer M.

1. PARAMETERISATION OF THE KERNEL CURVE

Following the method used in the quarter plane pioneered by Fayolle, Iasnogorodski and

Raschel [19, 20l 29] we start by fixing t € (O
{(w,y) . K(Z’,y, ) _0} .

Recall our assumption that S is a non-singular step-set. Under this assumption, the curve E;
is known to have genus 1, so we will be able to parameterise it using elliptic functions X (z) and
Y (2). More precisely we have the following lemma, which we prove in Lemma[A.2]in Appendix[A]
using results from [15]. The transformation that converts Lemmal[A 2] to Lemma[2.3]is described
above Lemma [A2]

) p(l 17 ) and then we consider the curve E, =

Lemma 2.3. There are meromorphic functions X,Y : C — CU {oo} and numbers v,7 € iR
with S(71) > $(27) > 0 satisfying the following conditions
K(X(2),Y(2)) =0

X(z) =X(z+m)=X(z+77) = X(—7 —2)
Y)=Y(z+4+nm)=YE+7rr)=Y(y—2)
XY (3 <1



o Counting with multiplicity, the functions X (z) and Y (2) each contain two poles and two
roots in each fundamental domain {z. + rim + rom7r : 11,72 € [0,1)}.

Moreover, X(2) and Y (2) are differentially algebraic with respect to z and t, while T and v are
differentially algebraic as functions of t.

In fact, it follows from Proposition that (X(z),Y(z)) parameterises E;, that is,

E;={(X(2),Y(2)) : z € C}. (7)

We intend to substitute x — X (z) and y — Y (2) into (3)), and (5), however we can only do
this as long as the series in these equations converge, which occurs in the situations described
by the following lemma

Lemma 2.4. The series...

o 1Q_ ( x, y,t) converges absolutely for x,y satisfying |x] <1 < |y| < oo,

o 1Qo(z,y;t) converges absolutely for x,y satisfying |z|,|y| < 1,
° %Ql (%,y;t) converges absolutely for x,y satisfying |y| < 1 < |z| < co.

In fact all of the series that we consider Q_1, Qq, Q1, A, B and C converge absolutely for x,y

satisfying
el Iyl € (x/tP(1,1)7 , /tp(lll)> .

Proof. Since the weighted number of walks of length n in the entire plane is (P(1,1))", the
number of walks restricted to the three quarter plane must not be higher than this. Hence,
the coefficient [t"]C(1,1;¢) < P(1,1)", so for fixed ¢t < (1 7y, the series C(1,1;t) converges. So
the series Q_1(1,1;%), Qo(1,1;¢) and Q1(1,1;¢), whose sum is C(1,1;¢), also converge. Since
IQ1 (x, i;t) eR [:1:7 ﬂ [[t]], and it has only non-negative coefficients, it must converge for
2] <1 < |y| < co. Similarly, since Qi (3,9:t) € R[5, 9] [[1]], it must converge for |y| <1 <
|z| < oc. Finally, since 1Qq(z,y;t) € R [z, y] [[t]], it must converge for |z, |y| < 1.

The only remaining statement to prove is the final statement of the Lemma, which requires
a bit more precision. As we discussed, the coefficient [t"]C(1,1,¢) < P(1,1)", moreover, the
polynomial [t"]C(z,y,t) is a Laurent polynomial in = and y with degrees of x and y lying in
[—n, n]. Hence for fixed z,y € C, the coefficient

Ixy\"

A

So for t € (0, ﬁ) and |z|,|y| € (w/tP(l,l),,/ﬁ), the series C(x,y,t) converges, as

required. We can use the same reasoning to prove the same result for all of the other series that
we consider. =

[7)C(ay,8)] < [F7]C(L 1, 8) max{|xy|“, 9”\

< (Pt max oyl

’ Y

According to the lemma above, in order to substitute  — X (z) and y — Y (z) into the series
Qj, it often suffices to understand how | X (z)| and |Y ()| compare to 1. To do this, we prove the
following lemma in Appendix EI, using [15, Lemma 2.9].
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M
0 2
: 0 - X ()], [Y(2)] <1 -
— ]
O |X(2)] <1 <|Y(2)|
S ol ) B
0y o 1< X (2)], Y (2)]
e
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Q5 Y(2)] <1< |X(2)]
__//v\
2rr+3
PR OO

FIGURE 4. The complex plane partitioned into regions €);. For z on the blue
lines, |Y'(2)| = 1, while on the red lines | X (z)| = 1.

Lemma 2.5. The complex plane can be partitioned into simply connected regions {Qs}sez (see
Fz'gure satisfying

U Qys UQ45+1 = {Z eC: |Y(Z)‘ < 1},

SEL
U Qa2 UQuer = {z € C: [V (2)| > 1},
ElsY/
U Qa1 UQus = {z € C: |X(2) <1},
SEL
| Qa1 U Qusra = {z € C:|X(2)] > 13,
SEZ

moreover, the equations

T+ Qs = Q,
STT +
S7TT+"}’7925 UQQS+1 = Qo UQQS+1 B} TP}/ +R,
STT —
sTT — 7 — Qs U Qg1 = Qs Uldog_1 D ki +R,

2
hold for each s € 7.

Proof. This is equivalent to Lemma using the transformations described in Appendix [A]
just before Lemma [A72] and just before Lemma [A-3] n

In some sections it will be useful to parameterise the series using the Jacobi theta function

19(2,77_) = Z(_l)neiﬂ"rn(nJrl) (6(2n+1)iz _ 67(2n+1)iz> i (8)

n=0
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which is defined for all z,7 € C satisfying 3(7) > 0. In the literature, the function 9(z,7) is
sometimes written as 911(2,7) or 1(z,e"™"). Recall that 7 is fixed in this section, so we will
generally think of ¥ as a function of z. Note that this function has neither m nor 77 as a period,
however elliptic functions with these two periods can easily be constructed using ¥ due to the
following relations

Wz +m,7)=—9(z,7) and Wz +77,7) = —e 2ETTTY(2, 7). 9)

Moreover, ¥(z,7) has no roots and its only poles are at the points z € 7Z + n7Z. Using these
properties allows us to parameterise X and Y using 9.

Proposition 2.6. There is some o € Qo UQ_1, BE€QuUD, § €U, e €O _5UN_1 and
Ze,ye € C\ {0} satisfying
e —a,7)0z+7v+a,7)
Wz — 0, 7)0(z 4+ v+ 0,7)
y Hz =B, 1) z—~v+06,7)
Yz—e,m)(z—v+eT)

Proof. We will prove the result for X(z) as the proof for Y(z) is identical. From Lemma
we know that X (z) contains two roots and two poles in each fundamental domain. Consider the
fundamental domain F' = {z € Q_; UQoUQ; UQs : R(2) € [0,7)} and let « € F and § € F
be a root and pole of X(z), respectively. From Lemma [2.5] we must have a € Q_; Uy and
d € Q1 UQq. Now, since X(z) = X(—vy — z), the value —y — ¢ must also be a pole of X(z), so
more generally, all of the point in 0 +7Z 4+ 77ZU —~ — 0 + nZ + w77 are poles of X. In the case
that 6 ¢ —3 + 57+ 5T Z, this accounts for all poles of X (z), so X (2)J(z—9,7)J(z+~v+9,7) has
no poles. In the case that 0 € —3 + 57 + T Z, we have X (2 — ) = X(—y -6 —2) = X (6 — 2),
so X must have a double pole at §. Then again X (2)3(z — 6, 7)3(z + v + §,7) has no poles. In
either case this implies that the function X (z) defined by

