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ABSTRACT2

This paper describes a mobile application that builds and updates a 3D model of an indoor3
environment, including walls, floor and openings, by a simple scan performed using a tablet4
equipped with a depth sensor. This algorithm is fully implemented on the device, does not require5
internet connection and runs in real-time, i.e. at 5 frames per second. This is made possible by6
taking advantage of recent AR frameworks, by assuming that the structure of the room is aligned7
on an Euclidean grid and by simply starting the scan in front of a wall. The wall detection is8
achieved in two steps. First, each incoming point cloud is segmented into planar wall candidates.9
Then, these planes are matched to the previously detected planes and labeled as ground, ceiling,10
wall, openings or noise depending on their geometric characteristics. Our evaluations show that11
the algorithm is able to measure a plane-to-plane distance with a mean error under 2 cm, leading12
to an accurate estimation of a room dimensions. By avoiding the generation of an intermediate13
3D model, as a mesh, our algorithm allows a significant performance gain. The 3D model can14
be exported to a CAD software, in order to plan renovation works or to estimate energetic15
performances of the rooms. In the user experiments, a good usability score of 75 is obtained.16

Keywords: Computer vision, mobile devices, planes detection, time consistency17

1 INTRODUCTION

Creating a 3D model of an existing building has found many applications, such as the generation of a18
BIM1 of the building or obtaining geometrical information about the building (dimensions, surfaces, etc...).19
Whereas a 3D model of a new building is created during the conception phase, older buildings have20
frequently to be modeled. This process is often done manually for smaller buildings and is very tedious.21
For large scale buildings, laser scanners are used to generate high resolution 3D point clouds. These laser22
data serve as a basis to identify the structure of the reconstructed building. In addition, the process for23
exporting a BIM model can be partially automated (Macher et al., 2015).24

1 BIM stands for: Building Information Model

1



Arnaud et al.

However performing an automatic generation of a 3D editable model of buildings is a complex task.25
Most of the previous works have focused on recognizing the global structure (grounds, ceiling, walls and26
openings) of the reconstructed building. Moreover, the use of laser scanners and LIDAR is costly and the27
scan is not performed in real time.28

When only a rough global structure of the building is needed, or when the housing is small, it is possible29
to simplify the process.30

With the recent release of depth sensors integrated onto tablets and with the enhancement of their com-31
puting capabilities, it is now possible to use these devices to perform a real-time 3D reconstruction. This32
can be bought at an affordable price by companies or by private individuals who want to renovate their33
housings. The measure of each dimension of the room and the edition in a CAD software, are very time34
expensive tasks, that can be made easier by the simple scan, as proposed in this paper.35

This paper presents an application that allows any user to generate a 3D editable model of an existing36
indoor environment using a tablet or a smartphone, by simply walking inside the building and scanning37
the walls. The resulting model can then be exported in a CAD2 software for modification, for renovation38
or decorating purposes and for estimating the energetic performances. The device has to include a visual39
odometry system, which is the case with modern AR APIs such as Google ARCore3, so that each RGB-D40
data issued from the sensors can be expressed in a same absolute coordinates frame. The proposed algorithm41
uses the computing capabilities of the device to generate a 3D editable model on-the-fly, including the walls42
and openings of the rooms. Thus, it avoids the generation of an intermediate 3D mesh, which is costly in43
terms of memory and computing resources Arnaud et al. (2016). A RGB-D sensor is used, which provides44
a temporal sequence of color and depth data captured at 5 frame per second. First, a planar segmentation45
is performed in each depth image of the sequence and the extracted planes are matched to the previously46
detected ones. Through this temporal analysis, walls are extracted and described in terms of geometry and,47
the global 3D model is updated.48

The proposed algorithm assumes that the walls, the ceiling, and the floor are aligned on a Euclidean49
grid, which is a common assumption when working with building data Coughlan and Yuille (1999). It50
also assumes that the scan starts in front of a wall. These reasonable assumptions lead to considerable51
simplifications of the reconstruction process.52

The previous work Arnaud et al. (2018) was a first attempt of real-time planes detection and matching53
using a mobile device, and was dedicated to the segmentation method. Color, luminance edges and point54
cloud were analyzed together through a bottom-up segmentation process, which combined a region growing55
method with a merging. Although the process was real-time (the data was processed in approximately56
200ms), some experiments have shown that, in some situations, only 40 % of the planar surfaces were57
correctly detected. The present paper details each component of the application, from the extraction of58
3D planes to their export towards a CAD software. Concerning the 3D scanning and modeling, which59
is the most time-consuming task of the application, a top-down hierarchical segmentation is achieved60
directly on the point cloud, without any pre-processing. A first stage is dedicated to the detection of rough61
planar categories, which are then separated into parallel planes. By capturing the most dominant planes, the62
method proves less sensitive to noise than the top-down strategy. In addition, the multi-threading is made63
possible by an adapted tree sorting of the points. The planar surfaces that are extracted in two successive64
frames are matched temporally, then walls and openings are identified. To finish, this paper explains the65

