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Mixed Witt rings of algebras with
involution
Nicolas Garrel
Abstract. Although there is no natural internal product for hermitian forms over an algebra with
involution of the first kind, we describe how to multiply two ε-hermitian forms to obtain a quadratic
form over the base field. This allows to define a commutative graded ring structure by taking
together bilinear forms and ε-hermitian forms, which we call the mixed Witt ring of an algebra with
involution. We also describe a less powerful version of this construction for unitary involutions,
which still defines a ring, but with a grading over Z instead of the Klein group.

We first describe a general framework for defining graded rings out of monoidal functors from
monoidal categories with strong symmetry properties to categories of modules. We then give a
description of such a strongly symmetric category Brh(K , ι) which encodes the usual hermitian
Morita theory of algebras with involutions over a field K.

We can therefore apply the general framework to Brh(K , ι) and the Witt group functors to define
our mixed Witt rings, and derive their basic properties, including explicit formulas for products of
diagonal forms in terms of involution trace forms, explicit computations for the case of quaternion
algebras, and reciprocity formulas relative to scalar extensions.

We intend to describe in future articles further properties of those rings, such as a λ-ring
structure, and relations with the Milnor conjecture and the theory of signatures of hermitian forms.

1 Introduction

1.1 From quadratic forms to hermitian Morita theory

In the nineteenth century, quadratic forms were the object of many investigations,
notably by algebraists such as Gauss, Minkowski, or Kronecker, but were mostly given
an arithmetic flavor. The birth of the algebraic theory of quadratic forms over arbitrary
fields (of characteristic not 2) stems from the seminal 1936 paper of Ernst Witt [27],
although a completely unnoticed 1907 paper of Dickson [7] had actually already made
significant advances (see Scharlau’s comment in [22]). A key insight of Witt was to shift
from the study of individual quadratic forms to the study of the structure they form
as a whole. He considers the set W(K) of isometry classes of quadratic forms over K
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2 N. Garrel

up to what is now called Witt equivalence, and shows that the direct sum and tensor
product of quadratic spaces endow this set with a natural commutative ring structure.

Though quadratic forms over fields were still objects of study, notably through
the study of various arithmetic invariants, this algebraic theory of Witt truly started
expanding when it was rediscovered in the mid-60s by Pfister (see [20]), and others
such as Arason. It then became abundantly clear that the algebraic structure of the
Witt ring was a central element of the theory, and was connected to many subjects of
interest, such as Galois cohomology through the Milnor conjecture, or the theory of
field orderings, in relation with the much older Artin–Schreier theory. For detailed
references on the algebraic theory of quadratic forms, we can cite [16], [23], or [9].

Around the same time, algebraic K-theory was being developed, and the connec-
tion with quadratic forms became apparent, as can be seen notably in the foundational
work of Bass [6]. This led to working over general commutative rings, but also to
consider not just the Witt ring W(K), but what we will call the Grothendieck–
Witt ring GW(K) (the terminology “Witt–Grothendieck ring” is equally common);
one crucial reason Witt introduced the Witt equivalence is that it creates additive
inverses in W(K), but K-theory taught us that it is very natural to rather add formal
inverses. Shortly after that, Bak [4] and Fröhlich and McEvett [12] independently
started to generalize bilinear forms over commutative rings to ε-hermitian forms over
(noncommutative) rings with involution (where ε is a parameter, which is simply
equal to ±1 in the classical context of fields with no involution, corresponding to the
theory of symmetric and antisymmetric bilinear forms); a more advanced reference
is found in [14]. In particular, Fröhlich and McEvett define Witt and Grothendieck–
Witt groups W ε(A, σ) and GW ε(A, σ); furthermore, they develop an analogue for
hermitian modules of the classical Morita theory over rings, which they aptly call
hermitian Morita theory. This theory is the central tool used in this article, and we
review it in Section 3, although in a different form.

Prominent among rings with involutions are the (finite-dimensional) central sim-
ple algebras with involution over fields, which we will thereafter simply call “algebras
with involution.” Their study was initiated by Albert in [1] with the context of Riemann
surfaces in mind, but found a renewed interest when Weil [26] showed that they can
be used to describe the simple algebraic groups over arbitrary fields. A comprehensive
treatment of those algebras and their hermitian forms is given in the reference
monograph [15] by Knus et al.

1.2 The idea of the mixed Witt ring

One important caveat in all those generalizations is that when we work over noncom-
mutative rings, we can only speak about (Grothendieck–)Witt groups and not rings.
This is simply because there is no tensor product of modules over noncommutative
rings. Rather, the tensor product of two A-modules (for example, on the right) is
an (A⊗ A)-module. This being said, there is still some compatibility between Witt
groups and tensor products: if (A, σ) and (B, τ) are algebras with involution over
some field with involution (K , ι), the tensor product induces maps

GW ε(A, σ) ×GW ε′(B, τ) �→ GW εε′(A⊗K B, σ ⊗ τ)
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Mixed Witt rings of algebras with involution 3

(here, ε, ε′ ∈ K× are parameters such that ει(ε) = 1). This is not surprising if one
interprets the Grothendieck–Witt group as the degree 0 part of hermitian K-theory
(see [5] for instance), and it expresses the fact that (Grothendieck–)Witt groups are
monoidal functors on some category (which will be made precise).

In the special case of algebras with involutions of the first kind (so ι = Id in
the notation above), a remarkable phenomenon is that not only do the algebras
“have order 2” with respect to Brauer-equivalence, but we have an explicit canonical
hermitian Morita equivalence between (A⊗K A, σ ⊗ σ) and (K , Id), which means
that by general considerations of Morita theory, we get a canonical isomorphism

GW(A⊗K A, σ ⊗ σ) ∼
�→ GW(K).

If we combine this with the natural product

GW ε(A, σ) ×GW ε(A, σ) → GW(A⊗K A, σ ⊗ σ),

we get a canonical “mixed” product

GW ε(A, σ) ×GW ε(A, σ) → GW(K).

In other words, we can define the product of two ε-hermitian forms, but the result
is not a hermitian form, but rather a quadratic form over the base field. It is in that
sense that we mean the product is “mixed.” Using the basic fact that GW(K) is a
ring and GW ε(A, σ) is a GW(K)-module, this allows us to construct a Z/2Z-graded
commutative ring

G̃W
ε
(A, σ) = GW(K) ⊕GW ε(A, σ).

Actually, it turns out that for functoriality reasons, it is much more convenient to
bundle together hermitian and anti-hermitian forms, and rather consider the mixed
Grothendieck–Witt ring

G̃W(A, σ) = GW(K) ⊕GW−1(K) ⊕GW 1(A, σ) ⊕GW−1(A, σ),

which is graded over Γ = Z/2Z × μ2(K). Of course, the same construction holds for
Witt groups, giving the mixed Witt ring

W̃(A, σ) =W(K) ⊕W 1(A, σ) ⊕W−1(A, σ).

A large part of this article is dedicated to showing that these are indeed well-defined
commutative rings, and that they are functorial in the sense that any hermitian Morita
equivalence between algebras with involution induces a graded ring isomorphism.

It should be mentioned that a very similar construction was made by Lewis in
[18], for the special case where A is a division quaternion algebra, although many key
properties, such as associativity and commutativity, are stated without proof. Instead
of the involution trace form, Lewis uses the norm form, which is a special feature of
quaternion algebras.

We also present a less powerful construction which has the merit of working even
for involutions of the second kind: in that case, (A, σ) is not its own inverse (up to her-
mitian Morita equivalence); rather, its inverse is the twisted algebra (Aι , σ), where the
action of K on A is twisted by ι. Then we can define a Z-graded ring ĜW(A, σ)where
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4 N. Garrel

the component of degree n is GW(A⊗n , σ⊗n) if n ⩾ 0 and GW((Aι)⊗(−n), σ⊗(−n)) if
n < 0; we can “cancel out” the A and Aι as many times as necessary, so that the product
of x ∈ GW(A⊗n , σ⊗n) and y ∈ GW((Aι)⊗m , σ⊗m) is in GW(A⊗n−m , σ⊗n−m) if n ⩾
m, and in GW((Aι)⊗m−n , σ⊗m−n) otherwise.

1.3 Content of the article

Our approach in defining and studying our mixed rings is to highlight as much
as possible the formal aspects of the construction: it is a consequence of general
properties of symmetric monoidal categories, applied to a certain category which
encodes hermitian Morita theory. In consequence, the first part is dedicated to general
considerations on monoidal categories.

Sections 2.1 and 2.2 are a basic introduction to symmetric monoidal categories, as
can be found in any reference on categories, such as the classic [19]. They are here
for convenience of readers who are unfamiliar with that theory, as well as to fix some
notations.

Section 2.3 contains the technical heart of the article: we explain how a special
property of a symmetric monoidal category, which we call strong symmetry (Definition
2.1), allows to coherently choose inverses of objects (Theorem 2.16), and to coherently
handle n-torsion of objects (Proposition 2.17). The strong symmetry property was
introduced in [24], where it was already used to get a similar result about inverses;
our result is basically a reformulation of [17, Corollary 4.6 and Proposition 4.7]. This
being said, the presentation we give in terms of monoidal functors ⟨Z⟩ → C is our own,
and we do believe that it sheds an interesting light on those results, by constructing
a universal category C× of inverses in C, and defining the relevant structure as a
functor C→ C× which “coherently chooses inverses.” There are many variations in the
literature around such “enhanced group structures” on monoidal categories (see [3]
for more references), and so we give yet another one. On the other hand, Proposition
2.17, which adapts the previous idea to handle n-torsion with monoidal functors
⟨Z/nZ⟩ → C, is our own, though the basic idea of the proof is very reminiscent of [13].

In Section 2.4, we explain how to construct graded rings (which is our end goal)
from monoidal functors. In fact, we explain that an M-graded ring is essentially the
same as a lax monoidal functor from the discrete category ⟨M⟩ to the category of
abelian groups. It is a very simple idea, but we have not found previous uses in the
literature. We give slightly refined versions of that statement, which will be adapted to
the construction of our mixed rings, in relation with the structures described in the
previous section (Corollary 2.20).

The second part is dedicated to the presentation of our version of hermitian
Morita equivalence (in the framework of algebras with involution), which has a strong
categorical flavor, so that we can combine it later with the result of the first part.

Section 3.1 exposes the basic theory of hermitian forms over algebras with involu-
tion, mostly to fix the terminology and notations. It does not contain anything original
beyond some notation, and all the material can be found in [14, 15]. Particular attention
should be given to Example 3.5, which presents the canonical Morita equivalence
alluded to earlier and which is the basis of our ring construction; it was already
introduced in [12].
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Mixed Witt rings of algebras with involution 5

In Section 3.2, we explain how to package hermitian Morita theory in a category
Brh(K , ι). The only thing new is the presentation, as the actual mathematical results
can all be found in [14], and actually already in [12]. The notion that (classical) Morita
theory could be elegantly expressed in a certain 2-category whose morphisms are
bimodules is now rather classical in the field of “higher algebra” (see, for instance,
[8]) and has been generalized in all sorts of direction (for example, [25]), but to the
best of our knowledge, this is the first time the hermitian version is explicitly written
down in practical terms. Note that indeed the natural framework would be to consider
a 2-category, where the 2-morphisms are bimodule morphisms, but it is not needed
for what follows, so to avoid unnecessary complications, we “truncate” the natural 2-
category to a plain category, at the cost of having morphisms be isometry classes of
hermitian bimodules. Since the non-hermitian version is sometimes called the Brauer
2-group of a commutative ring, we named this category the hermitian Brauer 2-group.

In Section 3.3, we investigate the connection between the usual automorphisms of
an algebra with involution and its hermitian Morita self-equivalences. In particular,
Proposition 3.9 shows that an algebraic automorphism induces the trivial Morita
automorphism if and only if it is inner.