Wz — 0, 7)z 4+ v+ 0,7)
Nz —a,7)0z+7+a,7)

X(z) =z,

Y(z)=

X(2):= X(z)

has no poles except possibly a single pole at each z € —y —a+7Z~+n7Z. But X(z) is an elliptic
function with periods 7 and 77, so it cannot have only a single pole in each fundamental domain
[1, Page 8]. Therefore it must have no poles, and is therefore a constant function. Writing
X (z) = . where z, € C yields the desired result. Note z. # 0 as this would imply that X (z)
was the 0 function. -

Example: In the case of simple walks, that is S = {(1,0), (0,1), (—1,0), (0, —1)} and w4 g) =
1 for (o, B) € S, the equation relating X (z) and Y(z) is
1 1 1
X(z)+m+Y(z)+m =7
One can check that if we define
Wz, 1)z +7,7)
Iz — v, 1)z + 27v,7)

Wz, )z —7,7)

=e
M) =e I+ 7m0 = 20,7)

and  Y(z)=e "

where v = IT, then X(z) + ﬁ +Y(2) + ﬁ has no poles, so it must be constant. Then

substituting z = 1 yields an equation relating 7 and ¢, which can be written as
2
e 9 (2,7) _1+n- Vit s
9 (2 T)Q 2t

2

iTT

This allows ¢ = e = e’ to be written as a series in ¢ with initial terms

q=t+ 43 + 34¢° + 3607 + - - -
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2.2. ANALYTIC REFORMULATION OF FUNCTIONAL EQUATIONS

Using the results in the previous section, we can substitute z = X (z) and y = Y (2) into (3),

and () for z in the regions Q_1, Qg and Qy, respectively, yielding (14), and in the
following proposition:

Proposition 2.7. The functions

Ly(z) :=Hi (X (2);t) + Y(Z)HQ(X(zr);t)7 for z € QoUQ_q, (10)
Ly(z) :=V1(Y(2);t) + X (2)Va(Y (2); 1), for z € Qo U Qy, (11)
Yzz ) for z € Q_1UQ_g, (12)
B(z) ::B(th);t) , for z € Q1 U Q. (13)
are well defined and satisfy the equations
0=A(z)+ Lu(z) for z € Q_4, (14)
0=—-X)PY(2)!+F(t)—Lv(z) — Lu(z) for z € Qo, (15)
0= B(z)+ Lv(2) forz e (16)
B(z)=B(rr—y—2)=B(z+n) (17)
Az) = A(—rmT+v—2) = Az + ) . (18)
Proof. In the specified domain of (10), |X(z)| < 1, so the series Hy(X(2);t) and Ha(X(2);¢)

converge, which implies that Lg(z) is well defined. Similarly the series in , and
converge, as the first parameter of each generating function has modulus at most 1.
Now, (14), and follow from substituting z = X (z) and y = Y (z) into (3)), (4) and
, respectively, as we always have K(X(z),Y (z)) = 0, and in each case the series Q; converges.
Finally, for z € Q1 U Qs we have 77 — v — z € Q1 U Qy, so B(nT — v — 2) is well defined.
Then follows from X(z) = X(n7 — v — 2z). Similarly, for z € Q_; U Q_, the function
A(—7nT + v — z) is well defined, and so follows from Y (z) = Y (—n7 + v — 2). n

While these equations are a priori defined on different sets, by meromorphic extension we will
be able to compare them directly, as we will see from the following theorem:

Theorem 2.8. The functions A(z) and B(z) extend to meromorphic functions on C which,
along with the constant F = F(t), are uniquely defined by the equations

X(2)PY (2)? = A(z) + F + B(z), (19)
B(z) = B(nrt — v — 2), (20)

A(z) = A(—nT+7v — 2), (21)

B(z) = B(z +7), (22)

Az) = A(= + ), (23)

along with the conditions
(i) A(2) has no poles in Qo UQ_1 UQ_o,
(ii) the poles of Y (z) for z € Q_1 UQ_o are roots of A(z),
(iii) B(z) has no poles in Qo U Qq U Dy,
(iv) the poles of X (2) for z € Q1 U Qy are roots of B(z).

Proof. From (14)), we have A(z) = —Lp/(z) for z € Q_;. But the right hand side is meromorphic
on 21Uy, so we can use it to extend A to a meromorphic function on Q_oUQ_1UQ,. Similarly,
allows us to write A(z) as a function of Ly (z) for z € Q, allowing us to extend the domain
of A to include ;. Finally allows us to write A(z) as a function of B(z) on €y, allowing
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us to extend A(z) to the entire domain Q_o UQ_1 U Qy Uy U Qs. Slmllarly B(z) extends to a
meromorphic function on Q_oUQ_1 UQoUN; UNs as do Ly (z) and Ly (z). Since ( . and
hold in regions with non-empty interior, they must hold on all of 2_4 U Q_1UQuU Ql UQs.
Finally, adding these three equations and multiplying by X (2)Y (z)/t yields (19).
To extend the functions to C, we use and as follows: From Lemma we know
that
7%(7TT*’)’)+RCQ_2UQ_1 and %(7’(7’7’)/)+RC91UQQ.

Hence both of these lines, and the region delimited by these lines, is contained in Q_o UQ_1 U
Qo U UQy. Now, since A(z) satisfies for z € Q_y UQ_1, it extends meromorphically to
the function A(z) := A(—nr+~y—2)for z € —m74+v—Q_2UQ_1 UQyUQ; UQs, which contains
the region between the lines
3 1
—5(7TT—’Y)+R and —§(w7—fy)+R.

Together, these extend the definition of A(z) to the entire region containing 2 U Qs and —n7 +
Y= UQy =y UQQ — 7r7' ) as well as the region between these spaces. Now, for z € 2 U

we can combine (17), (18) and (19), giving
A(z) = X(z)pY(z) — X —y = 2)PY (7 — v — 2)P + A(z — 2(7r7 — 7)).

This recursively allows us to extend A(z) meromorphically to the space between Q3 U Qs +
2k(mr — 7) and Q1 U Qs + 2(k 4+ 1)(7n7 — 7) for any integer k. Hence A(z) is a meromorphic
function on the union C of these spaces. The relations between A(z), Ly (z), Lv(z) and B(z)
then allow these other three functions to extend meromorphically to C.

We will now show that conditions [(i)H(iv)] hold. The series defining B(z) for z € 1 U s
converges, so B(z) has no poles in this region. Moreover, since the series has 1/|X(z)| as a
factor, it has roots at the poles of X(z) in Q; U Qs. In Qp, we have

B(z) = —Ly(z) = =-Vi(Y(2);t) — X(2)Va(Y (2);¢).
Since | X (2)],|Y(2)| < 1 in this region, the series converge and there are still no poles. This
proves the two conditions and Similarly, the conditions [(1)] and [(ii)] hold.
Finally we need to show that these conditions uniquely define the functions B(z), A(z) and
the constant F. Suppose that B(z), A(z) and F is an arbitrary triple satisfying the same

conditions. Then it suffices to show that A(z) = A(z) and B(z) = B(z). Then implies that

the difference R
A(z) == A(z) = A(2) = B(2) = B(z) + F — F,
satisfies A(z) = A(nT — v — 2) = A(—77 + v — z) = A(z + 7). Moreover, the four conditions on
A(z) and B(z) imply, respectively, that
(i) A(z) has no poles in U Q; U Qy,

(i) the poles of X (z) for z € ©; U Qy are roots of A(z)+F — F),

(iii) A(z) has no poles in Qo UQ_1 UQ_y,

(iv) the poles of Y (z) for z € Q_1 UQ_5 are roots of A(z).
together with A(z) = A(nr — v — 2) = A(—7nT + 7 — 2), these imply that A(z) is an elliptic
function with no poles, so it is constant. Moreover, the fourth condition implies that A(z) does
have roots, so A(z) is the 0 function. The second condition then implies that F = F'. Together
with the definition of A we have A(z) = A(z) and B(z) = B(z). n

At first glance it may seem that follows from substituting (x,y) = (X(2),Y (z)) directly
into , however this ignores the questions of whether the series involved converge and the fact
that A(z) and B(z) are defined on non-intersecting domains. So in some sense the intermediate
steps are just used to understand which domains should be used to define A(z) and B(z).