2 CAD for Computer Aided Design
3 https://developers.google.com/ar/
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different components of a more comprehensive mobile application, which is able to create and export a 3D66
model that can be used and edited in a CAD software, to plan renovation works and to estimate energetic67
performance.68

In the rest of this paper, some previous works on 3D segmentation and classification are described (sec 2).69
Then, the planar segmentation algorithm is developed in section 3 while the temporal matching and the70
model export are detailed in Section 4. The results of the evaluations conducted for these algorithms are71
presented in section 5 and discussed.72

2 RELATED WORKS

3D modeling of indoor environments has been the subject of numerous research studies, as noticed by the73
recent review Kang et al. (2020). One of the strategies consists in capturing and mapping a dense colored74
point cloud Henry et al. (2012) into a real coordinate system, in which it is possible to navigate virtually.75
From depth data, a 3D mesh of the whole scene can first be estimated, and eventually simplified Liang et al.76
(2020). Since our main objective is to propose a stand-alone 3D modeling application for mobile devices,77
such as tablets or smartphones, such dense models are not optimal since they require a large amount of78
memory resources. In addition, we intend to produce a 3D model in real-time, without connecting to a79
distance webservice. Indeed, internet connection is not available on all worksites. Since the sensor captures80
one point cloud each 200ms, it is necessary to compute a 3D model in this period of time, otherwise81
the next point cloud can be lost. For that purpose, 3D segmentation techniques are promising (see 2.1).82
From the point cloud, these techniques directly detect planar structures from the point cloud and convert83
them into parameterized shapes (for example by simply storing the coordinates of their 4 corners). All the84
surfaces can be locally viewed as planar surfaces Tatavarti et al. (2017) that can be further analyzed using85
classification techniques (see 2.2) and recognizing methods.86

2.1 3D segmentation87

Concerning 3D segmentation, model fitting algorithms are popular due to their simplicity. The most88
commonly used algorithms are inspired by RANSAC Schnabel et al. (2007) or 3D Hough transform89
Borrmann et al. (2011). In an iterative way, RANSAC randomly picks a group of points and refine the90
coefficients of a given parameterized model. Although the quality of the estimation depends on the number91
of iterations, and on the quality of the selected points, it provides a faster and more accurate planes detection92
than 3D Hough transform Tarsha-Kurdi et al. (2007).93

The use of region growing algorithms can speed-up the segmentation task by restricting the analysis in94
the neighborhood of a few seed points, before merging the resulting clusters. However, their performance95
is tightly linked to the choice of the seed points Grilli et al. (2017).96

Erdogan et al. Erdogan et al. (2012) perform a planar segmentation of a depth map using an adaptation of97
the Superpixels algorithm Fulkerson et al. (2009) originally designed for 2D images. The generated clusters98
are then merged using the Swedsen-Wang sampler Swendsen and Wang (1987); Barbu and Zhu (2005).99

Papon et al. Papon et al. (2013) propose the Voxel Cloud Connectivity segmentation (VCCS) algorithm.100
This is a generic 3D segmentation algorithm which selects seed points in a regular grid from the input101
point cloud and generates clusters around these seed points. This algorithm outputs a set of clusters and102
an adjacency graph that describes the connectivity between them. Points are gathered together based on a103
similarity function that depends on the spatial coordinates, the normal vector and the color of each point,104
with a weight for each parameter. For planar segmentation, VCCS is parameterized so that the orientation105
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of the normal vector has a predominant weight in the computation of the similarity criterion between two106
points.107

Planar segmentation can also be viewed as a clustering problem. Clustering techniques can be supervised,108
with a known number of classes. One of the most popular supervised clustering techniques is the K-means109
algorithm Jain (2010); Celebi et al. (2013), which consists in selecting k elements in the input dataset as the110
centers of the clusters. The remaining elements are associated to the nearest center. Then, the centroids are111
updated. The process is repeated until the algorithm converges. K-means algorithms are efficient when data112
are well separated. Non-supervised algorithms, such as DBSCAN Ester et al. (1996), or ISODATA, used113
for example in Holz et al. (2011), do not require the number of classes but group the elements depending114
on a density criterion. Then, it detects clusters when their density is higher than a fixed threshold, which115
highly depends on the scene to be analyzed.116