This is used in Section 3.4 to show that Brh(K , ι) is strongly symmetric (Corollary
3.13); the key point is the existence of the ubiquitous Goldman element in a central
simple algebra, since it implies that the switching automorphism of A⊗K A is actually
inner. This is the crucial result upon which our construction relies, and although
ultimately quite simple, it seems to have gone unnoticed until now.

We show in Section 3.5 that for involutions of the first kind, the canonical equiva-
lence defined by the involution trace form does define a coherent 2-torsion structure
on Brh(K) (Theorem 3.14).

The third part of the article applies the general results of the first part to the category
Brh(K , ι) to define our mixed rings.

Section 4.1 simply defines the underlying (Grothendieck–)Witt groups, and checks
that they are functorial with respect to Brh(K , ι). In order to make them truly
functorial as graded objects, a harmless change of labeling is needed (the issue being
that anti-hermitian equivalences reverse the signs of hermitian forms instead of
preserving them).

In Section 4.2, we establish that those functors are actually monoidal, and thus that
the whole machinery of Section 2.4 can be used. This leads to the definition of the
rings G̃W(A, σ) and W̃(A, σ) (as well as the less interesting ĜW(A, σ) and Ŵ(A, σ)
for unitary involutions).

Section 4.3 presents how to handle the (reduced) dimension of hermitian modules,
in a way compatible with our graded ring structure.

In order to perform explicit computations in our rings, we describe in Section 4.4
how to multiply diagonal forms; it turns out the result is given by the twisted involution
trace forms introduced in [15, §11] (Proposition 4.9). Whether or not this actually
makes the product explicit is a matter of opinion, as those forms are actually quite
difficult to compute in practice.

There is at least a case where we can reasonably say that the products are fully
computable, namely the case of a quaternion algebra, endowed with its canonical
involution. We work this out in Section 4.5 (Proposition 4.12).
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6 N. Garrel

Finally, the last Section 4.6, which is the most technical one of the third part, is
dedicated to scalar extensions, and especially to establishing a Frobenius reciprocity
formula (compare Theorem 4.16 with [23, 2.5.6]).

1.4 Perspectives

It should be noted that while in this article we work with algebras over fields,
basically everything carries over to Azumaya algebras with involution over general
commutative rings. The key ingredient of Corollary 3.13 will still hold in that general
context thanks to the existence of the Goldman element. It can even be envisioned to
work with Azumaya algebras over schemes, or even locally ringed topos, as studied
in [11].

In addition to extending the algebras, we could also extend Grothendieck–Witt
rings to the whole hermitian K-theory, and actually to simple algebraic K-theory if we
forget about the involutions. The fact that such extensions could be easily handled with
very little extra legwork is a compelling argument for our general abstract presentation
of the mechanisms at play as properties of monoidal categories.

Even considering simply algebras with involutions over fields, we intend to build
on the present article in future work to study, among other things: a λ-ring structure
on G̃W(A, σ) (the existence of which is a strong advantage over W̃(A, σ)); an
extension of Artin–Schreier theory for the spectrum of W̃(A, σ) (related to the work
of Astier and Unger in [2]); and applications of our structure to the construction of
cohomological invariants of algebras with involution and algebraic groups.

1.5 Preliminaries and conventions

We fix a base field K of characteristic not 2, and we identify symmetric bilinear
forms and quadratic forms over K, through b ↦ qb with qb(x) = b(x , x). Diagonal
quadratic forms are denoted ⟨a1 , . . . , an⟩, with a i ∈ K∗, and ⟨⟨a1 , . . . , an⟩⟩ is the n-
fold Pfister form ⟨1,−a1⟩ ⊗⋯⊗ ⟨1,−an⟩. We always assume that bilinear forms are
nondegenerate.

All rings are associative and with unit, and ring morphisms preserve the unit. The
group of invertible elements of a ring A is denoted A×. The opposite ring of A (that
is, the ring with the reversed product) is denoted Aop . Unless otherwise specified,
modules are by default modules on the right, and are assumed to be nonzero. Every
K-algebra and every module over such an algebra are required to have finite dimension
over K. If A and B are K-algebras, a B–A-bimodule is always supposed to be over K,
meaning that the right and left actions of K on V coincide. If A is a central simple
algebra over K, we write TrdA ∶ A→ K for the reduced trace of A.

We fix an automorphism ι of K such that ι2 = Id, and we let k = K ι be the subfield of
fixed points. If ι = Id, then K = k, but if ι ≠ Id, then K/k is a quadratic extension. Note
that we do not include the split case K = k × k, to avoid having to discuss it separately.
The reader is encouraged to check that everything would still work in that context.

When we say that (A, σ) is an algebra with involution over (K , ι), we mean that A
is a central simple algebra over K, and that σ is an involution on A with σ∣K = ι, so σ
is a k-algebra anti-automorphism of A, with σ 2 = IdA.
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Mixed Witt rings of algebras with involution 7

Recall that the involution σ is of the first kind when ι = Id, and is of the sec-
ond kind (or unitary) otherwise. An involution of the first kind is orthogonal if
dimK(Sym(A, σ)) = n(n + 1)/2 where n is the degree of A, and it is symplectic if
dimK(Sym(A, σ)) = n(n − 1)/2. In particular, (K , Id) is an algebra with orthogonal
involution. A quaternion algebra admits a unique symplectic involution, called its
canonical involution.

We set U(K , ι) = {ε ∈ K×∣ει(ε) = 1}; it is a subgroup of K×, and when ι = Id, it is
simply μ2(K). If ε ∈ U(K , ι), we define Symε(A, σ) as the set of ε-symmetric elements
of A, which satisfy σ(a) = εa. We also write Symε(A×, σ) for the set of invertible ε-
symmetric elements.

If L/K is any field extension, and X is an object (algebra, module, involution,
hermitian form, etc.) over K, then XL is the corresponding object over L, obtained
by base change.

A semigroup is a set endowed with an associative binary product (so the difference
to a monoid is that the semigroup might lack an identity element). The Grothendieck
group G(S) of S is the universal solution to the problem of finding a morphism S → G
where G is a group.

2 Monoidal categories and graded rings

This section serves both as a quick primer (or reminder) for readers who might be
unfamiliar with monoidal categories, and as a presentation of the specific methods
used in this article to produce graded rings from those categories. We do assume
familiarity with category theory in general. We state most of the general theory
without proof, and refer to [19] for more details.

2.1 Monoidal categories

A monoidal category (C,⊗, I) (more precisely (C,⊗, I, α, λ, ρ)) consists of the data
of:

• a category C;
• a bifunctor ⊗ ∶ C ×C→ C (i.e., the expression x ⊗ y is functorial in each variable);
• a distinguished unit object I ∈ C;
• for each triple x , y, z ∈ C, a natural isomorphism αx , y ,z ∶ x ⊗ (y ⊗ z) ∼

�→ (x ⊗ y) ⊗
z called associator;

• for each object x ∈ C, a natural isomorphism λx ∶ I ⊗ x ∼
�→ x called left unitor; and

• for each object x ∈ C, a natural isomorphism ρx ∶ x ⊗ I ∼
�→ x called right unitor.

The fact that the product is bifunctorial means that for any morphisms f ∶ x → y
and g ∶ x′ → y′, we get a well-defined f ⊗ g ∶ x ⊗ x′ → y ⊗ y′.

Those various isomorphisms are required to satisfy certain coherence laws relating
one another: the triangle diagram

x ⊗ (I ⊗ y) (x ⊗ I) ⊗ y

x ⊗ y
Idx ⊗λy

αx ,I ,y

ρx⊗Idy
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8 N. Garrel

and the pentagon diagram

x ⊗ (y ⊗ (z ⊗ t)) (x ⊗ y) ⊗ (z ⊗ t) ((x ⊗ y) ⊗ z) ⊗ t

x ⊗ ((y ⊗ z) ⊗ t) (x ⊗ (y ⊗ z)) ⊗ t.

αx ,y ,z⊗t

Idx ⊗αy ,z ,t

αx⊗y ,z ,t

αx ,y⊗z ,t

αx ,y ,z⊗Idt

The associators and unitors are very much part of the data, although in most natural
examples they are the “obvious” isomorphisms, and are rarely actually spelled out
in practice. Furthermore, MacLane’s coherence theorem [19, VII.2] guarantees that
under the above axioms, there is no ambiguity arising if we omit all parentheses
and simplify all products with I, as any two identifications between two different
expressions using associators and unitors will actually be equal. Therefore, we will
use a more relaxed style of notation, and leave all associators/unitors completely in
the background. In particular, we allow ourself to write x⊗n for any object x and any
n ∈ N (with the convention x⊗0 = I). We also often simply say that “C is a monoidal
category” when the notations are clear.

Example 2.1 If R is a commutative ring, then (R-Mod,⊗R , R) and (R-Alg,⊗R , R)
are monoidal categories.

Example 2.2 If M is a monoid, then the discrete category ⟨M⟩ with M as its
underlying set is canonically a monoidal category, the tensor product of objects
corresponding to the product in M.

If (C,⊗, I) and (D,⊗, J) are monoidal categories, a (lax) monoidal functor from C
to D consists of the data of:
• a functor F ∶ C→ D;
• a morphism J → F(I); and
• for each x , y ∈ C, a morphism F(x) ⊗ F(y) → F(x ⊗ y).

Those morphisms are once again required to satisfy some coherence laws, which we
will not spell out here, in the same spirit as the ones above. When those morphisms are
isomorphisms, the monoidal functor is called strong (if they are equalities, it is called
strict). Again, the structural morphisms in the definition are often “the obvious ones”
and are often left unnamed in practice.

Example 2.3 If R → S is a commutative ring morphism, then the scalar extension
functors R-Mod→ S-Mod and R-Alg → S-Alg have an obvious strong monoidal
structure.

Example 2.4 Any monoid morphism M → N induces in an obvious way a strict
monoidal functor ⟨M⟩ → ⟨N⟩.

A natural transformation φ ∶ F → G between two monoidal functors C→ D is
called monoidal if it satisfies the commutative diagrams

J

F(I) G(I)φI
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Mixed Witt rings of algebras with involution 9

and

F(x) ⊗ F(y) G(x) ⊗G(y)

F(x ⊗ y) G(x ⊗ y).

φx⊗φy

φx⊗y

Note that while being a monoidal category and being a monoidal functor are
structures put on top of categories/functors, being a monoidal natural transformation
is a property.

Monoidal functors and natural transformations can be composed in the obvious
way (the behavior of the structural morphisms in those compositions is straightfor-
ward). In particular, we get the expected notions of monoidally isomorphic monoidal
functors, and of monoidally equivalent categories (in fact, monoidal categories form
a 2-category, so all the usual notions can apply without change). The composition of
two strong (resp. strict) monoidal functors is again strong (resp. strict).

Remark 2.5 It is well known (see, for instance, [10, 1.5.3]) that a strong monoidal
functor is a monoidal equivalence if and only if it is an equivalence (in other words, if
it has a quasi-inverse, then it also has a monoidal quasi-inverse).

Given two (small) monoidal categories C and D, we define Hom⊗(C, D) (resp.
LaxHom⊗(C, D)) as the category of strong (resp. lax) monoidal functors between
the two, with monoidal natural transformations as morphisms. Note that any F ∈
Hom⊗(C, D) is canonically isomorphic to some F′ such that the structural isomor-
phism J → F′(I) is actually the identity, and the structural isomorphisms F′(I) ⊗
F′(x) → F(I ⊗ x) ∼→ F(x) and F′(x) ⊗ F′(I) → F(x ⊗ I) ∼→ F(x) are then identified
with the unitors in D. Therefore, we will usually implicitly restrict to those functors,
which brings no noticeable change to the theory (they form a full subcategory of
Hom⊗(C, D) such that the inclusion functor is an equivalence, with a canonical quasi-
inverse).

Example 2.6 If M and N are monoids, then Hom⊗(⟨M⟩, ⟨N⟩) is identified with the
set of monoid morphisms M → N .