Note that combining , , yields

B(2nT — 2y 4 z) — B(z) = J(2), (24)
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where J(z) is an elliptic function with periods 7w and «7 given by

J(2) = (X(z = 29) = X()) Y (2)". (25)

3. INTEGRAL EXPRESSIONS FOR WALKS IN THE THREE-QUADRANT CONE

In Section [2) we reduced the problem to finding the unique meromorphic functions A, B :
C — CU {oo} and constant F' characterised by Theorem (for each t), as these determine
A(i,t) and B(1,1) using and (12), respectively, after which C(x,y;t) is determined by ().

An equation analogous to was found by Raschel for walks in the quarter plane [29], the
only difference being that the transformations z — 77 — v — z and z — —77 4+ 7 — z here are
z — v—z and z — —y — z in the quarter plane. Raschel used this equation to derive an integral-
expression solution determining Q(z,y;t) (in the case where the starting point (p,q) = (1,1)),
and the equation has since been used to determine precisely when Q(z,y;t) is differentially
algebraic [2], 13| 22] and to determine when it is algebraic or D-finite with respect to x or y
21, 23].

Due to this striking similarity we can use these methods to prove the same results for C(x, y; t).
In this Section we will derive an explicit integral expression for A(z) and B(z) (see Theorem
. In Section 4} we will discuss the nature of the generating function C(z,y;t) in particular
showing that it is algebraic, D-finite or D-algebraic with respect to  (or y) in the same cases as

Q(z,y;t).
3.1. ANOTHER ELLIPTIC FUNCTION

In order to solve the functional equations in Theorem we will introduce an explicit elliptic
function W(z) with periods 7 and 277 — 2, as this will be related to B(z) due to (24). We will
define W (z) using the Jacobi theta function 9(z, 7) defined in (8).

Definition 3.1. We define the function W(z) by
Iz—e 21—V (z — T+ +6,27 — 27”)

™

19(2:—(5,27’—2l)19(2—ﬂ7+7+6a27_2%)

T

W(z) == w,

; (26)

where w, is given by

90,27 — Z)9(26 — 77 + 7,27 — Z2)9(0 — a, 7)I( + v + o, T)

V(S —e,21 — 2)I(§ — T + v +&,27 — 2)(0,7)9(20 + v, 7)

unless 26 + v € wT + wZ, in which case the numerator and denominator are both 0 so we define
V(0,27 — 277)219(5 —o,7)I0+v+a,T)

(6 —e,21 — 2)I(5 — 7T+ +¢,27 — 2)¥(0,7)2

We = T

We = _eurrxc

In the following proposition we show a number of properties of W (z) which will be useful in
relating it to A(z), B(z) and F:

Proposition 3.2. The function W (z) satisfies the following properties
) WeE)=Wrr—vy—2)=W(-n1+v—2)=W(z+m).

)

) W(z) and X (z) have exactly the same poles in Q3 U Qs.
(iv) W(z) — X (2) has no poles in Oy U Q.

)

Proof. Property (i) follows immediately from the quasi-periodicity conditions satisfied by ¢ (see
([©)). As a consequence of (i), the function W (z) is elliptic with periods 7 and 277 —2. Moreover
W (z) has two roots inside each fundamental domain, one coming from each ¢ in the numerator
of (26). As a consequence, W (z) takes each value in C U oo exactly twice on each fundamental
domain. We will now prove (v) as this will be useful for proving (ii)-(iv).
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%/\

T —y—

— 77— y-b 0 —

® 1

F1GURE 5. The space F is shaded. This is a fundamental domain of the function

Let S denote the strip S = {z € C: 0 < R(z) < n}. We claim that the set F defined by
j:ZQ_QUQ_lUQ()UQ1UQQU(7TT—’)/—Q())
F=FnS

is a fundamental domain of W, and the sets involved in the union defining F are disjoint (see
Figure . Indeed the upper border ¢; of )y is the lower border of Q1 U Qsy, so 77 — v — ¢; is
the upper border of {25 and the lower border of 77 — vy — . Hence the sets Q_o, Q_1, Qq, Q1,
Q9 and 7T — v — p are disjoint and their union F is a connected strip delimited by the lower
border of 2_5 and the upper border of 77 — v — Q4. Now let /5 be the lower border of ©_s.
Then the upper border of €2_1, which is also the lower border of Qg is —7m7+ v — {5, so the upper
border of 77 — v — Qg is 277 — 2y + £5. Hence the lower and upper borders of F are £y and
27T — 27 + f5. Moreover, only the lower border is contained in F. This implies that

C= U F+ (2r7 — 29)n
neL

= U F+ (277 — 29)n + m,

n,mezZ

where these unions are in fact disjoint unions. So F is a fundamental domain for W(z), as
claimed. Hence, counting with multiplicity, W (z) takes each value in C U oo twice on F. Now,
since W(z) = W(nT—~—2z), each value is taken either 0 or 2 times for z € (£2; U Q2)NS and each
value taken by W (z) for z € QNS is taken the same number of times in 77 —~v—Q¢NS. Similarly,
since W(z) = W(—n7 + v — z), each value is taken either 0 or 2 times in (2_5UQ_1)NS. This
implies that each value in C is either taken twice in (Q2_2 UQ_1) NS, once in 29 NS or twice in
(1 UQ2) NS, which proves (v).
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To prove (ii), it suffices to prove that W (z)~! and Y (z) have the same poles in (Q2_» U Q_1)NS.
Indeed, they share the poles 6 and —77 4 —§ in this region, and since we know that this region
is a subset of a fundamental domain of Y (z) and of W(z), neither of these functions can have
any other poles in this region.

The proof of (iii) is similar to the proof of (ii): in this case X (z) and W (z) share the poles ¢
and 77 — 7 — € in the region (Q; UQ) N S.

Finally to prove (iv) it suffices to observe that the poles at € and 77 — v — € cancel in the
difference X (z) — W(z). This is due to the choice of w.. =

3.2. INTEGRAL EXPRESSION FOR GENERAL SOLUTION

We now give integral expressions analogous to those of Raschel [29] which determine A(z),
B(z) and F exactly:

Theorem 3.3. Let 20 € Qo and let £ be a path from 2z to zo + m contained in the closure Qg of
Qg. Then A(z), B(z) and F are given by the integrals

)’ W) Z or u
27T2/X Y(e W(z) — W(u)d ) f € Q1 UQy, (27)
¥ Wiw) Wi(z) 2 or u
T 2mi / XY (z W(z) W(2) —W(u)d ) f €N 1UQ (28)
_ Ay (e YV (2)

Proof. We will start by showing that the integrands in the definitions above are all holomorphic
in Qo, that is, they contain no poles in this region. A consequence is that the integrals do not
depend on the contour £ taken from zg to zg + 7.

