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Machine learning‑based detection 
of label‑free cancer stem‑like cell 
fate
Alexis J. Chambost1,2,5, Nabila Berabez1, Olivier Cochet‑Escartin2, François Ducray1,6, 
Mathieu Gabut1, Caroline Isaac1, Sylvie Martel1, Ahmed Idbaih3, David Rousseau4,7*, 
David Meyronet1,5,7 & Sylvain Monnier2,7*

The detection of cancer stem‑like cells (CSCs) is mainly based on molecular markers or functional 
tests giving a posteriori results. Therefore label‑free and real‑time detection of single CSCs remains 
a difficult challenge. The recent development of microfluidics has made it possible to perform high‑
throughput single cell imaging under controlled conditions and geometries. Such a throughput 
requires adapted image analysis pipelines while providing the necessary amount of data for the 
development of machine‑learning algorithms. In this paper, we provide a data‑driven study to assess 
the complexity of brightfield time‑lapses to monitor the fate of isolated cancer stem‑like cells in 
non‑adherent conditions. We combined for the first time individual cell fate and cell state temporality 
analysis in a unique algorithm. We show that with our experimental system and on two different 
primary cell lines our optimized deep learning based algorithm outperforms classical computer vision 
and shallow learning‑based algorithms in terms of accuracy while being faster than cutting‑edge 
convolutional neural network (CNNs). With this study, we show that tailoring our deep learning‑based 
algorithm to the image analysis problem yields better results than pre‑trained models. As a result, 
such a rapid and accurate CNN is compatible with the rise of high‑throughput data generation and 
opens the door to on‑the‑fly CSC fate analysis.

The precise identification of cancer stem cell (CSC) phenotypes is a prerequisite to improve our understanding 
of their biology, patient diagnosis as well as future treatments. Until now, the specific identification of cell types 
was performed a posteriori by detecting a combination of  markers1 and could not be easily implemented in living 
cells, especially in patient-derived samples. The tumorsphere formation assay is an alternative and complemen-
tary functional test based on CSC self-renewing  capacity2. Indeed, in non-adherent culture conditions, CSCs are 
characterized by their ability to divide in suspension while maintaining cell-cell interactions to form structures 
of hundreds to thousands of cells called tumorspheres, similar to neural stem cell derived  neurospheres3. The 
proportion of CSCs within a given cell population derived from either tumor samples or in vitro cell cultures 
can therefore be evaluated based on their capacity to survive as single cells and/or to reconstitute a hierarchical 
population of cancer cells in vitro4. Studying the dynamics of the earliest steps of the formation of tumorspheres 
at the single-cell level to determine cell fate can therefore bring new insights into the biology of CSCs while also 
shortening the evaluation of CSC proportions and their contribution to tumor resistance within patient-derived 
samples.

Labeling living biological samples is not systematically possible and, in addition, it might result in biochemi-
cal artefacts or phototoxicity, which can alter cell  behavior5 and  metabolism6. Brightfield microscopy is a widely 
available imaging technique to assess cell morphological characteristics, but its lack of specificity and contrast 
requires the development of dedicated image analysis tools to quantify different cellular phenotypes. Several 
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studies have made use of image analysis algorithms to provide quantified data from brightfield images. For 
example, many classical computer vision algorithms (CCVA), i.e. based on a few sets of expert selected features, 
have been developed so far, such as thresholding methods for cell and vesicle  segmentation7, or intensity projec-
tion from z-stacks for macrophages  segmentation8. Brightfield images generally display high sample-to-sample 
variability and classical handcrafted methods based on few features and fixed decision rules require advanced 
programming skills and long  development9,10.