2.2 Symmetric monoidal categories

If (C,⊗, I) is a monoidal category, a symmetric structure on C is the data of an
isomorphism natural in x and y

sx , y ∶ x ⊗ y ∼
�→ y ⊗ x ,(2.1)

for all x , y ∈ C, which we call the switching morphism (also called “symmetry isomor-
phism”), satisfying some coherence axioms so that it is compatible with associators and
unitors, and very importantly the involution axiom stating that

sy ,x ○ sx , y = Idx⊗y ,(2.2)

in other words, the composition

x ⊗ y
sx ,y
��→ y ⊗ x

sy ,x
��→ x ⊗ y
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is the identity of x ⊗ y (without this last axiom, the category is only called braided).
In a symmetric monoidal category, for any objects x1 , . . . , xn ∈ C and any permu-

tation g ∈Sn , there is a well-defined induced isomorphism

g∗ ∶ x1 ⊗ ⋅ ⋅ ⋅ ⊗ xn
∼
�→ xg−1(1) ⊗ ⋅ ⋅ ⋅ ⊗ xg−1(n),(2.3)

which can be described by applying a switching morphism for each transposition, and
in particular there is a canonical group morphism

Sn → AutC(x⊗n)(2.4)

for each object x ∈ C (in a braided category, we get a morphism from the braid group
instead, hence the name).

Example 2.7 Categories of modules or algebras are canonically symmetric, the
switching morphisms being the obvious ones.

Example 2.8 If M is a monoid, the monoidal category ⟨M⟩ has a symmetric struc-
ture, necessarily unique, if and only if M is commutative.

A monoidal functor F between two symmetric monoidal categories C and D is
called symmetric (this time, it is a property and not a structure) if the following
diagram commutes for all x , y ∈ C:

(2.5)
F(x) ⊗ F(y) F(y) ⊗ F(x)

F(x ⊗ y) F(y ⊗ x).

sF(x),F(y)

F(sx ,y)

Example 2.9 The scalar extension functors on categories of modules or algebras are
symmetric monoidal.

A “symmetric monoidal natural transformation” is nothing but a monoidal nat-
ural transformation between two symmetric monoidal functors (there is no extra
condition involving the symmetric structure). Therefore, we can drop the adjective
“symmetric” in that case.

The composition of symmetric monoidal functors is symmetric monoidal (there
is again a 2-category of symmetric monoidal categories). We adapt the earlier nota-
tion, and write Homs

⊗(C, D) (resp. LaxHoms
⊗(C, D)) for the full subcategory of

Hom⊗(C, D) (resp. LaxHom⊗(C, D)) consisting of the symmetric monoidal functors
(provided that C and D have a symmetric structure, of course).

Remark 2.10 Given a symmetric strong monoidal functor between two symmetric
monoidal categories, if it admits a quasi-inverse, then it admits a symmetric monoidal
quasi-inverse.

The set of functions from any set X to some monoid M has an obvious pointwise
monoid structure, but if X is a monoid itself, then the subset of monoid morphisms
is in general not a submonoid, unless M is commutative. Likewise, for any (small)
category C and any (small) monoidal category D, the category of functors Fun(C, D)
has a natural “pointwise” monoidal structure, with unit the constant functor to the
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unit object of D. If C is itself monoidal, then there is a natural forgetful functor
Hom⊗(C, D) → Fun(C, D), but Hom⊗(C, D) is not monoidal; however, if D is
symmetric monoidal, then Hom⊗(C, D) becomes a (symmetric) monoidal category,
Fun(C, D) is naturally symmetric, and Hom⊗(C, D) → Fun(C, D) is symmetric
monoidal. To be precise, given two monoidal functors F and G in Hom⊗(C, D), the
functor F ⊗G ∶ x ↦ F(x) ⊗G(x) is always well defined in Fun(C, D) (and this does
not use that F and G are monoidal), but when D is symmetric, we give it a monoidal
structure by

(F(x) ⊗G(x)) ⊗ (F(y) ⊗G(y)) ∼
�→ (F(x) ⊗ F(y)) ⊗ (G(x) ⊗G(y))

→ F(x ⊗ y) ⊗G(x ⊗ y),

where we use the symmetric structure in the first arrow. Therefore, we may speak about
the monoidal functor F ⊗G ∈ Hom⊗(C, D). Note that Homs

⊗(C, D) is also then a
(symmetric) monoidal subcategory of Hom⊗(C, D).

2.3 Strong symmetry, inverses and torsion

For any monoid M, the set of monoid morphisms N → M has a special interpretation
when N = N, Z or Z/nZ: it gives, respectively, M, the set M× of invertible elements,
and the set M[n] ⊂ M× of invertible elements of order dividing n. When M is
commutative, those identifications are compatible with the natural monoid structure
on the set of morphisms N → M.

We extend those considerations to monoidal categories; an additional layer of
difficulty comes from the fact that one may consider either monoidal or symmetric
monoidal functors.

Proposition 2.11 Let (C,⊗, I) be a monoidal category. Then the canonical functor
Hom⊗(⟨N⟩, C) → C defined by F ↦ F(1) is an equivalence of categories. A quasi-
inverse is given by sending x ∈ C to the obvious monoidal functor Φx ∶ ⟨N⟩ → C such
that Φx(n) = x⊗n .

Furthermore, when C is symmetric, this becomes a symmetric monoidal equivalence
if Hom⊗(⟨N⟩, C) is endowed with its natural symmetric monoidal structure.

Proof The only thing to check for the equivalence is that if F ∶ ⟨N⟩ → C is a strong
monoidal functor, then ΦF(1) is monoidally isomorphic to F, which is immediate from
the axioms of monoidal functors.

The fact that this equivalence is symmetric monoidal when C is symmetric is clear
given the definition of the symmetric monoidal structure on Hom⊗(⟨N⟩, C) → C. ∎

2.3.1 Strong symmetry

If C is symmetric and we want to characterize similarly Homs
⊗(⟨N⟩, C), we need a

definition.

Definition 2.1 Let (C,⊗, I) be a symmetric monoidal category. An object x ∈ C is
called strongly symmetric if the switching map sx ,x is the identity of x ⊗ x.

We write Css for the full subcategory of C consisting of the strongly symmetric
elements; we say that C is strongly symmetric if Css = C.
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The definition is equivalent to requiring that the canonical group morphism Sn →
AutC(x⊗n) is trivial for n = 2 (and thus for all n).

Example 2.12 If M is a commutative monoid, then ⟨M⟩ is strongly symmetric.

Lemma 2.13 Let (C,⊗, I) be a symmetric monoidal category. If x ∈ C is isomorphic to
a strongly symmetric element, it is strongly symmetric.

Proof Let f ∶ x ∼
�→ y with y strongly symmetric. Since the switching morphism is

natural in each variable, the following diagram commutes:

x ⊗ x x ⊗ x

y ⊗ y y ⊗ y.

sx ,x

f⊗ f f⊗ f
sy ,y

Since sy , y is the identity, so is sx ,x . ∎

Lemma 2.14 Let M be a commutative monoid, and C a symmetric monoidal category.
If F ∈ Homs

⊗(⟨M⟩, C), then for any x ∈ M, the object F(x) ∈ C is strongly symmetric.

Proof Since F is symmetric, we get the commutative diagram (2.5) (with y = x).
The vertical arrows are equal isomorphisms because F is strongly symmetric, and the
bottom horizontal arrow is the identity because x is strongly symmetric; therefore, the
top horizontal arrow is also the identity, which exactly means that F(x) is strongly
symmetric. ∎

When M = N, there is a form of converse.

Proposition 2.15 Under the equivalence Hom⊗(⟨N⟩, C) ≃ C, the essential image of the
subcategory Homs

⊗(⟨N⟩, C) is exactly Css .

Proof If x ∈ Css , then the canonical Φx ∶ n ↦ x⊗n is clearly symmetric, so x is in
the essential image. Conversely, if x is in the essential image, it is isomorphic to some
F(1), which is strongly symmetric by Lemma 2.14, so x is strongly symmetric by
Lemma 2.13. ∎

In particular, we see that Css is a monoidal subcategory of C (which can be shown
directly).

2.3.2 Inverses

Definition 2.2 Let C be a monoidal category. We define its category of inverses
C× as Hom⊗(⟨Z⟩, C). If C is symmetric, its category of symmetric inverses C×,s is
Homs

⊗(⟨Z⟩, C).

There is an obvious functor C× → C sending F to F(1). Clearly, if F ∈ C×, x =
F(1) and x = F(−1) must be “weak inverses,” in the sense that x ⊗ x ≃ x ⊗ x ≃ I.
If one unfolds the definition of F, one realizes it is exactly the data of an “adjoint
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equivalence” (x , x , φ, ψ)where φ ∶ x ⊗ x ∼
→ I and ψ ∶ x ⊗ x ∼

→ I fit into some commu-
tative diagrams:

x ⊗ x ⊗ x I ⊗ x

x ⊗ I x

Idx ⊗ψ

φ⊗Idx

and
x ⊗ x ⊗ x I ⊗ x

x ⊗ I x .

ψ⊗Idx

Idx ⊗φ

It turns out that it is enough to satisfy one of them [3]. These kinds of data are well
known in the literature, and can be considered as a sort of “coherent inverse” of x.
In particular, it follows immediately that the choice of a functor C→ C× such that the
composition C→ C× → C is isomorphic to the identity (which of course can only exist
if all objects in C are weakly invertible) is equivalent to the choice of a “group structure”
(or “gs-category” structure) on C in the sense of [17] (see also [24]). It corresponds to
a coherent (functorial) choice of inverses for all objects. In that spirit, C× is a category
which embodies all possible such choices, in a canonical way.

Similarly, if C is symmetric, a symmetric strong monoidal functor C→ C×,s such
that the composition C→ C×,s → C is monoidally isomorphic to the identity is the
same as an “abelian gs-category” structure in the sense of [17]. Laplaza shows the
following in [17, Corollary 4.6 and Proposition 4.7].

Theorem 2.16 (Laplaza) Let C be a monoidal category with every object weakly
invertible. Then if we choose for each x ∈ C a weak inverse x and an isomorphism
x ⊗ x ∼

→ I, there is a unique way to extend that to a gs-category structure C→ C×.
Furthermore, it defines an abelian gs-structure C→ C×,s if and only if C is strongly

symmetric.

2.3.3 Torsion

Definition 2.3 Let C be a symmetric monoidal category. Then, for any n ⩾ 2, we
define the symmetric monoidal category C[n] as Homs

⊗(⟨Z/nZ⟩, C). We call it the
n-torsion category of C.

Of course, we could have looked at the intermediary step where we only consider
Hom⊗(⟨Z/nZ⟩, C) for any monoidal C, but we will not need it, and already in the case
of ordinary groups, the notion of n-torsion is much better behaved in a commutative
context.

To any F ∈ C[n] is associated a choice of isomorphism φx ∶ x⊗n ∼→ I satisfying
some coherence conditions, where x = F(1). In particular, x must have weak n-torsion,
meaning that x⊗n ≃ I.

As before, there is a natural symmetric strong monoidal functor C[n] → C, and we
are interested in the choice of a symmetric strong monoidal functor C→ C[n] such
that C→ C[n] → C is monoidally isomorphic to the identity. We call such a choice a
“coherent n-torsion” structure on C. Clearly, it can only exist if C is strongly symmetric
and all elements have weak n-torsion. Unfortunately, this is no longer sufficient, but
we do have the following proposition.

https://doi.org/10.4153/S0008414X22000104 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000104


14 N. Garrel

Proposition 2.17 Let C be a symmetric monoidal category. If x ∈ C is strongly symmet-
ric, any choice of isomorphism φx ∶ x⊗n ∼→ I extends to a unique F ∈ C[n].