Since | X (2)[,|Y (2)] < 1 in this region, X (z) and Y'(z) have no poles in this region. Moreover,
W (z) has no roots or poles in this region, so the only way that a pole could occur in one of
the integrands is if W(z) = W (u) for some u € Q_oUQ_; Uy UQs and z € Qp, but this is
impossible by Proposition (v). this proves that the integrands are all holomorphic in Q.

We will now extend the definitions of B and A to definitions that hold in €g. Let £q be the
contour which goes in the negative imaginary direction from zg until reaching a point ¢; on the
boundary of g, then travels along the boundary of Qy until reaching ¢; + 7 then finally travels
in the positive imaginary direction until reaching zo + 7 (see Figure @ Then B can be defined
by taking the integral along £;. In fact the first and last sections of the integral cancel with
each other, so this can be defined by taking the integral only using the section Ly of £, lying
between ¢; and ¢; + w. With this definition it is clear that B(u) extends analytically to €. In
particular, this proves that B(z) satisfies condition (iii) of Theorem Similarly can be
defined using the contour Lo which travels in the positive imaginary direction until reaching a
point ¢o on the boundary of €y, then travels along this boundary to cs + 7 before travelling in
the negative imaginary direction to m. In particular, this proves that A(z) satisfies condition (i)
of Theorem 2.8

We will now show that (T9)-(23) hold. In fact, (20)-(23) follow immediately from

W(u)=Wu+n)=W(rr—v—u)=W(y—a1 —u).
To show that holds, first note that, from the definitions we have
1 W'(z)
- X pY q
27 S, (@)Y (z) W(z) — W(u)

So, defining L3 as the contour formed by £; followed by Lo reversed, then we have, for u inside
this region (and hence inside ),

F+ A(u) = — dz.

F+ A(u) + B(u) = — X(2)PY (2)?
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FIGURE 6. The contours £, £ and L5 from zy to zg + .

The only pole of the integrand in the interior of this region occurs at z = u, and the residue at
this point is X (u)?Y (u)?, so follows from the residue theorem.

We will now show that conditions (ii) and (iv) of theorem hold. First, we note that by
the definition of W (z), the poles of X (z) in Q1 UQy are exactly the poles of W(z) in this region,
while the poles of Y(2) in Q_; UQ_5 are exactly the roots of W(z) in this region. So, condition
(iv) follows from the fact that the integrand in is 0 when W (u) = oo, while condition (ii)
follows from the fact that the integrand in is 0 when W(u) = 0.

We have now shown that F, A(u) and B(u) as defined in (29), and satisfy all of
the conditions of Theorem This completes the proof that these are indeed the functions F,
A(u) and B(u) defined in the previous section. -

4. NATURE OF SERIES IN THE THREE-QUADRANT CONE

In the Section 2] we reduced the problem to finding the unique meromorphic functions A, B :
C — CU{cc} and constant F characterised by Theorem (for each t). As we discussed, an
equation analogous to was found by Raschel for walks in the quarter plane [29], and this
equation has since been used to determine precisely when Q(x,y;t) is differentially algebraic
[2, 13, 22] and to determine in many cases whether it is algebraic or D-finite with respect to x
or y [211, 23].

Due to the similarity between our functional equation and the equation widely used in
the quarter plane, we can apply methods that have been used on the quarter plane functional
equation to our functional equation to determine the nature of C(x,y;t). In particular, in this
section we will show C(z,y;t) is algebraic, D-finite or D-algebraic with respect to x (or y) in
the same cases as Q(z,y;t). We note that Fayolle and Raschel also showed that for unweighted
models, Q(z,y;t) is D-finite with respect to ¢ in the cases where it is D-finite with respect to x
[21], however these results relied on the precise ratios % that could occur in these cases, so they
do not apply so readily to our equation. Nonetheless, we expect that the same result holds for
Clx,y;t).

There are two properties of the step-set which determine the complexity of the generating
function Q(z,y;t). The first is the property that the walk model has a finite group - in our context
this is equivalent to the ratio - being a rational number independent of ¢ (see Appendix |C].
The second is the property that the model decouples, that is under that under the assumption
that K(z,y) = 0, we can write 2Py? = Ry(z) + Rz(y) for some rational functions R; and Rs.
Equivalently these are the cases where one can write X (2)PY (2)? = R1(X(2)) + R2(Y (2)) for
some rational functions R; and Rs. The nature of the series C(z,y;t) as determined by these
properties is shown in able 2l We make this more precise in the following Theorems which will
be proved in this section.

In the following theorems we reference the functions A, B and C, that is, the functions defined
by the series at values of ¢, x,y where they converge absolutely, as described in Lemma
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Finite group Infinite group
Decoupling Algebraic D-algebraic, not D-finite
Non-decoupling | D-finite, not algebraic not D-algebraic

TABLE 2. Complexity of Q(x,y;t) and C(x,y;t) as functions of x as proven
more precisely by Theorems FIEHE

Importantly, for ¢ € (0, ﬁ) all of these series converge absolutely to functions of z and y

defined for x,y in an open, non-empty subset of C, so it makes sense to discuss the nature of
these functions.

Theorem 4.1. For fized t € (0, ﬁ

(i) The function C(x,y;t) is D-finite in x,
(ii) The function C(x y;t) is D-finite in y,
(iii) The function B(L;t) is D-finite in z,
) (3
)

) the following are equivalent

\HH\

(iv) The function A(=;t) is D-finite in y,
(v) B(z) satisfies a lmear differential equation whose coefficients are elliptic functions with
periods ™ and 7T,
(vi) A(z) satisfies a linear differential equation whose coefficients are elliptic functions with
periods ™ and T,
(vii) the ratio = € Q,
(viii) the orbit of each point (x,y) € E; under the group of the walk is finite.

We give the proof of some of these equivalences immediately, namely those which are either
simple to prove, or follow easily from our general results in Appendix

Proof of [1)] «<=[(ii)] <= [(ii)] <= [(iv)] «=[(v)] «<=[(vi)] The equivalences @ <« | (iii)|
and <= [(iv)| follow from (). The equivalences [(iii)] <= [(v]] and [(iv)] <= [(vi)] follow
from Proposition [B.8 due to the definitions and (13) of A(z) and B(z). Finally[(v) <
due to as X (2)PY(2)? has 77 as a period.

The proof of this theorem will be completed as follows: we define the group of the walk in

Appendix |C] and the equivalence of and |(viii)| is shown in Proposition We show that
these equivalent conditions imply the conditions |(i){(vi)| in Theorem [4.11] while we show the

converse in Theorem [£.13]

Theorem 4.2. Assume that t € (0, ﬁ) The following are equivalent

(i) The function C(z,y;t) is algebraic in x,

(ii) The function C(z,y;t) is algebraic in y,

iii) The function B(L;t) is algebraic in z,

The function A(%; t) is algebraic in y,

B(z) has mwT as a period for some positive integer m,

A(z) has mnT as a period for some positive integer m,

The equivalent conditions of Theorem hold and there are rational functions Ry and

Ry satisfying Py? = R1(z) + Ra(y) for all (z,y) € E;,

(viii) The equivalent conditions of Theorem hold and there are rational functions Ry and
Ry satisfying X (2)PY (2)? = R1(X (2)) + R2(Y (%)) for all z € C,

(ix) The equivalent conditions of Theorem hold and the orbit sum of the model is O (for

(z,y) € Ey).