The reader can refer to Grilli et al. (2017); Nguyen and Le (2013) for more detailed information about117
3D segmentation.118

2.2 Classification and structure recognition119

The results of a planar segmentation algorithm are used as a basis to identify the components of an input120
3D point cloud. Indeed, it allows a fast recognition of structural elements Verma et al. (2006); Ochmann121
et al. (2015), or the classification of a room furniture, once the main planar surfaces have been subtracted122
Deng et al. (2017). Many of these algorithms train classifiers to label the points Ren et al. (2012); Gupta123
et al. (2013); Lai et al. (2014). For example, Silberman et al. Silberman et al. (2012) propose a segmentation124
algorithm that uses RGB-D data from indoor scenes. After a RANSAC-based planar segmentation, the125
resulting regions are grouped into structure categories using logistic regression.126

Lee et al. Lee et al. (2009) describe a method for detecting walls, ground and ceiling in an indoor scene127
using only RGB images. They use predefined patterns about the lines of the RGB images to infer the128
building structure, assuming that the building structure is aligned along a Manhattan grid Coughlan and129
Yuille (1999).130

Verma et al. Verma et al. (2006) propose a 3D segmentation algorithm that can identify the external131
structure of buildings in an outdoor point cloud captures by a LIDAR scanner. Assuming that the point132
cloud has been acquired from an aerial scanner, the authors focus on detecting the ceilings of the buildings.133
For this purpose, they perform a planar segmentation of the points cloud and remove the vertical planes.134
Then, the shape of the buildings is inferred using predefined patterns.135

Many works deal with automatically generating a BIM model from laser data Adan and Huber (2011);136
Jung and Joo (2011); Jung et al. (2014); Macher et al. (2015). In practice, this is a complex task that cannot137
be fully automated but algorithms can detect the global shape of the building and export a pre-generated138
model that can be refined manually in a CAD application. Let us also mention the existence of semantic139
segmentation using deep learning techniques Zhang et al. (2020). These approaches would require resources140
that are not available on simple mobile devices.141

2.3 Proposed solution142

RANSAC-like algorithms can deal with many outliers but can require a large and variable number of143
iterations to converge, depending on the quality of the points that are randomly selected on the surface to144
be parameterized. Region growing algorithms are efficient and are fast when the size of the clusters to be145
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generated is constrained. However, their performance is dependent on the initialization and on the quality146
of the input data.147

In the proposed method, a K-means algorithm is used to perform a planar segmentation of each input148
point cloud. The convergence speed depends in particular on the choice of the initial centers. The closer149
they are to the real centers, the faster the convergence. In most standard buildings, it can be assumed that150
the wall candidates have six main orientations, and possibly these walls can be aligned to a regular grid, as151
in a Manhattan World. The proposed method first achieves a planar segmentation, detailed hereafter in152
section 3, of the 3D point cloud captured by the sensor. Then, the planes are temporally matched between153
successive frames and labeled as walls, floors or ceilings, as described in section 4.154

3 REAL-TIME PLANAR SEGMENTATION

In order to reach real-time execution, i.e. 5 fps as imposed by the device, the user is recommended to start155
the scan of the indoor environment by facing one of the walls. Thus, the reference coordinate frame R0156
is aligned with the structure of the building and the orientations of the normal vectors are well-defined.157
After a brief overview on the proposed algorithm, we go further into detail by explaining successively the158
different stages of the method.159

3.1 Overview of the algorithm160

The detection of the planar surfaces is illustrated on Fig. 1. Let R0 be the coordinates frame with axes161
ux, uy and uz. The input is the 3D point cloud (of NP points P) to be segmented, noted P . Each point P162
is characterized by :163

• a coordinate vector p= [x,y,z]>164

• a normal vector n= [nx,ny,nz]
>. The computation of n is not detailed here, but the reader can refer to165

Arnaud et al. (2018) for further details.166

• a distance d from the origin of R0, defined as: d =−(nx.x+ny.y+nz.z).167

Lk stands for the kth set of points P, k ∈ [0,K− 1], with similar norm vectors. To finish, Sk,m is the168
notation used for the mth (with m ∈ [0,Mk−1]) set of points in Lk which share the same properties n and169
d. Notice in Sk,m, points do not necessary form a connected component but belong to the same planar170
structure in the real scene. The planar segmentation consists in detecting these sets Sk,m (referred to planar171
structures for sake of simplicity).172

The segmentation is performed in two steps. First, the normal vectors are clustered with respect to their173
orientation using an adaptation of the K-means algorithm Jain (2010) that is described in 3.3. For each174
orientation category, a second clustering (detailed in 3.4) is made according to d, in order to separate175
parallel surfaces, that is planes of similar orientation located at different distances. This is detailed in 3.4.176

In terms of implementation, two independent threads are used, one for the data pre-processing (storing,177
normals computation), the other one for the segmentation itself. The first thread computes the normal178
vectors at each point of the surfaces. Concerning the sorting detailed in 3.2, the data are divided into two179
groups (as shown by Fig. 1), depending on whether d is lower or higher than the mean distance d̄ computed180
on the whole point cloud. Here also, this allows to use 2 threads for the sorting.181
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...