Furthermore, if C is strongly symmetric, a coherent n-torsion structure is equivalent
to the choice of such a φx for all x ∈ C, such that for all x , y ∈ C, we have a commutative
diagram

(2.6)
x⊗n ⊗ y⊗n (x ⊗ y)⊗n

I
φx⊗φy φx⊗y

and for each morphism f ∶ x → y in C:

(2.7)
x⊗n y⊗n

I.
φx

f⊗n

φy

Proof It is easy to see that the extension of φx to F is necessarily unique (up to
isomorphism of course), and that it exists exactly when we have the commutative
diagram

x⊗n ⊗ x x ⊗ x⊗n

x
φx⊗Idx Idx ⊗φx

where the morphism in the top row is given by the identification of x⊗n ⊗ x and x ⊗
x⊗n with x⊗n+1. However, up to the action of the permutation group Sn+1 on the top
row, that diagram always commutes, and since x is strongly symmetric, that action is
trivial.

It is clear that the two diagrams in the statement are necessary to get a monoidal
functor C→ C[n]. Conversely, if they hold, and if we send each x ∈ C to the unique
Fx ∈ C[n] extending φx , to get a functor C→ C[n], we need that each f ∶ x → y
induces a monoidal transformation Fx → Fy , and since the composition C→ C[n] →
C should be isomorphic to the identity, the component Fx(1) → Fy(1) has to cor-
respond to f, so it is entirely determined, and is only well defined if the diagram
(2.7) holds. It is straightforward that the diagram (2.6) will guarantee that the functor
C→ C[n] is monoidal. ∎

Note that if C is a groupoid (so all morphisms are invertible), then it is enough to
fix one φx to determine the whole structure (if it exists).

2.4 Lax monoidal functors and graded rings

Up until now, we have only considered strong monoidal functors, but lax monoidal
functors are also key to our central construction. Recall the definition of graded
algebras.
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Definition 2.4 Let M be a commutative monoid, and let R be a commutative ring.
An M-graded R-module is an R-module A endowed with an R-module decomposition
A = ⊕x∈M Ax . An M-graded R-algebra is then an algebra which is graded as a module
such that 1 ∈ A0 and Ax ⋅ Ay ⊂ Ax+y (writing M additively).

In the literature, the most common cases are M = N and M = Z/2Z. Note that if A
is a graded algebra, A0 is always a ring, and if A is commutative, then A is a graded
A0-algebra. There is an obvious notion of graded module/algebra morphisms, which
are just morphisms preserving the decomposition, and therefore we get categories
R-ModM , R-AlgM , and R-CommAlgM . These categories are actually themselves
naturally monoidal, using the tensor product

(A⊗ B)x = ⊕
y+z=x

Ay ⊗R Bz ,

and they have a natural symmetric structure which consists in applying the switching
morphism to each Ay ⊗R Bz .

Example 2.18 When M is the trivial monoid, then R-ModM , R-AlgM , and
R-CommAlgM are nothing but R-Mod, R-Alg, and R-CommAlg, with their usual
symmetric monoidal structure.

Then we can make the following fundamental observation: let M and N be commu-
tative monoids; to any lax monoidal functor F ∶ ⟨M⟩ → R-ModN , we can associate the
R-module AF = ⊕x∈M F(x), which is an (M × N)-graded module (since each F(x)
is itself N-graded). Then we can define an R-bilinear product AF ⊗R AF → AF using
the maps F(x) ⊗ F(y) → F(x + y) corresponding to the monoidal structure on F.

Proposition 2.19 Let M be a monoid. Then, for any lax monoidal functor F ∶ ⟨M⟩ →
R-ModN , the associated graded object AF is an (M × N)-graded R-algebra, and the
association F ↦ AF defines an equivalence of categories

LaxHom⊗(⟨M⟩, R-ModN)
∼
�→ R-AlgM×N .

This also induces an equivalence

LaxHoms
⊗(⟨M⟩, R-ModN)

∼
�→ R-CommAlgM×N .

Proof The fact that AF is a graded algebra is exactly a reformulation of the fact
that F is monoidal: the associativity in AF corresponds to the compatibility of F with
associators, and the fact that the structural morphism R → F(0) gives a unit element
corresponds to the compatibility with unitors.

There is an obvious quasi-inverse sending a graded algebra A to the functor F ∶ x ↦
Ax , which is clearly monoidal for the same reasons.

The fact that F is symmetric exactly means that F(x) ⊗ F(y) → F(x + y) and
F(y) ⊗ F(x) → F(x + y) are related by the switching morphism F(x) ⊗ F(y) →
F(y) ⊗ F(x), which precisely means that the algebra is commutative. ∎

This gives us the following construction: if C is any monoidal category, and K ∶ C→
R-ModN is a lax monoidal functor, then the composition with K defines a functor

Hom⊗(⟨M⟩, C) K○−
��→ LaxHom⊗(⟨M⟩, R-ModN) ≃ R-AlgM×N ,

https://doi.org/10.4153/S0008414X22000104 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000104


16 N. Garrel

and when K is symmetric, we get

Homs
⊗(⟨M⟩, C) K○−

��→ LaxHoms
⊗(⟨M⟩, R-ModN) ≃ R-CommAlgM×N .

Actually, we get something a little better: the objects we get are graded K(I)-
algebras, since any commutative graded algebra A is in fact an A0-algebra. Let us
emphasize what we really want to use in the end.

Corollary 2.20 Let C be a symmetric monoidal category, let N be a commutative
monoid, and let K ∶ C→ Z-ModN be a symmetric lax monoidal functor. Then, if C has
an abelian gs-structure, composition with K induces a functor

C→ K(I)-CommAlg
Z×N ,

and if C has a coherent n-torsion structure, it induces a functor

C→ K(I)-CommAlg
Z/nZ×N .

Proof The discussion just above shows that from K we get functors

C×,s �→ K(I)-CommAlg
Z×N , C[n] �→ K(I)-CommAlg

Z/nZ×N ,

simply using M = Z and M = Z/nZ. Now, we just compose with the structural
functors C→ C×,s and C→ C[n], respectively. ∎

3 The hermitian Brauer 2-group

In this section, we review hermitian Morita theory, as developed in [12] or [14], in the
case of central simple algebras with involution (for which we take [15] as a reference).
We adopt a categorical point of view that allows the theory to be expressed in a very
efficient way.

3.1 Hermitian modules and involutions

We start, for the reader’s convenience as well as for establishing notations, by reviewing
basic facts about hermitian modules (see [15] for a reference, or [14] for an account
over general rings with involution).

3.1.1 Morita equivalence

Let A and B be central simple algebras over K. We say that a B–A-bimodule V is a
Morita equivalence if the following equivalent conditions hold (see [15, 1.10]):
• the left action of B gives an isomorphism B ≃ EndA(V) and
• the right action of A gives an isomorphism A ≃ EndB(V).

We use the notation B V
↝ A to state that V is such a bimodule. Then A and B are

Brauer-equivalent iff there exists a Morita equivalence, which is then unique up to
isomorphism.

We can always consider A as a tautological A–A-bimodule, and it defines a Morita
equivalence. We will often write ∣A∣when we consider A as a vector space or a module,

so we can write A
∣A∣
↝ A.
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Example 3.1 It is a defining property of Azumaya algebras that the natural “sand-
wich” map

A⊗K Aop �→ EndK(∣A∣)
a ⊗ b �→ (x ↦ axb)(3.1)

is a K-algebra isomorphism, so we get (A⊗K Aop)
∣A∣
↝ K.

3.1.2 Hermitian forms

Recall that if (A, σ) is an algebra with involution over (K , ι) and ε ∈ U(K , ι), an
ε-hermitian module (V , h) over (A, σ) is a (right) A-module V equipped with
an ε-hermitian form h, meaning that

h ∶ V × V → A

is bi-additive and satisfies for all x , y ∈ V and all a, b ∈ A:

h(xa, yb) = σ(a)h(x , y)b,
h(y, x) = εσ(h(x , y)).

We always assume that ε-hermitian forms are regular, meaning that the induced
map V → HomA(V , A) given by x ↦ h(x ,−) is bijective. An isometry between two
ε-hermitian modules is a module isomorphism which preserves the hermitian forms.
We call ε the sign of h, and use the notation εh to refer to it when it is not already
introduced.

Example 3.2 An ε-hermitian module over (K , Id) is simply an ε-symmetric bilinear
module over K (and in that case ε = ±1).

Let (A, σ) be an algebra with involution over K, and let a ∈ Symε(A×, σ) (for
instance, a ∈ K× and ε = 1). Then we define an ε-hermitian form over ∣A∣, by:

⟨a⟩σ ∶ ∣A∣ × ∣A∣ �→ A
(x , y) �→ σ(x)ay.

We call such a form elementary diagonal. We will write ⟨a1 , . . . , an⟩σ for an orthogonal
sum ⟨a1⟩σ ⊥ ⋅ ⋅ ⋅ ⊥ ⟨an⟩σ (where all a i are ε-symmetric), and call such a form diagonal.

Remark 3.3 Not every form is diagonalizable. In fact, for (V , h) to be diagonalizable,
it is clearly necessary that V is a free A-module (which is in this case equivalent to
dimK(V) being a multiple of dimK(A)). It turns out that this condition is actually
sufficient, except in the special case where (A, σ) = (K , Id) and ε = −1, which is the
only case where h(x , x) = 0 for all x ∈ V .

3.1.3 Hermitian Morita equivalences

If (V , h) is an ε-hermitian module over (A, σ), then the adjoint involution σh on
EndA(V) is defined (see [15, 4.1]) by the fact that for all x , y ∈ V and all f ∈ EndA(V),

h( f (x), y) = h(x , σh( f )(y)).
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If (A, σ) and (B, τ) are algebras with involution over (K , ι), we say that (V , h) is an
ε-hermitian Morita equivalence between (B, τ) and (A, σ), which we write

(B, τ)
(V ,h)
↝ (A, σ),

if B V
↝ A, h is an ε-hermitian form over (A, σ) on V, and τ corresponds to σh through

the natural isomorphism B ≃ EndA(V). In particular, any ε-hermitian module (V , h)
over (A, σ)defines an equivalence (EndA(V), σh)

(V ,h)
↝ (A, σ). An isomorphism of ε-

hermitian Morita equivalences is a bimodule isomorphism which is also an isometry.

If B V
↝ A, then there always exists an ε-hermitian form h on V such that (B, τ)

(V ,h)
↝

(A, σ) (see [15, 4.2]). When the involutions are unitary (so ι ≠ Id), we can take any
ε ∈ U(K , ι); when the involutions are of the first kind (so ι = Id), then we must take
ε = 1 if σ and τ have the same type (orthogonal or symplectic), and ε = −1 otherwise.
Moreover, in any case, if h and h′ are two possible choices, then there is λ ∈ K× such
that h′ = ⟨λ⟩h.

Example 3.4 If a ∈ Symε(A×, σ), then (A, σa)
(∣A∣,⟨a⟩σ)
↝ (A, σ), where σa(x) =

a−1σ(x)a. In particular, if a ∈ K×, then σa = σ .

Example 3.5 Using the involution σ on A, we can twist the usual sandwich map
(3.1) to

A⊗K Aι �→ EndK(∣A∣)
a ⊗ b �→ (x ↦ axσ(b)),(3.2)

where Aι is the same ring as A, but with the twisted K-algebra structure K ι
�→ K → A.

We call this action of A⊗K Aι on ∣A∣ the “twisted sandwich action” (relative to σ).
We will write ∣A∣σ instead of ∣A∣ when we see it as a left A⊗K Aι-module with this
action. It is shown in [15, 11.1] that the so-called involution trace form

Tσ ∶ ∣A∣ × ∣A∣ �→ K
(x , y) �→ TrdA(σ(x)y)(3.3)

is a hermitian form over (K , ι) on the K-vector space ∣A∣, such that

(A⊗K Aι , σ ⊗ σ)
(∣A∣σ ,Tσ)
↝ (K , ι).(3.4)

3.1.4 Tensor products

If (Vi , h i) is an ε i -hermitian module over an algebra with involution (A i , σi), for i =
1, 2, then (V1 ⊗K V2 , h1 ⊗ h2) is an ε1ε2-hermitian module over (A1 ⊗K A2, σ1 ⊗ σ2).
In particular, ⟨a⟩σ1 ⊗ ⟨b⟩σ2 ≃ ⟨a ⊗ b⟩σ1⊗σ2 .

