
HAL Id: hal-03880843
https://hal.science/hal-03880843

Submitted on 1 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A reputation assessment model for trustful service
recommendation

Okba Tibermacine, Chouki Tibermacine, Foudil Cherif

To cite this version:
Okba Tibermacine, Chouki Tibermacine, Foudil Cherif. A reputation assessment model for
trustful service recommendation. Computer Standards and Interfaces, 2023, 84, pp.103701.
�10.1016/j.csi.2022.103701�. �hal-03880843�

https://hal.science/hal-03880843
https://hal.archives-ouvertes.fr

A Reputation Assessment Model
for Trustful Service Recommendation

Okba Tibermacinea, Chouki Tibermacineb, Foudil Cherifa

aBiskra University, P.B. 145 R.P, Biskra 07000, Algeria
bLIRMM, Univ Montpellier, CNRS, Montpellier 34000, France

Abstract

Nowadays, software systems are mainly Web front-based, Cloud-deployed and ac-
cessible by a wide audience over the Internet. These online systems commonly rely
on Service-oriented Architecture principles, where they are built as orchestrations of
RESTful (and in some rare cases as SOAP-based) services. Integrating new services
in an existing orchestration is a challenging and risky task because trustworthiness of
these services is not guaranteed throughout their lifetime. Reputation of services is a
good indicator about the overall quality of services, because it reflects consumer satis-
faction regarding the service-offered functionality and quality. Thus, reputation of ser-
vices could be considered in the selection and recommendation of trustworthy services.
In this paper, we present a framework for the management of web service reputation to
conduct a better service recommendation. We present a reputation assessment model
that aggregates fair user feedback ratings. The model includes a mechanism that pre-
vents the introduction of malicious feedback ratings, by penalizing detected specious
users. In addition, this framework includes a bootstrapping technique for estimating
reputation of newcomer services based on neighbor similarity and initial advertised
QoS. A set of experiments has been conducted to evaluate the effectiveness of the pro-
posed framework. The results of these experiments highlighted the potential of our
framework. These are presented at the end of the paper.

Keywords: Software as a Service, Service Oriented Architecture, Web services,
Service selection and recommendation, Trust and Reputation

1. Introduction

Software as a Service (SaaS) model tends to deliver software on-demand and price
on-use. This concept can be successfully applicable over the internet by implementing
Service-Oriented Architectures (SOA). Many cost-centric objectives could be guaran-
teed when using SaaS. However, integrating outsourced external software components
(Services) in a new software development setting is challenging and even risky [1],

Email addresses: o.tibermacine@univ-biskra.dz (Okba Tibermacine), tibermacin@lirmm.fr
(Chouki Tibermacine), foud_cherif@yahoo.fr (Foudil Cherif)

Preprint submitted to Computer Standards and Interfaces September 23, 2022

notably because delivered Quality-of-Service (QoS) and trustworthiness of these com-
ponents are not always guaranteed during execution time.

1.1. Context and motivation

With the proliferation of services on the Web, the selection of services to build trust-
ful applications becomes a more challenging task. Therefore, it is crucial to provide
effective recommendation and selection techniques that recommend optimal and trust-
worthy services from users’ point of view. Practically, users are often interested not
only in what functionalities a service may offer, but also on what qualities (e.g., avail-
ability, price, response time,failure rate, etc.) the services may ensure. QoS is usually
used for describing and quantifying service nonfunctional characteristics. Thus, QoS-
based selection of services has been extensively studied in the literature (e.g. [2]). In
fact, three sources of QoS information are identified: i) Provider advertisements, ii)
Active service monitoring, and iii) User feedback.

The advertised values of service providers may be subjective; many providers claim
that they offer the best QoS values to attract more clients, without referral to a real
comparison with other providers. In addition, QoS provided by service providers at
publishing time is outdated after a short period of time. Thus, a continuous refreshment
of this QoS information is indispensable due to the rapid change in their execution
context (changing network traffic, for instance).

The second source of QoS information is the active monitoring of services. This
solution is adequate for small systems with a few number of services. Indeed, it is
a costly solution to permanently monitor thousands of services where scalability and
deployment issues have to be seriously tackled.

The third source for gathering QoS information is by collecting and aggregating
consumer feedback. We distinguish two kinds of consumer feedback; i) feedback with
QoS values issued from clients during service execution monitoring, and ii) rating val-
ues on a given scale that reflect consumer satisfaction about both service functionalities
and QoS. The collection of these two kinds of information not only allows an accurate
evaluation of QoS from client perspective, but also accessing reputation and trustwor-
thiness of services.

In the literature, the aggregation of consumer feedback is a mechanism for the
assessment of services trust and reputation in many open systems such as E-marketing,
peer-to-peer networking and multi-agent systems.

In this work, we consider the term reputation, which is defined as a collective mea-
surement, seen as a community of users’ opinion regarding their experience with the
used service.Reputation as a Quality of Experience (QoE) metric reflects the trustwor-
thiness and credibility of services and their providers [3]. Thus, QoE is considered as
an important criterion for service selection and recommendation.

Although existing works have proposed some efficient and robust reputation mea-
surement models, most of them suffer from the following shortcomings:

1. The consideration of fair ratings: The presence of unfair ratings in online repu-
tation systems is nearly inescapable and its negative impact on the performance
of such systems [4]. A feasible way to sustain the robustness of these systems is
to detect and filter out unfair ratings despite the challenging nature of this task

2

[5]. Many unfair rating detection models have been proposed, e.g. temporal
analysis with user correlation analysis (TAUCA), RM model, DARC model and
iCLUB model [6]. These models usually detect unfair ratings based on math-
ematical models. They show good accuracy, but they provide a large space of
configuration possibilities [6]. This does not guarantee good results without a
fine-tuning of their parameters, which requires a lot of effort. In addition, some
of these models do not provide a complete framework for reputation assessment
that takes all the aspects, such as credibility of users, timing of ratings, and boot-
strapping of the reputation of newcomer services.

2. The consideration of user credibility: Given the relevance that ratings and user
feedback have an Impact on the performance of online reputation systems, it
is of primary importance to detect and automatically correct ratings manipula-
tions through dishonest or fake users [7]. Therefore, finding robust and reliable
ways to distinguish between types of users and rate their importance is a crucial
component in such systems, and thus credibility of raters should be evaluated
carefully. The concept of user credibility was introduced in [8]; it takes into
account the distance between the rating of the user for a service and the ratings
of the other users for the same service (the higher is the distance, the lower is
the credibility). However, the formulation of credibility in this paper is such that
the final ranking does not accurately reflect the actual preferences of the users.
This inaccuracy happens because they weigh ratings by users reputations but do
not normalize with the sum of weights (users credibility); indeed, they divide the
weighted ratings sum by the number of raters. Hence, when all users rate an item
with the same value, the ranking is below that value and can further be smaller
than the minimum allowed rating (details are provided in [7]). To overcome this
issue, we propose to evaluate the credibility of users based on majority voting
principle, and calculate the credibility (i.e. user honesty) as the mean probability
that users give positive or negative ratings according to the majority of users after
classifying their rates as negative or positive.

3. Reputation bootstrapping: Reputation bootstrapping refers to the problem of as-
signing initial reputation scores to newly deployed services for which no record
of rating history is available [9]. In fact, most of online reputation management
systems such as [3, 10, 11] focus on the mathematical models used for assessing
service reputation from received ratings and neglect the estimation of newcom-
ers reputation evaluation. Though some solutions have addressed this issue (e.g.
[12]), most of these solutions assign the same initial reputation value to every
newcomer service. Adaptive approaches such as [13] propose to estimate the rep-
utation of a newcomer by adapting the value of user/service peers that interact or
behave like the newcomer. For instance, the authors in [14] proposed a bootstrap-
ping solution that employs users observable features (a.k.a tags). Specifically, the
distance between the values of the different tags are computed to quantify how
behaviorally similar the new agents are to the existing ones. Once enough inter-
actions and experiences are available, the reputation scores of agents is estimated
during their lifetime based on their actual behavior. In [13], Malik et al. proposed
two approaches to compute initial reputation values for the newly deployed ser-
vices. The first approach capitalizes on the cooperation among services in a

3

community-based context to derive initial reputation values. Specifically, con-
sumers bootstrap newcomer services proportionally to the rate of maliciousness
of the community to which services belong. In the second approach, community
providers are asked to assess newcomer services for a certain period of time and
assign them initial reputation values accordingly. In contrast to some approaches
(e.g. [9, 15]), we propose to include a model that estimates the reputation of
newcomer services based on the correlation between the QoS of a service and its
reputation using a regression based technique.

4. The consideration of web service orchestration reputation: Using atomic ser-
vices collaboratively creates on-demand value-added services following compo-
sition (i.e. orchestration) principles. This later is a natural phenomenon in popu-
lar online service marketplaces (web services, Cloud services or microservices)
where functionally-similar services exist with dynamic QoS values. Generally, it
is challenging to access the reputation of on-demand composite services, as they
usually have little or no direct consumer feedback [16]. The reputation of a com-
posite service depends on the aggregated reputation of its component services
[17]. Thus, we propose to evaluate the reputation of orchestrated services using
the reputation of its composite services (either calculated from ratings history or
through bootstrapping). In the proposed approach, we do not consider reputation
transfer from providers or community to services, as it is suggested by [18].

1.2. Contribution
In this paper, we propose a reputation management framework for service recom-

mendation, providing solutions to the limitations previously discussed. The contribu-
tion of this paper is four-fold:

• First, we propose an architecture for the management of web service reputation
to facilitate web service selection. We describe the main components that handle
feedback rating acquisition, storage, aggregation and service recommendation.