Microfluidics can produce the high-throughput data needed for physiologically relevant single-cell analysis. 
Thanks to this approach, machine learning-based techniques can now be used for image  analysis11. With shallow 
learning based algorithms (SLBA), the decision rules can be data driven instead of handcrafted by  experts12,13. 
Deep learning-based algorithms (DLBAs) are revolutionary since they considerably reduce the time of algorithm 
development. The power of DLBAs in deciphering the complexity of image analysis problems has already been 
demonstrated on similar  topics14–16. DLBAs have proven to be more efficient than CCVAs for white blood cell 
 classification17, and in a classification problem of multi-cellular spheroids, while convolutional neural networks 
(CNNs) have outperformed SLBAs when trained on a large data  set18. Along the same line, improving fea-
ture extraction thanks to transfer learning from pre-trained CNNs can also enhance histopathological biopsy 
 classification19. Pre-trained CNNs have already provided excellent results to detect cell death or differentiation 
from cells grown in adherent conditions, however these cell features and geometry are very different from the 
problem faced in our study with cells expanding in non-adherent conditions and therefore cannot be applied 
 straightforwardly20–22.

Here, we provide a data driven study to automatically process brightfield images of cells growing in suspension 
isolated in microwells of a microfabricated chip (Fig. 1a and b)23,24. Despite a trivia appearance, the detection 
of different cell fates in these conditions is challenging as i) cells can exhibit a large variety of shapes, ii) the cell 
morphology is a lot more compact when grown in suspension compared to adherent conditions, iii) cells can 
be out-of-focus since they are cultured in non-adherent conditions, iv) images of these cells are very different 
from classical computer vision data base such as  ImageNet25. To detect single cells and dynamically track their 
fate, we have developed a full DLBA pipeline for the high-throughput prediction of cancer cells status (divi-
sion, death or quiescence) from large amount of label-free brightfield microscopy images. In this article, we 

EmptySingle cellMultiple cells

Cell divisionCell death

Singles Multiples Death Empty

Convolution (8 filters)
ReLu

Max pooling (2,2)

Convolution (16 filters)
ReLu

Max pooling (2,2)

Convolution (32 filters)
ReLu

Max pooling (2,2)

Convolution (64 filters)
ReLu

Flatten

Fc layer (1024 neurons)
ReLu

Drop out (80%)

Fc layer (4 neurons)
Softmax

a

b

c

Single cell

Step 1 :
Single cell detection

Step 2:
Fate detection

Figure 1.  Description of our deep-learning based algorithm (DLBA). (a) Visual abstract of the image analysis 
problem. First step: detection of isolated single cells from 2D brightfield images. Second step: when a single cell 
was detected, the 96-h time-lapse of the corresponding well was analysed in order to detect cell division or cell 
death. (b) Examples of the different classes defined for our DLBA: single cells, multiple cells, dead cells or empty 
well. (c) Model of our optimized DLBA : 4 convolution layers before classification of images between “Singles”, 
“Multiples”, “Death” and “Empty”. Scale bar: 50 µm.
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describe how we tailored a DLBA to microfabricated wells to track cell-fate from two primary CSC lines. We 
compare our solution with a classical computer vision algorithm (CCVA), a shallow learning-based algorithm 
(SLBA) and several standard DLBAs. We also assayed the robustness of our DLBA on a CSC model different 
from the one used for the training. Taken together, we demonstrate that for this problem (defining the fate of 
non-adherent cells) our algorithm is more efficient than all CCVA, SLBA and pretrained large models tested 
as it provides equivalent or better results while allowing on-the-fly analysis of high-throughput acquisitions by 
saving processing time and power.

Results
In this study, we primarily focused on addressing a problem of CSC fate prediction after being individually 
isolated in microwells. Our approach was divided into two phases: first, classify each microwells based on its 
content at the beginning of the assay: empty, alive single cell, dead single cell or more than one cell. Second, the 
results of the classification were linked to a 96-h time lapse analysis using a decision tree to assess the fate of the 
single CSCs in the microwells.

Deep learning‑based algorithm. In informational terms, we formulate the problem as an invariant to 
translation classification. We therefore developed a CNN adapted to our classification problem, refered to as 
“our DLBA” in the rest of the text. We trained our CNN on a data set which contains 17,378 annotated images 
of glioblastoma-derived N14-0510 CSCs imaged with a 20× magnification every 30 min, a temporal resolution 
selected according to the proliferation characteristics of N14-0510 cells in this culture condition. This model was 
based on successive layers of convolution and max pooling upstream of a first fully connected layer together with 
a second fully connected layer that classified images as “Singles”, “Multiples”, “Death” or “Empty” (Fig. 1c, the 
data sets are described in the Methods section and in the Supplemental Fig. S1a and b). Wells classified as “Mul-
tiples” can either contain two cells, sparse single cells or aggregates of cells. Classification based on brightfield 
images was controlled using fluorescent markers for cell numbers and cell death (Supplemental Fig. S2a and b).