If, for i = 1, 2, we have (B i , τ i)
(Vi ,h i)
↝ (A i , σi), then

(B1 ⊗K B2 , τ1 ⊗ τ2)
(V1⊗K V2 ,h1⊗h2)

↝ (A1 ⊗K A2 , σ1 ⊗ σ2).
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3.1.5 Conjugate form

If (B, τ)
(V ,h)
↝ (A, σ), then we define (V , h), where V is the A–B-bimodule defined as

V as a K-vector space, with the action

a ⋅ v ⋅ b = τ(b) ⋅ v ⋅ σ(a),

and h ∶ V × V → B is characterized by

h(x , y)z = xh(y, z),

for all x , y, z ∈ V .

Then it is easy to see that (A, σ)
(V ,h)
↝ (B, τ).

3.2 The category Brh(K , ι)

We now define a category Brh(K , ι), which we call the hermitian Brauer 2-group of
(K , ι), such that:

• the objects are the algebras with involution (A, σ) over (K , ι) and
• the morphisms from (B, τ) to (A, σ) are the isomorphism classes of ε-hermitian

Morita equivalences between (B, τ)
(V ,h)
↝ (A, σ).

We will usually identify an ε-hermitian bimodule and its isomorphism class when
no confusion is possible. If f ∶ (B, τ) → (A, σ) is a morphism in Brh(K , ι), we will
sometimes write (Vf , h f ) for the corresponding ε-hermitian bimodule. We usually
write Brh(K) for Brh(K , Id).

To properly define Brh(K , ι) as a category, we need to specify how to compose

morphisms. Given two morphisms (C , θ)
(U ,h)
↝ (B, τ) and (B, τ)

(V ,h′)
↝ (A, σ), we

define a C–A-bimodule V ○U = U ⊗B V , and a map h′ ○ h ∶ (V ○U) × (V ○U) → A
by

(h′ ○ h)(u ⊗ v , u′ ⊗ v′) = h′(v , h(u, u′)v′).(3.5)

Proposition 3.6 In the situation just above, if h and h′ are, respectively, ε and
ε′-hermitian, then h′ ○ h is an εε′-hermitian form over (A, σ), which defines an
equivalence

(C , θ)
(V○U ,h′○h)
↝ (A, σ)

whose isomorphism class depends only on the isomorphism classes of (U , h) and (V , h′).

Proof This is a reformulation of [14, I.8.1] in the special case of central simple
algebras. ∎

Example 3.7 Let f ∶ (B, τ)
(V ,h)
↝ (A, σ) be a morphism in Brh(K , ι), and let b ∈

Symε(B×, τ) and a ∈ Symε′(A×, σ). Then the underlying space of ⟨a⟩σ ○ f ○ ⟨b⟩τ is
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∣B∣ ⊗B V ⊗A ∣A∣, which is canonically identified with V, and the εε f ε′-hermitian form
is:

V × V �→ A
(x , y) �→ h(xa, by).

In particular, f ○ ⟨1⟩τ = ⟨1⟩σ ○ f = f .

We can then state the following proposition.

Proposition 3.8 With the composition of morphisms being given by (3.5), Brh(K , ι)
is a category, and the identity of (A, σ) is (∣A∣, ⟨1⟩σ). Moreover, Brh(K , ι) is actually a
groupoid, and the inverse of a morphism (V , h) is (V , εh h).

Proof All statements are rephrasings of classical statements in hermitian Morita
theory, in the special case of central simple algebras with involution of the first
kind. The associativity of the composition is proved in [14, I.8.1.1]. The statement on
identities follows from Example 3.7, and the statement about inverses is proved in [14,
I.9.3.4]. ∎

3.3 Automorphisms and isometries

We defined a category Brh(K , ι) in which the (iso)morphisms between two algebras
with involution correspond to hermitian Morita equivalences. However, obviously,
there is a more elementary notion of isomorphism between algebras with involution.
To be precise, we may define a category AlgInv(K , ι), with the same objects as
Brh(K , ι), but where the morphisms are K-algebra isomorphisms which are compat-
ible with the involutions.

Then, to any algebra isomorphism φ ∶ (B, τ) → (A, σ), we can associate

(B, τ)
(∣A∣φ ,⟨1⟩σ)
↝ (A, σ) where ∣A∣φ = ∣A∣ as a right A-module, and the left action

of B is given by b ⋅ a = φ(b)a for any b ∈ B and a ∈ ∣A∣. It is easily seen that this is
indeed a hermitian Morita equivalence, and that this defines a functor

Θ ∶ AlgInv(K , ι) → Brh(K , ι),

which is the identity on objects.
Obviously, this functor is far from being full, since there are isomorphisms in

Brh(K , ι) between (B, τ) and (A, σ) whenever A and B are Brauer-equivalent. On
the other hand, we can look at the situation where (A, σ) = (B, τ). We call

AutM(A, σ) ∶= AutBrh(K , ι)(A, σ)

the group of Morita automorphisms of (A, σ), and

AutK(A, σ) ∶= AutAlgInv(K , ι)(A, σ)

the group of algebraic automorphisms of (A, σ). By extension, we say that a morphism
in Brh(K , ι) is algebraic if it is in the image of Θ. Then we have a group morphism

Θ ∶ AutK(A, σ) �→ AutM(A, σ),

and we want to understand the groups involved, as well as the kernel and cokernel.
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Recall from [15, 12.14] that the subgroup Sim(A, σ) ⊂ A× of similitudes of (A, σ) is
defined as

Sim(A, σ) = {a ∈ A ∣ aσ(a) ∈ k×}.

When a ∈ Sim(A, σ), we can define its multiplier μ(a) = aσ(a) = σ(a)a ∈ k×, and
μ is a group morphism Sim(A, σ) → k×. Then Ker(μ) is the subgroup Iso(A, σ) of
isometries of (A, σ), and Im(μ) = G(A, σ) is the group of multipliers of (A, σ). The
following proposition gives a complete picture of the situation.

Proposition 3.9 Let (A, σ) be an algebra with involution over (K , ι). We write N ∶
K× → k× for the group morphism x ↦ xι(x) (when ι ≠ Id, this is the Galois norm of
K/k), and int(a) ∈ AutK(A) for the inner automorphism of A induced by some a ∈ A×.

Then we have a commutative diagram of groups with exact rows and columns:

1 1 1 1

1 U(K , ι) K× N(K×) 1 1

1 Iso(A, σ) Sim(A, σ) K× K×/G(A, σ) 1

1 Ker(Θ) AutK(A, σ) AutM(A, σ) Coker(Θ) 1

1 1 1 1

N

int

μ

int λ↦(∣A∣,⟨λ⟩σ)

Θ

In particular, there is a canonical isomorphism AutM(A, σ) ≃ K×/N(K×), and when
ι = Id, this gives AutM(A, σ) ≃ K×/K×2.

Proof To prove that the diagram commutes, the only nontrivial thing to show
is that for any a ∈ Sim(A, σ), Θ(int(a)) ≃ (∣A∣, ⟨μ(a)⟩σ). By definition, Θ(int(a))
corresponds to the hermitian A–A-bimodule (∣A∣a , ⟨1⟩σ), where ∣A∣a = ∣A∣ as a right
A-module, and the action on the left is given by x ⋅ y = axa−1 y for all x ∈ A, y ∈ ∣A∣a .
Then we easily see that

f ∶ ∣A∣a �→ ∣A∣
y �→ a−1 y

is a bimodule isomorphism. Since

⟨μ(a)⟩σ( f (x), f (y)) = μ(a)σ( f (x)) f (y) = μ(a)σ(x)σ(a)−1a−1 y = σ(x)y,

the map f induces an isometry from ⟨1⟩σ to ⟨μ(a)⟩σ , which shows that the diagram
commutes.

The exactness of each row is clear. The exactness of the second column is a
consequence of [15, 12.15]. For the third column, the surjectivity comes from the fact
that any automorphism of (A, σ) in Brh(K , ι) has the form (∣A∣, h), and since h = ⟨1⟩σ
is a possible choice, any other choice must have the form h = ⟨λ⟩σ . To prove exactness
at K×, we must also show that (∣A∣, ⟨λ⟩σ) and (∣A∣, ⟨1⟩σ) are isomorphic iff λ ∈ N(K×).

https://doi.org/10.4153/S0008414X22000104 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000104


22 N. Garrel

However, any bimodule isomorphism f ∶ ∣A∣ → ∣A∣ has the form f (x) = ax for some
a ∈ K×, so if it induces an isometry from ⟨λ⟩σ to ⟨1⟩σ , we must have λ = aι(a).

For the first and fourth columns, the only thing to show is the surjectivity, but it
is easily obtained by a diagram chase now that we have shown exactness everywhere
else. ∎

Remark 3.10 Given two morphisms f i ∶ (B i , τ i)
(Vi ,h i)
↝ (A, σ) in Brh(K , ι), since

Brh(K , ι) is a groupoid, there is a unique g ∶ (B1 , τ1) → (B2 , τ2) such that f1 = f2 ○ g.
Now, h i is isometric to h2 if and only if g is algebraic. Thus, Brh(K , ι) cannot detect
isometric modules on its own, but it can if we add the data of Θ.

3.4 Monoidal structure and the Goldman element

The tensor product of algebras with involution endows AlgInv(K , ι) with a natural
symmetric monoidal structure, with unit object (K , ι), such that the obvious forgetful
functor AlgInv(K , ι) → K-Alg (which is faithful but not full) is symmetric strong
monoidal.

Likewise, the tensor product of algebras with involution (and of hermitian mod-
ules, for the morphisms) defines a monoidal structure on Brh(K , ι), with unit object
(K , ι), such that Θ ∶ AlgInv(K , ι) → Brh(K , ι) is a strict monoidal functor. We can
also transport the symmetric structure.

Proposition 3.11 The monoidal category Brh(K , ι) has a unique symmetric structure
such that Θ is symmetric.

Proof If we want Θ to be symmetric, we need to define the switching map in
Brh(K , ι) as

(A, σ) ⊗K (B, τ)
Θ(s)
��→ (B, τ) ⊗K (A, σ),

where s ∶ (A, σ) ⊗K (B, τ) → (B, τ) ⊗K (A, σ) is the switching map in AlgInv(K , ι).
Since the switching maps, the associators, and the unit maps are all images

of morphisms in AlgInv(K , ι) by Θ, all the coherence axioms can be verified in
AlgInv(K , ι). ∎

In particular, this means that for any algebra with involution (A, σ) over (K , ι) and
any n ∈ N, there are natural group morphisms

Sn AutK(A⊗n , σ⊗n)

AutM(A⊗n , σ⊗n).

Θ

A remarkable feature of Azumaya algebras is the existence of the so-called Gold-
man element (see [15, 3.A]).