• Second, we propose a reputation assessment model that is sensitive to rating time
and users credibility factors. The first factor permits to assign more important
weights to new feedback ratings. We believe that the quality of service providers
is in continuous change due to their presence in a dynamic environment. There-
fore, an effective reputation assessment model should assign more importance
to recent feedback ratings. The second factor ensures the evaluation of user’s
honesty, which has its impact on considering fair feedback ratings. We apply a
user “punishment” mechanism to exclude unfair ratings received from users who
do not guarantee a certain credibility (i.e., a threshold-based solution).

• Third, we introduce a bootstrapping technique for evaluating the initial repu-
tation of newcomer web services based on: i) their similarity with previously
evaluated services, and ii) their initial advertised QoS. Besides, we propose a
model to evaluate the overall reputation of service orchestrations.

• Finally, we conducted experiments to evaluate the proposed reputation assess-
ment model and compared it with existing models. The results showed that our
model outperforms existing ones in most cases.

4

It is worth mentioning that although our proposition focuses on evaluating accu-
rately service reputation in the context of web service recommendation, it can be ef-
fortlessly applied to a SaaS Model on the Cloud.

1.3. Paper outline

This paper is organized as follows. Section 2 presents the architecture of the pro-
posed framework. Section 3 details the reputation assessment model. Section 4 shows
the conducted experiment for evaluating the model. Section 5 describes the related
work, and Section 6 concludes the paper.

2. Reputation management framework for service recommendation

In this section, we present the reputation management framework for a trustful
service recommendation. We describe the main components of this framework and
their roles for acquiring, storing, and aggregating user feedback ratings.

2.1. System Architecture

Figure 1 illustrates the architecture of the reputation management framework. This
framework enables users to search for services by providing search queries or by direct
browsing of registries via the Search and Selection Interface (Component 1). After
using a selected service, a user may send a feedback rating that represents her/his sat-
isfaction to the system via the Feedback Collector (Component 2). Collected feedback
ratings are stored in the feedback database.

The Reputation Manager (component 3) reassess periodically the reputation of ser-
vices based on new updates that occur in the feedback database. This component em-
ploys the assessment model presented in Sect. 3 to assess service reputation. New
assessed reputation scores are stored in the reputation database for future use during
service recommendation.

The Search and Selection Interface proposes for its users sorted sets of services
that correspond to their search queries. These sets are prepared by the Service Selec-
tor (Component 4) which: 1) retrieves services from registries, 2) extracts reputation
scores from the reputation database, 3) sorts services based on their reputation scores,
and 4) delivers results to Component 1 which recommends them to users.

2.2. Feedback Collector

The role of the Feedback Collector component is to provide a human-interface for
service users, allowing them to submit their feedback ratings. A user feedback is a
quantification of her/his opinion about the consumed service. In the proposed archi-
tecture, feedbacks are ratings that range in a scale of 10, where 0 represents a com-
plete dissatisfaction and 10 a total satisfaction. Every service has a unique identifier.
Therefore, the user during feedback submission has to provide the service ID and the
assigned feedback rating. During each feedback transaction, this component stores in
the feedback database the following information:

• Feedback ID : represents the identifier of the current feedback record;

5

2. Background

2.1 Web Service Orchestration

2.2 Reputation and Trust

2.3 Reputation-based web service selection

3. WS Reputation Management Framework for Service
Selection

We propose in this section a reputation management Framework for trustful web service selection. We

focus on reputation assessment for services and orchestrations. The framework is built upon a new

reputation evaluation model that combines different evaluation factors in order to cope with some

limitations in the existing models (section Metrics). First, we describe the architecture of the proposed

framework. Then, we present the proposed reputation assessment model.

Figure 1: Architecture of the reputation-based service selection framework

F
eed

back
s co

llector
Reputation
Manager

Service 1 ….

Save feedbacks

Reputation
evaluation

S
earch

 &
 S

electio
n

In
terface

Service
Registries

Service
Recommender

S
ave resu

lts

Feedback Database

Reputation
 Database

Browsing

Retrieve
Services

Retrieve
Reputation

Query

Result

Service 2 Service k

Figure 1: General Architecture of the Reputation Management Framework

• Feedback ID : represents the identifier of the current feedback record;

• User ID: represents the user identifier. In order to avoid user registration. The
system considers the IP address of the user as its identifier;

• Service ID: represents the identifier of the consumed service;

• Rating: represents the rate attributed by the user to the consumed service. Rates
are unsigned integers that range between 0 and 10;

• Timestamp: represents the time/date of feedback reception;

• Modification Nbr: represents the number of updates of the record. Initially it
takes the value 1.

Due to performance issues, for the same service and the same user, the feedback
collector stores in the database only one record during an amount of time T ′ (e.g.
T ′=24 hours). This record is updated when a new rating is introduced during that time
interval. The feedback collector keeps only the last N updates for the same record. T ′

can be set based on administrator preferences.

2.3. Reputation Manager
The Reputation Manager assesses the reputation of web services by aggregating

feedbacks stored in the feedback database. We can summarize this component func-
tionalities as follows:

5

Figure 1: General Architecture of the Reputation Management Framework

• User ID: represents the user identifier. In order to avoid user registration. The
system considers the IP address of the user as its identifier;

• Service ID: represents the identifier of the consumed service;

• Rating: represents the rate attributed by the user to the consumed service. Rates
are unsigned integers that range between 0 and 10;

• Timestamp: represents the time/date of feedback reception;

• Modification Nbr: represents the number of updates of the record. Initially, it
takes the value 1.

Due to performance issues, for the same service and the same user, the feedback
collector stores in the database only one record during an amount of time T ′ (e.g.
T ′=24 hours). This record is updated when a new rating is introduced during that time
interval. The feedback collector keeps only the last N updates for the same record. T ′

can be set based on administrator preferences.

2.3. Reputation Manager
The Reputation Manager assesses the reputation of web services by aggregating

feedbacks stored in the feedback database. We can summarize this component func-
tionalities as follows:

6

• Retrieves new feedback ratings since the last assessment round from the feed-
back database;

• Selects, from the retrieved records, services whose reputation scores have to be
assessed;

• Reevaluates the credibility (honesty factor) of the raters in respect to the model
proposed in Subsection 3.4;

• Extracts all feedback ratings for each selected service, and assesses its reputation
by applying the assessment model presented in Section 3;

• Stores assessment results in the reputation database.

Stored records have the following structure:

1. Service ID: represents the identifier of the service in the system;
2. Reputation: represents the assessed reputation value for the service;
3. Timestamp: represents the time of the last assessment round;

• The reputation manager starts a new assessment round every time slot T . T could
be initialized by administrator based on the system performance.

2.4. Search and Selection Interface

The Search and Selection interface allows users to interact with the system for
selecting web services. The user via this component can browse directly service reg-
istries. Moreover, it can handle search queries. These queries are generally a set of
keywords describing the sought services. The interface transfers queries to the ser-
vice selector component, which analyses them and searches for appropriate services
that match these queries. The selector returns sorted lists of services to the interface,
which, by its turn, recommends them to users.

2.5. Service Recommender

The service recommender component processes user queries through the following
steps:

• Step 1 – Query preparation: the component analyses and prepares the query by
removing stop words, stemming the remaining keywords, and adding synonyms
to the query. The result of this step is a bag of words that represents the enriched
initial search query.

• Step 2 – Service retrieval: the selector component searches for services that
hold at least one element in the bag of words. We suppose that services in reg-
istries are tagged using one of the techniques proposed by Azmeh et al. [19] and
Falleri et al. [20] or any other similar work. We assume that similarity values
between services are assessed using the approach proposed by Tibermacine et al.
[21] or by any other related work. This information is then stored in the database.

7

• Step 3 – Reputation-based sorting: After selecting web services, the com-
ponent retrieves the reputation value of each service in the result set from the
reputation database. Then, the component groups and sorts services based on
their reputation and similarity values. Recommended results are sent back to the
interface component.

3. Reputation Assessment Model

In this context, we consider reputation as an aggregation of user feedback ratings.
Below, we present the mathematical model implemented by the reputation manager in
the previous architecture.

3.1. Evaluation Metrics

The reputation assessment model is built upon the following metrics. Some of these
metrics have already been used individually in related works (i.e., [22–24]). However,
these models do not incorporate all of these metrics together. As we will see later, this
combination results in a more efficient model.

1. User honesty degree (i.e., credibility): The credibility of a user has its impact
on feedback ratings during reputation assessment; a dishonest user (i.e., a user
with malicious behavior) can continuously decrease the reputation of a good
service or increase the reputation of a poor service by providing a false feedback.
Therefore, it is essential for an accurate reputation assessment to consider the
credibility of users during reputation assessment.

2. User rating history: Users may behave maliciously; they can start as honest
users, then they change their behavior over time. In consequence, the assessment
model has to estimate and update the credibility of users with regard to their
rating history.

3. Punishment of suspicious users: We consider a user as a suspicious user when
her/his estimated credibility is less than a certain degree (i.e., a given thresh-
old). For system safety, the model neutralizes feedback ratings of all suspicious
users. This mechanism ensures the purity of feedback ratings used during the
assessment of service reputation.

4. Feedback history: The reputation assessment model uses all feedback ratings
stored in the database during each reassessment.