We have optimized the number of layers, the number of filters per convolution layer and the kernel size: four 
convolution layers of 8, 16, 32 and 64 filters respectively, and a kernel size of 15× 15 pixels gave the best accuracy 
(Supplemental Fig. S1c). Secondly, we have determined the optimal number of neurons in the first fully con-
nected layer: 1024. Because of the high number of neurons in the first fully connected layer, a 80% drop out rate 
provided the best accuracy (Supplemental Fig. S1d–e). Finally, computing circa 8 million features (Supplemental 
Table S1), our DLBA reached an accuracy of 91.2% (±0.17%) (Fig. 3a). More precisely, the detection precision 
for “Singles”, Multiples” and “Empty” classes reached 81.7%, 93.2% and 97.6%, respectively. Nevertheless, some 
images were misclassified, notably for “Singles” and “Death” classes (Supplemental Fig. S1f).

Classical computer vision and shallow learning‑based algorithms. To offer a baseline compari-
son with our optimized DLBA, we also investigated our classification problem with a classical computer vision 
algorithm (CCVA). We developed a CCVA that pre-processed images in a few steps (Fig. 2a, b: (i) first, objects 
were segmented according to intensity thresholds, (ii) the largest and smallest segmented objects were filtered 
depending on their size in pixels, (iii) the remaining objects were fitted to an ellipse, (iv) according to the area 
and the roundness of the ellipse, the objects were classified as “Singles”, “Multiples”, “Death” or “Empty” if no 
object was segmented. Five features were analysed by the CCVA: (i) Intensity thresholding was based on the 
Otsu  method26, (ii) size filtering has been empirically optimized based on 175 images of validation data set 
(Supplemental Table S3), (iii) position, as bordering objects were removed, (iv) finally, roundness and (v) area 
thresholds were optimized among a wide range of values to provide the best accuracy (Supplemental Fig. S4a). 
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Figure 2.  Working principles of the CCVA and SLBA tested in this study. (a) For the CCVA, images were 
processed through an intensity threshold before a size filtering. Remaining objects were fit to an ellipse. First 
row: processing of a well containing a single cell, second row: processing of a well containing multiple cells. (b) 
According to the area and roundness of the ellipse, images were classified as “Singles”, “Multiples”, “Death” or 
“Empty”. (c) For the SLBA, the first step of pixel classification segments cells from the background. Then, thanks 
to an object classification tool  (Ilastik27), images were classified between “Singles”, “Multiples”, “Death” and 
“Empty” categories. The first row shows the processing of an image classified as “Single”, second row image of 
well classified as “Multiple”. Colour code corresponds to Fig. 1. Scale bars show 50 μm.
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When applied to a test data set (Supplemental Fig. S1a, b), the CCVA only provided an accuracy of 65% (Fig. 3b). 
More precisely, it appeared that a lot of images with single or multiple cells were classified as “Empty” (circa 
57%), either because they were not segmented properly by intensity thresholding, or their size did not match the 
size filter. The image-to-image variability is large, more likely due to variations in illumination, cell morpholo-
gies, microwell shape and depth of field (Supplemental Fig. S4b) and explains why a CCVA with few features (5) 
provided a low detection accuracy.