Proof of [()] «<=[(ii)] +=[(ii)] <= [(v)| <=[(v)] <=[(vi) and|(vii)] <=[(viii)] The equlv—
alence |(vii)| <=>| (viii)|is due to the parameterisation 1.} of E;. The equivalences [.] < | (iii)
and <= [ (iv)| follow from (1). The equivalences <= [(v)] and [(iv)] <= [ (vi)] follow
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from Proposition due to the definitions and . Finally <:> due to as

X(2)PY ()9 has mnT as a period. =

To complete the proof of this Theorem, we define the orbit sum and show that and [(ix)
are equivalent conditions in Proposition We then show that equivalent conditions |(i){(vi)
are equivalent to |(vii)| in Theorem

Theorem 4.3. Fixt € (O, ﬁ) and assume the equivalent conditions of Theorem do not

hold. The following are equivalent

(i) The function C(z,y;t) is D-algebraic in x,

ii) The function C(x y;t) is D-algebraic in y,

The function B(%;t) is D-algebraic in x,

The function A(; t) is D-algebraic in y,

B(z) is D-algebraic in z,

A(z) is D-algebraic in z,

There are rational functions Ry and Ra satisfying xPy? = Ry (x) + Ra(y) for all (z,y) €

Et;

(viii) There are rational functions Ry and Ry satisfying X (2)PY (2)? = R1(X(2)) + R2(Y (%))
for all z € C.

[(i)] <= [(i0)] < [(v)] < [(v)] «<=[(v])] and[(vii)] <= [(viii)} The equiv-
(vnl) is due to the parameterisation (7) of F;. The equlvalences )| < (ii)
follow from (T)), the equivalences [(iii)] <= [(v)] and [(iv)] <= [ (vi)] follow
from Proposition [B.10] due to the definitions and ((13). Finally due to as
X (2)PY (2)9 is D-algebraic in z (see again the proof of Proposition [B.10).

We complete the proof of this theorem later in this section, starting with Theorem [£.14]
which shows that the equivalent conditions |[(vii)] <= [ (viil)| imply the equivalent conditions
— | (1)| <=| ()| < |(iv)| <=|(v)| <[ (vi)| then we show the reverse implication in
Theorem

Although the theorems above describe the nature of C(x,y;t) as a function of z and y for
fixed ¢, this implies its nature as a series in R[z, y|[[t]] due to the following Lemma:

Lemma 4.4. Let G(z,y;t) € Rz, 1.y, i][[t]] be a series which converges for |z|,|y| =1 and t €
(0, ﬁ) The series G(z,y;t) is algebraic (resp. D-finite, D-algebraic) in x if and only if the
function G(z,y;t) of x and y is algebraic (resp. D-finite, D-algebraic) in x for allt € (0, ﬁ)

Proof. Let Aqi(x,y,t),Aa(z,y,t), A3(z,y,t),... be an ordering of the set {27G(z,y;t)*}; ken,-
Then the function G(z,y;t) is algebraic in z if and only if for each ¢, there is some integer n > 0
and functions Sy (y;t) for 0 < k <n and S(y,t) of y satisfying

n
> Skly;)Ak(z,,t) = S(y, 1),
k=0
with S, (y;t) # 0. A priori, n depends on ¢, however, as there are uncountably many possible
values of ¢ and only countably many for n, we can chose some n = N for which an equation of
the form above holds for uncountably many values of t. For a given value of ¢, this happens if

and only if for every fixed zo, ..., x,4+1, the matrix
1 AO(anyat) Al(xO’yat) An(x0>y7 )
1 Ao(z1,y,1) Ai(z1,y,t) o An(z1,9,1)
A

1 AO(xZay7t) Al(x27y7t) n(x%ya )

1 Ao(@ns1,y,t) A(@pg1,y.t) - Ap(Tpgr,y,t)
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has determinant 0. Since each G(xy,y;t) can be considered to be a series in C[y][[t]], this
determinant, which we denote by T'(y;t) is in general a series in Cly][[t]]. Moreover, for any
value of t and y for which all of the series Aj(xk,y,t) converge absolutely, the series T'(y;t) will
also converge absolutely to the determinant of these values.

Now, Assume that the function G(z,y;t) is algebraic in z for all ¢. For all sufficiently small ¢,
and all y satisfying |y| = 1, the series A;(z,y,t) converge absolutely, so there are uncountably
many values ¢ such that the series T'(y;t) converges to 0 when |y| = 1. But this is only possible
if T(y;t) = 0 as a series. Now, since this determinant is 0, an equation of the form

> Se(yst)Ak(x,y,t) = S(y, 1),
k=0
must hold with each S (y;t) and S(y,t) a series in Cly][[t]], so the series G(x,y;t) is algebraic
in z.
For the converse, assume that the series G(z, y;t) is algebraic in 2. Then for some n, and any
2oy ..., Tnt1 € C, the determinant T'(y;t) = 0. Hence for each fixed ¢ the determinant is still 0,
so the function G(z,y;t) is algebraic.

For the property D-finite, the same proof works after changing the definition of Ay (z,y,t), Aa(z,y, 1), . ..

. ; k .
to be the functions z’ (a%) G(z,y;t) in some order.

Similarly, for the property D-algebraic, we just have to define Ag(z,y,t) so that the sequence
Ao(z,y,t), A1 (z,y,t),. .. contains each product z7 [T%_, (%)ki F(z,y;t) withp > 0and 0 < k; <
-+ < k, exactly once. -

We now use this lemma to rewrite the theorems above to characterise the complexity of the
series C(x,y;t) € Rlz, yl[[t]]:
Theorem 4.5. The following are equivalent
(i) The series C(x,y;t) € Rlz, y][[t] is D-finite in x,
(ii) The series C(z,y;t) € Rz, y][[t]] is D-finite in y,
(iii) The equivalent conditions of Theorem hold for all t € (0, 1 ),
(iv) The group of the walk is finite.

Theorem 4.6. The following are equivalent
(i) The series C(z,y;t) € Rz, y][[t] is algebraic in x,
(ii) The series C(z,y;t) € Rz, y][[t]] is algebraic in y,

(iii) The equivalent conditions of Theorem hold for all t € (0, ﬁ)

Theorem 4.7. Assume that the group of the walk is infinite. The following are equivalent
(i) The series C(x,y;t) € Rlz,y][[t]] is D-algebraic in z,
(ii) The series C(x,y;t) € Rlz, y][[t] is D-algebraic in y,
(ili) The equivalent conditions of Theorem hold for all t € (0 1 )

' P(1,1)

Proof of Theorems[{.3{].7} For each of these theorems, the equivalences < | (iii)| and
(ii)] <= | (iii)| are both direct results of Lemma with F(z,y;t) = C(z,y;t). Finally, the
equivalence [(iii)] <=[(iv)|in Theorem [£.5|is due to Proposition -

4.1. FINITE GROUP CASES

In this section, we consider the cases in which -L € Q. We will show that this occurs for
fixed t if and only if C(z,y;t) is D-finite in x. As explained in Appendix |C| this occurs for all
t if and only if the group of the walk is finite. This is an algebraic property of the single-step
generating function P(x,y), which was shown to be equivalent to D-finiteness for walks in the
quarter plane. Hence in this section we are showing that if the generating function Q(z,y;t) is
D-finite in = then the generating function C(z,y;t) is also D-finite in z. In the following section
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we will show that the converse of this statement also holds. Note that by symmetry between x
and y, the analogous statements with respect to y also hold. We also show that C(z, y;t) has the
more restricted property that it is algebraic in z precisely when X (2)PY (2)? decouples, which
we make precise below. Again this coincides with the nature of Q(z,y;t).

Definition 4.8. For fized t, we say that an elliptic function U(z), with periods m and w7 de-
couples if there is a pair of rational functions Ry and Ry satisfying

U(z) = B1(X(2)) + Ra(Y (2)).
We say that the model decouples if X (z)PY (2)? decouples.