Definition 3.1 Let A be a central simple algebra over K. Its Goldman element gA ∈
A⊗K A is defined by the fact that the sandwich map (3.1) sends gA, seen as an element
of A⊗K Aop , to the reduced trace TrdA ∶ A→ K, viewed as a linear map ∣A∣ → ∣A∣.
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It is shown in [15, 10.1] that the natural morphism Sn → AutK(A⊗n) admits a lift

(A⊗n)×

Sn AutK(A⊗n)

int

where Sn → (A⊗n)× is uniquely characterized by

(i , i + 1) ↦ 1⊗⋯⊗ gA ⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ 1

(with gA occupying the i and i + 1 slots).
Proposition 3.12 Let (A, σ) be an algebra with involution over (K , ι). Then the natural
morphism Sn → (A⊗n)× gives a commutative diagram of groups:

Iso(A⊗n , σ⊗n)

Sn AutK(A⊗n , σ⊗n).

int

Proof The only thing to show is that Sn → (A⊗n)× actually takes values in
Iso(A⊗n , σ⊗n). It is enough to consider transpositions of the form (i , i + 1), which
means that it is enough to show that gA ∈ Iso(A⊗2 , σ⊗2). Since g2

A = 1 [15, 3.6], this is
the same as proving that gA is symmetric for σ ⊗ σ , which is proved in [15, 10.19]. ∎

The crucial consequence is the following.
Corollary 3.13 The symmetric monoidal category Brh(K , ι) is strongly symmetric.
Proof The morphism Sn → AutM(A⊗n , σ⊗n) factors through Iso(A⊗n , σ⊗n) by
Proposition 3.12, which by Proposition 3.9 means that it is trivial. ∎

3.5 Inverses and coherent 2-torsion

For any small category C, let us write π0(C) for its set of isomorphism classes. When C
is monoidal, π0(C) inherits a natural monoid structure, which is commutative when
C is symmetric. As we have already stated, there is a morphism in Brh(K , ι) between
(B, τ) and (A, σ) if and only if A and B are Brauer-equivalent, which means that we get
a canonical embedding π0(Brh(K , ι)) → Br(K). In particular, all objects in Brh(K , ι)
are weakly invertible. When ι ≠ Id, π0(Brh(K , ι)) is identified with the kernel of the
norm map Br(K) → Br(k); when ι = Id, π0(Brh(K)) is identified with the 2-torsion
subgroup Br(K)[2] (in particular, every object has weak 2-torsion).

In fact, Example 3.5 gives a more precise statement about invertibility and torsion,
as it gives an explicit weak inverse of each (A, σ), namely (Aι , σ), which is indeed
equal to (A, σ)when ι = Id, and an explicit equivalence from their product to the unit
object (K , ι), given by the involution trace form (∣A∣σ , Tσ).

According to Theorem 2.16, since Brh(K , ι) is strongly symmetric by Corollary 3.13,
the data of all those equivalences define a canonical abelian gs-structure Brh(K , ι) →
Brh(K , ι)×,s . This is always the one we implicitly refer to when we mention such a
structure.
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When ι = Id, we can hope to give Brh(K , ι) a coherent 2-torsion structure since all
objects have weak 2-torsion, and indeed:

Theorem 3.14 Associating to each (A, σ) ∈ Brh(K), the canonical equivalence (A⊗K

A, σ ⊗ σ)
(∣A∣σ ,Tσ)
↝ (K , Id) defines, in the way of Proposition 2.17, a canonical coherent

2-torsion structure on Brh(K).

Proof According to Proposition 2.17, we have to verify the two diagrams (2.6) and
(2.7). The first one is straightforward, using the fact that the reduced trace TrdA⊗K B of
A⊗K B is nothing but TrdA⊗TrdB .

The second one requires more work; it states that for any f ∶ (B, τ)
(V ,h)
↝ (A, σ) in

Brh(K), the diagram

(B ⊗K B, τ ⊗ τ) (A⊗K A, σ ⊗ σ)

I

f⊗2

(B ,Tτ) (A,Tσ)

commutes. We define the following (B ⊗K B)–K-bimodule morphism:

ψ ∶ (V ⊗K V) ⊗A⊗K A A �→ B
(v ⊗w) ⊗ a �→ φh(va ⊗w),

where φh ∶ V ⊗K V → B (see [15, 5.1]) is given, identifying B = EndA(V), by

φh(v ⊗w)(x) = vh(w , x).

Then ψ is well defined since for x , y ∈ A:

ψ((v ⊗w) ⊗ (xaσ(y)) = φh(vxaσ(y) ⊗w)
= φh(vxa ⊗w y)
= ψ((vx ⊗w y) ⊗ a),

and it is a bimodule morphism since for x , y ∈ B:

ψ((xv ⊗ yw) ⊗ a) = φh(xva ⊗ yw)
= xφh(va ⊗ v)τ(y).

To show that ψ is an isometry, we must establish equality between on the one hand

TrdB (τ (ψ((v ⊗w) ⊗ a)) ⋅ ψ(((v′ ⊗w′) ⊗ b)))
= TrdB (τ(φh(va ⊗w)) ⋅ φh(v′b ⊗w′))

and on the other hand

TrdA (σ(a)(h ⊗ h)(v ⊗w , v′ ⊗w′) ⋅ b)
= ε TrdA(σ(a)h(v , v′)bh(w′ , w))
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with ε = εh . Now, applying successively the formulas in theorem [15, 5.1], we get:

TrdB (τ(φh(va ⊗w)) ⋅ φh(v′b ⊗w′))
= ε TrdB (φh(w ⊗ va) ⋅ φh(v′b ⊗w′))
= ε TrdB (φh(wh(va, v′b) ⊗w′))
= ε TrdA (h(w′ , wh(va, v′b)))
= ε TrdA (h(w′ , w)σ(a)h(v , v′)b). ∎

4 The mixed Witt ring

In this section, we combine the techniques developed in Section 2.4 to define graded
rings with the structure on Brh(K , ι) we established in Section 3.5.

4.1 The Witt groups

We start by defining the underlying group structures.

Definition 4.1 Let (A, σ) be an algebra with involution over (K , ι), and let ε ∈
U(K , ι). We denote by SW ε(A, σ) the set of isometry classes of ε-hermitian modules
over (A, σ); it is a commutative semigroup when equipped with the orthogonal direct
sum of ε-hermitian modules.

We define SWε(A, σ) = SW t(σ)ε(A, σ) where t(σ) = 1 when σ is orthogonal or
unitary, and t(σ) = −1 when σ is symplectic.

We also set: SW±(A, σ) = SW1(A, σ) ⊕ SW−1(A, σ).

We often make the slight abuse of notations SWε(K) for SWε(K , Id); note that
SWε(K) = SW ε(K).

We can observe that there is a natural functoriality for those semigroups: if f ∶
(B, τ) → (A, σ) is a morphism in Brh(K , ι) with sign ε′ ∈ U(K , ι), then it induces
a function

f∗ ∶ SW ε(B, τ) �→ SW εε′(A, σ)(4.1)

given by g ↦ f ○ g, where we see any (V , h) ∈ SW ε(B, τ) as a morphism g ∶
(EndK(V), τh)

(V ,h)
↝ (B, τ).

To simplify things a bit, and with no real consequence to the theory, we are going to
consider the subcategory Brh(K , ι)′ of Brh(K , ι), which is equal to Brh(K , ι)when ι =
Id, but only includes the morphisms which are 1-hermitian when ι ≠ Id. The restriction
is mostly harmless, since any two objects which are isomorphic in Brh(K , ι) are still
isomorphic in Brh(K , ι)′.

Proposition 4.1 For any ε ∈ U(K , ι), the association (A, σ) ↦ SWε(A, σ) and f ↦ f∗
as described above defines a functor from Brh(K , ι)′ to the category of commutative
semigroups. In particular, each f∗ is actually an isomorphism.

Proof First, we need to establish that f∗ does define a function from SWε(B, τ) to
SWε(A, σ). When ι ≠ Id, this comes from the restriction to Brh(K , ι)′, since in (4.1)

https://doi.org/10.4153/S0008414X22000104 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000104


26 N. Garrel

we have ε′ = 1. When ι = Id, there is no a priori restriction on ε′, but it is actually
determined by the types of σ and τ. In fact, we get

f∗ ∶ SWt(τ)ε(B, τ) �→ SWt(σ)εε′(A, σ),

and since t(τ) = ε′t(σ), the signs do correspond on both sides.
The functoriality is a direct consequence of the associativity of the composition

in Brh(K , ι). The fact that it is a semigroup morphism amounts to the formula h ○
(h1 ⊥ h2) ≃ (h ○ h1) ⊥ (h ○ h2)which can be checked directly on the definition of the
composition of hermitian forms.

Since all morphisms in Brh(K , ι)′ are invertible, all f∗ are invertible too by
functoriality. ∎

The reason we introduce SWε (instead of the more obvious SW ε) is precisely in
order to get the functoriality in the previous proposition.

Definition 4.2 For each ε ∈ U(K , ι) and each algebra with involution (A, σ) over
(K , ι), we define the Grothendieck–Witt group GWε(A, σ) as the Grothendieck group
of the semigroup SWε(A, σ).

If (V , h) ∈ SWε(A, σ), we say that a submodule W ⊂ V is a Lagrangian of (V , h)
if W =W⊥. If (V , h) has a Lagrangian, it is called hyperbolic.

We define the Witt group Wε(A, σ) as the quotient of GWε(A, σ) by the subgroup
generated by the hyperbolic forms.

Of course, we also have groups GW ε and W ε , but we are less interested in them
because they lack the functoriality we are looking for. We also have in an obvious way
GW± and W±.

Note that since by Witt’s theorem SWε(A, σ) satisfies the cancellation property, it
embeds in GWε(A, σ).

Proposition 4.2 For any ε ∈ U(K , ι), there is a unique structure of functor from
Brh(K , ι)′ to the category of abelian groups on GWε and Wε such that the canonical
maps SWε → GWε →Wε are natural transformations.

Proof Since the construction of the Grothendieck group of a semigroup is functorial,
GWε is the composition of two functors, so it is a functor. To see that Wε is a functor,
we just need to show that any f∗ sends hyperbolic forms to hyperbolic forms, which
is clear since if W ⊂ V is a Lagrangian of (V , h), then f∗(W , h∣W) is easily seen to be
a Lagrangian of f∗(V , h). ∎

Clearly, we get functors GW± and W± from Brh(K , ι) to μ2(K)-graded abelian
groups.

4.2 The mixed Witt ring

It is easy to see that the natural maps

SW ε(A, σ) × SW ε′(B, τ) → SW εε′(A⊗K B, σ ⊗ τ)

given by the tensor products of hermitian modules define maps

SWε(A, σ) × SWε′(B, τ) → SWεε′(A⊗K B, σ ⊗ τ).
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This is because t(σ ⊗ τ) = t(σ) ⋅ t(τ). Since these maps are additive in each vari-
able, they induce group morphisms

GWε(A, σ) ⊗GWε′(B, τ) → GWεε′(A⊗K B, σ ⊗ τ)(4.2)

by the universal property of the Grothendieck groups.

Proposition 4.3 The maps (4.2) define on GW± a structure of symmetric lax monoidal
functor from Brh(K , ι)′ to Z-Modμ2(K). Furthermore, there is a unique structure of
symmetric lax monoidal functor on W± such that the canonical transformation GW± →
W± is monoidal.

Proof The fact that GW± is symmetric monoidal is completely straightforward given
the usual properties of tensor products. To see that it induces a symmetric monoidal
structure on W±, the only point is that the products are well defined, which means that
if (V , h) is hyperbolic, then so is (U ⊗K V , h′ ⊗ h) for any (U , h′). Now, if W ⊂ V is
a Lagrangian for h, it is easy to see that U ⊗K W is a Lagrangian for h′ ⊗ h. ∎

When ι ≠ Id, we are not really interested in GW± and W± but rather simply
in the neutral components GW1 and W1 (since GW−1 ≈ GW1 in that case, albeit
noncanonically), which give symmetric monoidal functors to the category of abelian
groups.

We can therefore apply Corollary 2.20. Using, respectively, K = GW1 and K =W1
and the canonical abelian gs-structure of Brh(K , ι)′ we described in 3.5, we get
functors:

ĜW ∶ Brh(K , ι)′ → GW(K , ι)-CommAlg
Z

,(4.3)

Ŵ ∶ Brh(K , ι)′ →W(K , ι)-CommAlg
Z

.(4.4)

In concrete terms:

ĜW(A, σ) = ⊕
n∈N∗

GW1((Aι)⊗n , σ⊗n) ⊕GW1(K , ι) ⊕ ⊕
n∈N∗

GW1(A⊗n , σ⊗n)

and likewise for Ŵ(A, σ). An element in GW1((Aι)⊗n , σ⊗n) has degree −n, and
when an element of positive degree is multiplied with an element of negative degree,
the difference is canceled using the hermitian Morita equivalence (A⊗ Aι , σ ⊗ σ) ↝
(K , ι) as many times as necessary.