As an additional comparison with our optimized DLBA, a similar analysis was undertaken with a SLBA. 
Random forest has been shown to be one of the most accurate  SLBA28. We therefore used a random forest clas-
sifier implemented under Ilastik  software27. Thanks to its pixel classification combined with object classification 
methods, several studies used this software for image  analysis13. Based on these studies, we performed a pixel 
classification step by training the software to segment cells from the background on 40 images from the valida-
tion data set (Supplemental Fig. S1a, b and Supplemental Table S3). Then, using an object classification method, 
segmented objects were classified between “Singles”, “Multiples”, “Death” or “Empty” (Fig. 2c). The SLBA pro-
cessed respectively 5 and 3 features for pixel classification and object classification steps (Supplemental Table S4). 
Applied to the test data set (Supplemental Fig. S1a, b), the SLBA performed a better classification than the CCVA: 
its accuracy reached 72% (Fig. 3b, c). While many images with cells were still classified as “Empty” (circa 13%), 
there were also a lot of misclassifications between “Singles” and “Multiples” classes (circa 16%), see Fig. 3c.
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Comparison of our DLBA with CCVA, SLBA and other CNNs. Our optimized DLBA proved to be a 
more accurate and a much faster (computation time circa 20 ms per image) classifier than the CCVA and SLBA 
previously described (Table 1 and Supplemental Fig. S5).

Our optimized DLBA has also been compared to other cutting edge CNNs (Table 1). For a similar purpose, 
Anagnostidis et al15 developed a simple similar CNN which provided a lower accuracy when applied to the 
test data set: 82% (±0.26%). We have also trained pre-trained CNNs (VGG16, InceptionV3, classical CNN and 
ResNet50) on our training data set. Although transfer learning-based algorithms were computing more fea-
tures and required more computation time, they did not show better accuracy than our optimized DLBA when 
applied on our test data set (although VGG16 gives close results 91.2% (±0.13%)) but for larger computation 
times (Fig. 3d).

Encoding of Temporal information. So far, our DLBA analysed only separated 2D images, but to assess 
the dynamics of single cell fate, temporal information of time-lapses need to be integrated. In addition, we con-
sidered that the temporal encoding could rescue some of our DLBA’s misclassification events. Indeed, two cells 
can adhere tightly to each other in suspension, while having the morphology of a single cell, but detecting events 
such as cytokinesis can demonstrate that two cells were actually present in the microwell instead of a single for-
tuitously assumed single cell. We have thus developed a post-analytical decision tree (Fig. 4a). The detection of 
single cells, cell divisions and cell death with this decision tree was evaluated by computation of recall and preci-
sion on fully annotated bright field time-lapses. It appeared that this method very efficiently detected single cells 
(recall: 93%; precision: 96%), cell divisions (recall: 67%; precision: 94%) and cell death (recall: 82%; precision: 
90%) (Time-lapse data set 1, Supplemental Tables S2 and S5). The impact of the frame-rate on the detection of 
divisions of our DLBA has also been investigated with the time-lapse data set 1. Increasing the interval between 
two frames induced a lower recall while the precision was not modified (Supplemental Table S6). The probability 
thresholds and the majority voting can be considered as hyper-parameters that have been empirically tuned. 
Besides, we have not seen any single cell escaping from its microwell during time-lapses annotation. Hence, we 
have not considered classification of image as “Empty” during the time-lapse of a microwell if a single cell was 
detected at the beginning of the acquisition.

In addition, the impact of imaging magnification was also investigated (Time-lapse data set 2, Supplemental 
Fig. S3 and Table S2). Recall and Precision were computed for two cell lines and showed similar results, although 
it appeared that the detection of cell death with higher (20× ) magnification images was more sensitive while lower 
magnification (10x) led to a more sensitive detection of cell divisions (See Supplemental Table S2).

Testing our DLBA on an independant model of CSCs. Although our DLBA was trained on N14-0510 
CSCs, we challenged it on the Time-lapse data sets 3 and 4, which were respectively composed of images of N14-
1525 cells with 20× and 10× magnifications (Supplemental Tables S5). N14-1525 cells are CSCs derived from 
another independent glioblastoma tumor and cultured as tumorspheres in the same non-adherent conditions 
as previously described for the N14-0510 cells. Recalls for the N14-1525 cells were overall slightly decreased 
compared to N14-0510 cells, but the precision of detection remained similar (Supplemental Table S2). N14-1525 
cells are larger than N14-0510 cells (Supplemental Fig. S3 and Supplemental Table S7) which may explain the 
lower recalls. Altogether, we can consider that the global performance remains excellent which suggests that our 
DLBA can be used on different CSC models.