It is often alternatively stated that the algebraic cases are those in which the orbit sum is 0,
which we make precise in the following definition.

Definition 4.9. For fized t satisfying 22 = 2 for integers M, N > 0, the orbit sum E(z) of

T N’
an elliptic function U(z), with periods © and 77, is given by
N-1
E(z):= > U((2k+ 1)y —2) = U(2ky + 2).
k=0

We say that the orbit sum of the model is the orbit sum of X (2)PY (2)?.

In the following Proposition we show that the orbit sum of a function U(z) is 0 if and only if
U(z) decouples. This was proven in an algebraic setting in [2] Theorem 4.11], where decoupling
functions were introduced, and essentially the same proof works here:

Proposition 4.10. Let U(z) be an elliptic function with periods = and w7, and assume that
727—: = %, with M, N € Z, N > 0. The function U(z) decouples if and only if the orbit sum E(z)
of U(z) is equal to 0.

Proof. In the case that U(z) decouples, let U(z) = R1(X (2)) + R2(Y (2)), where Ry and Ry are
rational functions. Then we can write the orbit sum as

N-1
E(z) = ) Ru(X((2k+ 1)y = 2)) + Rao(Y((2k + 1)y — 2)) — Ra(X (2ky + 2)) — Rao(Y (2ky + 2))
k=0
N-1
= Ri(X(=2(k + 1)y +2)) + Ra(Y (=2kvy + 2)) — R (X (2ky + 2)) — Ro(Y (2k7y + 2)).
k=0

Now, the terms Ry (X (2kvy+2)) in the sum are a permutation of the terms Ry (X (—2(k+1)v+2)),
because

Ry(X(2ky + 2)) = Ra(X(=2(j + 1)v + 2)),
when j = N —k—1. Hence these terms cancel out in the sum. The same holds for the remaining
terms in the sum as Ro(Y (2ky+2)) = Ra(Y(—2jv+2)) for j = N —k or j = k = 0, so we have
E(z) =0, as required.
We will now prove the converse, that is that if E(z) = 0 then U(z) decouples. Define

N

Ar(z) = 2’;]; L U@y + 2) + U2k = 1)y - 2))
v,

Ag(z) ==Y — 5 U@ky+2) + U((2k + 1)y - 2)).
k=0

The summand U (2ky + z) + U((2k — 1)y — z) is fixed under the transformation z — —v — z for
any k, so we have A;(—v—z) = A1(z). Similarly we have As(y—z) = Aa(z). So by Proposition
there are rational functions R; and Ry satisfying A;(z) = Ry (X (2)) and As(2) = Ra(Y (2)),
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so it suffices to show that if E(z) =0, then U(z) = A1(z) + A2(z). Indeed this follows from the
equation

A1(2) + Aa(2) = Uz +2N7) + 5B (z),

which follows directly from the definitions of A;, A5 and F. n

Theorem 4.11. If % = % € Q, then C(x,y) is D-finite in x. Moreover, under this assumption

C(x,y) is algebraic in x if and only if the orbit sum
N-1
E(z):= ) X((2j+1)v—2)PY((2) + 1)y — 2)* = X(2jv + 2)’Y (2jy + 2)*
§=0
of X(2)PY (2)7 is equal to 0.

Proof. Assume that 2y = 77 for some positive M, N € Z. Now consider (24):

B (QNJ;MM + z) ~B(2) = J(=).

Taking a telescoping sum of N copies of this equation yields
N-1
B((2N — M)ar +2) — B(2) = »_ J(2jnr — 2j7 + 2),
3=0
which we claim is equal to the orbit sum E(z). Indeed, since 7 is a period of J(z), we have
J(2jrT — 2jv+ 2) = J(—2j7+ 2) = J(2(N — j)v + 2), so the sum rearranges to
N—

Ju

J(2j7 + 2),
3=0
which is equal to E(z). Hence
B((2N — M)nt + z) — B(z) = E(2). (30)

We will now consider the cases E(z) = 0 and E(z) # 0 separately. In the case that E(z) = 0,
we have

B((2N — M)7nT + z) = B(z).
Hence we have condition of Theorem so the equivalent conditions are satisfied, including

that C(z,y) is algebraic in x.
Finally we consider the case F(z) # 0. Then from , we have

B((2N —M)nr+z2) B(z) B(2N-M)rt+2z2) B(z)

B(eN—M)rr+2)  E(z) E(z) TEBE " (31)
so the function - |
FO) = 50 = prap B EG) - BEE:) (52)

satisfies
F((2N — M)nT 4+ z) — F(z) = 0.

Hence, B(z) = B (%) is weakly X-D-finite (see Definition , so by Proposition the
function B(2) is D-finite in . Therefore the generating function C(z,y) is also D-finite in z.

Finally we show that in this F(z) # 0 case, C(x, y) is not algebraic in z. Suppose the contrary,
then condition [(v)| of Theorem [£.3|holds, that is m is a period of B(z) for some positive integer
m. But this is impossible as by (31)),

B(m(2N — M)r1 +2) — B(2) _ B(m(2N — M)rT+2) B(z)

E(2) T E(mEN - Mrr+2) E(z) 7 0.
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Remark: Note that this Theorem holds for any fixed ¢ for which = € Q, which can occur
either in the finite group case, where this occurs for all ¢, or in infinite group cases for specific
values of t. We require that the above statement hold for all ¢ to say that the function C(x, y;t)
is D-finite in 2. See Appendix [C]for a discussion of the group of the walk.

4.2. INFINITE GROUP CASES

In this section we consider the case = ¢ Q. the first part of this section is dedicated to
showing that C(x,y;t) is not D-finite in = in these cases, and we will subsequently analyse the
D-algebraicity of C(x, y;t). We start with a lemma which essentially proves B(%; t) is not rational
in z, as this turns out to be a case which needs to be treated separately. Surprisingly this seems
to be the most difficult result of this section, in the sense that it is the only result for which our
proof does not apply systematically to walks in an M-quadrant cone for any M. In particular,
for walks in the quadrant we have only able to prove the result when ¢ is sufficiently small (See

Lemma [6.16)).

Lemma 4.12. Assume that = ¢ Q. Then B(z) is not a rational function of X (z).

Proof. Assume that B(z) is a rational function of X (z). Then for z € Q_5, we have z +77 € g,

so, by (L3)
1

Now since 77 is a period of both X and B, this implies that

B(z)=B (X}Z)t>

an equation that would normally only hold for z € Qo U Q1 UQ,. By (12), we have

A(z) = A (Y;Z)t)

We will show that this is a contradiction as the sum of these cannot be sufficiently large in
absolute value to satisfy (19).

Recall that by our choice t € (0, ﬁ), the series C(z,y;t), B(%; t) and A(%;t) all converge
when |z|, |y| = 1. In particular, we can substitute x = y = 1 into , which yields

(1 —-tP(1,1))C(1,1;t) =1 — F(t) — A(1;t) — B(1;¢).
Since the left hand side of this equation in positive, we must have
F(t) + A(1;t) + B(1;1) < 1.
It follows that for z,y satisfying |z|, |y| > 1 we have

'F(t) +A (1;15) +B <1;t>‘ <1.
y T
In particular, for z € _5, we have | X (2)|,|Y(2)| > 1, so
1 1

F+B A =|F{t)+B | ——;t A it 1.