5. Temporal sensitivity: the module includes an exponential decay function with
a decay factor (denoted as λ). The product of rating by the decay function gives
more importance to newer ratings, which will have more influence on the repu-
tation assessment.

3.2. Formulation

Let δ(i,k) be the feedback rating given by user i for service k. The rating values
range between 0 and 10, where 0 represents a total dissatisfaction about the functional-
ities and QoS of the used service, and 10 represents a total satisfaction. More precisely,
let δ(i,k) ∈ {δ−(i,k),δ

+
(i,k)} , where δ

−
(i,k) ∈ {0,1,2,3,4,5} and δ

+
(i,k) ∈ {6,7,8,9,10}. We

8

assume that δ
−
(i,k) is a negative feedback, and δ

+
(i,k) is a positive one. We group feed-

back ratings in two classes (positive and negative) in order to represent the fact that the
rater’s opinion is either positive or negative.

Let Φ(Sk) be the sum of all rates weighted by the time sensitivity factor λ and the
rater’s honesty degree H. Mathematically, we define Φ(Sk) as follows :

Φ(Sk) = (
n

∑
i=1

δ
+
(i,k)×λ

di ×hi)+(
m

∑
j=1

δ
−
(j,k)×λ

d j ×h j) (1)

Where :

• λ di is an exponential decay function with the base lambda (λ) and the exponent
(di) which represents the age of the rating in days. λ is a fraction between 0 and
1 and is set experimentally. Using this factor, every time the rating gets older, its
effect on the reputation assessment becomes smaller.

• hi is the Honesty degree (i.e., the credibility factor) assessed for the user i using
Eq.4.

• n+m is the number of all raters for the service Sk where n is the number of raters
who provided a positive feedback and m is the number of raters who provided
negative feedback.

In addition, we define the intermediate function Ω(Sk) of a service Sk as the ra-
tio (i

ii) between (i) the difference between the evaluation of positive ratings (the sum
of positive ratings weighted by their corresponding inclusion and honesty factors)
and the evaluation of negative ratings (the sum of negative ratings weighted by their
corresponding inclusion and honesty factors) and (ii) the global evaluation of ratings
(Φ(Sk)). We write:

Ω(Sk) =

{
(∑n

i=1 δ
+
(i,k)×λ di×hi)−(∑m

j=1 δ
−
(j,k)×λ

d j×h j)

Φ(Sk)
i f Φ(Sk) 6= 0

−1 Otherwise
(2)

Where:

• δ
+
(i,k) is the i-th positive rating, and n is the number of positive rates for service
(Sk). δ

+
(i,k) ∈ {6,7,8,9,10}.

• δ
−
(j,k) is the j-th negative rating, and m is the number of negative rates for service
(Sk). δ

−
(j,k) ∈ {0,1,2,3,4,5}.

• The range (co-domain) of the Ω function equates to [−1,1].

9

3.3. Reputation
In case the function Ω(Sk) is evaluated to 1 (or -1), this means that all rates of

service Sk are positive (or negative) and then its reputation (R(Sk)) is calculated as the
fraction of the average of feedback ratings. Otherwise, the reputation (R(Sk)) is the nor-
malized value of the Ω function in the interval [0,1], which represents the relationships
between positive and negative feedback ratings. We write:

R(Sk) =

(∑n

i=1 δ
+
(i,k)×λ di×hi)

∑
n
i=1 λ di×hi

i f Ω(Sk) = 1

(∑m
j=1 δ

+
(j,k)×λ

d j×h j)

∑
m
j=1 λ

d j×h j
i f Ω(Sk) =−1

Ω(Sk)+1
2 Otherwise

(3)

3.4. Honesty Factor
The honesty factor (the credibility value) of a given user is the probability that this

user gives an honest feedback according to the majority of raters. By default, a new
user takes the value 1

2 . This value means that the user is neither honest nor dishonest.
So, feedback ratings provided by new users do not affect heavily the reputation of the
rated services. But by giving more ratings in the future, the honesty factor of this user
will change, and it is calculated by the system as follows:

hi =
∑

t
s=1(

η(s)
η+(s)+η−(s))

t

Such that : η(s) =
{

η+(s) i f (δi,s = δ
+
i,s)

η−(s) i f (δi,s = δ
−
i,s)

(4)

where,

• t: is the number of services rated by user (i)

• η+(s): denotes the number of positive ratings for service (s)

• η−(s): denotes the number of negative ratings for service (s)

For illustration, Figure 2 shows how to evaluate the honesty factor of a user i who
rated the service set composed of {WS7, WS12, WS19, WS58, WS62}.

3.5. Suspicious User Punishment
As mentioned previously, the system considers a user with credibility value less

than a fixed threshold as a suspicious user. Consequently, the effect of feedback ratings
provided by this user have to be neutralized. Therefore, the system punishes suspicious
users by setting their credibility to zero. In this way, the system ensures that service
reputation is assessed only from fair feedback ratings (i.e., feedback ratings that are
provided by users considered as honest). The credibility of a user is often subject to

10

Rated
Services

Other’s feedbacks User (i)
feedback

Probability
Positive (+) Negative (-)

𝑊𝑆7 12 3 -
4

16
=
1

4

𝑊𝑆12 1 10 -
11

12

𝑊𝑆19 5 1 +
6

7

𝑊𝑆58 16 0 + 1

𝑊𝑆62 6 3 -
2

5

 𝐻𝑖 0,66

Figure 2: Sample of Honesty factor assessment for a user i

change due to her/his future behavior. Thus, the model reevaluates user credibility
every time the system gathers new feedback ratings from that user. However, time
sensitivity factor reduces the impact of old malicious feedback ratings in case that they
are provided by a suspicious user in case she/he improved her/his behavior and has
provided some new fair ratings.

3.6. Reputation bootstrapping
System bootstrapping for evaluating reputation of newcomer services is a crucial

and still challenging topic. Because neglecting the initial reputation scores of new-
comer services might lead to subvert the performance of the whole system, making it
vulnerable to many threats such as the Sybil attack [25].

In this model, rather than assigning default reputation values to newcomer services,
we evaluate the reputation of a newcomer service by comparing its QoS to those of its
similar services. We suppose that the reputation of a given service is the degree of
user’s satisfaction about service qualities. Generally, if we have a newcomer service
that offers functionalities and QoS similar to some older services in the system, which
already have reputation values (i.e., the system has already assessed their reputation),
then we can evaluate the initial reputation of the newcomer service in terms of the
reputation values of these similar services.

We assume that during the publication of a new service in the system, the provider
publishes the QoS values of its new service. For simplicity, the system takes into
account three qualities1: Response time, Availability, and Price, which are denoted
respectively by (T),(A) and (P). The process of evaluating the reputation of the new-
comer service Snc, is defined as follows:

1. Similar services retrieval: The first step is to find similar services from the ser-
vice pool managed by the system. To that end, the system assesses the similarity

1The approach can however be easily generalized to more qualities.

11

between the newcomer service and existing services, using the similarity assess-
ment approach proposed in [21]. The result of the similarity assessment is a set
of similarity scores that represent the degree of resemblance between couples of
services. These scores range between 0 and 1, where 0 represents a total dis-
similarity and 1 a total similarity between the matched services. Services that
hold a similarity-score greater than or equal to a fixed threshold are considered
similar to the newcomer service. The result of this step is a set of similar services
denoted by SimResultSet. s.t.
SimResultSet = {S1,S2, ...,Sn} and Simi, i = 1, ...,n denotes the similarity be-
tween the newcomer service Snc and Si.

2. QoS data preparation: In the second step, the system retrieves QoS values
and reputation scores for each similar service in the result set. Each service
Si ∈ SimResultSet is represented by Si < Ti,Ai,Pi,Ri > where T,A,P are the QoS
values and R is the service reputation. Likewise, the newcomer service is defined
by Snc < Tnc,Anc,Pnc, R̂nc >, where Tnc, Anc and Pnc represent the initial QoS
values and R̂nc (or R(Snc)) is the unknown reputation value.

3. QoS normalization: In this step, the system normalizes QoS data as follows:

• Extracting the maximum value (MaxVal) and the minimum value (MinVal)
for each quality.

• For each value, replace it by (NewQosVal) which is calculated as follows:

NewQosVal = 10× QosVal−MinVal
MaxVal−MinVal

(5)

For the sake of simplicity, we suppose that the reputation value is in a linear
relationship with services QoS. This means that users are more satisfied by good
QoS and vice-versa, and this follows a linear correlation. Thus, for each Service
Si we have the following equation :

αiTi +βiAi + γiPi = Ri (6)

Where coefficient αi,βi and γi could be computed as follows :

αi =
Ri

3×Ti
; βi =

Ri

3×Ai
; γi =

Ri

3×Pi
(7)

4. Reputation evaluation: To assess the reputation (R̂nc) of the newcomer service
Snc, the system evaluates the following equation:

R̂nc = αncTnc +βncAnc + γncPnc (8)

Where, αnc,βnc, and γnc are computed using equations 9,10, and 11 respectively.

αnc =
∑

n
i=1(Simi×αi)

∑
n
i=1(Simi)

(9)

12

βnc =
∑

n
i=1(Simi×βi)

∑
n
i=1(Simi)

(10)

γnc =
∑

n
i=1(Simi× γi)

∑
n
i=1(Simi)

(11)

3.7. Provider Reputation

The reputation of the provider mainly depends on the quality of its offered services
and thus on their reputation. Consequently, we assess the reputation of a provider
as the average of the reputations scores of its services. Given a provider Prx, let
Services(Prx) = S1,S2, ...,Sn be the set of the services provided by Prx. The reputa-
tion of this provider is assessed as follows:

RP(Prx) =

{
(Σn

i=1R(Si))
n I f Services(Prx) 6= φ

1
2 Otherwise

(12)

where,

• R(Si) is the reputation of service Si that belongs to the provider’s service set
(Si ∈ services(Prx)).