Dynamics of cell divisions and cell death using our DLBA. As we compared the accuracy of our 
DLBA to other CNNs and assessed its robustness to different magnifications and brain CSC models, we next 
tested its ability to extract relevant biological features of these cells, such as time-resolved division and death 
rates. We performed 4 experiments with N14-0510 cells (3 replicates each). Brightfield time-lapses were acquired 
over 96 h, with a 20× magnification objective, using 80-min imaging intervals. Upon completion, all time-lapses 
were analysed with our DLBA. The analysis of each experiment took less than 1 h. In total, 2780 single cells were 
detected and 17% (±5%) underwent cell division within 96 h (Fig. 4b, c). When looking at the dynamic curve 
of cell divisions, we saw that most divisions occurred during the first 48 h, with a curve flattening after 60 h. 

Table 1.  Comparison of CCVA, SLBA, our optimized DLBA and other publicly available CNNs. For the 
CNNs, we show the mean accuracy ± standard deviation after three model trainings. The mean of computation 
time per image is given in seconds ± standard deviation.

Algorithm Machine learning Deep learning Transfer learning
Number of 
features Accuracy (%)

Computation time 
per image (s)

CCVA − − − 5 65 0.15± 0.1

SLBA + − − 8 72 281± 36

Classical  CNN15
+ + − 162,900 82± 0.26 0.02± 0.03

ResNet5020,22
+ + + 23,587,712 61.3± 1.53 0.06± 0.07

InceptionV329
+ + + 21,810,980 78.6± 0.06 0.09± 0.13

VGG1621
+ + + 17,943,108 91.2± 0.13 0.05± 0.04

our DLBA + + − 8,541,700 91.2± 0.17 0.02± 0.03
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Because the low number of late divisions (after 60 h) was overwhelmed by the initial numbers of single cells, 
computing dynamics did not allow a clear view of the latest divisions. In order to emancipate from the initial 
number of single cells, we have plotted the instantaneous division rate (Fig. 4b and d). The initial division rate 
was circa 0.03 division/hour, but interestingly, it was decreasing over time. Regarding cell death, 38% (±9%) of 
single cells died during the 96-h time-lapse (Fig. 4b, e). Compared to cell proliferation rates, the dynamics of 
cell death rather seemed linear, suggesting that instantaneous death rates should be relatively stable over time. 
Indeed, the instant death rate was constant circa 0.03 death/hour, but it seemed to transiently increase after 72 
h (up to 0.07 death/hour) (Fig. 4b, f). Taken together, these results show that for the cell line tested, our DLBA 
can track automatically single cell fate and follow dynamics of cell phenotypes over time at high throughput rate 
using brightfield microscopy.
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Discussion
Deep learning-based strategies have been developed to detect or predict cell differentiation. They either rely 
on morphological transformations of cell  populations22,30,31, or on the detection of gained or lost expression 
of  biomarkers32,33. In this study we propose an original approach, taking advantage of hydrogel microwells to 
isolate cells in suspension and to recapitulate the initial steps of the tumorsphere formation assay. These growth 
conditions allow the maintenance of the CSC population from a brain tumor which can be demonstrated by 
the capacity of tumorspheres-derived CSCs to recapitulate tumor growth when injected in the brain of mouse 
 models34. In such microfabricated device, identifying whether or not the cells divide provides us with key features 
about their stemness potential. In this study, we propose a deep-learning based approach to evaluate the fate 
(division, death, quiescence) of individual CSCs isolated in microwells, including temporal information encod-
ing for cell dynamics. The complexity of our image data sets can be compared to other similar already published 
image analysis studies. Chen et al recently used a CNN to predict the formation of spheroids from single breast 
cancer cells, yet their approach strictly relied on the constitutive expression of the fluorescent mCherry protein 
in  cells16. Correlating DNA content and label-free morphological features, Blasi et al developed a SLBA in order 
to classify cell images at different steps during the cell cycle, but the precision for mitosis detection remained 
low (circa 45%)35. More recently, with the same purpose, this team combined bright field images and fluorescent 
stains and extracted additional features allowing their DLBA to provide improved precisions for mitosis detection 
(circa 70%)29. As for cell counting approaches, Anagnostidis et al developed a CNN that was very accurate for 
counting polyacrylamide beads but which had degraded capacities for cell counting (circa 85%)15 probably due 
to complex cell morphological features compare to homogeneous polyacrylamide beads. Concerning the detec-
tion of dead cells, Riba et al developed a DLBA in order to distinguish viable cells from dead cells. Interestingly, 
as we do, they showed that their optimised CNN was more accurate (circa 80%) than more complex  networks36. 
Here, our DLBA cannot only detect images of microwells containing single cells with high recall and precision 
(93% and 96% respectively), but it can also detect dividing and dead cells with high reliability all at once, while 
integrating a time dimension to the analysis. Therefore constituting an innovative and more comprehensive 
approach to systematic cell phenotyping.