The point of the machinery developed in Section 2.4 is that it guarantees that this
is well defined, and gives a commutative Z-graded ring, functorial in (A, σ) (none
of which is trivial). Although this ring has interesting applications for the theory of
hermitian forms over algebras with unitary involution, we will put it aside in the
remainder of the article, and focus on the case of involutions of the first kind, for
which a more powerful construction is available.

If we now specialize to ι = Id, we can use K = GW± and K =W± in Corollary 2.20,
as well as the canonical coherent 2-torsion structure of Brh(K), to get functors

G̃W ∶ Brh(K) → GW(K)-CommAlgΓ ,(4.5)

W̃ ∶ Brh(K) →W(K)-CommAlgΓ ,(4.6)
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where Γ = Z/2Z × μ2(K).
In concrete terms, for any algebra with involution (of the first kind), we have the

mixed Grothendieck–Witt ring

G̃W(A, σ) = GW1(K) ⊕GW−1(K) ⊕GW1(A, σ) ⊕GW−1(A, σ)(4.7)

and the mixed Witt ring

W̃(A, σ) =W1(K) ⊕W1(A, σ) ⊕W−1(A, σ)(4.8)

(note that W−1(K) = 0 because all antisymmetric bilinear forms are hyperbolic). The
word “mixed” is here to indicate that the ring structure mixes bilinear and hermitian
forms. Of course, given its construction, W̃(A, σ) is the quotient of G̃W(A, σ) by the
ideal of hyperbolic forms.

A lot of the ring structure of G̃W(A, σ) comes from the fact that GW±(K) is
a commutative ring and that GW±(A, σ) is a module over this ring, which is not
something new. The novel part is the product

GWε(A, σ) ⊗GWε′(A, σ) → GWεε′(K),

which simply comes from the natural product GWε(A, σ) ⊗GWε′(A, σ) →
GWεε′(A⊗2 , σ⊗2) composed with the isomorphism GWεε′(A⊗2 , σ⊗2) ≃ GWεε′(K)
coming from the canonical hermitian Morita equivalence between (A⊗2 , σ⊗2) and
(K , Id), given by (∣A∣σ , Tσ). Once again, the machinery of Section 2.4 guarantees
that everything is well defined and functorial. (Of course, similar statements hold for
W̃(A, σ).)

Remark 4.4 In the case of a quaternion algebra Q with its canonical involution
γ, Lewis makes in [18] a very similar construction to our W̃(Q , γ). His definition
amounts to essentially the same, except that he uses the norm form of Q instead of
the involution trace form Tγ . Since these two forms differ by a factor ⟨2⟩, we get
nonisomorphic but very similar rings. However, the norm form is a special feature
of quaternion algebras (in general, for an algebra of degree n, the reduced norm
is a homogeneous polynomial function of degree n), so the construction does not
generalize well to arbitrary algebras. Furthermore, no proof of the associativity or
commutativity of the product is given in [18].

We will call GW±(K) the even part of G̃W(A, σ), and GW±(A, σ) its odd part.
This corresponds to considering the Z/2Z-grading canonically induced by the Γ-
grading on the ring. Then the functoriality of G̃W behaves very differently on the even
and odd parts: for any f ∶ (B, τ) → (A, σ) in Brh(K), the induced f∗ ∶ G̃W(B, τ) →
G̃W(A, σ) consists of the identity on the even part, and of the morphism described in
(4.1) on the odd part.

For instance, any automorphism of (A, σ) in Brh(K) induces a graded ring auto-
morphism on G̃W(A, σ); such an automorphism will be called standard. Recall from
Proposition 3.9 that all Morita automorphisms of (A, σ) are of the form (∣A∣, ⟨λ⟩σ)
with λ ∈ K×, so the associated standard automorphism of G̃W(A, σ) is the identity on
GW±(K), and is the multiplication of hermitian forms by the scalar λ on GW±(A, σ).

Since all morphisms in Brh(K) are invertible, this means that all the induced
morphisms between mixed Witt rings are actually isomorphisms. In particular, given
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some algebra with involution (A, σ), for any other (B, τ) such that A and B are
Brauer-equivalent, there are isomorphisms G̃W(A, σ) ≈ G̃W(B, τ), well defined up
to a standard automorphism of G̃W(B, τ). This means that we can translate any
computation in G̃W(A, σ) to a computation in G̃W(B, τ); the even component of
the result does not depend on any choice of equivalence, whereas the odd part is well
defined up to multiplication by a scalar (which corresponds to a choice of equivalence).
For instance, it is often convenient to choose for B a division algebra, so that we can
reduce all computations to the case of diagonal forms.

Of course, everything we said in the last paragraphs also holds for W̃(A, σ) (for
the same reasons, or by seeing it as a quotient of G̃W(A, σ)).

Example 4.5 We have by construction G̃W(K , Id) = GW±(K) ⊕GW±(K) and
W̃(K , Id) =W(K) ⊕W(K) as Γ-graded groups (in that second case, the ring does
have four components, but two of them are zero). It is easy to see by definition of
the product that as Γ-graded rings, we have canonical isomorphisms G̃W(K , Id) ≃
GW±(K)[Z/2Z] (where R[G] denotes the group algebra of a group G over a ring
R) and W̃(K , Id) ≃W(K)[Z/2Z] (where GW±(K) and W(K) are considered as μ2-
graded rings).

In particular, if (A, σ) is a split algebra with orthogonal involution, then there
is a ring isomorphism W̃(A, σ) ≈W(K)[Z/2Z], but it depends on the choice of a
quadratic form q such that σ = σq (which is only well defined up to a scalar factor).

Remark 4.6 We can also consider the subrings G̃W ε(A, σ) = GW(K) ⊕GWε(A, σ)
and W̃ε(A, σ) =W(K) ⊕Wε(A, σ) for ε = ±1, which are also functorial over Brh(K).
The inconvenience is that in that case we only consider one sign of hermitian forms at
a time, and that sign depends on the type of σ .

Remark 4.7 Note that we can associate to each 2-torsion Brauer class [A] the
isomorphism class of the ring G̃W(A, σ) where σ is any involution on A. This is well
defined, but is more or less unusable since to actually work with the ring we do need
to choose a representative (A, σ).

4.3 The reduced dimension map

In the classical theory of quadratic forms, the dimension maps GW(K) → Z and
W(K) → Z/2Z play an important role (especially through their kernel). We can
generalize that to mixed Witt rings: to any ε-hermitian module (V , h) over (A, σ),
we can associate its reduced dimension rdim(V) (or rdim(h)), defined as the degree
of the algebra EndA(V). It can also be characterized as dimK(V)/deg(A) (see [15]).

This defines a semigroup morphism rdim ∶ SWε(A, σ) → N, which extends to a
group morphism rdim ∶ GWε(A, σ) → Z. If we use these morphisms componentwise,
we get a Γ-graded group morphism

r̃dim ∶ G̃W(A, σ) → Z[Γ].(4.9)

Since hyperbolic forms always have an even reduced dimension, this also induces a
group morphism

r̃dim2 ∶ W̃(A, σ) → Z/2Z[Γ].(4.10)
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Proposition 4.8 The morphisms (4.9) and (4.10) are actually Γ-graded ring mor-
phisms, and for any f ∶ (B, τ) → (A, σ) in Brh(K), we get a commutative diagram

G̃W(B, τ) Z[Γ]

G̃W(A, σ)

W̃(A, σ)

W̃(B, τ) Z/2Z[Γ].

f∗

r̃dim

r̃dim

r̃dim2f∗

r̃dim2

Proof We need to show that rdim(V ⊗ V ′) = rdim(V) ˙rdim(V ′), which is clear
since EndA⊗K A′(V ⊗K V ′) is isomorphic to EndA(V) ⊗K EndA′(V ′), and the degrees
multiply.

Then the fact that the diagram commutes relies on the fact that the reduced
dimension is preserved by the morphisms f∗ ∶ GWε(B, τ) → GWε(A, σ) induced by
hermitian Morita equivalences. However, if (V , h) ∈ SWε(B, τ), then by construction
of f∗, f∗(V , h) defines an equivalence (EndB(V), τh) ↝ (A, σ), so the degree of the
algebra on the left-hand side is preserved in the operation (and that is the reduced
dimension). ∎

4.4 Products of diagonal forms

Now that we have established the formal properties of our mixed rings, we would
like to be able to perform explicit computations. Obviously, the only products which
present any difficulty are the products of two elements in GW±(A, σ). Actually, since
the elements in GW−1(K) are all hyperbolic and characterized by their (reduced)
dimension, and we know from Proposition 4.8 how reduced dimensions multiply, the
only nontrivial products to compute are those of two elements in the same GWε(A, σ).

Furthermore, it is enough to know how to multiply elementary diagonal forms
⟨a⟩σ , since we know that if needed we can perform these computations in G̃W(D, θ)
where D is the division algebra Brauer-equivalent to our algebra A (and θ is any
involution). The result will even be independent of the choice of equivalence between
(A, σ) and (D, θ) as it lies in the even component.

In [15, §11], given a ∈ Symε(A×, σ), a symmetric bilinear form Tσ ,a ∶ A× A→ K
is introduced, called a twisted involution trace form. We generalize that slightly by
taking a, b ∈ Symε(A×, σ) and defining Tσ ,a ,b ∶ A× A→ K as

Tσ ,a ,b(x , y) = TrdA(σ(x)ayσ(b)).(4.11)

We recover the initial Tσ ,a as Tσ ,a ,1, and also the usual involution trace form Tσ as
Tσ ,1,1. Then we get the following proposition.
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Proposition 4.9 Let (A, σ) be an algebra with involution over K, and let a, b ∈
Symε(A×, σ). Then in G̃W(A, σ) we have

⟨a⟩σ ⋅ ⟨b⟩σ = Tσ ,a ,b ∈ GW(K).

Proof By definition, ⟨a⟩σ ⋅ ⟨b⟩σ is the bilinear form given by the composition Tσ ○
⟨a ⊗ b⟩σ⊗σ . According to Example 3.7, this is

(x , y) ↦ Tσ(x , (a ⊗ b) ⋅ y),

where the action of A⊗K A on A is the twisted sandwich action (3.2). Since Tσ(x , y) =
TrdA(σ(x)y) and (a ⊗ b) ⋅ y = ayσ(b), we may conclude. ∎

Example 4.10 In particular, ⟨1⟩2σ = Tσ , which of course follows directly from the
definition of the product. The idea that Tσ represents in some sense the “square” of
the involution σ has appeared in the literature in various forms, for instance, in the
definition of the signature of an involution (see [21]). Our construction gives some
solid ground to this idea.

Corollary 4.11 Let (A, σ) be an algebra with involution over K, V be a right A-module,
and h, h′ be two ε-hermitian forms on V. If we set B = EndA(V) and τ = σh , then there is
a unique u ∈ B× such that for all x , y ∈ V, h′(x , y) = h(ux , y). Furthermore, τ(u) = u,
and

h′ ⋅ h = Tτ ,u

as a product in G̃W(A, σ). In particular, h2 = Tτ .

Proof For a fixed x, h′(x ,−) is an A-linear map V → A, so since h is regular, there
exists a unique x′ such that h′(x ,−) = h(x′ ,−). It is easy to see that x ↦ x′ is A-linear,
which shows existence and uniqueness of u (which is invertible since h′ is also regular).
We easily see that τ(u) = u using that h′ is ε-hermitian.

Let f ∶ (B, τ) → (A, σ) be the morphism in Brh(K) corresponding to (V , h).
Then f∗(⟨1⟩τ) = (V , h), and f∗(⟨b⟩τ) = h′ (see Example 3.7). Thus, since f∗ is a ring
morphism, we find h′ ⋅ h = ⟨u⟩τ ⋅ ⟨1⟩τ = Tτ ,u . ∎

This means that we can reinterpret twisted involution forms in the sense of [15,
§11] as being exactly the products of ε-hermitian forms defined on the same module.
The previous computations show that understanding the product in G̃W(A, σ) and
W̃(A, σ) amounts to understanding those twisted involution trace forms (usually for
involutions different from σ).