• φ denotes the empty set.

In case the provider is new, the initial reputation of the newcomer service is esti-
mated using a regression model which considers QoS values and the reputation scores
of all the existing services handled by the reputation management system. This regres-
sion model is detailed in [26].

3.8. WS Orchestration Reputation Assessment

Many proposed reputation models focus on the selection of single services and do
not consider service orchestrations. Ideally, advanced WS selection systems have to
enable their users to select WS orchestrations among different possibilities based on
reputation and service similarities. Therefore, a user can start by selecting a set of
services to construct her/his orchestrations. The system assesses the reputation of this
orchestration based on the reputation of single services. Then, it suggests similar or-
chestrations with better reputation values based on possible service substitutes (similar
services that can replace initial ones in the orchestration).

In this section, we complete the previous model for enabling reputation-based se-
lection of WS orchestrations.

In general, an orchestration is described in terms of a process which consists of a
set of basic and structured activities. A basic activity relies on the use of an interface
provided by a basic web service. It could be an invoke (invocation of a service), a
receive (reception of message from a service) or a reply activity (delineating responses
to messages that were previously received during the execution of receive activities).
On the other hand, a structured activity prescribes the order of execution of a set of
(basic or structured) activities; a structured activity may have one of the following
types:

13

Figure 1. Hypothetical service orchestration process

By evaluating the reputation of O using different services combinations and applying rules defines in table
1, we obtain 432 possible combination. Table 5 lists the first ten recommended combinations for
maintaining the orchestration O, with their evaluated reputation values.

Activity Possible substitutes

𝐴1 𝑆11, 𝑆13
𝐴2 𝑆21, 𝑆22, 𝑆28
𝐴3 𝑆31, 𝑆32, 𝑆33
𝐴4 𝑆42, 𝑆45
𝐴5 𝑆51, 𝑆54
𝐴6 𝑆21, 𝑆22, 𝑆28
𝐴7 𝑆42, 𝑆45

Table 2: basic activities and possible

𝑆11 0.68

𝑆13 0.78

𝑆21 0.89

𝑆22 0.77

𝑆28 0.93

𝑆31 0.65

𝑆32 0.82

𝑆33 0.37

𝑆42 0.99

𝑆45 0.98

𝑆51 0.92

𝑆54 0.91

𝑨𝟏 𝑨𝟓

𝑨𝟐

𝑨𝟑

𝑨𝟒

3 times

Condition 1

Condition 2

Owise

𝐴𝑆𝑒𝑞 1

𝐴𝑆𝑒𝑞 2

𝑨𝟔 𝑨𝟕

𝐴𝑓𝑙𝑜𝑤

𝐴𝑠𝑤𝑡𝑐ℎ 𝐴𝑊ℎ𝑖𝑙𝑒

Figure 3: A hypothetical orchestration process

• Sequence activities: they consist of a set of activities that are executed sequen-
tially.

• Switch activities: they consist of a set of ordered activities associated with con-
ditions. Only the first activity whose condition is evaluated to true is executed in
a switch activity.

• While activities: it holds a single activity that is executed iteratively for a given
number of iterations.

• Flow activities: they consist of one or more activities, which, by default, are
executed concurrently.

In this work, we propose to estimate the reputation of service orchestration based
on the reputation values of its atomic services (i.e. orchestrated services). Table 1
shows rules to evaluate each type of activities. We note that in this model we ignore
receive and reply activities because they always happen after invocation activities. The
estimation of orchestration reputation is conducted by assessing the different activities.

For illustration, let us suppose the following hypothetical example. Let O be the
orchestration of 7 atomic services such that service si is used in activity Ai where i =
1, ..,7. Figure 3 depicts the process that describes this orchestration. O textually can
be written as follows:

14

Table 1: Assessment rules

Activity type Description Reputation assessment

Invoke Ainv(Si) R(Ainv) = R(Si)
Sequence Aseq(a1,a2, ...,am) R(Aseq) = average(R(a1),R(a2),,R(am))
Switch Aswtch((a1|cond1),(a2|cond2), ...,(am|condm)) R(Aswtch) = Min(R(a1),R(a2),,R(am))
While Awhile(ai)∗n times R(Awhile) = R(ai)

n

Flow A f low(a1,a2, ...,Am) = a1||a2||...||am R(A f low) = average(R(a1),R(a2),,R(am))

O = A f low

(
(Aseq1(A1,Aswitch(((A2|cond1),

(A3|cond2),(Awhile(A4)∗3)),A5)),

(Aseq2(A6,A7)))

)
For instance, given the reputation values for the atomic services as follows : s1 =

0.8,s2 = 0.7,s3 = 0.9,s4 = 0.95,s5 = 0.75,s6 = 0.6 and s7 = 0.85, the reputation of
the orchestration O is evaluated by applying rules in Table 1 as follows :

• A1 = R(s1) = 0.8, A2 = R(s2) = 0.7,
A3 = R(s3) = 0.9, A4 = R(s4) = 0.95,
A5 = R(s5) = 0.75, A6 = R(s6) = 0.6, and
A7 = R(s7) = 0.85.

• Awhile = (A4)
3 = 0.857

• Aswitch = Min(A2,A3,Awhile) = 0.7

• Aseq1 = Average(A1,Aswitch,A5) = 0.75

• Aseq2 = Average(A6,A7) = 0.725

• A f low = Average(Aseq1,Aseq2) = 0.737

The reputation of the orchestration O for the given example is equal to 0.737. Finally,
it is important to mention that the goal from the orchestration reputation assessment
model is to provide a good estimation of the reputation of the composite service before
its deployment, so that the recommendation system can classify it.

4. Experimental Evaluation

In this section, we present the setting and the results of a set of experiments which
were conducted to evaluate the reputation assessment model. Firstly, we study the
impact of users’ subjective and malicious feedback ratings on the accuracy of the pro-
posed model. Secondly, we investigate the impact of the other parameters on the per-
formance of the model. Finally, we conduct a comparison between the proposed model
and some state-of-art approaches.

15

Table 2: Honest User Rates
WS class Rating Description

C1 [0.7-1]
Users rate randomly
in the interval of ± 1
of the RefVal

C2 [0,3]
C3 [0.7-1] [0 - 3]
C4 [0-3] [0.7-1]
C5 [0-1] (±1)

4.1. Experiment Description
Due to the unavailability of feedback rating data, we have used a simulation in our

experiments. We have built a concurrent Java program that simulates the interactions
between Users, Services and the Reputation Manager (System). The program is de-
signed in a way that the behavior of services is monitored, yet accurately captured.
Hence, the program can simulate the behavior and feedback ratings of honest and ma-
licious users accordingly. The system assesses reputation of services depending on
collected feedback ratings, aging factor and user’s credibility. The variance between
assessed reputation scores of services and their ideal (expected) reputation (represented
numerically in the interval of [0,1]) is a key factor for the validation of the proposed
reputation measurement model.

The programmed environment held a number of web services (#Services), and a
number of users (#Users). We have simulated the interaction between these elements
and the reputation manager during time slots. Each time slot is simulated as one day
(#Day). A number of feedback rating transactions (#TransactionsPerDay) are issued
from interactions between users and web services in each day. At the end of the day,
the reputation manager calculates and updates the credibility factor of each user. Then,
it assesses the reputation score of services using the model presented in Section 3. In
order to have the most accurate results, the program uses a multi-round run (#Rounds)
of simulation. The program lists the average of the assessed reputation scores of ser-
vices in each class, along with their ideal reputation values. The simulation classes
of web services are described in Subsection 4.1.1. User classes are presented in Sub-
section 4.1.2. Parameter tuning and the basic simulation algorithm are described in
Subsection 4.1.3. Performance evaluation is presented in Subsection 4.1.4.

4.1.1. Service classes
The quality of a web service varies over time due to its presence in a dynamic en-

vironment where changes occur constantly. We can distinguish five different classes
of service behaviors [23]; a first class of services that maintain a high level of perfor-
mance, a second class of services that maintain a low level of performance, a third class
of cheating services that start with a good performance then after a period of time, their
performance degrades. A fourth class of services that start with a low performance
and then their performance upgrades, and a fifth class of services with an oscillate
performance.

We have implemented these five classes using a randomization function. In each
class, the attribute performance value (PerfVal) represents the ideal reputation that cor-
responds to the actual behavior of a web service. (PerfVal ranges in the interval [0-1],

16

Table 3: Classes of simulated web services

Class Reputation Execution time (ms) Description

C1 [0.8 - 1] [20-60] Consistent high performance
C2 [0-0.2] [100-150] Consistent low performance
C3 [0.8 - 1]↘ [0 - 0.2] [30-60]↘ [100-150] High performance, then a degradation
C4 [0 - 0.2]↗ [0.8 - 1] [100-150]↗ [30-60] Low performance, then an enhancement
C5 [0-1] [20-150] Oscillate performance

Table 4: Malicious User Rates
WS class Rating Description

C1 [0 - 6]
Users rate randomly
by value that are
>>or <<than the
RefValue

C2 [4 - 1]
C3 [0 - 6] [4 - 1]
C4 [4 - 1] [0 - 6]
C5 [0-1] (±2)

where 0 denotes the lowest quality, and 1 represents the highest quality. The attribute
Response Time (ResT) indicates the web service’s maximum response time. Table 3
lists the expected parameters (Ideal reputation (PerfVal), and Execution time (ResT))
of each class.