...

...

Point cloud P :{
(p,n,d)0...(p,n,d)Np−1

}
Points
sorting
w.r.t d

Clustering
w.r.t n

L0 LK−1

Clustering
w.r.t. d

Clustering
w.r.t. d

Planar points sets
S0,0, ...S0,M0

Planar points set
SK−1,0...SK−1,MK−1

Figure 1. Overview of the planar segmentation algorithm. It consists of two clustering phases : the first
one is for the normals’ space, and the second one separates parallel planes.

3.2 Points sorting182

The input points are sorted using a tree sort algorithm. First, each descriptor P is stored in a binary tree183
T . The insertion of a descriptor P in a node is made using the distance d as comparison criterion. If d184
is inferior to the current node d value, then P is inserted into the left child of the node, otherwise, it is185
inserted into the right one. The list is then sorted by recursively browsing the binary tree T starting by the186
left. The mean complexity of this sorting method is O(nlog(n)). The best benefits of the algorithm in terms187
of performance, are obtained for large amount of data. Consequently, the whole point cloud is sorted first,188
before creating any cluster, instead of performing one sorting per cluster. In this way, the probability to189
build an unbalanced tree is minimized, which would lead to a complexity of O(n2) for the spatial sorting.190
Moreover, the sorting algorithm is easier to parallelize on different threads of equal workload.191

3.3 Normals clustering192

The normals clustering is a K-means algorithm Celebi et al. (2013) which is constrained by predefined193
centroids related to the main planar surfaces that can be found in the building. Assuming the building194
structure is aligned on a Euclidean grid, the normal vectors of the walls candidates have 6 possible195
orientations, one for each axis direction. By starting the capture in front of a wall, the reference frame R0196
is aligned to this Euclidean grid, and the normal vectors for the walls, the ground and the ceiling are along197
the different axes of R0.198

The original K-means algorithm has been adapted so that it can classify the input normal vectors into at199
most K classes (K = 6), but can use less classes. Moreover, only points that have a normal vector close200
to one of the R0 axes will be considered. It starts by the initialization with the centers ôk,k ∈ [0,K−1],201
corresponding to the 6 possible orientations aligned with axes ux, uy, uz. These centers are refined to202
match the actual orientation of the normals when R0 is not perfectly aligned with the building structure.203
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Figure 2. Planar segmentation using our method. Left column: RGB images of the scene to be segmented.
Right column: representation of the corresponding 3D points cloud with one color per plane orientation.
Only the planes that are aligned with the building structure are detected.

Let {ok/k ∈ [0,K−1]} be the final centers (i.e. the mean characteristics of the clusters), and Lk the labeled204
set where each element of P is labeled with the corresponding class label k ∈ [0,K−1].205

First of all, each ok is initialized with the corresponding ôk, and Lk is initialized with the elements206
of P labeled with +∞. Then, for each iteration of the algorithm, a first loop iterates over each element207
(p,n,d) ∈Lk and compares them to each center ôk. If the Euclidean distance ∆k = δ (n,ok) is under a208
threshold εn, then k is kept as a candidate label. The argmin value k0 for the candidate labels is kept if it209
exists. Otherwise, the label is set at +∞ and the corresponding point data is pruned from the process.210

Frontiers 7
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Once each element of Lk has been labeled, each ok is updated with the mean normal value of the elements211
of Lk labeled with k. If no element of Lk is labeled with k, then ok is set to [0, 0, 0].212

This process is repeated N times. Similarly, the process could be repeated until convergence. This is a213
form of constrained E-M approach.214

In terms of implementation, since the clustering is made independently on each point, the work can be215
made by several threads, for instance 4 threads in this work. We have also used the SIMD4 instructions216
of the processor to accelerate the execution. Note that Euclidean distance has been preferred to angular217
distance, because products and sums are faster to compute (and even faster in SIMD) than trigonometric218
functions.219

3.4 Distance clustering220

After normals clustering, a maximum of K clusters Lk,k ∈ [0,K−1] is formed. For each of these clusters,221
points have to be separated into parallel planes. Each cluster Lk contains Lk points to be sorted. Let222
l ∈ [0,Lk−1] be the index of the points inside a cluster Lk. In each cluster Lk, Mk planar structures have223
to be determined. Let Sm with m ∈ [0,Mk−1] denote the mth set of points forming a planar structure in224
Lk.225