Pre-trained CNNs have already provided excellent results to detect cell death or differentiation for adherent 
cells on a 2D  surface20–22. Interestingly, such CNNs did not provide a better accuracy than ours while requiring 
longer computing times (see Table 1). Transfer learning CNNs have been pre-trained on the publicly available 
ImageNet  database25. While it has already been reported that transfer learning did not always improve deep 
learning  performances37, other results suggested that CNNs pre-trained on images dedicated to a similar purpose 
enhance network  accuracy19. Statistics of natural images are known to produce in the Fourier domain power 
law spectrum in log-log  scales38. This means that there are no specific size of objects, but rather objects of all 
sizes. In our images instead, we have a single object with a given size range, typically a blob which will produce 
a spectrum with holes (zeros) in the Fourier spectrum. This may explain the relative inefficiency of the pre-
trained models applied to our problem. Therefore, in comparison with this most related literature, the imaging 
and the image analysis have been optimized in order to deliver biologically relevant results with large statistics 
and high-throughput. Indeed each microwell contains a low number of cells or no cells at the beginning of the 
experiment. Consequently, the complexity of the informational task is reduced and this accounts for the much 
simpler and smaller neural network that we obtained as the best solution. Therefore, the use of the microwell 
systems not only increases the experimental throughput but also reduces the computational complexity of the 
neural network. From a methodological point of view, our CNN architecture has demonstrated to provide better 
results than standard architectures with a low number of hyperparameters to be tuned. Our approach enables 
easy time dependent processing and is more compatible with on-the-fly analysis. This is obtained thanks to the 
joint optimization of hardware (microwell approach) and software (small CNN) which results in a globally more 
efficient solution.

Although our DLBA provided good predictions for a given cell line while trained on a different one. How-
ever, a thorough examination to additional cell lines is still necessary to generalize the improved capacities of 
our method, yet when suspended in microwells, cells typically take on a spherical form and don’t display much 
variability in shape compared to adherent cells. Indeed, misclassification seems to results from differences in 
the mean size of each cell line (Supplemental Fig. S3 and Supplemental Table S7). An efficient way to improve 
performances of the CNN could be adding to our image data sets more images from different cell lines with 
various sizes or textures, i.e. cell models derived from other patients or tissues. Although this annotating step 
require some more work, it would be still less demanding than programming a new CCVA optimised to each 
new cell line. Another very interesting perspective would be to implement temporal convolution to our CNN in 
order to better take into account the temporal dimension of time-lapses. Despite implying the re-annotation of 
the training datasets used so far, the analysis of time series by CNNs should allow to significantly improve the 
prediction of cell  fate39, for example by predicting cell divisions before it happens based on cell morphological 
characteristics.