86+ A = 7+ (5t) +4 (750) <
However this is a contradiction as, by (19)), we have

[F + B(2) + A(z)| = [ X ()Y (2)!| = [ X (2)"[Y (2)[*,

and | X (2)],|Y(2)| > 1 because z € Q_s. -

Now we are ready to prove that B(L;¢) is not D-finite in « in the case that - ¢ Q. The idea
of the proof is that if B(%; t) is D-finite in z, then the poles of B(z) must be well-behaved, as
described in Lemma whereas if - ¢ QQ, we can prove that its poles are not well behaved in
this way.
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Theorem 4.13. Assume that 1 ¢ Q. Then B(L;t) is not D-finite in .

Proof. Suppose the contrary. Then B(%;t) is D-finite in z. Moreover, recall that B(z) =
B(ﬁ;t) for z € Q2 Uy, so by Lemma the poles z. of B(z) fall into only finitely many

classes z. + 7Z + w7Z. Hence B(wT + z) — B(z) has the same property.
Now, from (24), we have

B@2rr—2y+4+2)—B(2) =J(2) =J(z +77) = B(37rT — 2y + 2) — B(n7 + 2),
and rearranging yields
B3nT —2y+z) — B(2nT — 2y + 2) = B(n7 + z) — B(2).

This implies that B(n7 4 z) — B(z) is an elliptic function with periods 7 and 277 — 2. If this
function has a pole zg, then for every k € Z, the value Z, = zo + k(277 — 2v) is a pole. This is
a contradiction as these points all define different classes zy +n7Z + 7Z, since = € R\ Q. The
only remaining case to consider is when B(n7 + z) — B(z) has no poles, in which case it must
be constant:
B(rm 4+ z) — B(z) =c.
In fact combining this with (20), we see that ¢ = 0, as
c=B(nr+2)—B(z)=B(—y—2)—B(nt —y—2) = —c

Hence by Proposition the function B(z) must be a rational function of X(z) since we have
B(z+77) = B(z) and B(z) = B(—nT +v —z) = B(y — z). But this contradicts Lemma n

4.2.1. Decoupling cases. Recall from Definition [£.8|that we say that X (2)Y (2)? is decoupling
if there is a pair of rational functions R; and R satisfying

X(2)PY ()" = R (X (2)) + Ra(Y (2))-

As we will show in the following theorem, this implies that C(x,y;t) is D-algebraic in z and y.
The analogous result was proven in the quarter plane by Bernardi, Bousquet-Mélou and Raschel
[2], and more precisely they proved that C(x,y;t) is D-algebraic in ¢ under the same condition.
This results from the fact that all of the parameters that depend on ¢ and all of the functions
involved in the solution depend on ¢ in a D-algebraic way. We believe that the same argument
applies here, although a rigorous proof of this is outside the scope of this article.

Theorem 4.14. Assume that
X(2)PY ()" = Ri(X(2)) + Ra(Y (2))
holds for some rational functions Ry and Ry. Then C(x,y;t) is D-algebraic in x and y.
Proof. Under the assumption, can be written as
T(z) := R1(X(2)) — B(2) = A(2) + C(t) — Ra(Y(2)), (33)

which implies that T'(z) satisfies T'(z) = T(n7 —vy—2) = T(—n7+~v—2) = T(2+m). Combining
these shows that 7'(z) is an elliptic function with periods = and 277 — 2v. This means T”(z) is
an elliptic function with the same periods so it is related to T'(z) by some non-trivial algebraic
equation, implying that T'(z) is a D-algebraic function of z. Indeed, any elliptic functions are
D-algebraic for this reason. Now, since X (z) is also D-algebraic, it follows from that B(z)
is also D-algebraic in z. This is precisely condition of Theorem [4.3] which we showed to be
equivalent to conditions and that C(x,y;t) is D-algebraic in x and y. =

Remark: Using it can be proven that T'(z) is a rational function of W (z) (see Definition

using the same idea as Proposition
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4.2.2. Non-decoupling cases. In this section we show that if there is no decoupling function,
then the generating function is not D-algebraic in x. The proof works along the same lines
as [13] 22] for the quarter plane case, which relies on Galois theory of g-difference equations.
Rather than essentially rewriting these entire proofs, in Appendix |§| we use results from [I3] to
deduce Corollary which avoids Galois theory language in its statement, and can be readily
applied to show the main result of this section. For the following theorem, recall that for fixed

te (O7 ﬁ), the series C(z, y; t) converges for |z|, |y| < 1, so we can consider it to be a function
of z and y.

Theorem 4.15. Fizt € (O, ﬁ) Assume that there are no rational functions Ry, Ry € C(x)
satisfying

X(2)"Y (2)7 = R1(X(2)) + Ra(Y (2)).
Then the function C(z,y;t) is not D-algebraic in x or y.

Proof. Tt suffices to prove that B(z) is not D-algebraic, as we showed below the statement of
Theorem that this is equivalent to C(z, y;t) being D-algebraic in x or y. Assume for the sake
of contradiction that condition that B(z) is D-algebraic in z. We will show that this implies
that there are rational functions R; and R, satisfying the equation in the theorem.

By Theorem the functions h(z) := X (2)PY (2)?, fi(z) := A(z) + F and f2(z) := B(z)
satisfy the conditions of Corollary with 74 = —77 + v and v = 77 — 7. Hence, there are
meromorphic functions aj,as : C = CU {oo} satisfying

X (2)PY (2)? = a1(z) + az(z),
a1(z)=a1(z+7)=a1(z+77) = a1 (-7 + v —2) = a1(y — 2),
az(z) = ag(z +7) = ag(z + 77) = as(—vy — 2) = ao(77 — v — 2).

Finally, by Proposition this implies that a1(z) is a rational function of Y (2), while ay(z) is
a rational function of X(z). Hence we can write

X(2)"Y (2)7 = Ri(X(2)) + Ra(Y (2)),
as required. =

4.3. WALKS STARTING ON AN AXIS

We will now discuss a question suggested by Kilian Raschel where the walk starts at some
point (p,0) for p > 0 (or equivalently (0,q)) rather than the traditional starting point (1,1).
Trotignon and Raschel conjectured that with this starting point all finite group models admit
algebraic generating functions [30]. This follows immediately from Theorem as these cases
decouple for any step set (by setting R;(x) = 2P and Ra(y) = 0). Moreover, using Theorem
the same argument proves that for any step set .S, the walks starting at such a point have
a generating function which is differentially algebraic in x. In this section we go further than
these results by finding an explicit, general formula for the counting function of walks starting
at a point (p,0). This formula will use the function W (z) defined in Definition

Theorem 4.16. Forp > 1, let A,, B, and F,, denote the functions A, B and F arising in the
case that the starting point of the walks is (p,0). Then for each p, there is a degree p polynomial
H,, satisfying

Ap(z) = Hp(W (2)) — Hp(0), (34)
Fy(t) = Hp(0), (35)
By(2) = X(2)" — Hp(W(2)). (36)

Moreover, H, is uniquely determined by the fact that the right hand side of has a root at
z = 0. Furthermore, the leading coefficient of Hy is 1.
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Proof. We will start by proving that the polynomial H is uniquely defined by the fact that
the right hand side of has a root at z = §. In the case that § # nt — v — 4, both
X(z) and W (z) have a simple pole at z = §. Taking a series expansion X (2)? — H,(W(z)) =
gp(x —8) P+ gp_1(x —6) P+ .- 4 go + O(x — §), around z = §, for an arbitrary polynomial
H, the polynomial

H,(w) = hpw? + hp_lu)p*1 + -+ hiw+ ho

is uniquely defined by the fact that g, = g,—1 = --- = go = 0, as h,, is determined by the fact that
gp =0, then h,_; is determined by the fact that g,_; = 0 as so on until hy is determined by the
fact that go = 0. Moreover, by these definitions, the expression X (z)? — H,(W(z)) does indeed
have a root at z = 0. We also note that h, = 1 as X(z) — W (z) does not have a pole at z = §, so
setting h, = 1 causes g, = 0. In the remaining case, where 6 = 77—~ — ¢, both X (z) and W (z)
have a double pole at z = § and are fixed under the transformation z —+ 20 —z =an7—v—=z2. In
this case we can write

X(2) = Hy(W(2)) = gp(a = 0) 7 + gpa(w = 8)7F 4+ + go + O((z — 9)*),

then as in the previous case each hj, starting with j = p, is determined by the fact that g; = 0.