4.5 Quaternion algebras

We can in particular perform these computations for quaternion algebras, imitating
the proof of [15, 11.6]. Recall that if Q is a quaternion algebra, then its reduced norm
map is a quadratic form on Q, denoted nQ ∈ GW(K), and it is the unique 2-Pfister
form whose Clifford invariant e2(nQ) ∈ H2(K , μ2) is the Brauer class of Q.

For any pure quaternions z1 , z2 ∈ Q×, the Brauer class [Q] and the symbol (z2
1 , z2

2) ∈
H2(K , μ2) have a common slot (for instance, z2

1 ), so [Q] + (z2
1 , z2

2) is a symbol. We
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write φz1 ,z2 for the unique 2-Pfister form whose Clifford invariant is this symbol. In
particular, if z1 and z2 anticommute, φz1 ,z2 is hyperbolic.

Proposition 4.12 Let (Q , γ) be a quaternion algebra over K endowed with its canonical
symplectic involution. Then, for any a, b ∈ K∗, we have in G̃W(Q , γ):

⟨a⟩γ ⋅ ⟨b⟩γ = ⟨2ab⟩nQ ∈ GW(K).

Furthermore, for any pure quaternions z1 , z2 ∈ Q×, ⟨z1⟩γ ⋅ ⟨z2⟩γ is similar to φz1 ,z2 .
When z1 and z2 anticommute, this means ⟨z1⟩γ ⋅ ⟨z2⟩γ is hyperbolic. When they do not
anticommute, we get:

⟨z1⟩γ ⋅ ⟨z2⟩γ = ⟨−TrdQ(z1z2)⟩φz1 ,z2 ∈ GW(K).

Proof From Proposition 4.9, we see that

⟨a⟩γ ⋅ ⟨b⟩γ = ⟨ab⟩Tγ ,

and it is easy to see that Tγ = ⟨2⟩nQ (for instance, by taking a standard quaternionic
basis of Q). For the second formula, we can check that if z1 and z2 anticommute, then
1 and z1 span a Lagrangian in (Q , Tγ ,z1 ,z2), and otherwise we can check that if z ∈ Q×
anticommutes with z1, then the basis (1, z1 , zz2 , z1zz2) is orthogonal for Tγ ,z1 ,z2 , giving
the diagonalization

⟨−TrdQ(z1z2)⟩⟨1,−z2
1 ,−z2

2z2 , z2
1 z2

2z2⟩,

which shows that Tγ ,z1 ,z2 ≃ ⟨−TrdQ(z1z2)⟩⟨⟨z1 , z2z⟩⟩, and it is easy to see that by
definition φz1 ,z2 = ⟨⟨z1 , z2z⟩⟩. ∎

Using this result, we can also compute products in (Q , σ) for orthogonal invo-
lutions σ . Indeed, we know that σ = γu for some pure quaternion u ∈ Q×; then

we have a Morita equivalence f ∶ (Q , σ)
⟨u⟩γ
↝ (Q , γ). From Example 3.7, we deduce

that f∗(⟨z⟩σ) = ⟨uz⟩γ . So we can simply compute ⟨z⟩σ ⋅ ⟨z′⟩σ = ⟨uz⟩γ ⋅ ⟨uz′⟩γ using
Proposition 4.12 (it does not give especially enlightening formulas).

Remark 4.13 In [18], Lewis gives a description in terms of generators and relations
of W̃(Q , γ) in a few simple cases, namely when the base field is real closed or is a
p-adic field (recall though that there is a factor ⟨2⟩ between his product and ours).
Unfortunately, it does not really seem feasible to give other such complete descriptions,
simply because the underlying Witt groups themselves (let alone the ring structure)
are to the best of our knowledge only described as precisely in those exact cases.

4.6 Scalar extension and reciprocity

Scalar extension is a standard tool in the theory of algebras with involution, in
particular when extending the scalars to a splitting field to reduce to the classical
theory of bilinear forms over fields.

When studying the usual Witt rings of fields, it is also standard to consider the
ring morphisms ρ ∶ GW(K) → GW(L) induced by a field extension L/K. One of the
basic facts (see [23, 2.5.6]) is that we can also go in the other direction provided the
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extension is finite: if s ∶ L → K is a nonzero K-linear map, then one can define a group
morphism

s∗ ∶ GW(L) �→ GW(K)
(V , b) �→ (V , s ○ b),

usually called a Scharlau transfer map, and the Reciprocity Theorem states that this is
a GW(K)-module morphism. In concrete terms, this means that if x ∈ GW(K) and
y ∈ GW(L), then

s∗(ρ(x) ⋅ y) = x ⋅ s∗(y).

Of course, this is reminiscent of other such reciprocity phenomena, such as Frobe-
nius reciprocity for induction/restriction of group representations, or the projection
formula for cup-products in cohomology.

Let us explain how such reciprocity formulas arise inside the framework we
established in Section 2.4 to construct graded rings. Consider commutative monoids
M and N, and F , G ∈ LaxHoms

⊗(⟨M⟩,Z-ModN). Then, if φ ∶ F → G is a monoidal
transformation, it induces an (M × N)-graded ring morphism φ∗ ∶ AF → AG , where
AF and AG are the graded rings corresponding to F and G. In particular, AG is
a (graded) module over AF . Now, if ψ ∶ G → F is a natural transformation (not
monoidal) in the other direction, it induces a graded group morphism ψ∗ ∶ AG → AF .
When is this an AF -module morphism? It is easy to check that the relevant condition
is that the following diagram commutes for all x , y ∈ M:

(4.12)
F(x) ⊗G(y) G(x) ⊗G(y) G(x y)

F(x) ⊗ F(y) F(x y).

φ⊗Id

Id⊗ψ ψ

Now, let us apply this to our situation. Let L/K be any field extension. We have
an obvious scalar extension functor Brh(K) → Brh(L), which fits in commutative
diagrams of functors

AlgInv(K) Brh(K)

AlgInv(L) Brh(L)

Θ

Θ

and

Brh(K) Brh(K)[2] Brh(K)

Brh(L) Brh(L)[2] Brh(L)

using the canonical coherent 2-torsion structures.

https://doi.org/10.4153/S0008414X22000104 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000104


34 N. Garrel

For any algebra with involution (A, σ), scalar extension of hermitian modules
yields group morphisms

ρ ∶ GWε(A, σ) �→ GWε(AL , σL)(4.13)

which fit into a 2-cell

Brh(K) Z-Modμ2(K)

Brh(L) Z-Modμ2(L) .

GW±

ρ

GW±

In fact, as scalar extension is compatible with tensor products, ρ is even a monoidal
natural transformation.

Now, let us assume that L/K is finite, and let s ∶ L → K be a nonzero K-linear
form. Then, for any K-algebra A, s extends naturally to a K-linear map sA ∶ AL → A
by IdA⊗s, and this defines an involution trace in the sense of [15, 4.3]. This shows (see
also [14, I.7.2,I.7.3.2]) that we can define group morphisms, which are the analogues of
the Scharlau transfer,

s∗ ∶ GWε(AL , σL) �→ GWε(A, σ)(4.14)

by sending (V , h) over (AL , σL) to (V , sA ○ h).

Proposition 4.14 The morphisms in (4.14) form a natural transformation which fits
into a 2-cell

Brh(K) Z-Modμ2(K)

Brh(L) Z-Modμ2(L).

GW±

GW±

s∗

Proof If f ∶ (B, τ)
(V ,h)
↝ (A, σ) is a morphism in Brh(K), we need to show that we

get a commutative diagram

GWε(BL , τL) GWε(B, τ)

GWε(AL , σL) GWε(A, σ).

( fL)∗

s∗

f∗
s∗

Let (U , g) ∈ GWε(BL , τL). Then we need to give an isometry from (U ⊗B V , α) to
(U ⊗BL VL , β) with

α(u ⊗ v , u′ ⊗ v′) = h(v , sB(g(u, u′)) ⋅ v′)

and

β(u ⊗ (v ⊗ λ), u′ ⊗ (v′ ⊗ μ)) = sA(hL(v ⊗ λ, g(u, u′) ⋅ (v′ ⊗ μ))).
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We consider φ ∶ U ⊗B V → U ⊗BL VL defined by u ⊗ v ↦ u ⊗ (v ⊗ 1); to show that it
is an isometry from α to β, we need to show the equality:

sA(hL(v ⊗ 1, g(u, u′) ⋅ (v′ ⊗ 1))) = h(v , sB(g(u, u′)) ⋅ v′).

We can write g(u, u′) = ∑ b i ⊗ λ i , and since both expressions are additive in g(u, u′),
we may actually assume that g(u, u′) = b ⊗ λ. But then, the left-hand side is

sA(hL(v ⊗ 1, bv′ ⊗ λ)) = sA(h(v , bv′) ⊗ λ) = h(v , bv′)s(λ),

and the right-hand side is

h(v , sB(b ⊗ λ) ⋅ v′) = h(v , s(λ)bv′),

which concludes. ∎

Thus, we have at our disposal two natural transformations ρ and s∗ going in oppo-
site directions between the same functors, and one of them, namely ρ is monoidal. The
following proof is essentially an adaptation of [23, 2.5.6].

Proposition 4.15 The natural transformations ρ and s∗ satisfy the relationship given
by the diagram (4.12), with F(A, σ) = GW±(A, σ) and G(A, σ) = GW±(AL , σL).
Proof We need to show that if (V , h) ∈ GWε(A, σ) and (U , g) ∈ GWε′(BL , τL),
then

sA⊗K B ○ (hL ⊗ g) = h ⊗ (sB ○ g) ∈ GWεε′(A⊗K B, σ ⊗ τ).

It is easy to see that the map

(V ⊗K L) ⊗L U �→ V ⊗K U
(x ⊗ λ) ⊗ y �→ x ⊗ (λy)

defines an isometry. ∎

We finally establish the desired reciprocity result.

Theorem 4.16 (Frobenius reciprocity) Let L/K be a finite field extension, and let
s ∶ L → K be a nonzero K-linear form. Then, for any algebra with involution (A, σ)
over (K , Id), the scalar extension map ρ ∶ G̃W(A, σ) → G̃W(AL , σL) is a Γ-graded ring
morphism, and the transfer s∗ ∶ G̃W(AL , σL) → G̃W(A, σ) is a morphism of graded
G̃W(A, σ)-modules.

In practice, this means that for all x ∈ G̃W(A, σ) and y ∈ G̃W(AL , σL), we have:

s∗(ρ(x) ⋅ y) = x ⋅ s∗(y).

Proof The canonical coherent 2-torsion structures associate to each (A, σ) symmet-
ric monoidal functors

⟨Z/2Z⟩ Brh(K)

Brh(L).

If we use the notation in the statement of Proposition 4.15, then by composition, we
get symmetric monoidal functors F′ , G′ ∶ ⟨Z/2Z⟩ → Z-Modμ2(L), and ρ and s∗ give
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natural transformation φ ∶ F′ → G′ and ψ ∶ G′ → F′ which satisfy the relation in (4.12).
By construction, the graded rings associated to F′ and G′ are precisely G̃W(A, σ) and
G̃W(AL , σL), and the natural transformations φ and ψ correspond to the maps given
by ρ and s∗.

Then, as discussed above, the relation (4.12) exactly gives the fact that ρ is a ring
morphism and s∗ is a G̃W(A, σ)-module morphism. ∎

Since both ρ and s∗ send hyperbolic forms to hyperbolic forms, they also induce
maps ρ ∶ W̃(A, σ) → W̃(AL , σL) and s∗ ∶ W̃(AL , σL) → W̃(A, σ), which also satisfy
the reciprocity formula, since it holds in G̃W .

Remark 4.17 In particular, the image of the transfer map s∗ is an ideal in G̃W(A, σ)
(resp. W̃(A, σ)), which as in the classical case we call the trace ideal relative to L/K,
and it can be shown that it does not depend on the choice of s.
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