We have also investigated the dynamics of cell division and death of CSCs originated from glioblastoma. These 
glioblastoma CSCs are at the centre of controversies because of the lack of reliable molecular markers to specifi-
cally identify  them4. Morever, recent single cell transcriptomic data suggest that glioblastoma tumor-forming 
cells are rather defined by a continuum of cellular states, including different CSC phenotypes and cells engaged 
towards more differentiated cancer cells  populations40–42. Similarly, although Patel et al suggested that CSCs 
express cell cycle related genes at low level, suggesting that these cells likely have low division rates, other recent 
single RNA-seq studies conversely suggest that glioblastoma stem or progenitor-like cells are enriched in cycling 
 cells43. These conflicting results further support the need to develop approaches, such as the one proposed in 
this study, to further describe or experimentally assess hypotheses regarding the behavior of CSCs. Accordingly, 
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this heterogeneity between slow and fast dividing cells could be recapitulated in Fig. 4c and might arise from 
cells unequally positioned on the continuum of differentiation phenotypes. Besides, CSCs have been shown to 
escape anoïkis44, and more specifically, N14-0510 cells have been reported to display an increased expression of 
anti-apoptotic factors under non-adherent culture  conditions45. Our microwells prevent cell-substrate adhesion 
as well as cell-cell adhesion, therefore suggesting that cells remaining alive at the end of the time-lapse might 
recapitulate several CSC properties, including survival of isolated cells and tumorigenic capacities highlighted 
by the formation of tumorspheres. To further prove the correlation between cell state, early division and fate, it 
would be interesting to monitor stemness or differentiation molecular markers i.e. OLIG2, SOX2 or GFAP in our 
microwells and correlate their expression with late events such as tumorsphere formation. This would provide 
unique information on the dynamics of CSCs linked to biological functions. Finally, coupling our DLBA to a 
micro-fabricated device dedicated to drug screening would provide a relevant image analysis pipeline in order to 
assess, on-the-fly and at high throughput rate, drug effects on cell divisions, cell death and CSCs fate modifica-
tions for patient-derived dissociated tumor samples.

Methods
Microfabricated device. Manufacturing process has already been detailed in Goodarzi et al23,24. Briefly, 
200 µ m diameter microwells were molded with 2% agarose solution over PDMS counter-moulds. Agarose was 
then immobilized on (3-Aminopropyl)triethoxysilane coated glass cover-slips. Eventually, GSCs were seeded in 
the agarose microwells.

Cell lines and culture. N14-0510 and N14-1525 cell lines were kindly provided by A.I. and M.G. labs and 
were derived from diagnosed WHO grade IV glioblastoma before established as cellular models maintain in 
non-adherent conditions. They were maintained under normoxia at 37◦ C in incubator, in Dulbecco’s modified 
Eagle’s medium/nutrient mixture F12 (Life, 31330-095) complemented with N2 (Life, 17502-048) at 1X, B27 
(Life, 17504-001) at 1X, 100 U/ml penicillin-streptomycin (Life, 15140-122) and FGF2 (Miltenyi Biotec, 130-
104-922), EGF (Miltenyi Biotec, 130-093-825) (20ng/mL both) and heparin 0.00002% (Sigma, H3149). Unless 
otherwise specified, cells were cultured in Ultra low attachment T75 flasks (ThermoFisher, Ultra Low Adherent, 
10491623). Cells were passaged weekly with Accumax (Sigma, A7089) at a density of 600 000 cells in 20 ml 
of complete media. The medium was renewed twice a week and mycoplasma tests were regularly performed. 
Hoechst staining (Sigma, H6024) was used to control cell number (10 and 100 ng/mL) and TO-PRO-1 iodide 
(ThermoFicher, T3602) was used to control cell viability (1:50). Cell size measurements were performed after 
enzymatic dissociation of tumorsphere as previously detailed, the cell suspensions were quantified using the 
automatic LUNA FL cell counter (Logos biosystems) following the manufacturer’s instructions. Briefly, cells 
were stained with acridine orange and propidium iodide stain solution and were immediatly imaged with both 
brightfield and dual fluorescence optics to discriminate dead from living cells, and to estimate the size of living 
cells.

Image setup. Samples were images with a Leica DMIRB microscope. Microscope was located in a imper-
vious box with 37◦ C controlled temperature (LIS Cube) and 5% CO2 air (LIS Brick gaz mixer). The camera 
(Andor Neo 5.5 SCMOS), shutter (Vincent associated D1) and stage (Prior proscan II) were controlled with 
micromanager 1.4.2246. The light source was provided by a LED (Thorlabs MWWHL4). 20× and 10× numerical 
aperture objectives were both from Leica.