First of all, in each set Lk, the Lk points Pl(pl,nl,dl) are sorted by ascending distances dl . Once sorted,226
the clustering is straightforward using a DBSCAN method. Subsequent points Pl−1 and Pl are considered227
as belonging to the same structure Sm when they have close distances, that is when the deviation between228
their distances |dl−dl−1| is less than a threshold εd . Otherwise, a new plane object is created and initialized229
with Pl .230

3.5 Parameters231

Table 1 shows the values of the parameters used to perform the planar segmentation.232

Param Value Description
N 5 Max of iterations
εn 0.10 Maximal distance to add a point to a cluster
εd 0.03 Minimal distance to separate parallel planes

Table 1. Parameters for the planar segmentation.

Since the algorithm is fast to converge, a maximum number of iterations N = 5 is enough for the K-means233
algorithm. The distance εn has been fixed to 0.10, so normal vectors that are not aligned with the initial234
frame R0 are not added to any cluster. The parameter εd has been set to 0.03. This value is limited by the235
precision of the depth sensor and the algorithm.236

Figure 2 shows a few examples of the final segmentation process. The left column shows images from237
the scene to be reconstructed, while the right column shows the segmentation results, where a different238
color is given to each plane category.239

4 SIMD for Single Instruction Multiple Data
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4 FROM TEMPORAL MATCHING TO THE EXPORT OF THE MODEL

The current planes are matched with the planes detected in the previous frame. Thus, similar planes are240
merged and their geometric characteristics are updated, leading progressively to a 3D model of the whole241
scene. This section first describes the creation and the update of the 3D model, and then explains how the242
recognition of walls, ground or ceiling is made.243

4.1 Planes matching244

All this process is based on the ability to match the currently detected planes (at time t) to the previous245
ones (at time t−1). Using a motion tracking algorithm, all the 3D coordinates are expressed in a same246
reference frame R0.247

The method described in Arnaud et al. (2018) is used to match similar planes. For each cluster S248
extracted in the previous planar segmentation, the histograms of each parameter, i.e. nx,ny,nz,d, are249
computed (see Fig. 3). In theory, all points of S have the same parameters, while in practice they are250
distributed following a normal law around the actual parameters. These distributions are used to create a251
unique identifier ID for each plane, which is used to store the plane in a hash table. Thus the memory is252
dynamically allocated when new data is available. This identifier ID is built using the four mean values253
ID = (µx,µy,µz,µd) of the distributions of nx,ny,nz,d on the corresponding planar surface. Thus, when254
a new plane is detected in the current frame, its statistical characteristics are used either to retrieve the255
previous corresponding plane when it exists with a complexity O(1), or, to create a new plane and the256
corresponding entry in the hash table.

ID =p0 ⊕ μx +p1 ⊕ μy+p0 ⊕ μz+p0 ⊕ μ
d

μ
x

μ
y

μ
z

μ
d

Hash table

Point cloud associated to a planar surface 

IdentifierIdentifier

Statistics on the planar surface

Figure 3. Illustration of the hash table. On the left: a point cloud segmented into 3 planar surfaces. For
each planar surface, four histograms are computed. The statistics are used to build an identifier that is used
as a key to address the hash table.

257

4.2 Drifts correction258

The estimation of the global position of the tablet is performed natively using a Visual Inertial Odometry259
algorithm Li and Mourikis (2012). However, there are still positioning errors that accumulate over time,260
causing imprecise temporal matching. To correct these possible drifts, an accelerated version of the Iterative261
Closest Point (ICP) algorithm Besl and McKay (1992) has been implemented.262
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Let Pt and Pt+1 be two point clouds captured respectively at times t and t +1. Each point P ∈P is263
described by its spatial position p, its color c and its normal vector n. ICP consists in iteratively searching264
for correspondences between two points clouds and in estimating the affine transform that minimizes a265
global distance. Our variant of the ICP, described hereafter, accelerates the process by a fast sorting, a266
pruning of the points that are too far to be considered as homologous, and by exploiting a distance based267
on location, color and geometry .268

4.2.1 Finding correspondences269

For each point in Pt+1, a match is searched in Pt . Considering that Pt+1 and Pt are nearly aligned,270
two points P′ ∈Pt+1 and P ∈Pt can be considered for matching if their distance δ (P′,P) is under a271
threshold ε .272

Assuming a small movement of the device in the time interval [t, t +1], the correspondences are searched273
in a local neighborhood WP,u,v around each point P indexed by (u,v)5.274