Web service classes group all possible service behaviors, which ensures that exper-
iment samples are representative of a real world environment.

4.1.2. Users Classes
To study the effect of users’ credibility on the reputation assessment model, we

propose to incorporate two classes of users that simulate the behavior (rating strategy)
of honest and malicious users. Honest users give an organic (i.e. a fair) rate based
on the performance value (PerfVal) that represents the ideal reputation of the service.
A malicious (i.e. dishonest) user gives feedback that does not reflect the service’s
deserved performance value (PerfVal). The process of how the two classes provide a
feedback rating is described in the following subsections.

Malicious user class:
The malicious user class represents a malicious user attempting to game the recom-
mendation system by rating services using the following steps:

- The user selects a random, uniformly distributed service (ID: Identifier) from the
service pool,

- Then, she/he reads the PerfVal (the performance value of the service) of the
selected service; the PerfVal is a value that represents the qualities of the service
and depicts its deserved/Ideal ranking score.

- Then, the user randomly decides whether she/he gives a malicious rate or a fair
(organic) rate following the Bernoulli distribution (Bernoulli (0.71). 71% of the
time, she/he gives a malicious rate. That is to say, more than two-thirds of the

17

Table 5: Simulation parameters
Parameter Values
#Services 500 (100 per class)
#Users 1000
#Days 100
#TransactionsPerDay 10000 (2000 per class)
#Rounds 10
#HUserDensity ?% (variable)

time, the user acts maliciously, and she/he acts honestly in one-third, attempting
to hide her/his identity.

- If the user decides to act maliciously, she/he gives a feedback rating (following
the discrete uniform distribution in the interval [0, (PerfVal*10 -2)] + [(Perf-
Val*10 +2), 10]. She/he gives a rate that does not reflect the deserved value
estimated by the PerfVal of the service. For instance, if the PerfVal of the service
is 0.6, then the user selects randomly one of these rates 0,1,2,3,4,8,9,10 to use as
feedback.

- Otherwise (If the user decides to give a fair rate), she/he gives a random rate
from the following three values (i) PerfVal*10 -1 or (ii) PerfVal*10, or (iii)
(PerfVal*10) + 1. These values depict a natural variation between honest users
opinions. For example, if the Perfval of the service is 0.6, then the user selects
randomly one of these values 5,6,7.

Honest user class:
The honest user class represents a user that interacts with the recommendation system
by rating services using the following simple steps:

- The user selects a random, uniformly distributed service (ID: Identifier) from the
service pool,

- Then, she/he reads the PerfVal (the performance value of the service) of the
selected service;

- The user rates the service using, randomly, one of the following values: (i) Perf-
Val*10 -1 or (ii) PerfVal*10, or (iii) (PerfVal*10) + 1. These values represent a
natural variation between users opinions.

Tables 2 and 4 respectively summarize feedback ratings patterns generated by hon-
est and malicious users for each class of services.

4.1.3. Tuning
Algorithm 1 represents the basic flow of one simulation round. We simulated a sys-

tem with 500 services; we created 100 instances from each class of services. Then we
created 1000 honest and malicious users according to the honest user density (#HUser-
Density). For each time slot, which varies from 1 to the total number of simulated time

18

slots (#Days), we generated the ideal reputation of each service instance according to
its service class. Then, we simulated the transactions (interactions) between randomly
selected users and randomly selected services. Transactions are conducted simultane-
ously. After each transaction, the program stores the feedback rating generated by the
involved user. At the end of each time slot, the program updates user credibility scores,
and it assesses the daily reputation score of each web service. The program, at the
end of all transactions, measures model performance and prints results. Table 5 lists
simulation parameters.

Algorithm 1 Pseudocode of the conducted simulation
Input: #HUserDensity
Begin

1: #Days = 100 ;
2: #services = 500;
3: #TransactionsPerDay = 10000 ;
4: Create services(#Services);
5: Create users(#HUserDensity);
6: for simDay = 1 to #Days do
7: Generate Ideal Reputation for Services();
8: for (class = 1 to 5) do
9: for (i=0 to (#TransactionsPerDay/5)) do

10: user = Select random user();
11: service = Select random service in class(class);
12: simulate user service interactions(user, service);
13: add new feedback rating(user, service, simDay);
14: end for
15: evaluate users credibility();
16: evaluate daily ideal service reputation();
17: assess daily reputation from feedback ratings();
18: save data();
19: end for
20: end for
21: evaluate results();
End

4.1.4. Performance metrics
Performance metrics are classified into statistical accuracy and decision-support

accuracy metrics [27, 28]. We adopt one metric from each class to evaluate the perfor-
mance of the proposed reputation assessment model. Mean absolute error (MAE) is a
representative metric of a statistical accuracy measure. The MAE metric is defined as
follows:

MAE =

n
∑

k=1
|Repa(WSk)−Repi(WSk)|

N
(13)

19

where, Repa(WSk) and Repi(WSk) are the assessed reputation score and the ideal
reputation score of the service WSk respectively, and N is the number of services. F-
Measure is the second used metric. It is a representative metric of the decision-support
accuracy measure. FMeasure (or F-score) combines precision and recall metrics into
a single value that determines how effectively the reputation measurement model as-
sesses precisely the reputation of services, and handles correctly subjectivity and ma-
liciousness of users’ activity. First, Precision is defined in this context via Normalized
Mean Absolute Error (NMAE) as follows:

precision = 1−NMAE (14)

where

NMAE =
MAE

rmax− rmin
(15)

where rmax and rmin are the maximum and minimum rates respectively. Precision
values range between 0 and 1, and decrease with the increase of NMAE. Recall is
defined as the ratio of correctly evaluated services denoted Nbrcs to total number of
services (N). Recall represents the probability that a service reputation is correctly
evaluated. It is defined as follows:

Recall =
Nbrcs

N
(16)

F-Measure is defined based on precision and recall as follows:

F-Measure =
2× recall× precision

recall + precision
(17)

4.2. Reputation with maliciousness density variation

The ultimate goal of this approach is to accurately assess the reputation of web
services, even with the presence of a considerable number of unfair feedback ratings
collected from malicious users. Thus, we present the results of the first simulation runs
where we variate the number of malicious users. We have fixed simulation parameters
to the values listed in Table 5, with a variation of maliciousness density. This density
represents the percentage of malicious users in the system.

Figure 4 shows the ideal versus assessed reputation values obtained with three in-
stances of maliciousness density (labeled 25%, 70% and 95%). In this figure, plots
(a) through (e) are associated to the five web service classes described previously. For
each class, we obtain the plotted reputation values as the average of its service reputa-
tion scores (100 service per class). Yet, each service reputation score is the average of
10 simulation-round values.

From the figure, we can see that with 25% of maliciousness density, the assessed
reputation values in the five classes are almost equal to the ideal reputation values
(showed by the solid line). These results are explained by the fact that honest users

20

(b) Class 2

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,1

0,2

0,3

0,4

0,5

0,6
(a) Class 1

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0
(c) Class 3

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

1,0

Ideality

25% of malicious users

70% of Malicious users

95% of malicious users

(d) Class 4

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

1,0
(e) Class 5

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

ti
o
n

0,30

0,35

0,40

0,45

0,50

0,55

0,60

Figure 4: Ideal and assessed reputations with 25%, 70% and 95% of malicious user density

outnumber dishonest users, which permitted a successful user credibility evaluation
and reputation assessment. The slight deviation occurred between the assessed and
ideal reputation is natural, because it reflects the differences in opinions between honest
users.

Second, we observe that, with malicious user density that equates to 70%, the as-
sessed reputation is in decrease deviation from the ideal reputation in the first third of
evaluation period (for time slots 1 to 30). Then, for the rest of the evaluation period, the
assessed reputation becomes fairly and close to the ideal reputation (i.e., the assessed
reputations converge to the ideal values). We note here that dishonest users outnum-
ber honest users, which influences negatively the number of fair feedback ratings, the
evaluation of user credibility, and hence the assessed reputation at the beginning of
the evaluation. However, by the accumulation of fair and unfair feedback ratings, the
model becomes able to distinguish between malicious and honest users based on their
credibility values. Therefore, the system neutralizes the effect of unfair feedback rat-
ings on the assessed reputation by punishing suspicious users with a credibility lower
than 0.5.

Third, the experiment with a malicious density which equals to 95% shows that the
assessed reputations are significantly deviating from the original reputation values. The
model is unable to assess correctly reputation due to the very high number of malicious
users. Fortunately, as stated in many works in the literature, like Whitby et al. [29] and
Malik et al. [23], such high malicious user density in real world is unrealistic and much
lower rates should be expected.

21

TSF (Time Sensitivity Factor)

0.0 0.2 0.4 0.6 0.8 1.0

F
-M

e
a
s
u
re

 (
%

)

70

75

80

85

90

95

100

TSF Vs Fmeasure

Figure 5: Effect of Time Sensitivity Factor on the F-Measure

Subsequently, We may conclude that the proposed assessment model is able to ac-
curately assess the reputation of web services even with the presence of high malicious
rates (up to 70%) in the reputation management system.

4.3. Impact of time sensitivity factor

In the second instance of simulation runs, we have studied the impact of the Time
Sensitivity Factor (λ) on the performance of the proposed assessment model. We have
varied the value of λ from 0.1 to 1 with a step value of 0.1. We fixed the number of
time slots to 1000 (#days = 1000).