Hardwares and softwares. Computing was performed with Windows 10, 64 bit operating system, Intel(R) 
Core(TM) i7-7700 3.60GHz processor. GPU used was NVIDIA quadro p600. All scripts were written in Python 
3.747. Libraries used were Mahotas 1.4.1148, OpenCV 4.2.049,  Seaborn50,  numpy51,  SciPy52,  pandas53,  matplotlib54 
and Tensorflow 2.3.055. Version of Ilastik used was 1.3.2post127. Pre-trained CNN were found at https:// www. 
tenso rflow. org/ api_ docs/ python/ tf/ keras/ appli catio ns.

Data sets and code availability. Annotated data set was composed of 17,378 bright field acquired images. 
Images have been manually annotated. All cells from this data set were N14-0510 cells imaged with a 20× mag-
nification. Amount of images per class was: 2871 “Singles” images, 4615 “Multiples” images, 803 “Death” images 
and 9089 “Empty” images (Fig. 1b and Supplemental Fig. S1a). The number and viability of cells seen in bright-
field has been controlled by fluorescent microscopy (Supplemental Fig. S2). 10% of these images were randomly 
selected in order to generate a validation data set, and another 10% was also randomly selected for the test data 
set. Remaining images constitute the training data set, on which we performed data augmentation in order to 
balance number of images between the four classes (Supplemental Fig. S1b). Parameters of SLBA and CCVA 
were optimized respectively with 40 and 175 images manually selected from validation data set (Supplemental 
Table S3). Performance of DLBA, SLBA and CCVA were all compared on test data set. Computation times were 
compared on 1, 10, 100 and 1000 images randomly selected from test data set. Time-lapses were performed with 
a time interval of 40 min (Supplemental Table S6), except for the dynamics of cell division and death (Fig. 4) 
where a 30 min interval was used. Time-lapse data set 1 was composed of 1091 annotated time-lapses of N14-
0510 cells imaged with 20× magnification. There were 356 empty microwells, 434 microwells with 2 cells or 
more, 301 microwells with single cells which 81 divided and 117 died. Time-lapse data set 2 was composed of 
1179 annotated time-lapses of N14-0510 cells imaged with 10x magnification. There were 363 empty microwells, 
482 microwells with 2 cells or more, 334 microwells with single cells which 71 divided and 85 died. Time-lapse 
data set 3 was composed of 717 annotated time-lapses of N14-1525 cells imaged with 20× magnification. There 
were 231 empty microwells, 310 microwells with 2 cells or more, 176 microwells with single cells which 26 

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications
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divided and 34 died. Time-lapse data set 4 was composed of 596 annotated time-lapses of N14-1525 cells imaged 
with 10x magnification. There were 222 empty microwells, 214 microwells with 2 cells or more, 160 microwells 
with single cells which 31 divided and 55 died. Image databases and codes can be found at https:// github. com/ 
chalb iophy sics/ XXX.

Statistics. Classical efficiency scores were performed to evaluate and compare algorithms. Those scores 
involve true positives (positive images correctly classified, or TP), true negatives (negative images correctly clas-
sified, or TN), false positives (negative images misclassified, or FP) and false negatives (positive images misclas-
sified, or FN). Accuracy was computed when CCVA, SLBA and the various CNNs:

When assessing time-lapse classification and comparison between cell lines and magnifications by DLBA, recall 
and precision were computed:

Numpy  library51 was used to compute means and standard deviations. Percentages of cell divisions and cell death 
through time were computed as follows:

%eventstime is the percentage of cell division or death at given time point; N cell eventstime are number of cell divi-
sions or death at given time; N single cells is the initial number of single cells at beginning of time-lapse. Division 
rate and death rate through time were computed upon a 6-h temporal window:

Event ratetime is the division or death rate at given time, N cell eventstime are the number of cell divisions or 
death at given time, N living single cellstime is the remaining number of single cells that are still alive and have 
not divided yet at given time.
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