The algorithm 1 details the procedure for creating a set of correspondences C . Two points P, and P′275
are matched if they are similar in terms of location p, color c and normals n, according to the following276
similarity function δ (P,P′):277

δ (P,P′) =
ωpδp(p,p

′)+ωcδc(c,c
′)+ωnδn(n,n

′)

ωp +ωc +ωn

where δp, δc and δn stand for Euclidean distances, computed respectively on spatial location, color and278
normals. The weights ωp, ωc and ωn are used to give more or less importance to each component.279

Algorithm 1: Correspondences searching between two ordered point clouds.
Input : point clouds P(t +1) and P(t)
Output: set of correspondences C

1: C ← /0
2: k← 0
3: for all P ∈P(t +1) do
4: ∆min← ε

5: for all P′ ∈WP,u0,v0 do
6: ∆← δ (P,P′)
7: P0← /0
8: if ∆ < ∆min then
9: ∆min = ∆

10: P0← P′
11: end if
12: end for
13: if ∆min < ε then
14: C [k]← (P,P′)
15: k← k+1
16: end if
17: end for

5 Note that 2 coordinates are enough since the points lie on the same planar surface.

This is a provisional file, not the final typeset article 10
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4.2.2 Alignment of the point clouds280

Then, the two points clouds are aligned geometrically. To this end, the homography transform is estimated.281
First, the translation T is estimated as the distance between the centroids o′ and o of the spatial positions282
of Pt and Pt+1. Then, the rotation R is estimated by computing the mean rotation required to align the283
normal vectors on their mean normal vector.284

4.3 Estimating the boundaries of each plane285

Once the point cloud has been separated into different planar structures, each of them can be represented286
by its area and its boundaries. Among the various possible techniques, two solutions have been considered,287
as illustrated by Fig. 4.288

(a) (b)

(c) (d)

Figure 4. Two techniques considered for plan boundaries. The first one consists in computing the full
concave hull of each cluster after the segmentation stage (a), and then in repeating this algorithm in order
to merge this cluster (detected at time t +1) with one of the previous clusters (detected at time t) (b). The
second technique consists in computing the minimal bounding box of a cluster (c), and to update it after
merging with a previous cluster (d).

The first one (see Fig. 4(a) and (b)) consists in computing and updating the full concave hull of a plane289
using the KNN-based method developed by Moreira et al. Moreira and Santos (2007). In the latter, the290
concave hull is defined as a polygon that best describes the region occupied by a set of points in a plane,291
i.e. the minimal envelope or the footprint of these points. This technique allows the modeling of walls of292
non-rectangular shape, but has two disadvantages. First, the concave hull is a growing list of points, and293
the spatial resolution and growth are limited. In addition, this algorithm is time consuming. The second294
option, illustrated by Fig. 4(c) and (d), consists in using the minimal bounding box of the planes, which is295
satisfactory when walls are rectangular, as it is the case in our work.296

4.4 Walls and openings identification297

First, the height H of the room is computed. This is made by finding the planes corresponding to the298
ground and the ceiling, i.e. the planes that are orthogonal to the z axis. The floor and ceiling are respectively299
the lowest and highest planes. Then, all of the planes that are orthogonal to the ground are considered as300
potential walls. This is confirmed when its height is at least 80% of H. Examples of walls detection are301
presented in Fig. 5.302
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Figure 5. Examples of walls identification. The ground and ceiling are displayed in green color, walls are
drawn in blue and red.

Once the structural planes identified, the openings (i.e. doors and windows) are detected by assuming303
that windows are transparent and doors are open. Therefore, the infrared light are not reflected 6(a). Thus,304
the openings appear as void rectangles, i.e. areas for which no input data is available. Each wall is analyzed305
individually in 2D, and each dimension is sub-sampled as described in Figure 6(b). The rectangular shapes306
are detected using the ratio of the size (number of pixels) of the black area over the size of the minimal307
bounding box (Figure 6(c)). A region is considered as an opening when the ratio is close to 1.308

(a) (b) (c)

Figure 6. Illustration of the openings detection. (a) Infrared light is not reflected by glass. (b) Sub-sampling
of the data. (c) Detection of the minimal bounding box.

4.5 Exporting the model to a CAD software309

After processing, the information needed to create a 3D model are exported in a .xml file. For each wall or310
opening, the following parameters are saved in this file: an identifier, the coordinates of its four corners and311
the orientation. The resulting 3D model can be edited in the CAD software, for example to plan renovation312
and decorating works (see Fig. 8). In the application Plan 3D Energy that we developed (see Figure 7) with313
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Figure 7. A 3D model viewed in the software Plan 3D Energy.