Figure 5 depicts the effect of λ on the global F-Measure. Values of global F-
Measure are geometric means of the F-measure values of the five classes, which are
assessed using Eq.17. Note that all used scores are the mean of 10 simulation round
values.

The figure shows that: (i) F-measure is slightly increased when λ varies from 0.1
to 0.3. (ii) F-measure is steady with the top value when λ varies from 0.3 to 0.9. (iii)
However, F-measure considerably decreases when λ varies from 0.9 to 1. From these
observations, we can conclude that the best performance of our reputation assessment
model is when λ ranges in the interval of [0.3, 0.9].

4.4. Effect of the punishment mechanism

In the third instance of simulation runs, we investigated how the punishment mech-
anism affects the assessment of reputation scores. We fixed the simulation parameter
with the values listed in Table 5, and varying maliciousness density from 0% to 100%.
In each run, we assess service reputation scores in two manners: (i) by applying the
punishment mechanism, and (ii) without applying this punishment mechanism. Figure
6 shows an F-Measure comparison between the obtained results. From this figure, we
observe the following.

22

Malicous user density (%)

0 20 40 60 80 100

F
M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

Without punishment

With punishment

Figure 6: Effect of punishment mechanism on F-Measure performances

First, when malicious user density varies from 0% to 20%, the performance of
the model with the application of the punishment mechanism is approximately equal
to the performance of the model without the application of this mechanism. This is
explained by the low impact of unfair feedback ratings (low number of malicious users)
on the assessed reputation scores (i.e., the value of unfair feedback ratings multiplied by
their user credibilities is neglected in comparison to the value of fair feedback ratings
multiplied by their user credibilities).

Second, when maliciousness density varies from 20% to 90%, the performance
of the model with the punishment application is enhanced (up to 20% when malicious
density is in the interval [50%-70%]) relatively to the performance of the model without
the punishment application. Thus, the model neutralizes effectively the impact of unfair
feedback ratings from the assessed reputation scores.

Third, when maliciousness density is greater than 90%, the model with and without
punishment application is unable to effectively assess the web service reputation scores
due to the important number of malicious users, thus the number of unfair feedback
ratings. Fortunately, as stated before, these malicious densities are unrealistic and much
lower densities are expected in real-world.

Finally, we can safely draw the conclusion that the application of the punishment
mechanism increases the performance of the proposed reputation assessment model.

4.5. Performance comparison

In this section, we compare the performance of the proposed reputation assessment
model with the three following reputation assessment approaches:

1- The normal approach (labeled Normal), where the reputation is assessed as the
average of the collected feedback ratings, without considering any other metric such as
the time sensitivity factor or the user credibility factor.

2- The approach proposed by Wang et al. [3] (labeled Wang et al.), where the

23

reputation score q(s j) of service S j is assessed as follows:

q(s j) =
1
n

n

∑
i=1

ri

where ri represents the i-th feedback rating, n (n=1,2, ...) is the number of feedback
ratings. Note that the approach assesses reputation values using only pure feedback
ratings (fair ratings or adjusted malicious ratings), because the approach applies a
malicious feedback ratings prevention scheme based on the Cumulative Sum method
(CUSUM). CUSUM monitors n feedback ratings sample interval. For each sample
interval, they assign a score Z(yi) which is assessed as follows:

Z(yi) =
µ1−µ0

σ2 (yi−
µ1−µ0

2
)

where, rating feedback sample intervals are represented by {y1,y2, ...} and the variable
yi(yi = ∑

m
i=1 ri) (i≤ j ≤ n) (m = 1,2, ...), and µ0 and µ1 are the mean feedback rating

traffic before and after the change. When a sample interval is available, the CUSUM fi
is updated as follows:

fi = max(fi−1 +Z(yi),0)

if fi ≥ h then a positive shift occurs in the n-th sample which means that there is an
abnormal detection point (presence of malicious feedback rating). In our implementa-
tion of this scheme, we set h to 0.7 based on the author’s experiment settings.

3- The approach proposed by Mekouar et al. [30] (labeled TrustWS), where the
reputation of a web service is assessed as the difference between positive and negative
feedback ratings divided by the sum of both. Reputation is set to 0 when the sum of
feedback ratings is equal to 0. This approach does not include neither time sensitivity
factor nor the credibility of users for reputation assessment.

4.5.1. Results of the Comparison
We present in Figure 7 a comparison between the reputation scores assessed by our

model and reputations scores obtained by the three approaches cited above, using 25
%as malicious user density parameter. The reference baseline of this comparison is the
ideal reputation scores that are presented by a simple solid line in the different plots
(a-e).

From the figure, we can see that our reputation scores are closer to the ideal repu-
tation than scores obtained by other approaches, for the five different service classes.

We notice also that reputation scores assessed by Wang’s approach are also steady
and fairly close to the ideal reputation scores for the first, second and the fifth classes of
services. However, the prevention scheme considers fair ratings received after an abrupt
change of service QoS as malicious feedback rating, since they produce a positive shift
detected by CUSUM. Therefore, the approach shows an insignificant deviation from
the ideal reputation in the third and fourth service classes, during the second half of
evaluation period as depicted in graph (c) and (d). This limitation is highlighted by the
same authors in their paper [3] (Section 5.4).

24

(b) Class 2

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

1,0
(c) Class 3

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

1,0

(d) Class 4

TimeSlot (day)

0 20 40 60 80 100

R
e

p
u

ta
ti
o

n

0,0

0,2

0,4

0,6

0,8

1,0
(e) Class 5

TimeSlot (day)

0 20 40 60 80 100

R
e
p
u
ta

tio
n

0,0

0,2

0,4

0,6

0,8

TimeSlot (day)

0 20 40 60 80 100

R
e

p
u
ta

ti
o

n

0,0

0,2

0,4

0,6

0,8

1,0

Ideal

Our method

Normal

TrustWS

Wang et Al

(a) Class 1

Figure 7: Ideal and compared assessed reputations with 25% of malicious user density

Moreover, TrustWS successfully assesses the reputation of services that maintain
steady high QoS as depicted in Figure 7-(a), in the first half of graph (c), and the second
half of graph (d).

In addition, reputation values assessed by the normal method converge to the ideal
reputation for services with steady low QoS as we can see in graph (b). Unfortunately,
the non-inclusion of credibility and time sensitivity factors affects the performance of
TrustWS and the normal method to assess correctly reputation scores in the other cases.

4.5.2. Performances comparison with alteration of malicious user density
For further performance comparison between the four approaches, we conducted

other simulation runs, using Table 5 parameters and varying the density of malicious
users. Each experiment is run 10 times and the averages of MEA and F-Measure are
measured. For better visibility, we plotted MEA and F-Measure results respectively in
Figures 8 and 9. The results show the following:

• Under different settings, our reputation assessment model obtains the smallest
MAE and the highest F-Measure values (up to 97%) consistently, within the
interval [0%, 70%] of malicious user density. These results indicate a better
accuracy of the reputation assessment.

• The approach of Wang et al. obtains smaller MAE and high F-Measure values
when services maintain stable QoS (i.e., reasonable deviations are included).
However, reputation scores diverge from the ideal values when service QoS is

25

(f) Global - MEA

Malicious Density

20 40 60 80 100
M

e
a

n
 A

b
s
o

lu
te

 E
rr

o
r

0.0

0.2

0.4

0.6

0.8

1.0

(a) Class 1

Malicious Density

20 40 60 80 100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0

(b) Class 2

Malicious Density

20 40 60 80 100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0
(c) Class 3

Malicious Density
20 40 60 80 100

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

0.0

0.2

0.4

0.6

0.8

1.0

Our Method

Normal

TrustWs

Wang et Al.

(e) Class 5

Malicious Density
20 40 60 80 100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0
(d) Class 4

Malicious Density
20 40 60 80 100

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Mean Absolute Error comparison with the alteration of malicious users’ density (a smaller MAE
means a better performance)

(a) Class 1

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

(b) Class 2

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100
(c) Class 3

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

(d) Class 4

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

(e) Class 5

Malicious Density (%)

20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

(f) Global - FMeasure

Malicious Density (%)
20 40 60 80 100

F
-M

e
a
s
u
re

 (
%

)

0

20

40

60

80

100

Our Method

Normal

TrustWs

Wang et Al.

Figure 9: F-Measure performance comparison with the alteration of malicious users density

26

quickly and significantly upgraded or degraded (services suddenly change from
good to bad or from bad to good). This divergence is presented by the increase
of MAE and the decrease of F-Measure, such as the case with the services of
classes 3 and 4. Hence, the global MEA and the global F-Measure are negatively
influenced by this divergence, as it is depicted, respectively, in Figures 8 -(f)
and 9 -(f).

• Even if it does not include credibility and time sensitivity factors, TrustWS mea-
sures accurately the reputation of services in the first class (services with con-
sistent high QoS), as it is presented by high F-Measure scores in Figure 9-(a).
Nevertheless, for the same reason, it fails to assess accurate reputation scores for
the remaining classes, as it is shown in plots (b-f) in Figure 9.

• Likewise to TrustWS, the normal approach assesses correctly the reputation of
the services of the second class (i.e., services with steady low QoS), as the asso-
ciated MAE and F-Measure indicate in the figures. However, this naive method
fails for the other classes.