Now we have determined the unique polynomial H such that the right hand side of has
a root at z = §. We will now show that the functions A,(z), F}, and Bp(z) thus defined are
the unique functions satisfying the conditions of Theorem For the equations, holds
as it is the sum of (34), and (since ¢ = 0 in this case), and hold because
W(z) and X (z) are also fixed by these transformations while and hold because W (z)
is fixed by these transformations. For (iii) and (iv): poles of B,(z) could only occur at poles of
either X (z) or W(z), and the only poles of these functions in the region g U2y U Qg are § and
—7T + 7 —§. But we know that § is a root of B, and since B,(z) = n7 —~y — z, this means that
wT — — 4 is also a root of B,. So (iii) and (iv) hold as B,(z) has no poles in £y U ; Uy, and
it has roots at the poles of X (z) in this region. Finally (i) holds because W (z) has no poles in
Qo UQ_1 UQ_o, moreover, (ii) holds because the poles of Y (2) in Q_; UQ_5 are roots of W(z),
and when W(z) = 0, we clearly have A,(z) = 0. this completes the proof that the functions B,
and A, determined by this theorem are the unique functions characterised by Theorem =

For p > 1, let Ap(%;t), B,(L;¢) and F,(t) denote the series A(%;t), B(L;¢) and F(t) arising in
the case that the starting point is (p,0). We can convert the formulae for A, and B, above to
formulae for A, B, using series defined by the following lemma:

Lemma 4.17. There are unique series Wp (1;t) € aR[2][[t] and W4 (%;t) € %R[%][[t]] sat-
isfying Wg (ﬁ;t) = W(z) for z € Q1 U Qs and W4 (ﬁ;t) = W(z) for z € Q_1 UQ_».
Moreover, these series are related to Ay and By by W4 (%;t) = A (%;t) and Wpg (%;t) =

xr — Fl(t) — Bl (%,t)

Proof. We define the series W and W 4 by the equations
1 1
(i) -+ (i)
Y Yy
1 1
Wp (;t> =z —Fi(t) - By <;t> ;
T T

and we will prove that these are related to W (z) as described. The reason for defining them in
this way is that it is now clear from the definition that Wp (1;t) € 2R[2][[t]] and W4 (%, t) €

%R[%][[t]] For fixed ¢t and z € Q; U g, define Wy(z) = Wp ( 1 't> and for z € Q_1 UQ_g,

X(z)
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define Wo(2) = W4 (ﬁ, t). Then from the definitions of Wg and W4, we have

Wi(z) = X(2) — Fy — B; (2)
Wy(z) = Aq(2).
Combining this with Theorem expanding the functions of H; using Hq(w) = w + hg yields
Wi(z) = W(z), for z € Q1 U Qy,
Wa(z) = W(z2), for € Q1 UQ_s.

Finally the fact that the series Wg and W4 are unique is clear, as it would be impossible for
two different series applied to X (z) or Y(z) in the same region to have the same result. n

We can now rewrite Theorem [1.16] as the following theorem:

Theorem 4.18. For each p > 1, then there is a degree p polynomial H, (with coefficients

depending on t) satisfying
1 1
() = (s (54)) -0 o

F(t) = Hp(0), (38)

6, (1) <o, (i (1)), o

Moreover, this polynomial is uniquely determined by the fact that the right hand side of s
a series in LR[2][[t]].

Proof. We define H, to be the polynomial from Theorem Substituting y — Y (z) for
z € Q_1UN_5 into yields (34)), so we know that holds for y = Y'(z) where z € Q_1UQ_5.
This region includes poles of Y (z), so holds for 1/y in a neighbourhood of 0, therefore it

must hold as an equation of formal series of % for any fixed t € (0, ﬁ), and hence it holds as

an equation of series of ¢ and %, as required. Similarly, substituting © — X (z) for z € Q; Uy
into yields , so we know that holds.

Finally the fact that the right hand side of lies in LR[2][[¢]] is equivalent to the fact that
the right hand side of has a root at d, so it uniquely defines the polynomial H,,. -

Theorem [I.1§] is a purely combinatorial statement, yet our proof used analytic analysis of
elliptic functions.It would be nice to understand why this Theorem is true from a purely combi-
natorial perspective. Indeed the following corollary is even more striking in its simplicity, given
that we have no purely combinatorial proof.

Corollary 4.19. Fiz a (weighted) step-set S. Amongst the (weighted) walks w from (2,0) to
(=1,0) of length n using steps in S which only touch the set D = {(x,0) : x < 0}U{(0,y) : y < 0}
at their end-point, ezxactly half touch the ray T = {(1,y) : y < 0}.

Proof. The walks from (2, 0) which only touch D at their end-point are exactly the walks counted

by
1 1
BQ (,t) +A2 (,t) + Fg(t),
4 Y

so the walks from (2,0) to (—1,0) are counted by [z7]By (1;¢). For the walks from (2,0) to
(—1,0) which do not touch T, shifting these walks to the left one space yields exactly the walks
from (1,0) to (—2,0), that is the walks counted by [z2]By (;¢). So it suffices to prove that

1B, (;;t) —2l2B, (;;t) .
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FIGURE 7. Two paths from (2,0) to (—1,0) using the same steps in a different
order and only visiting (—1,0) at their end-point. By corollary [4.19] exactly
half of all such paths pass through a blue triangle.

From Theorem and Lemma [4.17] we have

B (i) =22 — H, (ac —F(t) — By (;t)) ; (40)

Where H; is the unique polynomial of degree 2, with coefficients depending on ¢, such that the
right hand side is a series in 2R[2][[¢]]. This is precisely the polynomial

Ha) = (0 F0) + 26~ e (13t

B, (;) = 2zB; (;;t) — [2"] 22B, (i;t) - B (i;t)Q.

Taking the coefficient of [z~!] on both sides of this equation yields the desired result. n

SO becomes

We also give a Second corollary which is perhaps a more explicit version of Theorem

Corollary 4.20. Let l(w;t) € w+Z [ ] [[t]] be the inverse of Wp(L;t) =z — F(t) — B1(%;¢) in
the sense that

(o (L)) = a

= [w=<°)(w; t)p|

Then
w=W1( % it)

w:WA(i;t)

and |(W(2)) = X (2) for z ~ 6.
Proof. Define
Hy(w;t) == w2l (w; t)?.
We will show that The series A,, B, and F,, as defined above along with H,, satisfy the conditions
of Theorem and therefore are the series defined previously. Since l(w;t) € w + Z [ ] [[t]],

1
w
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we have I(w; )P € w? +wP~'Z [ L] [[t]], so Hp(w;t) = [w=]l(w; )P lies in R[[¢]][w] and has degree
pas a polynomial in w. Hence

H,(0;t) € R[[1]] and

( ) ( (i“)”)‘Hp(O%ﬂE;ZB]utn,

Because W 4 ( ) %Z { } [[#]]. So (87) and (38) hold. Moreover, [w<)I(w;t)