Figure 8. Example of applications: decorating, evaluating energetic performances.

the society RPE, it is possible to specify the characteristics of the building and the materials for each wall314
and each opening. These estimations, together with the data that our algorithm can provide, it is possible315
to estimate the energy losses of the room6, and consequently its energetic performances. It represents316
a useful tool to sensitize users to make energetic responsible choices regarding their interior renovation317
works. To evaluate the quality of the energetic estimation when using the proposed system, five scans of318
a room have been performed, and the energy losses are compared to the estimations made with the real319
dimensions (310kWhm−2year−1, letter E). Using our 3D models, the estimated energetic performances are320
306kWhm−2year−1 in average, and systematically lead to the same letter E.321

5 EVALUATIONS

This section presents the evaluations of the planar segmentation algorithm used as a basis for wall detection.322

5.1 Material323

Developments were made on a Google Tango Yellowstone tablet, equipped with a Nvidia Tegra K1324
processor and 4 GB RAM, and running on Android 4.4. It embeds a depth sensor and a motion tracking325
algorithm based on Virtual Inertial Odometry Li and Mourikis (2012).326

6 The energy losses of one surface is the surface multiplied by its heat transfer coefficient defined by the 3CL10 norm according to the main building features :
year of construction, type of insulation, materials of the building.
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Figure 9. Setup used for evaluation precision.

5.2 Evaluation of the precision and reliability327

Both the reliability and the precision of the planes detection are evaluated. For this purpose, the device is328
first put in front of an empty wall at a fixed distance x. Then, another planar surface is put between the329
device and the wall, at a fixed distance D from the wall. Fig. 9 illustrates the setup. For each configuration,330
the procedure is tested on 100 successive point clouds. Two measures are used : the number n of times the331
algorithm detects exactly 2 planes; if so, the distance d between the two detected surfaces. The results are332
presented in table 2.333

The mean error δ̄ for the estimation of D is 1.46 cm, and the mean percentage of frames where exactly334
two planes are detected n̄ is 77.15%. In comparison, in Arnaud et al. (2018), the error was approximately335
2.1 cm, and two planes were correctly detected in 40.5 % of the cases. More detailed results are given in336
Fig 10.337

Thus, it can be seen that the clustering method provides a better precision in most cases, and is able338
to distinguish parallel walls with a high reliability if their inter-plane distance is up to 10 cm. For each339
algorithm, some errors occur for low inter-planes distances D. This is due to the norms estimation, which340
is not accurate enough on the edges of the depth map. Most failures occur when two planes are close from341
each other. In terms of execution time, the clustering approach is 5 to 10 times faster than the growing342
regions strategy.343

5.3 Evaluation of the 3D model344

Once the scan is made, we have a 3D model representing a set of walls and their geometric dimensions.345
Then the estimated dimensions can be compared with the real ones, measured by using a laser meter.346

The three rooms used for evaluation are shown in Fig. 11. First, the rooms are scanned, the walls are347
identified, as explained in section 4.4, and their dimensions are estimated. The experience is repeated 10348
times for each room.349

The table 3 synthesizes the results using the precision and execution times for three methods. The first350
one is the accelerated implementation of CHISEL algorithm Klingensmith et al. (2015), with the use of351
RANSAC for planar detection Arnaud et al. (2016). This version does not run in real-time and the execution352
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x D d n x D d n

100

10 10 45

150

10 13 45
20 22 100 20 23 100
30 32 85 30 31 99
50 50 100 50 55 99

100 101 99

200

10 14 39

300

10 20 12
20 22 21 20 - 0
30 32 97 30 34 85
50 51 99 50 51 98

100 100 100 100 100 100
150 150 99 150 150 99

δ̄ = 1.46 cm n̄ = 77.15 %
Average results obtained with method Arnaud et al. (2018)
δ̄ = 2.1 cm n̄ = 40.5 %

Table 2. Results of the evaluation of the segmentation algorithm for 100 measures. x represents the
distance between the tablet and the furthest plane, D the real distance between the two planes and d the
measured one. All these distances are expressed in centimeters. n represents the number of valid measured
frames for each condition.