• Indeed, the proposed method do not perform well when malicious densities
reaches high densities (i.e. 75% or more of users are malicious). Mainly, this
is due to the majority voting principle based on which the credibility of users are
evaluated. So, when the majority are malicious in a system, obviously it becomes
difficult to detect the honest users by trying to group them based on positive and
negative rating that they provide. Fortunately, Whitby et al. [29] and Malik et al.
[23] claim that high maliciousness densities are unrealistic in real world appli-
cations. Therefore, the method that we propose can safely be used in real world
scenarios where maliciousness densities are below 70%.

4.6. Limitations & Threats to Validity

The experiment shows that the proposed reputation assessment model provides an
accurate measurement of service reputation. Nonetheless, few limitations can be high-
lighted:

• Our model is not adequate for assessing the reputation of old services with a very
low number of feedback ratings, or services with a long discontinuous feedback
rating. The more feedback ratings the system collects, the more accurate results
the system provides;

• In case of open-systems where users do not login to the system, the use of IP
addresses as a mechanism to identify users impose a problem when dynamic
IP addresses are used, i.e. feedbacks sent by the same user with different IP
addresses are not recognized to belong to the same user, and hence, threats to
evaluate user credibilities and reputation scores raise;

• To guarantee the performance of the system, it is recommended that the system
starts by a collection of fair feedback ratings.

27

5. Related work

Reputation and trust mechanisms have been a topic of interest in many fields,
including networking [31, 32], edge computing [33], electronic negotiation and E-
commerce systems [34–36]. In this section, we present an overview of the related work
in the context of Web and cloud services. Comprehensive literature reviews about the
topic are available in [37–40].

Dou et.al [10] presented a distributed trust evaluation protocol for Inter-Cloud
ecosystems. In this work, feedback is protected by homomorphic encryption with ver-
ifiable secret key sharing. Second, to cater to the dynamic nature of Inter-Cloud, trust
evaluation can be conducted in a distributed manner and is operational even when some
parties are offline. Third, to facilitate customized trust evaluation, a mechanism is used
to store feedbacks, such that it can be processed flexibly while protecting feedback
privacy. Though this approach can be effective in evaluating trust, anonymizing users
makes the evaluation of user credibility an impossible task. This approach assumes
that all users are honest.

Malik and Bouguettaya proposed RateWeb [23]: a decentralized reputation system
for web service orchestrations. The proposed architecture is based on a peer to peer
(P2P) service model where each peer (service) is a consumer and a provider of services
in the same time. RateWeb uses an ontology-based community model. The frame-
work takes into account the presence of malicious raters that may exhibit oscillating
honest and dishonest behavior. The system can thus consider and give more weights
to the newest service rates. One of the strengths of this approach is the inclusion of
many factors for the assessment of reputation. However, this solution do not consider a
central reputation management entity that provides a unified assessment of reputation.
That is, each peer in the system is responsible for collecting, updating and calculat-
ing the reputation of other peers. Such a system is thereby difficult to implement as a
recommender system indexing thousands of stateless services.

Wang et al. propose a reputation measurement and malicious feedback rating pre-
vention approach for web service recommendation systems [3]. The goal of this ap-
proach is to reduce the deviation of reputation measurement of web services, and to
improve the success ratio of the service recommendation. The approach passes through
two phases before computing services’ reputation scores: the malicious feedback rating
detection phase and the feedback rating adjustment phase. In the first phase, the authors
apply the Commutative Sum Method (called CUSUM) to detect all the malicious col-
lected feedback ratings. In the second phase, the authors deal with the computation of
feedback similarity between different users using the Pearson Correlation Coefficient
to adjust the feedback ratings. the authors propose a Bloom filter-based prevention
scheme to identify the IP addresses with offending feedback ratings and filter them
out. The approach considers that new and old feedback ratings have the same influ-
ence on the reputation assessment, but in real scenarios, service performances are in
dynamic changes.

Xu et al [41] propose a selection framework of cloud services based on a user rep-
utation perspective. Their goal is to identify reliable users in order to provide service
selection with reliable QoS information. This model makes a strong assumption that
each user has invoked the services and observed the QoS data. The user reputation is

28

then calculated based on the difference among the QoS data of other users. Unfortu-
nately, such strong assumption that each user monitors all the services that she/he uses
and reports data, is not applicable in real world scenarios, but more likely, users send
one feedback rating that expresses their opinion.

Su et al [42] propose a trust-aware prediction approach for service recommenda-
tion. They start by calculating the reputation of users based on clustering and a beta
distribution approach. Then, they identify similar services using the computed repu-
tation values and similarity measures. Finally, the information of trustworthy similar
users and similar services is then fully utilized to make accurate QoS prediction. The
authors report that their method is accurate, however in case of matrix sparsity, the PCC
(Pearson correlation Coefficient) used for similarity assessment may not give good re-
sults. In addition, the age of rating, which is an important factor, is not included in the
evaluation process.

Li et al [11] propose a framework to enhance the security of cloud-based IoT sys-
tems. They assess the trustworthiness of cloud services based on a combination of rep-
utation and security metrics. The framework employs an objective weight assignment
approach to assign the respective relative importance weight factors to the security level
and reputation level. Then it aggregates them in order to obtain the quantitative trust-
worthiness of cloud services. Reputation values in this approach are the aggregation
of feedback ratings derived from cloud service providers. This approach assumes that
security related information is available to be included in the evaluation process.

In [41], Xu et al. proposed MeURep, an approach that evaluates the reputation
of users based on the historical QoS data provided by the users in personalized cloud
services. The authors present two algorithms that consider that if the QoS data provided
by a user is very different from the median, then this user is probably not reliable. The
approach deals with reputation to measure QoS and not for ranking services.

The authors in [4] propose a solution for reputation escalation and unfair reputa-
tion detection by providing a solution for distinguishing between fake and trustworthy
ratings. The solution is based on a randomized algorithm that approximates iteratively
the mean ratings for each product (service) with high probability of confidence and
thus with very low probability of randomly choosing unfair rating in the calculation
of reputation. Despite the obtained accuracy in detecting unfair ratings, the approach
does not show how to bootstrap the reputation of newcomers nor distinguish between
old and recent ratings.

Ramos and Boratto in [43] divide users into classes based on the demographic
attributes that define them and introduce the concept of disparate reputation (DR), cap-
turing if users belonging to different classes are given systematically lower/higher rep-
utation values. The authors propose an algorithm that ensures that reputation is inde-
pendent of users sensitive attributes, and additionally they propose a step to introduce
reputation independence that may be included in any ranking system which computes
rankings as a weighted average of ratings. The approach heavily depends on demo-
graphic relationships between users, and thus it does not support bootstrapping new
services.

Saude et al. [7] propose a reputation-based ranking system that uses multi-partite
rating subnetworks. The proposed method clusters users by their similarities using
three measures, two of them based on Kolmogorov complexity. The authors focus on

29

the resistance of user ranking to bribery and targeting to find optimal bribing strate-
gies. The author propose to reflect the diversity of preferences by assigning different
rankings to the same item in different groups of users. Based on the experiment, the so-
lution is robust to different security attacks. This method calculates user scores through
a weighted average instead of using majority voting and do not propose an efficient way
to bootstrap the reputation of unranked items.

The authors in [5] investigate the existing unfair rating detection models by ap-
plying them on realistic application settings in an interactive manner. The process of
the unfair ratings’ detection is conducted by involving the interactions between the
application system designer and these models. The proposed Customized Interactive
System (CIS) allows an application designer to interact with these unfair rating de-
tection models in one of the following five aspects: customizing scene, customizing
attack, customizing model, customizing metrics and customizing result presentation.
The CIS architecture consists of three layers: data layer, logical layer and interactive
layer. After a series of interactions, the application designer is able to make a wise
choice of the detection model with the appropriate parameters.

From a practical point of view, the most available information that exists in online
service-based systems for calculating trust are ratings in the form of numerical val-
ues or textual raw data, users rating history records and time stamps of the recorded
ratings. Thus, in this work, we proposed to leverage the available information to ob-
tain an effective reputation evaluation. Our model includes a punishment mechanism
of suspicious users to ensure an efficient reputation measurement from pure feedback
ratings. This mechanism is derived from the evaluation of raters credibility using a
majority voting principle and by distinguishing between positive and negative feed-
back ratings. The model also supports time sensitivity factor and use the credibility
factor for weighting ratings during the assessment of reputation. A bootstrapping of
newcomers’ reputation is also considered in our work. It is based on the assumption
that QoS scores are in correlation with reputation and thus a multiple regression model
built from similar services can predict the reputation of the newcomer given its QoS
values. Finally, the approach is a centralized solution which is appropriate for building
recommendation systems for real-world services.

6. Conclusion

In this paper, we presented a reputation management framework for service recom-
mendation. We focused in particular on presenting the mathematical model for assess-
ing reputation from user feedback ratings. A mechanism of suspicious user punishment
has been included in the model to ensure the assessment of reputation from fair feed-
back ratings. In addition, the model takes into consideration time sensitivity, where
old user ratings are given less importance in the reputation assessment. Moreover,
we introduced a new bootstrapping technique for estimating the initial reputation of
newcomer services based on service similarity and initial advertised QoS. We reported
simulation-based experiments, demonstrating the performance and effectiveness of the
proposed reputation assessment model.

As a future work, we plan to complete the model with a machine/deep learning
algorithm for reputation and QoS prediction, based on sentiment analysis in textual

30

user feedbacks. Besides, we will focus on the study of trust and reputation of cloud
services where significant challenges have to be addressed, due to the highly dynamic,
distributed and nontransparent nature of these services.

References

[1] N. Limam, R. Boutaba, Assessing software service quality and trustworthiness at
selection time, IEEE Transactions on Software Engineering, 36 (4) (2010) 559–
574.

[2] M. Daaji, A. Ouni, M. M. Gammoudi, S. Bouktif, M. W. Mkaouer, Multi-criteria
Web Services Selection: Balancing the Quality of Design and Quality of Service,
ACM Transactions on Internet Technology (TOIT) 22 (1) (2021) 1–31.

[3] S. Wang, Z. Zheng, Z. Wu, M. Lyu, F. Yang, Reputation Measurement and Ma-
licious Feedback Rating Prevention in Web Service Recommendation Systems,
IEEE Transactions on Services Computing PP (99) (2014) 1–1, ISSN 1939-1374,
doi:\bibinfo{doi}{10.1109/TSC.2014.2320262}.

[4] M. Rezvani, M. Rezvani, A randomized reputation system in the presence of
unfair ratings, ACM Transactions on Management Information Systems (TMIS)
11 (1) (2020) 1–16.

[5] K. Lv, Y. Liu, J. Chen, D. Wang, Z. Tian, An Interactive System for Unfair Rating
Detection Models in a Customized Perspective, in: 2021 IEEE 20th International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), IEEE, 871–878, 2021.

[6] A. Alqwadri, M. Azzeh, F. Almasalha, Application of machine learning for online
reputation systems, International Journal of Automation and Computing 18 (3)
(2021) 492–502.

[7] J. Saúde, G. Ramos, L. Boratto, C. Caleiro, A Robust Reputation-Based Group
Ranking System and Its Resistance to Bribery, ACM Transactions on Knowledge
Discovery from Data (TKDD) 16 (2) (2021) 1–35.

[8] R.-H. Li, J. Xu Yu, X. Huang, H. Cheng, Robust reputation-based ranking on
bipartite rating networks, in: Proceedings of the 2012 SIAM international confer-
ence on data mining, SIAM, 612–623, 2012.

[9] O. A. Wahab, R. Cohen, J. Bentahar, H. Otrok, A. Mourad, G. Rjoub, An
endorsement-based trust bootstrapping approach for newcomer cloud services,
Information Sciences 527 (2020) 159–175.

[10] Y. Dou, H. C. Chan, M. H. Au, A distributed trust evaluation protocol with privacy
protection for intercloud, IEEE Transactions on Parallel and Distributed Systems
30 (6) (2018) 1208–1221.

31

[11] X. Li, Q. Wang, X. Lan, X. Chen, N. Zhang, D. Chen, Enhancing cloud-based
IoT security through trustworthy cloud service: An integration of security and
reputation approach, IEEE Access 7 (2019) 9368–9383.

[12] Q. Wu, Q. Zhu, P. Li, A neural network based reputation bootstrapping approach
for service selection, Enterprise Information Systems 9 (7) (2015) 768–784.

[13] Z. Malik, A. Bouguettaya, Reputation bootstrapping for trust establishment
among web services, Internet Computing, IEEE 13 (1) (2009) 40–47.

[14] C. E. Player, N. Griffiths, Bootstrapping trust and stereotypes with tags, in: Pro-
ceedings of the 19th International Workshop on Trust in Agent Societies (Trust at
AAMAS), 2017.

[15] V. L. Hallappanavar, C. M. Bulla, M. N. Birje, ANN based estimation of reputa-
tion of newcomer web services in fog computing, in: 2021 International Confer-
ence on Computer Communication and Informatics (ICCCI), IEEE, 1–7, 2021.

[16] S. Mistry, A. Bouguettaya, Reputation Bootstrapping for Composite Services us-
ing CP-nets, IEEE Transactions on Services Computing .

[17] L. Qu, A. Bouguettaya, A. G. Neiat, Confidence-aware reputation bootstrap-
ping in composite service environments, in: International Conference on Service-
Oriented Computing, Springer, 158–174, 2017.

[18] S. Mistry, L. Qu, A. Bouguettaya, Layer-based Composite Reputation Bootstrap-
ping, ACM Transactions on Internet Technology (TOIT) 22 (1) (2021) 1–28.

[19] Z. Azmeh, J.-R. Falleri, M. Huchard, C. Tibermacine, Automatic web service tag-
ging using machine learning and wordnet synsets, in: Web Information Systems
and Technologies, Springer, 46–59, 2011.

[20] J.-R. Falleri, Z. Azmeh, M. Huchard, C. Tibermacine, et al., Automatic tag iden-
tification in web service descriptions, in: WEBIST’10: The International Confer-
ence on Web Information Systems and Technology, 2010.

[21] O. Tibermacine, C. Tibermacine, F. Cherif, A Practical Approach to the Measure-
ment of Similarity between WSDL-based Web Services, Revue des Nouvelles
Technologies de l’Information 6th French-speaking Conference on Software Ar-
chitectures, RNTI-L-7 (2014) 03–18.

[22] Z. Xu, P. Martin, W. Powley, F. Zulkernine, Reputation-enhanced qos-based web
services discovery, in: IEEE International Conference on Web Services (ICWS
2007), IEEE, 249–256, 2007.

[23] Z. Malik, A. Bouguettaya, Rateweb: Reputation assessment for trust establish-
ment among web services, The VLDB JournalThe International Journal on Very
Large Data Bases 18 (4) (2009) 885–911.

32

[24] L. Mekouar, Y. Iraqi, R. Boutaba, Incorporating trust in network virtualization, in:
2010 IEEE 10th International Conference on Computer and Information Technol-
ogy (CIT), IEEE, 942–947, 2010.

[25] J. R. Douceur, The sybil attack, in: Peer-to-peer Systems, Springer, 251–260,
2002.

[26] O. Tibermacine, C. Tibermacine, F. Cherif, Estimating the reputation of new-
comer web services using a regression-Based method, Journal of Systems and
Software 145 (2018) 112 – 124, ISSN 0164-1212, doi:\bibinfo{doi}{https:
//doi.org/10.1016/j.jss.2018.08.026}.

[27] J. L. Herlocker, J. A. Konstan, L. G. Terveen, J. T. Riedl, Evaluating collabora-
tive filtering recommender systems, ACM Transactions on Information Systems
(TOIS) 22 (1) (2004) 5–53.

[28] J. Cao, Z. Wu, Y. Wang, Y. Zhuang, Hybrid Collaborative Filtering algorithm for
bidirectional Web service recommendation, Knowledge and information systems
36 (3) (2013) 607–627.

[29] A. Whitby, A. Jøsang, J. Indulska, Filtering out unfair ratings in bayesian repu-
tation systems, in: Proc. 7th Int. Workshop on Trust in Agent Societies, vol. 6,
2004.

[30] L. Mekouar, Y. Iraqi, TrustWS: A Trust Management System for Web Services,
in: International Symposium on Web Services, At Dubai, UAE, 2010.

[31] J. M. J. Valero, P. M. S. Sánchez, M. G. Pérez, A. H. Celdrán, G. M. Pérez, To-
ward pre-standardization of reputation-based trust models beyond 5G, Computer
Standards & Interfaces 81 (2022) 103596.

[32] Y. Ouyang, Z. Zeng, X. Li, T. Wang, X. Liu, A verifiable trust evaluation mecha-
nism for ultra-reliable applications in 5G and beyond networks, Computer Stan-
dards & Interfaces 77 (2021) 103519.

[33] W. Zheng, B. Chen, D. He, An adaptive access control scheme based on trust
degrees for edge computing, Computer Standards & Interfaces 82 (2022) 103640.

[34] O. Tafreschi, D. Mähler, J. Fengel, M. Rebstock, C. Eckert, A reputation system
for electronic negotiations, Computer standards & interfaces 30 (6) (2008) 351–
360.

[35] F. G. Mármol, G. M. Pérez, Towards pre-standardization of trust and reputation
models for distributed and heterogeneous systems, Computer Standards & Inter-
faces 32 (4) (2010) 185–196.

[36] Y.-Y. Chang, S.-C. Lin, D. C. Yen, J.-W. Hung, The trust model of enterprise
purchasing for B2B e-marketplaces, Computer Standards & Interfaces 70 (2020)
103422.

33

[37] D. D. S. Braga, M. Niemann, B. Hellingrath, F. B. D. L. Neto, Survey on com-
putational trust and reputation models, ACM Computing Surveys (CSUR) 51 (5)
(2018) 1–40.

[38] M. Chiregi, N. J. Navimipour, A comprehensive study of the trust evaluation
mechanisms in the cloud computing, Journal of Service Science Research 9 (1)
(2017) 1–30.

[39] F. G. Mármol, M. Q. Kuhnen, Reputation-based Web service orchestration in
cloud computing: A survey, Concurrency and Computation: Practice and Experi-
ence .

[40] M. Nikravan, M. H. Kashani, A review on trust management in fog/edge com-
puting: Techniques, trends, and challenges, Journal of Network and Computer
Applications (2022) 103402.

[41] J. Xu, X. Du, W. Cai, C. Zhu, Y. Chen, MeURep: A novel user reputation calcu-
lation approach in personalized cloud services, PloS one 14 (6).

[42] K. Su, B. Xiao, B. Liu, H. Zhang, Z. Zhang, TAP: A personalized trust-aware
QoS prediction approach for web service recommendation, Knowledge-Based
Systems 115 (2017) 55–65.

[43] G. Ramos, L. Boratto, M. Marras, Robust Reputation Independence in Ranking
Systems for Multiple Sensitive Attributes, arXiv preprint arXiv:2203.16663 .

34