10 20 30 50
0
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80

100

x = 1.0m
10 20 30 50 100

0
20
40
60
80

100

x = 1.5m

10 20 30 50 100 150
0

20
40
60
80

100

x = 2.0m
10 20 30 50 100 150

0
20
40
60
80

100

x = 3.0m

Region growing Arnaud et al. (2018)
K-means adaptation (presented in this paper)

Figure 10. Comparison of the percentage of frames where two planes were detected n (ordinate axis) for
both planar segmentations algorithms depending on the inter-planes distance D (abcissa) for each different
configuration of x.

time varies from 200 ms to 500ms. Concerning the algorithm detailed in Arnaud et al. (2018), which353
estimates the 3D mesh of the room before achieving the bottom-up segmentation, it just reaches real-time354
execution. The mean error is approximately 5% of the real dimensions, with a maximum error of 25 %.355
The maximum error is obtained for the meeting room, where the ceiling lights distort the measurements of356
the depth sensor. The proposed approach reduces the errors, as also shown in table 2 and it is faster. Note357
also that the furniture in the scenes (the clutter) do not harm the detection of the walls because each wall is358
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Figure 11. Images of the rooms used for evaluation.

Figure 12. Example of sketch drawn by an user during the usability experiment.

partly visible. Of course, errors could occur in the following situations: when a wall is totally occluded359
from the floor to the ceiling by a piece of furniture, when the room is not square or rectangular.360

Method Precision Execution Time
Segmentation of the 3D mesh + RANSAC Arnaud et al.
(2016)

5-17% 200 to 500ms

Fusion of RGB, contours + bottom-up segmentation Arnaud
et al. (2018)

3−25% ' 200ms

Proposed approach 3-15% ' 100 ms

Table 3. Synthetic comparison of three different methods. The precision is given as a percentage w.r.t the
real dimensions.

5.4 Evaluation of the usability361

Some experiments have been conducted to evaluate the usability of the system. First, we compare the time362
needed for manually measuring the dimensions of a room using a laser meter, with the time needed to scan363
and generate the model with the proposed system. Ten people of different ages, genders and professions364
participated to the experiment. 419 (± 73) seconds were needed to scan the room with the laser meter,365
whereas it took 247 (±44) seconds to get the 3D model when using the proposed system. Let us underline366
that the 419 seconds do not include the modeling stage, i.e. entering the dimensions manually in a CAD367
software. Fig. 12 shows an example of sketch made by one the user after measuring the room. We applied368
the SUS questionnaire Brooke (1996) to evaluate the usability of the system. Users answer 10 questions369
formulated in such a way that they are generic and apply to any type of service or system. A score close to370
100 indicates excellent satisfaction.371
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Using a SUS questionnaire Brooke (1996), a mean usability score of 75 was obtained which correspond372
to a good satisfaction, which shows that the application can be easily understood by inexperienced users.373
Among the 10 participants, 2 users found that the use of the tablet did not bring any advantage compared to374
a manual measure. The usability score was higher than 75 for seven participants, with a maximum score of375
93 for three persons.376

6 CONCLUSION AND FUTURE WORKS

This paper has described an application that runs on a tablet equipped with a depth sensor that generates377
and updates a 3D model of an indoor environment. The 3D model is built in real-time and uses exclusively378
the computing capabilities of the tablet. This has been made possible by making assumptions (the building379
structure is aligned on an Euclidean grid), by using adapted data structures (hash tables and binary trees),380
by combining a fast planar segmentation using hierarchical clustering, by achieving code acceleration381
(SIMD) and multi-threading.382

Our evaluations show that the planar segmentation algorithm is able to distinguish parallel planes if they383
are separated by more than 10 cm, with a very high accuracy, and that the planes placement accuracy is384
less than 2 cm. Compared to previous work, the precision and speed have been significantly improved.385
This accuracy can be further improved by using a more accurate depth sensor. Some user experiments have386
also shown that it takes approximately twice less time to scan a room compared to the measurement using387
a laser meter. A usability score of 75 was obtained. In addition, the 3D model can be edited in a CAD388
software, for example to estimate the energetic performances, to plan renovation and decorating works.389

One of the perspectives of this work is the improvement of the proposed application, while maintaining390
the real-time performance, which is key for a good user experience. Concerning the 3D planar segmentation,391
it would be interesting to extend the work to more complex rooms where walls are not perpendicular, or392
when some of the walls are totally made of glass. Regarding the analysis of the walls, the key elements of393
the rooms, such as openings, could be made by using a semantic segmentation Zhang et al. (2013) or by394
recent deep learning techniques. To finish, the parameters of the algorithms have been selected manually.395
Even if they are satisfactory for all the scenes we studied, a calibration is a component that could be useful396
in other contexts (in order to update the parameters automatically).397

In a more technical concern, the proposed application has been developed on Android for the Tango398
Platform, which has a depth sensor and a visual odometry system. This is unfortunately not the case for all399
devices, but more and more Android models are proposed at an affordable price Taneja (2nd April 2020).400
When not available on the device, a visual odometry algorithm can be installed Li and Mourikis (2012).401
More generally, the future application could be available in different versions, depending on the targeted402
device and its components. This requires consequent engineering work, which is out of the scope of this403
work.404
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